JP6237456B2 - Strain-sensitive resistance paste and mechanical quantity sensor element - Google Patents

Strain-sensitive resistance paste and mechanical quantity sensor element Download PDF

Info

Publication number
JP6237456B2
JP6237456B2 JP2014100036A JP2014100036A JP6237456B2 JP 6237456 B2 JP6237456 B2 JP 6237456B2 JP 2014100036 A JP2014100036 A JP 2014100036A JP 2014100036 A JP2014100036 A JP 2014100036A JP 6237456 B2 JP6237456 B2 JP 6237456B2
Authority
JP
Japan
Prior art keywords
strain
sensitive layer
sensor element
mechanical quantity
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014100036A
Other languages
Japanese (ja)
Other versions
JP2015219011A (en
Inventor
満 浅井
満 浅井
康善 齋藤
康善 齋藤
凡子 高木
凡子 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2014100036A priority Critical patent/JP6237456B2/en
Publication of JP2015219011A publication Critical patent/JP2015219011A/en
Application granted granted Critical
Publication of JP6237456B2 publication Critical patent/JP6237456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、力学量(歪み、応力等)の測定に用いることができる感歪抵抗ペーストと力学量センサ素子に関する。   The present invention relates to a strain-sensitive resistance paste and a mechanical quantity sensor element that can be used for measuring mechanical quantities (strain, stress, etc.).

種々の力学量を計測するために、歪み量に応じて電気抵抗値(適宜、単に「抵抗値」という。)が変化する感歪体を有する力学量センサ素子が利用されている。このような力学量センサ素子として、金属歪みゲージが代表的であるが、この他に、酸化ルテニウム(RuO)とガラスの複合体からなるペースト(感歪抵抗ペースト)を、起歪体となる測定対象または絶縁板へ焼き付け、形成された感歪層の抵抗値を測定することによって力学量を計測することもなされている。このような感歪抵抗ペーストまたは力学量センサ素子に関する記載が、例えば、下記の特許文献にある。 In order to measure various mechanical quantities, a mechanical quantity sensor element having a strain sensitive body whose electric resistance value (simply referred to simply as “resistance value”) changes according to the strain quantity is used. As such a mechanical quantity sensor element, a metal strain gauge is representative, but in addition to this, a paste (strain sensitive resistance paste) made of a composite of ruthenium oxide (RuO 2 ) and glass is used as a strain generating body. The mechanical quantity is also measured by measuring the resistance value of the strain sensitive layer formed by baking on a measurement object or an insulating plate. The description regarding such a strain sensitive resistance paste or a mechanical quantity sensor element exists in the following patent document, for example.

特開2005−172793号公報JP 2005-172793 A 特開2007−107963号公報JP 2007-107963 A

特許文献1は、感歪層(感圧体)を2枚の絶縁板で挟み込むように形成した力学量センサ素子を提案している。この力学量センサ素子を用いると、絶縁板を介して感歪層が均一的に歪むようになり、作用する力学量の精密な計測が可能となる。もっとも、特許文献1は、力学量センサ素子の耐久性・信頼性に関して何ら触れていない。   Patent Document 1 proposes a mechanical quantity sensor element in which a strain sensitive layer (pressure sensitive body) is formed between two insulating plates. When this mechanical quantity sensor element is used, the strain sensitive layer is uniformly distorted through the insulating plate, and the mechanical quantity acting can be accurately measured. However, Patent Document 1 does not mention anything about the durability and reliability of the mechanical quantity sensor element.

特許文献2は、RuO粒子よりも大きな無機質結晶性の補強粒子を、マトリックスであるガラス中に分散させることにより、粘弾性体であるガラスのクリープ現象を抑制して、力学量センサ素子の耐久性・信頼性の向上を図ることを提案している。その補強粒子は、具体的にいうと、平均粒径:4.5〜53μmのアルミナ粒子または平均繊維長:10〜30μm、繊維径:0.5〜1μmのホウ酸アルミニウムウィスカである。これらの補強粒子によりRuO粒子を含む感圧体のクリープ特性は改善される得るものの、その感圧体を有する力学量センサ素子は、必ずしも荷重特性(直線性、ヒステリシス性等)や耐久性・信頼性(長期間にわたり所望の特性が確保されること)に優れるものではなかった。 Patent Document 2 describes the durability of a mechanical sensor element by suppressing the creep phenomenon of glass as a viscoelastic body by dispersing inorganic crystalline reinforcing particles larger than RuO 2 particles in glass as a matrix. It is proposed to improve the reliability and reliability. Specifically, the reinforcing particles are alumina particles having an average particle diameter of 4.5 to 53 μm or aluminum borate whiskers having an average fiber length of 10 to 30 μm and a fiber diameter of 0.5 to 1 μm. Although the creep characteristics of a pressure sensitive body containing RuO 2 particles can be improved by these reinforcing particles, the mechanical quantity sensor element having the pressure sensitive body does not necessarily have load characteristics (linearity, hysteresis characteristics, etc.), durability, It was not excellent in reliability (to ensure desired characteristics over a long period of time).

本発明はこのような事情に鑑みて為されたものであり、センサ特性(荷重特性)に優れ、高い信頼性・耐久性を確保しつつ力学量の正確な計測を安定的に行うことができる感歪層の製造に適した感歪抵抗ペーストと、その感歪層を有する力学量センサ素子を提供することを目的とする。   The present invention has been made in view of such circumstances, and has excellent sensor characteristics (load characteristics) and can stably perform accurate measurement of mechanical quantities while ensuring high reliability and durability. It is an object of the present invention to provide a strain sensitive resistance paste suitable for producing a strain sensitive layer and a mechanical quantity sensor element having the strain sensitive layer.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、特定形状の微細な繊維を、RuOを保持するガラス中に分散させ得る感歪抵抗ペーストを用いることにより、荷重特性に優れると共に破壊荷重を高めることができる力学量センサ素子が得られることを新たに見出した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of extensive research and trial and error, the present inventor has conducted a trial and error, and as a result, by using a strain sensitive resistance paste capable of dispersing fine fibers of a specific shape in a glass holding RuO 2 , It was newly found that a mechanical sensor element having excellent characteristics and capable of increasing the breaking load can be obtained. By developing this result, the present invention described below has been completed.

