JP6230464B2 - Metal-based fine particle supported catalyst - Google Patents

Metal-based fine particle supported catalyst Download PDF

Info

Publication number
JP6230464B2
JP6230464B2 JP2014071647A JP2014071647A JP6230464B2 JP 6230464 B2 JP6230464 B2 JP 6230464B2 JP 2014071647 A JP2014071647 A JP 2014071647A JP 2014071647 A JP2014071647 A JP 2014071647A JP 6230464 B2 JP6230464 B2 JP 6230464B2
Authority
JP
Japan
Prior art keywords
metal
based fine
catalyst
nitrate nitrogen
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014071647A
Other languages
Japanese (ja)
Other versions
JP2015192935A (en
Inventor
真也 碓田
真也 碓田
小柳 嗣雄
嗣雄 小柳
光章 熊澤
光章 熊澤
和孝 江上
和孝 江上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2014071647A priority Critical patent/JP6230464B2/en
Publication of JP2015192935A publication Critical patent/JP2015192935A/en
Application granted granted Critical
Publication of JP6230464B2 publication Critical patent/JP6230464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Description

本発明は、金属系微粒子担持触媒、その製造方法およびそれを用いた硝酸性窒素含有水の処理方法に関する。   The present invention relates to a metal-based fine particle supported catalyst, a method for producing the same, and a method for treating nitrate nitrogen-containing water using the same.

硝酸性窒素は、湖沼等の富栄養化や人体への健康被害をもたらすため、工業排水等からの除去が求められている。この硝酸性窒素を排水等から除去する方法として、微生物による生物学的処理方法、イオン交換法などの物理化学的処理方法および還元剤と触媒との存在下で還元分解を行う化学的処理方法が知られている。中でも、還元剤と触媒の存在下で還元分解を行う化学的処理は、硝酸性窒素含有水の大量処理に適しており、従来から様々な処理方法が提案されている。   Nitrate nitrogen is required to be removed from industrial wastewater and the like because it causes eutrophication in lakes and marshes and damages the health of the human body. Methods for removing nitrate nitrogen from wastewater include biological treatment methods using microorganisms, physicochemical treatment methods such as ion exchange methods, and chemical treatment methods that perform reductive decomposition in the presence of a reducing agent and a catalyst. Are known. Among these, chemical treatment for performing reductive decomposition in the presence of a reducing agent and a catalyst is suitable for mass treatment of nitrate nitrogen-containing water, and various treatment methods have been conventionally proposed.

例えば特許文献1では、硝酸性窒素含有水と水処理触媒とを還元ガスの存在下で接触させる硝酸性窒素含有水の処理方法において、前記水処理触媒が結晶性炭素粒子に金属微粒子が担持された平均一次粒子径が5nm〜1μmの範囲の微粒子からなり、触媒微粒子中の金属微粒子の担持量が金属として1〜50重量%の範囲にあることを特徴とする硝酸性窒素含有水の処理方法が記載されている。   For example, in Patent Document 1, in a method of treating nitrate nitrogen-containing water in which nitrate nitrogen-containing water and a water treatment catalyst are brought into contact in the presence of a reducing gas, the water treatment catalyst has metal fine particles supported on crystalline carbon particles. A method for treating nitrate-nitrogen-containing water comprising fine particles having an average primary particle diameter in the range of 5 nm to 1 μm, and the supported amount of metal fine particles in the catalyst fine particles being in the range of 1 to 50% by weight as metal. Is described.

また、特許文献2では、第4周期遷移金属元素、第5周期遷移金属元素金属元素、白金および金からなる群より選ばれる少なくとも1種の金属からなる金属粒子が無機系担体物質に担持されてなる金属粒子担持触媒であって、前記金属粒子の少なくとも一部が多面体状構造を有する多面体状金属粒子であることを特徴とする金属粒子担持触媒が記載されている。そして、このような金属粒子担持触媒を用いて、硝酸性窒素含有水を還元処理する実施例が記載されている。   In Patent Document 2, metal particles made of at least one metal selected from the group consisting of a fourth periodic transition metal element, a fifth periodic transition metal element, platinum and gold are supported on an inorganic carrier material. There is described a metal particle-supported catalyst, wherein at least a part of the metal particles are polyhedral metal particles having a polyhedral structure. And the Example which carries out the reduction process of nitrate nitrogen containing water using such a metal particle carrying | support catalyst is described.

また、特許文献3では、硝酸性窒素含有水と硝酸性窒素含有水処理用触媒とを超微細気泡還元ガスの存在下で接触させることを特徴とする硝酸性窒素含有水の処理方法が記載されている。   Patent Document 3 describes a method for treating nitrate nitrogen-containing water, which comprises contacting nitrate nitrogen-containing water with a catalyst for treating nitrate nitrogen-containing water in the presence of ultrafine bubble reducing gas. ing.

特開2007−21289号公報JP 2007-21289 A 特開2009−172574号公報JP 2009-172574 A 特開2007−7541号公報JP 2007-7541 A

上記のように特許文献1〜3には、硝酸性窒素含有水を触媒存在下にて還元処理することが記載されているが、このような触媒は、硝酸性窒素の還元分解反応を促進させる性能(以下、活性ともいう)が高く、また、繰り返し使用してもその活性を高く維持するものであることが好ましい。
本発明は、硝酸性窒素含有水における硝酸性窒素の還元分解反応に対し高い活性を有し、かつ繰り返し使用においてもその活性を高く維持する金属系微粒子担持触媒、その製造方法およびそれを用いた硝酸性窒素含有水の処理方法を提供することを目的とする。
As described above, Patent Documents 1 to 3 describe that nitrate-containing water is reduced in the presence of a catalyst, but such a catalyst promotes a reductive decomposition reaction of nitrate nitrogen. It is preferable that the performance (hereinafter also referred to as activity) is high and that the activity is maintained high even after repeated use.
The present invention has a high activity for the reductive decomposition reaction of nitrate nitrogen in nitrate nitrogen-containing water, and maintains a high activity even during repeated use, a method for producing the same, and a method for producing the same It aims at providing the processing method of nitrate nitrogen containing water.