《感歪抵抗ペースト》
(1)本発明の感歪抵抗ペーストは、酸化ルテニウム(RuO)を含んでなり導電性を有する導電性粒子と、該導電性粒子を保持するガラスからなるマトリックス形成材料と、該マトリックス形成材料中に分散して該マトリックス形成材料を強化する電気絶縁材からなる強化繊維と、該導電性粒子、該マトリックス形成材料および該強化繊維を分散させる分散媒とが混合されてなり、付着された起歪体の歪み量に応じて電気抵抗値を変化させる感歪層(感歪体)を形成するために用いられる感歪抵抗ペーストであって、前記強化繊維は、平均繊維径が4μm以下であると共に平均繊維長が8μm以下であることを特徴とする。
《Strain-sensitive resistance paste》
(1) The strain sensitive resistance paste of the present invention comprises conductive particles comprising ruthenium oxide (RuO 2 ) and having conductivity, a matrix forming material comprising glass holding the conductive particles, and the matrix forming material A reinforcing fiber made of an electrical insulating material that is dispersed in the matrix forming material to reinforce the matrix-forming material and a dispersion medium that disperses the conductive particles, the matrix-forming material, and the reinforcing fiber are mixed and adhered. A strain-sensitive resistance paste used for forming a strain-sensitive layer (strain-sensitive body) that changes an electric resistance value in accordance with a strain amount of a strain body, wherein the reinforcing fibers have an average fiber diameter of 4 μm or less. In addition, the average fiber length is 8 μm or less.

(2)本発明の感歪抵抗ペースト(適宜、単に「ペースト」という。)を用いると、作用する歪み(または応力等)に対応して現れる抵抗値の変化特性(単に「センサ特性」という。)が非常に良好であると共に、高強度で耐久性・信頼性に優れた感歪層の形成、ひいてはその感歪層を有する力学量センサ素子の製作が容易となる。 (2) When the strain-sensitive resistance paste of the present invention (appropriately, simply referred to as “paste”) is used, a resistance change characteristic (corresponding simply to “sensor characteristics”) that appears corresponding to the strain (or stress, etc.) that acts. ) Is very good, and it is easy to form a strain-sensitive layer having high strength and durability and reliability, and in turn, to manufacture a mechanical quantity sensor element having the strain-sensitive layer.

本発明のペーストがそのような優れた特性を発揮する理由は必ずしも定かではないが、現状では次のように考えられる。通常、感歪層は、応力(荷重)を受けて撓み、その撓みの中立面よりも内側には圧縮応力(圧縮歪み)が生じ、その外側には引張応力(引張歪み)が生じる。いずれにしても、感歪層にはその形成面に沿った方向に応力が作用し、その応力により感歪層に歪みが生じることにより、感歪層は抵抗値を変化させる。ここで本発明のペーストを用いて感歪層を形成すると、ペースト中に含まれていた微細な強化繊維は感歪層の形成面に沿って延在した状態、つまりその形成面に配向した状態で分布することとになる(図1参照)。つまり、本発明に係る強化繊維は、応力が作用し易い感歪層の形成面方向に沿って配向分布している。このため本発明に係る強化繊維は、微細でも、さらには少量であっても、感歪層を効果的に強化することができる。しかも、その感歪層の形成面に沿って延在する本発明に係る強化繊維は、非常に微細であるため、強化繊維自体が破壊起点となることも少ない。   The reason why the paste of the present invention exhibits such excellent characteristics is not necessarily clear, but at present it is considered as follows. Usually, the strain sensitive layer bends under stress (load), and compressive stress (compressive strain) is generated inside the neutral surface of the flexure, and tensile stress (tensile strain) is generated outside thereof. In any case, a stress is applied to the strain sensitive layer in a direction along the formation surface, and the strain is caused in the strain sensitive layer by the stress, thereby changing the resistance value of the strain sensitive layer. Here, when the strain-sensitive layer is formed using the paste of the present invention, the fine reinforcing fibers contained in the paste extend along the formation surface of the strain-sensitive layer, that is, the state oriented on the formation surface. (See FIG. 1). That is, the reinforcing fibers according to the present invention are oriented and distributed along the direction of the formation surface of the strain sensitive layer where stress is easily applied. Therefore, even if the reinforcing fiber according to the present invention is fine or even in a small amount, the strain sensitive layer can be effectively reinforced. In addition, the reinforcing fibers according to the present invention extending along the formation surface of the strain-sensitive layer are very fine, so that the reinforcing fibers themselves are less likely to be a starting point for fracture.

このように本発明のペーストを用いて形成された感歪層は、その形成面方向に延在した微細な強化繊維で補強されているため、多少の高荷重(応力)や衝撃が加わっても、導電性粒子を保持するマトリックス形成材料(ガラス)にマイクロクラック等が発生し難くなり、長期間に渡って安定した出力特性を発揮し、非常に優れた耐久性・信頼性を発揮し得る。   Thus, the strain sensitive layer formed using the paste of the present invention is reinforced with fine reinforcing fibers extending in the direction of the formation surface, so even if a slight load (stress) or impact is applied. In addition, microcracks and the like are less likely to occur in the matrix-forming material (glass) that holds the conductive particles, can exhibit stable output characteristics over a long period of time, and can exhibit extremely excellent durability and reliability.

また、本発明に係る強化繊維は非常に微細で細長く、感歪層の形成面に沿って延在して存在しているため、従来のように粗大な繊維や粒子をマトリックス形成材料中に分散させた場合と異なり、強化繊維の周囲における歪み分布(応力分布)は均一的になり易く、強化繊維の周囲における歪み(応力)の変動幅が小さい。この結果、感歪層に作用する歪み(応力)が、その中に分散している各導電性粒子にも均一的に分散して作用するようになり、測定範囲(レンジ)内で、応力(歪み)と抵抗値の関係性(直線性)が良好で、負荷時と除荷時における出力差(ヒステリシス)が小さい優れたセンサ特性が発揮されるようになる。   In addition, the reinforcing fibers according to the present invention are very fine and long and extend along the formation surface of the strain sensitive layer, so that coarse fibers and particles are dispersed in the matrix forming material as in the past. Unlike the case where it is made, the strain distribution (stress distribution) around the reinforcing fiber tends to be uniform, and the fluctuation range of the strain (stress) around the reinforcing fiber is small. As a result, the strain (stress) acting on the strain-sensitive layer is uniformly dispersed and acts on each conductive particle dispersed therein, and within the measurement range (range), the stress (stress) The relationship between the distortion and the resistance value (linearity) is good, and excellent sensor characteristics with a small output difference (hysteresis) between loading and unloading are exhibited.