本発明者は上記のような課題を解決するために鋭意検討し、本発明を完成させた。
本発明は、以下の(1)〜(12)である。
(1)少なくともPdおよびCuを含む金属系微粒子が無機系担体物質に担持された金属系微粒子担持触媒であって、
前記無機系担体物質は平均一次粒子径が5〜200nmであり、Ti、Al、Si、Sn、およびZnからなる群から選ばれる少なくとも1つ以上の酸化物を主成分として含み、前記金属系微粒子は平均一次粒子径が1〜9nmである金属系微粒子担持触媒。
(2)前記無機系担体物質の平均細孔径が5〜100nm、平均細孔容積が0.1〜1.5ml/g、比表面積が10〜300m2/gである上記(1)に記載の金属系微粒子担持触媒。
(3)前記無機系担体物質の主成分がTiO2である上記(1)または(2)に記載の金属系微粒子担持触媒。
(4)前記無機系担体物質が球状またはペレット状である上記(1)〜(3)のいずれかに記載の金属系微粒子担持触媒。
(5)前記金属系微粒子中におけるPd:Cuの質量比が30:70〜99:1である上記(1)〜(4)のいずれかに記載の金属系微粒子担持触媒。
(6)前記金属系微粒子の含有率が0.1〜10質量%である上記(1)〜(5)のいずれかに記載の金属系微粒子担持触媒。
(7)平均一次粒子径が5〜200nmであり、Ti、Al、Si、Sn、およびZnからなる群から選ばれる少なくとも1つ以上の酸化物を主成分として含む無機系担体物質を得る担体調整工程と、
少なくともPdおよびCuを含み、平均一次粒子径が1〜9nmである金属系微粒子の分散液を得る分散液調整工程と、
前記無機系担体物質を前記分散液に浸漬させて、金属系微粒子・担体混合体を得る浸漬工程と、
前記金属系微粒子・担体混合体を乾燥させて金属系微粒子担持触媒を得る乾燥工程と、を備える金属系微粒子担持触媒の製造方法。
(8)前記浸漬工程を、大気中または減圧雰囲気下で行う上記(7)に記載の金属系微粒子担持触媒の製造方法。
(9)前記乾燥工程における乾燥温度が100〜200℃である上記(7)または(8)に記載の金属系微粒子担持触媒の製造方法。
(10)前記乾燥工程を、大気中、真空中、不活性ガス雰囲気下、または還元ガス雰囲気下で行う上記(7)〜(9)のいずれかに記載の金属系微粒子担持触媒の製造方法。
(11)上記(1)〜(6)のいずれかに記載の金属系微粒子担持触媒を硝酸性窒素含有水に接触させる硝酸性窒素含有水の処理方法。
(12)上記(1)〜(6)のいずれかに記載の金属系微粒子担持触媒を充填した反応塔に硝酸性窒素含有水を通液させる上記(11)に記載の硝酸性窒素含有水の処理方法。
The present inventor has intensively studied to solve the above-described problems and completed the present invention.
The present invention includes the following (1) to (12).
(1) A metal-based fine particle-supported catalyst in which metal-based fine particles containing at least Pd and Cu are supported on an inorganic carrier material,
The inorganic carrier material has an average primary particle diameter of 5 to 200 nm, contains at least one oxide selected from the group consisting of Ti, Al, Si, Sn, and Zn as a main component, and the metal fine particles Is a metal-based fine particle-supported catalyst having an average primary particle size of 1 to 9 nm.
(2) The average pore diameter of the inorganic carrier material is 5 to 100 nm, the average pore volume is 0.1 to 1.5 ml / g, and the specific surface area is 10 to 300 m 2 / g. Metal-based fine particle supported catalyst.
(3) The metal-based fine particle-supported catalyst according to (1) or (2), wherein the main component of the inorganic support material is TiO 2 .
(4) The metal-based fine particle-supported catalyst according to any one of (1) to (3), wherein the inorganic support material is spherical or pellet-shaped.
(5) The metal-based fine particle-supported catalyst according to any one of the above (1) to (4), wherein a mass ratio of Pd: Cu in the metal-based fine particle is 30:70 to 99: 1.
(6) The metal-based fine particle-supported catalyst according to any one of (1) to (5), wherein the content of the metal-based fine particles is 0.1 to 10% by mass.
(7) Carrier preparation for obtaining an inorganic carrier material having an average primary particle diameter of 5 to 200 nm and containing as a main component at least one oxide selected from the group consisting of Ti, Al, Si, Sn, and Zn Process,
A dispersion adjusting step for obtaining a dispersion of metallic fine particles containing at least Pd and Cu and having an average primary particle diameter of 1 to 9 nm;
An immersion step of immersing the inorganic carrier material in the dispersion to obtain a metal-based fine particle / carrier mixture;
And a drying step of drying the metal-based fine particle / carrier mixture to obtain a metal-based fine particle-supported catalyst.
(8) The method for producing a metal-based fine particle-supported catalyst according to (7), wherein the immersion step is performed in the air or under a reduced pressure atmosphere.
(9) The method for producing a metal-based fine particle-supported catalyst according to (7) or (8), wherein a drying temperature in the drying step is 100 to 200 ° C.
(10) The method for producing a metal-based fine particle-supported catalyst according to any one of (7) to (9), wherein the drying step is performed in air, vacuum, inert gas atmosphere, or reducing gas atmosphere.
(11) A method for treating nitrate nitrogen-containing water, wherein the metal-based fine particle-supported catalyst according to any one of (1) to (6) is contacted with nitrate nitrogen-containing water.
(12) Nitrate nitrogen-containing water as described in (11) above, wherein nitrate nitrogen-containing water is passed through a reaction tower packed with the metal-based fine particle-supported catalyst according to any of (1) to (6) above. Processing method.

本発明によれば、硝酸性窒素含有水における硝酸性窒素の還元分解反応に対し高い活性を有し、かつ繰り返し使用においてもその活性を高く維持する金属系微粒子担持触媒、その製造方法およびそれを用いた硝酸性窒素含有水の処理方法を提供する。   According to the present invention, a metal-based fine particle-supported catalyst having high activity for the reductive decomposition reaction of nitrate nitrogen in nitrate nitrogen-containing water and maintaining the activity high even in repeated use, a method for producing the same, and a method for producing the same A method for treating nitrate-containing water used is provided.