このようにして本発明のペーストを用いると、センサ特性と耐久性・信頼性を高次元で両立できる感歪層、さらにはその感歪層を備える力学量センサ素子を得ることができるようになったと考えられる。   By using the paste of the present invention in this way, it becomes possible to obtain a strain sensitive layer capable of achieving both sensor characteristics and durability / reliability at a high level, and further a mechanical quantity sensor element including the strain sensitive layer. It is thought.

《力学量センサ素子》
本発明は上述のペーストとしてのみならず、そのペーストを用いて形成した感歪層を有する力学量センサ素子としても把握できる。すなわち本発明は、絶縁体と、上述した感歪抵抗ペーストを用いて該絶縁体上に形成された感歪層とを備え、該絶縁体が貼着された測定対象物(起歪体)に作用する力学量を、該感歪層に生じる電気抵抗値の変化に基づき検出し得ることを特徴とする力学量センサ素子としても把握できる。なお、力学量センサ素子は、感歪層に接続される電極を適宜備える。
<Mechanical sensor element>
The present invention can be grasped not only as the above-mentioned paste but also as a mechanical quantity sensor element having a strain sensitive layer formed using the paste. That is, the present invention includes an insulator and a strain-sensitive layer formed on the insulator using the above-described strain-sensitive resistance paste, and a measurement object (straining body) to which the insulator is attached. It can also be grasped as a mechanical quantity sensor element characterized in that the acting mechanical quantity can be detected based on a change in electric resistance value generated in the strain sensitive layer. The mechanical quantity sensor element appropriately includes an electrode connected to the strain sensitive layer.

《その他》
(1)本発明に係る感歪層(力学量センサ素子も同様)は、生じる歪みにより変化する抵抗値を計測することにより、測定対象物に生じる種々の力学量の検出または測定を可能とするものである。ここでいう力学量は、感歪層に歪みを生起する物理量ならば、その種類は問わない。例えば、力、圧力(応力)、トルク、速度、加速度、位置、変位、衝撃力、重量、質量、真空度、回転力、振動、騒音等のいずれでもよい。
<Others>
(1) The strain sensitive layer according to the present invention (the same applies to the mechanical quantity sensor element) enables detection or measurement of various mechanical quantities generated in the measurement object by measuring a resistance value that changes due to the generated strain. Is. The mechanical quantity here is not limited as long as it is a physical quantity that causes strain in the strain sensitive layer. For example, any of force, pressure (stress), torque, speed, acceleration, position, displacement, impact force, weight, mass, vacuum, rotational force, vibration, noise, and the like may be used.

(2)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。 (2) Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. A range such as “a to b” can be newly established with any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

本発明の感歪抵抗ペーストにより形成される感歪層の模式図である。It is a schematic diagram of the strain sensitive layer formed with the strain sensitive resistance paste of this invention. 力学量センサ素子に応力を印加する様子を示す模式図である。It is a schematic diagram which shows a mode that stress is applied to a mechanical quantity sensor element. 試料1に係る力学量センサ素子の応力と抵抗変化率の関係を示すグラフである。6 is a graph showing the relationship between the stress of the mechanical quantity sensor element according to Sample 1 and the rate of change in resistance. 試料2に係る力学量センサ素子の応力と抵抗変化率の関係を示すグラフである。5 is a graph showing the relationship between the stress of the mechanical quantity sensor element according to Sample 2 and the rate of change in resistance. 試料3に係る力学量センサ素子の応力と抵抗変化率の関係を示すグラフである。6 is a graph showing the relationship between the stress of the mechanical quantity sensor element according to Sample 3 and the rate of change in resistance. 試料4に係る力学量センサ素子の応力と抵抗変化率の関係を示すグラフである。6 is a graph showing the relationship between the stress of the mechanical quantity sensor element according to Sample 4 and the rate of change in resistance. 試料5に係る力学量センサ素子の応力と抵抗変化率の関係を示すグラフである。6 is a graph showing the relationship between the stress of the mechanical quantity sensor element according to Sample 5 and the rate of change in resistance. 起歪体の表面に形成した感歪層に対して3点曲げ試験を行う様子を示す模式図である。It is a schematic diagram which shows a mode that a 3 point | piece bending test is performed with respect to the strain sensitive layer formed in the surface of a strain generating body. その3点曲げ試験により得られた荷重と抵抗変化率の関係を示すグラフである。It is a graph which shows the relationship between the load obtained by the 3 point | piece bending test, and resistance change rate.

本明細書で説明する内容は、本発明のペーストのみならず、それにより得られた感歪層を備える力学量センサ素子にも該当し得る。また製造方法に関する構成要素は、プロダクトバイプロセスクレームとして理解すれば物に関する構成要素ともなり得る。上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The contents described in this specification can be applied not only to the paste of the present invention but also to a mechanical sensor element having a strain-sensitive layer obtained thereby. In addition, a component related to a manufacturing method can be a component related to an object if understood as a product-by-process claim. One or two or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. Which embodiment is the best depends on the target, required performance, and the like.

《強化繊維》
(1)本発明に係る強化繊維は、平均繊維径が4μm以下、3μm以下さらには2μm以下であると好ましい。また、その平均繊維長が8μm以下、6μm以下さらには5μm以下であると好ましい。平均繊維径または平均繊維長が過大では、センサ特性、耐久性または信頼性等の低下を招いて好ましくない。
《Reinforcing fiber》
(1) The reinforcing fiber according to the present invention preferably has an average fiber diameter of 4 μm or less, 3 μm or less, and further 2 μm or less. Further, the average fiber length is preferably 8 μm or less, 6 μm or less, and more preferably 5 μm or less. If the average fiber diameter or the average fiber length is excessive, it is not preferable because the sensor characteristics, durability, reliability, etc. are deteriorated.

平均繊維径は、その下限値を問わないが、2nm以上、10nm以上または100nm以上とすることができる。また平均繊維長もその下限値を問わないが、通常、400nm以上、800nm以上または1μm以上とすることができる。平均繊維径または平均繊維長が過小では、効果が乏しく、製造または入手も困難である。   The average fiber diameter may be 2 nm or more, 10 nm or more, or 100 nm or more, regardless of the lower limit. Moreover, although the average fiber length does not ask | require the lower limit, it can usually be 400 nm or more, 800 nm or more, or 1 micrometer or more. If the average fiber diameter or the average fiber length is too small, the effect is poor and it is difficult to produce or obtain.

本明細書でいう平均繊維径とは、電子顕微鏡で撮影した繊維の拡大写真から無作為に20本の繊維を選び、それらの各最大外径(繊維径)を測定して得られた値の平均値である。
また平均繊維長とは、電子顕微鏡で撮影した繊維の拡大写真から無作為に20本の繊維を選び、それらの各最大繊維長を測定して得られた値の平均値である。
The average fiber diameter referred to in the present specification is a value obtained by randomly selecting 20 fibers from an enlarged photograph of fibers taken with an electron microscope and measuring their maximum outer diameters (fiber diameters). Average value.
The average fiber length is an average value of values obtained by randomly selecting 20 fibers from an enlarged photograph of fibers taken with an electron microscope and measuring their maximum fiber lengths.

(2)強化繊維は、導電性粒子とマトリックス形成材料と分散媒(溶媒を含む)の合計量(換言すれば強化繊維を除く全体)を100質量部として、1〜15質量部、5〜10質量部さらには6〜9質量部含まれていると好ましい。強化繊維が過少では効果が乏しく、強化繊維が過多では導電性粒子とマトリックス形成材料の合計量(特に導電性粒子量)が相対的に低下することとなり、感歪層の感度(応力または歪みに対する抵抗値の変化率)が低下し得る。 (2) Reinforcing fiber is 1-15 parts by mass, 5-10, with 100 parts by mass of the total amount of conductive particles, matrix-forming material, and dispersion medium (including solvent) (in other words, the whole excluding reinforcing fibers). It is preferable that it is contained by mass part and further 6-9 mass parts. If there are too few reinforcing fibers, the effect will be poor, and if there are too many reinforcing fibers, the total amount of conductive particles and matrix-forming material (especially the amount of conductive particles) will be relatively lowered, and the sensitivity of the strain-sensitive layer (to stress or strain) The change rate of the resistance value) may be reduced.

(3)強化繊維は、歪み量に応じて抵抗値を変化させる感歪層の特性を実質的に劣化させず、マトリックス形成材料または感歪層を強化すものであれば、その材質を問わない。このような強化繊維は、通常、セラミックス等の電気絶縁材からなる。より具体的にいうと、強化繊維は、例えば、アルミナ、ジルコニア、シリカ、ホウ酸アルミニウム等の無機質結晶性繊維(ウイスカを含む)からなる。 (3) The reinforcing fiber may be any material as long as it does not substantially deteriorate the characteristics of the strain-sensitive layer that changes the resistance value according to the strain amount and reinforces the matrix-forming material or the strain-sensitive layer. . Such reinforcing fibers are usually made of an electrical insulating material such as ceramics. More specifically, the reinforcing fibers are made of inorganic crystalline fibers (including whiskers) such as alumina, zirconia, silica, and aluminum borate.

《導電性粒子》
本発明に係る導電性粒子はRuOからなる。その粒径は特に問わないが、強化繊維と同程度以上の大きさであると、強化繊維に起因したセンサ特性の劣化や破壊荷重の低下等を抑制できて好ましい。
《Conductive particles》
Conductive particles according to the present invention consists of RuO 2. The particle size is not particularly limited, but it is preferable that the particle size is equal to or larger than that of the reinforcing fiber because deterioration of sensor characteristics, a decrease in breaking load, and the like due to the reinforcing fiber can be suppressed.

《マトリックス形成材料》
本発明に係るマトリックス形成材料は、導電性粒子(RuO粒子)と強化繊維を分散させつつ保持すると共に、感歪層に生じる歪みまたは印加される応力を導電性粒子へ均一的に反映させるガラスからなる。マトリックス形成材料となるガラスは、その種類を問わないが、例えば、ホウケイ酸鉛ガラス、ホウケイ酸アルカリガラス等のホウケイ酸塩ガラス、アルカリケイ酸鉛ガラス等のケイ酸鉛ガラス、アルミノケイ酸塩ガラス、ソーダライムガラス等のアルカリ・アルカリ土類ケイ酸ガラス、リン酸塩ガラス等、さらにはそれらの混合組成系ガラスを用いることができる。なお、導電性粒子とマトリックス形成材料は、市販されている感歪抵抗ペーストをそのまま用いたものでもよい。
《Matrix forming material》
The matrix forming material according to the present invention is a glass that holds conductive particles (RuO 2 particles) and reinforcing fibers while dispersing them, and uniformly reflects the strain generated in the strain sensitive layer or applied stress to the conductive particles. Consists of. The glass used as the matrix forming material is not limited to the kind thereof, for example, borosilicate glass such as lead borosilicate glass, alkali borosilicate glass, lead silicate glass such as alkali lead silicate glass, aluminosilicate glass, Alkali / alkaline earth silicate glass such as soda lime glass, phosphate glass and the like, and further, a mixed composition glass thereof can be used. In addition, the electroconductive particle and the matrix formation material may use the strain sensitive resistance paste marketed as it is.

《力学量センサ素子》
(1)本発明のペーストを用いれば、測定対象物(起歪体)に直接的に感歪層を形成して、その力学量を測定することが可能である。もっとも、感歪層(特に導電性粒子)に均一的、平均的な歪みを生じさせて、高精度な測定を安定的に行うために、電気絶縁体(単に「絶縁体」という。)に感歪層を形成し、その感歪層に電極を設けた力学量センサ素子を用いると好ましい。この際、絶縁体が対面する2枚の絶縁板からなり、これらの絶縁板により感歪層が挟持された状態となっていると、感歪層に応力または歪みがより均一的または平均的に作用するようになり、取扱性も向上して好適である。
<Mechanical sensor element>
(1) If the paste of this invention is used, it is possible to form a strain sensitive layer directly on a measuring object (straining body) and to measure the mechanical quantity. However, in order to produce uniform and average distortion in the strain sensitive layer (especially conductive particles) and to perform highly accurate measurement stably, the electrical insulator (simply referred to as “insulator”) is sensitive. It is preferable to use a mechanical quantity sensor element in which a strain layer is formed and an electrode is provided on the strain sensitive layer. At this time, if the insulating layer is composed of two insulating plates facing each other and the strain sensitive layer is sandwiched between these insulating plates, the stress or strain is more uniformly or averaged in the strain sensitive layer. It is suitable for improving the handleability.