バッチ式活性試験における反応器の概要図である。It is a schematic diagram of the reactor in a batch type activity test. 実施例2の触媒のSEM画像である。4 is a SEM image of the catalyst of Example 2. 実施例2の触媒の活性特性を示すグラフである。4 is a graph showing the activity characteristics of the catalyst of Example 2.

本発明について説明する。
本発明は、少なくともPdおよびCuを含む金属系微粒子が無機系担体物質に担持された金属系微粒子担持触媒であって、前記無機系担体物質の平均一次粒子径が5〜200nmであり、Ti、Al、Si、Sn、およびZnからなる群から選ばれる少なくとも1つ以上の酸化物を主成分として含み、前記金属系微粒子は平均一次粒子径が1〜9nmである金属系微粒子担持触媒である。
このような金属系微粒子担持触媒を、以下では「本発明の触媒」ともいう。
The present invention will be described.
The present invention is a metal-based fine particle-supported catalyst in which metal-based fine particles containing at least Pd and Cu are supported on an inorganic carrier material, wherein the inorganic carrier material has an average primary particle diameter of 5 to 200 nm, Ti, The metal-based fine particle is a metal-based fine particle-supported catalyst containing at least one oxide selected from the group consisting of Al, Si, Sn, and Zn as a main component, and having an average primary particle diameter of 1 to 9 nm.
Hereinafter, such a metal-based fine particle-supported catalyst is also referred to as “the catalyst of the present invention”.

<無機系担体物質>
本発明の触媒における無機系担体物質について説明する。
無機系担体物質は、Ti、Al、Si、Sn、およびZnからなる群から選ばれる少なくとも1つ以上の酸化物を主成分として含む。これら酸化物として、SiO2、Al23、TiO2、SnO2、ZnOが挙げられる。また、SiO2−Al23、SiO2−TiO2等の複合酸化物であってもよいし、酸化物と複合酸化物の両方を含むものであってもよい。
<Inorganic carrier material>
The inorganic carrier material in the catalyst of the present invention will be described.
The inorganic carrier material contains at least one oxide selected from the group consisting of Ti, Al, Si, Sn, and Zn as a main component. Examples of these oxides include SiO 2 , Al 2 O 3 , TiO 2 , SnO 2 , and ZnO. Further, it may be a composite oxide such as SiO 2 —Al 2 O 3 , SiO 2 —TiO 2, or may contain both an oxide and a composite oxide.

本発明では、無機系担体物質の主成分としてTiO2を含むことが好ましい。硝酸性窒素含有水中の硝酸性窒素以外の不純物(有機物やFe等)が吸着し難いため、不純物の吸着による触媒活性の低下をより防ぐからである。ここで、主成分とは無機系担体物質全体において70質量%以上含むことであり、80質量%以上含むことが好ましく、90質量%以上含むことがより好ましく、100質量%含むこと、すなわち、無機系担体物質が実質的にTiO2からなることがさらに好ましい。ここで「実質的に」とは、原料や製造過程から不可避的に含まれる不純物は含まれ得るが、それ以外は含まないことを意味する。なお、特に断りがない限り、本発明の説明において「主成分」および「実質的に」は、このような意味で用いるものとする。 In the present invention, TiO 2 is preferably included as a main component of the inorganic carrier material. This is because impurities (organic matter, Fe, etc.) other than nitrate nitrogen in the nitrate nitrogen-containing water are difficult to adsorb, and thus prevent a decrease in catalytic activity due to the adsorption of impurities. Here, the main component is 70% by mass or more in the whole inorganic carrier substance, preferably 80% by mass or more, more preferably 90% by mass or more, and 100% by mass, ie, inorganic. More preferably, the system support material consists essentially of TiO 2 . Here, “substantially” means that impurities that are inevitably contained from the raw materials and the production process may be contained, but other than that are not contained. Unless otherwise specified, “main component” and “substantially” are used in this meaning in the description of the present invention.