絶縁体は、その材質を問わないが、例えば、ZrO(ジルコニア)、Al(アルミナ)、MgAl、SiO、3Al・2SiO、Y、CeO、La、Si等からなる。絶縁体は、感歪層に接触する部分が絶縁されていれば足り、全体が絶縁材からなる必要はない。例えば、本発明に係る絶縁体は、上述したようなセラミックスで被覆された金属体でもよい。 The insulator may be of any material. For example, ZrO 2 (zirconia), Al 2 O 3 (alumina), MgAl 2 O 4 , SiO 2 , 3Al 2 O 3 .2SiO 2 , Y 2 O 3 , CeO 2 , La 2 O 3 , Si 3 N 4 and the like. The insulator need only be insulated from the portion that contacts the strain sensitive layer, and does not need to be entirely made of an insulating material. For example, the insulator according to the present invention may be a metal body coated with ceramic as described above.

(2)絶縁体上に感歪層を形成する方法(力学量センサ素子の製造方法)は種々あり得る。例えば、本発明のペーストを絶縁体上に塗布(印刷)した後に焼成することにより、絶縁体上に感歪層が形成された力学量センサ素子を得ることができる。感歪層の厚みは問わないが、例えば、1〜200μm、5〜100μmさらには10〜50μmとすると好ましい。感歪層の厚みが過小では、その抵抗値が過大となり歪みに対する感度が低下し得る。その厚みが過大では、逆に、抵抗値が過小となり、やはり歪みに対する感度が低下し得る。 (2) There may be various methods for forming the strain sensitive layer on the insulator (manufacturing method of the mechanical quantity sensor element). For example, a mechanical quantity sensor element in which a strain sensitive layer is formed on an insulator can be obtained by applying (printing) the paste of the present invention on the insulator and then baking it. The thickness of the strain sensitive layer is not limited, but is preferably 1 to 200 μm, 5 to 100 μm, and more preferably 10 to 50 μm, for example. If the thickness of the strain sensitive layer is too small, the resistance value becomes excessive and the sensitivity to strain can be reduced. On the contrary, if the thickness is excessive, the resistance value is excessively decreased, and the sensitivity to distortion can be lowered.

実施例1および実施例2を以下に示して、本発明をより具体的に説明する。   Examples 1 and 2 are shown below to describe the present invention more specifically.

[実施例1]
種々の強化材(強化繊維、強化粒子)を添加した感歪抵抗ペーストを用いて複数の力学量センサ素子(試料)を製造し、そのセンサ特性を測定・評価した。
[Example 1]
A plurality of mechanical quantity sensor elements (samples) were manufactured using strain-sensitive resistance pastes to which various reinforcing materials (reinforcing fibers and reinforcing particles) were added, and the sensor characteristics were measured and evaluated.

《概要》
各試料の力学量センサ素子は、図1および図2に示すように、感歪層と、その感歪層を挟持する2枚の絶縁板(ZrO板)と、感歪層に結合される銀電極とからなる。各試料は、後述するように、先ず、各種のペーストを各絶縁板の片面にスクリーン印刷した後に焼成し、それら両絶縁板の処理面同士を接面させた状態で焼成することにより接合する。こうして得られた力学量センサ素子の絶縁板の一方から応力(荷重)を変化させつつ印加し、その際に生じる感歪層の抵抗変化率を測定した。
"Overview"
As shown in FIGS. 1 and 2, the mechanical quantity sensor element of each sample is coupled to the strain sensitive layer, two insulating plates (ZrO 2 plates) sandwiching the strain sensitive layer, and the strain sensitive layer. It consists of a silver electrode. As will be described later, each sample is first bonded by screen printing various pastes on one side of each insulating plate, followed by firing, and firing in a state where the treated surfaces of both insulating plates are in contact with each other. The stress (load) was applied while changing the stress (load) from one of the insulating plates of the mechanical quantity sensor element thus obtained, and the resistance change rate of the strain-sensitive layer generated at that time was measured.

《試料の製造》
RuO 粒子とガラスとそれらの分散媒(有機溶媒)が複合化された市販の抵抗ペースト(ヘレウス株式会社製、R 8235DGV/以下、これを「原料ペースト」という。)と、表1に示す強化材(アルミナ繊維またはアルミナ粒子)を用意した。試料1および試料3の強化材は、電気化学工業株式会社製のアルミナ繊維(デンカアルセン)である。試料2の強化材は、シグマ アルドリッチ社製のアルミナウイスカである。試料4では、それら強化繊維に替えて、株式会社高純度化学研究所のアルミナ粒子を強化材として用いた。
<Production of sample>
Commercially available resistance paste (Rheus Co., R 8235DGV / hereinafter referred to as “raw material paste”) in which RuO 2 particles, glass and their dispersion medium (organic solvent) are combined, and the reinforcement shown in Table 1 A material (alumina fiber or alumina particle) was prepared. The reinforcing materials of Sample 1 and Sample 3 are alumina fibers (Denka Alsene) manufactured by Denki Kagaku Kogyo Co., Ltd. The reinforcing material of Sample 2 is an alumina whisker manufactured by Sigma Aldrich. In Sample 4, alumina particles from Kojundo Chemical Laboratory Co., Ltd. were used as the reinforcing material instead of these reinforcing fibers.

原料ペーストに各強化材を表1に示す割合で添加し、自転・公転ミキサーで混合した。こうして強化繊維または強化粒子を含む感歪抵抗ペースト(適宜、「試料ペースト」という。)を調製した(ペースト調製工程)。なお、試料5は、強化材を添加せずに、原料ペーストをそのまま用いた。   Each reinforcing material was added to the raw material paste in the ratio shown in Table 1, and mixed with a rotation / revolution mixer. Thus, a strain-sensitive resistance paste (referred to as “sample paste” as appropriate) containing reinforcing fibers or reinforcing particles was prepared (paste preparation step). In Sample 5, the raw material paste was used as it was without adding the reinforcing material.

各試料毎に2枚の絶縁板(25mm×25mm×1.5mm/京セラ株式会社製ジルコニア板)を用意して、各片面に各試料ペーストをスクリーン印刷した。これらの絶縁板を大気中で850℃×10分間加熱して、絶縁板上に試料ペーストを焼き付けた(第1焼成工程)。これにより、試料ペーストから有機成分が蒸発し、無機成分が焼成されて、ジルコニアからなる絶縁板の表面に感歪層が形成された。なお、各絶縁板の表面に形成された感歪層の厚みは約15μmであった。   Two insulating plates (25 mm × 25 mm × 1.5 mm / Kyocera Corporation zirconia plate) were prepared for each sample, and each sample paste was screen-printed on each side. These insulating plates were heated in the atmosphere at 850 ° C. for 10 minutes, and the sample paste was baked on the insulating plates (first firing step). Thereby, the organic component was evaporated from the sample paste, the inorganic component was baked, and a strain sensitive layer was formed on the surface of the insulating plate made of zirconia. The thickness of the strain sensitive layer formed on the surface of each insulating plate was about 15 μm.

片面側に感歪層が形成された2枚の絶縁板を、その感歪層側で接面させた状態で、さらに大気中で850℃×30分間加熱した(第2焼成工程)。これにより、2枚の絶縁板と感歪層が一体化した結合体が得られた。各結合体から所定サイズ(4mm×4mm×3mm)の素子を切り取った。こうして得られた各素子の感歪層の厚みは約25μmであった。   The two insulating plates having the strain-sensitive layer formed on one side thereof were further heated in the atmosphere at 850 ° C. for 30 minutes (second firing step) with the strain-sensitive layer side being in contact with each other. As a result, a combined body in which the two insulating plates and the strain sensitive layer were integrated was obtained. An element having a predetermined size (4 mm × 4 mm × 3 mm) was cut out from each combined body. The thickness of the strain sensitive layer of each element thus obtained was about 25 μm.

感歪層が露出した状態となっている各素子の対向側面に、銀ペースト(昭栄化学工業株式会社製H-4566N)を塗布した。これを大気中で850℃×10分間加熱して、各素子に銀電極を形成した(電極形成工程)。こうして、感歪層が絶縁体に挟まれたサンドイッチ構造の力学量センサ素子(図2参照)からなる試料が得られた。   A silver paste (H-4566N manufactured by Shoei Chemical Industry Co., Ltd.) was applied to the opposing side surface of each element in which the strain sensitive layer was exposed. This was heated in the atmosphere at 850 ° C. for 10 minutes to form a silver electrode on each element (electrode formation step). In this way, a sample comprising a mechanical sensor element (see FIG. 2) having a sandwich structure in which the strain sensitive layer was sandwiched between insulators was obtained.

《測定》
各試料の力学量センサ素子へ、図2に示すように積層方向の応力fを一方の絶縁板上から印加する。この応力fを0〜100MPaの範囲で緩やかに変化させ、そのときの感歪層の抵抗値変化を室温(25℃)で測定した。
<Measurement>
As shown in FIG. 2, a stress f in the stacking direction is applied from one insulating plate to the mechanical quantity sensor element of each sample. The stress f was gradually changed in the range of 0 to 100 MPa, and the change in resistance value of the strain sensitive layer at that time was measured at room temperature (25 ° C.).

具体的にいうと、応力fは0MPaから100MPaへ増加させた後、100MPaから0MPaまで減少させる。この際、応力を印加していない測定開始時(0MPa)の抵抗値(R0)に対して、応力を印加したときの抵抗値(Rf)の変化割合(抵抗変化率)ρf=100×(Rf−R0)/R0(%)を算出する。こうして得られた各試料に係る応力と抵抗変化率の関係を図3A〜3Eに示した。なお、以下では、適宜、応力0MPaのときの抵抗変化率をρ、応力50MPaのときの抵抗変化率をρ50、応力100MPaのときの抵抗変化率をρ100と表す。 Specifically, the stress f is increased from 0 MPa to 100 MPa and then decreased from 100 MPa to 0 MPa. At this time, the change rate (resistance change rate) ρf = 100 × (Rf) of the resistance value (Rf) when stress is applied to the resistance value (R0) at the start of measurement (0 MPa) when no stress is applied. -R0) / R0 (%) is calculated. 3A to 3E show the relationship between the stress and the resistance change rate for each sample thus obtained. In the following, the resistance change rate when the stress is 0 MPa is represented by ρ 0 , the resistance change rate when the stress is 50 MPa is represented by ρ 50 , and the resistance change rate when the stress is 100 MPa is represented by ρ 100 .

また、各試料に対する非直線性とヒステリシスを次のように算出して、得られた結果を表1に併せて示した。非直線性は、実測値に基づくρ50と、ρとρ100のときの2点を直線近似したときに得られるρ50’との絶対値差|ρ50’−ρ50|をFS(Full Scale)で除した値を百分率(%FS)で示した。ヒステリシスは、応力を増加させているときのρ50iと応力を減少させているときのρ50dとの絶対値差|ρ50i−ρ50d|をFS(Full Scale)で除した値を百分率(%FS)で示した。なお、FSはf=100MPaのときの感度、つまりρ100である。 Further, the nonlinearity and hysteresis for each sample were calculated as follows, and the obtained results are also shown in Table 1. Nonlinearity, and [rho 50 based on the measured value, 'absolute value difference between | ρ 50' ρ 0 and [rho 50 obtained when linear approximation two points when ρ 10050 | the FS ( The value divided by Full Scale was expressed as a percentage (% FS). Hysteresis is the percentage (%) obtained by dividing the absolute value difference | ρ 50i −ρ 50d | by FS (Full Scale) between ρ 50i when stress is increased and ρ 50d when stress is decreased. FS). Incidentally, FS sensitivity when the f = 100 MPa, that is, [rho 100.

《評価》
表1および図3A〜図3E(これらを併せて単に「図3」という。)から次のことがわかる。先ず、本発明の範囲内にある強化繊維を添加した試料ペーストを用いた場合、いずれの力学量センサ素子(試料1、2)も、十分な感度を有していると共に、応力の増加時および減少時において、抵抗変化率が応力に対して直線的に変化し、ヒステリシスも小さかった。これら試料のセンサ特性は、強化材を添加しない原料ペーストをそのまま用いた試料5の力学量センサ素子と同等であり、非常に優れていることが明らかとなった。
<Evaluation>
The following can be understood from Table 1 and FIGS. 3A to 3E (these are simply referred to as “FIG. 3”). First, when using a sample paste to which a reinforcing fiber within the scope of the present invention is added, each of the mechanical quantity sensor elements (Samples 1 and 2) has sufficient sensitivity, and when the stress increases and At the time of decrease, the resistance change rate changed linearly with respect to the stress, and the hysteresis was also small. The sensor characteristics of these samples are equivalent to the mechanical quantity sensor element of Sample 5 using the raw material paste without adding the reinforcing material as it is.

一方、本発明の範囲外である強化材を添加した試料ペーストを用いた場合、いずれの力学量センサ素子(試料3、4)も、抵抗変化率が応力に対して下に凸な曲線となるように変化し、直線性およびヒステリシスが大きく劣化することが明らかとなった。このように、本発明で規定する範囲を逸脱する粗大な強化繊維を用いた場合(試料3の場合)は勿論、微細であっても等方的な強化粒子を用いた場合(試料4の場合)でも、それらを添加しない場合(試料5の場合)と同レベルなセンサ特性が得られないことが明らかとなった。   On the other hand, when a sample paste to which a reinforcing material that is outside the scope of the present invention is added is used, any of the mechanical quantity sensor elements (samples 3 and 4) has a curve in which the rate of change in resistance is convex downward with respect to stress. It became clear that linearity and hysteresis deteriorated greatly. As described above, when coarse reinforcing fibers deviating from the range defined in the present invention are used (in the case of Sample 3), as well as in the case of using isotropic reinforcing particles even in the case of fine particles (in the case of Sample 4) However, it has been clarified that the same level of sensor characteristics as in the case of not adding them (in the case of Sample 5) cannot be obtained.

[実施例2]
《概要》
上述した試料1に係る試料ペーストと試料5に係る原料ペーストとをそれぞれ用いて絶縁板の表面に感歪層を形成した試験片を製造し、その感歪層の3点曲げ強度を測定・評価した。前者の試験片を試料21、後者の試験片を試料25とする。各感歪層の形成は、基本的に実施例1の場合と同様に行ったが、詳細は次の通りである。
[Example 2]
"Overview"
Using the sample paste according to Sample 1 and the raw material paste according to Sample 5 described above, a test piece having a strain sensitive layer formed on the surface of the insulating plate is manufactured, and the three-point bending strength of the strain sensitive layer is measured and evaluated. did. The former test piece is designated as sample 21, and the latter test piece is designated as sample 25. The formation of each strain sensitive layer was basically performed in the same manner as in Example 1, and the details are as follows.

《試料の製造》
起歪体となるアルミナ板(25mm×5mm×0.65mm)の片面に、各ペーストをスクリーン印刷した後に乾燥(150℃×30分間)させてから焼成(850℃×10分間)した(感歪層形成工程、焼成工程)。なお、乾燥は大気中で行い、焼成は大気中で行った。
<Production of sample>
Each paste was screen-printed on one side of an alumina plate (25 mm × 5 mm × 0.65 mm) to be a strain generating body, dried (150 ° C. × 30 minutes) and then fired (850 ° C. × 10 minutes) (strain sensitive) Layer forming step, firing step). In addition, drying was performed in air | atmosphere and baking was performed in air | atmosphere.

こうして得られた感歪層(20mm×5mm×15μm)の両端側に、上述した銀ペーストを塗布、焼成して銀電極を同様に形成した(電極形成工程)。この銀電極に、抵抗値測定用のリード線を半田で取り付けて、3点曲げ試験用の各試料を得た。   The silver paste described above was applied to both ends of the strain-sensitive layer (20 mm × 5 mm × 15 μm) thus obtained and baked to form silver electrodes in the same manner (electrode formation step). A lead wire for resistance value measurement was attached to the silver electrode with solder to obtain each sample for a three-point bending test.

《測定》
試料21および試料25を用いて、図4に示すような3点曲げ試験を精密荷重試験機により行い、各感歪層の抵抗値の変化を測定した。こうして得られた結果を図5に示した。
<Measurement>
Using Sample 21 and Sample 25, a three-point bending test as shown in FIG. 4 was performed with a precision load tester, and the change in resistance value of each strain sensitive layer was measured. The results thus obtained are shown in FIG.

《評価》
(1)図5から明らかなように、本発明に係る強化繊維を含む試料21は、その強化繊維を含まない試料25と同様な優れたセンサ特性(直線性、低ヒステリシス性)を示す。また、試料21は試料25よりも、荷重に対する抵抗変化率の変化が緩やかであり、強化繊維により高剛性化され、ひいては感歪層の歪みが抑制されていることもわかる。そして試料21は試料25よりも破壊荷重が7〜10%程度増加しており、高強度化されていることもわかる。
<Evaluation>
(1) As is clear from FIG. 5, the sample 21 containing the reinforcing fiber according to the present invention exhibits excellent sensor characteristics (linearity and low hysteresis) similar to the sample 25 not containing the reinforcing fiber. It can also be seen that the change in the resistance change rate with respect to the load of Sample 21 is more gradual than that of Sample 25, and that the rigidity is increased by the reinforcing fibers, and thus the strain of the strain sensitive layer is suppressed. It can also be seen that Sample 21 has a higher breaking strength than Sample 25 and is about 7 to 10% stronger.

これらのことから、本発明の感歪抵抗ペーストを用いて形成される感歪層は、優れたセンサ特性を示すと共に、高強度化や歪み抑制(高剛性化)によって耐久性・信頼性が向上し得ることが確認された。   For these reasons, the strain-sensitive layer formed using the strain-sensitive resistance paste of the present invention exhibits excellent sensor characteristics, and has improved durability and reliability by increasing strength and suppressing strain (high rigidity). It was confirmed that

(2)ちなみに、各試料の破壊荷重(感歪層が破壊するときの荷重)を詳細に調査したところ、試料21:3.24kgf、試料25:3.04kgfであった。これらの破壊荷重は、上述した3点曲げ試験を3回行ったときに得られた各破壊荷重の相加平均値である。なお、この3点曲げ試験の場合、各感歪層には引張応力が作用し、その抵抗値は増加する。そこで各感歪層の抵抗値が無限大になった時を感歪層の破壊時と判断し、そのときの荷重を破壊荷重とした。いずれにしても、本発明に係る強化繊維が感歪層に含まれることにより、その強度が十分に増加することがわかった。 (2) Incidentally, when the breakdown load of each sample (load when the strain sensitive layer breaks) was examined in detail, the sample 21 was 3.24 kgf and the sample 25 was 3.04 kgf. These breaking loads are arithmetic average values of the breaking loads obtained when the above-described three-point bending test is performed three times. In the case of this three-point bending test, tensile stress acts on each strain sensitive layer, and its resistance value increases. Therefore, when the resistance value of each strain sensitive layer became infinite, it was determined that the strain sensitive layer was broken, and the load at that time was defined as the fracture load. In any case, it has been found that the strength is sufficiently increased when the reinforcing fiber according to the present invention is contained in the strain-sensitive layer.

Figure 0006237456
Figure 0006237456

Claims (5)

酸化ルテニウム(RuO)を含んでなり導電性を有する導電性粒子と、
該導電性粒子を保持するガラスからなるマトリックス形成材料と、
該マトリックス形成材料中に分散して該マトリックス形成材料を強化する電気絶縁材からなる強化繊維と、
該導電性粒子、該マトリックス形成材料および該強化繊維を分散させる分散媒とが混合されてなり、
付着された起歪体の歪み量に応じて電気抵抗値を変化させる感歪層を形成するために用いられる感歪抵抗ペーストであって、
前記強化繊維は、平均繊維径が4μm以下であると共に平均繊維長が8μm以下であることを特徴とする感歪抵抗ペースト。
Conductive particles comprising ruthenium oxide (RuO 2 ) and having conductivity;
A matrix-forming material made of glass holding the conductive particles;
Reinforcing fibers made of an electrical insulating material that is dispersed in the matrix-forming material and reinforces the matrix-forming material;
The conductive particles, the matrix-forming material, and a dispersion medium for dispersing the reinforcing fibers are mixed,
A strain-sensitive resistance paste used to form a strain-sensitive layer that changes an electric resistance value according to the amount of strain of an attached strain generating body,
The reinforcing fiber has an average fiber diameter of 4 μm or less and an average fiber length of 8 μm or less.
前記強化繊維は、前記導電性粒子、前記マトリックス形成材料および前記分散媒の合計量を100質量部として、1〜15質量部含まれている請求項1に記載の感歪抵抗ペースト。   The strain-sensitive resistance paste according to claim 1, wherein the reinforcing fiber is contained in an amount of 1 to 15 parts by mass, where the total amount of the conductive particles, the matrix forming material, and the dispersion medium is 100 parts by mass. 前記強化繊維は、前記平均繊維径が2nm〜3μmであると共に、前記平均繊維長が400nm〜5μmである請求項1に記載の感歪抵抗ペースト。   2. The strain-sensitive resistance paste according to claim 1, wherein the reinforcing fiber has an average fiber diameter of 2 nm to 3 μm and an average fiber length of 400 nm to 5 μm. 絶縁体と、
請求項1〜3のいずれかに記載の感歪抵抗ペーストを用いて該絶縁体上に形成された感歪層とを備え、
該絶縁体が貼着された測定対象物に作用する力学量を、該感歪層に生じる電気抵抗値の変化に基づき検出し得ることを特徴とする力学量センサ素子。
An insulator;
A strain sensitive layer formed on the insulator using the strain sensitive resistance paste according to any one of claims 1 to 3,
A mechanical quantity sensor element characterized in that a mechanical quantity acting on a measurement object to which the insulator is attached can be detected based on a change in an electric resistance value generated in the strain sensitive layer.
前記絶縁体は、対面する2枚の絶縁板からなり、
前記感歪層は、該絶縁板に挟持されてなる請求項4に記載の力学量センサ素子。
The insulator comprises two insulating plates facing each other,
The mechanical sensor element according to claim 4, wherein the strain-sensitive layer is sandwiched between the insulating plates.
JP2014100036A 2014-05-13 2014-05-13 Strain-sensitive resistance paste and mechanical quantity sensor element Active JP6237456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014100036A JP6237456B2 (en) 2014-05-13 2014-05-13 Strain-sensitive resistance paste and mechanical quantity sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014100036A JP6237456B2 (en) 2014-05-13 2014-05-13 Strain-sensitive resistance paste and mechanical quantity sensor element

Publications (2)

Publication Number Publication Date
JP2015219011A JP2015219011A (en) 2015-12-07
JP6237456B2 true JP6237456B2 (en) 2017-11-29

Family

ID=54778522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014100036A Active JP6237456B2 (en) 2014-05-13 2014-05-13 Strain-sensitive resistance paste and mechanical quantity sensor element

Country Status (1)

Country Link
JP (1) JP6237456B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3289539B2 (en) * 1995-03-30 2002-06-10 松下電器産業株式会社 Physical quantity sensor and ink level gauge
JP3138190B2 (en) * 1995-07-31 2001-02-26 京セラ株式会社 Composite piezoelectric body and composite piezoelectric vibrator
DE19935677B4 (en) * 1999-07-29 2005-07-07 Robert Bosch Gmbh Paste for the screen printing of electrical structures on carrier substrates
US10263174B2 (en) * 2013-03-15 2019-04-16 Nano Composite Products, Inc. Composite material used as a strain gauge

Also Published As

Publication number Publication date
JP2015219011A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
JP4776902B2 (en) Mechanical quantity sensor element
Riedel et al. Piezoresistive effect in SiOC ceramics for integrated pressure sensors
EP2394148B1 (en) Resistance thermometer comprising non-conducting zirconium dioxide
US20090013801A1 (en) Physical quantity sensor element
TWI403009B (en) Ring type piezoeletric device, method for processing the same, and torque sensor assembled with the same
JP5693047B2 (en) Mechanical quantity sensor element and manufacturing method thereof
Sedghi et al. Effect of chemical composition and alumina content on structure and properties of ceramic insulators
WO2019003984A1 (en) Electrical resistor, honeycomb structure and electrically heated catalyst device
WO2002037073A1 (en) Mechanical quantity sensor element, load sensor element, acceleration sensor element, and pressure sensor element
JP6237456B2 (en) Strain-sensitive resistance paste and mechanical quantity sensor element
Hrovat et al. Thick-film resistors on various substrates as sensing elements for strain-gauge applications
Jabir et al. Condition monitoring of the strength and stability of civil structures using thick film ceramic sensors
JP5780620B2 (en) PTC thermistor member
JP2007107963A (en) Dynamic quantity sensor element, and resistance paste material used therefor
JP5368052B2 (en) Multilayer ceramic substrate and manufacturing method thereof
JP3255011B2 (en) Multilayer ceramic electronic components
Xi et al. Stress and temperature sensing in self-sensing flexible felt composite based on carbon fibers
JPWO2003031907A1 (en) Strain sensor and manufacturing method thereof
Zhang et al. Thick film resistors on stainless steel as sensing elements for strain sensor applications
JP5034832B2 (en) Shear force detector
JP4638565B2 (en) Highly sensitive mechanical sensor material
Brandt et al. Low‐temperature co‐fired ceramic substrates for high‐performance strain gauges
CN110520943A (en) Film resistor and thin film sensor
Ogacho et al. Thermal shock behaviour of a kaolinte refractory prepared using a natural organic binder
JP4938976B2 (en) Ceramic heater and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R150 Certificate of patent or registration of utility model

Ref document number: 6237456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150