また、無機系担体物質の主成分中としてTiO2を含み、さらにその他に、Al、Si、Sn、およびZnからなる群から選ばれる少なくとも1つ以上の酸化物を含むことが好ましい。この場合、主成分中におけるAl、Si、Sn、およびZnからなる群から選ばれる少なくとも1つ以上の酸化物の含有率は、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下がさらに好ましい。
このような酸化物を用いると、有機物を含む硝酸性窒素含有水においても、酸化物と有機物との親和性の低さから、有機物の無機系担体物質への吸着をより抑制することができ、その結果、触媒の活性をより高く維持することができる。
Further, it is preferable that TiO 2 is contained in the main component of the inorganic carrier material, and in addition, at least one oxide selected from the group consisting of Al, Si, Sn, and Zn is contained. In this case, the content of at least one oxide selected from the group consisting of Al, Si, Sn, and Zn in the main component is preferably 30% by mass or less, more preferably 20% by mass or less, and more preferably 10% by mass. % Or less is more preferable.
When such an oxide is used, even in nitrate nitrogen-containing water containing organic matter, adsorption of the organic matter to the inorganic carrier material can be further suppressed due to the low affinity between the oxide and the organic matter, As a result, the activity of the catalyst can be maintained higher.

無機系担体物質の平均一次粒子径は5〜200nmであり、10〜180nmであることが好ましく、20〜150nmであることがより好ましい。平均一次粒子径がこのような範囲であると、比表面積が高く、金属系微粒子を高分散の状態で担持することができるため、触媒の活性が向上する。   The average primary particle diameter of the inorganic carrier material is 5 to 200 nm, preferably 10 to 180 nm, and more preferably 20 to 150 nm. When the average primary particle diameter is in such a range, the specific surface area is high, and the metal-based fine particles can be supported in a highly dispersed state, so that the activity of the catalyst is improved.

ここで無機系担体物質の平均一次粒子径は、以下のように求めた値を意味するものとする。透過型電子顕微鏡により撮影した無機系担体物質の粒子の画像を解析して投影面積円相当径を求める。そして、不作為に選んだ50個の粒子についての投影面積円相当径を単純平均し、得られた値を無機系担体物質の平均一次粒子径とする。   Here, the average primary particle diameter of the inorganic carrier material means a value determined as follows. The image of the inorganic carrier material particles taken with a transmission electron microscope is analyzed to determine the projected area equivalent circle diameter. Then, the projected area equivalent circle diameter for 50 randomly selected particles is simply averaged, and the obtained value is taken as the average primary particle diameter of the inorganic carrier material.

無機系担体物質の平均細孔径は5〜100nmであることが好ましく、10〜95nmであることがより好ましく、20〜85nmであることがより好ましく、20〜70nmであることがさらに好ましい。平均細孔径がこのような範囲であると、担持金属系微粒子が細孔内に分布し、均一に担持させることができることに加え、高い表面積を維持するため、より十分な触媒活性が得られる。平均細孔径が5nm未満の無機系担体物質は、合成上得難い。   The average pore diameter of the inorganic carrier material is preferably 5 to 100 nm, more preferably 10 to 95 nm, more preferably 20 to 85 nm, and still more preferably 20 to 70 nm. When the average pore diameter is in such a range, the supported metal-based fine particles are distributed in the pores and can be supported uniformly, and in addition to maintaining a high surface area, more sufficient catalytic activity can be obtained. An inorganic carrier material having an average pore diameter of less than 5 nm is difficult to obtain in the synthesis.

無機系担体物質の平均細孔容積は0.1〜1.5ml/gであることが好ましく、0.15〜1.3ml/gであることがより好ましく、0.2〜1.0ml/gであることがさらに好ましい。
平均細孔容積がこのような範囲であると、担持金属系微粒子が凝集し難く、より十分な触媒活性を得ることができる。また、触媒の十分な強度を得ることができるため、触媒の粉化などの使用上の問題を防ぐことができる。
The average pore volume of the inorganic carrier material is preferably 0.1 to 1.5 ml / g, more preferably 0.15 to 1.3 ml / g, and 0.2 to 1.0 ml / g. More preferably.
When the average pore volume is in such a range, the supported metal-based fine particles are less likely to aggregate and a more sufficient catalytic activity can be obtained. Moreover, since sufficient intensity | strength of a catalyst can be obtained, problems on use, such as catalyst pulverization, can be prevented.

無機系担体物質の比表面積は10〜300m2/gであることが好ましく、10〜250m2/gであることがより好ましく、15〜150m2/gであることがより好ましく、20〜100m2/gであることがさらに好ましい。比表面積がこのような範囲であると、無機系担体物質への不純物の吸着が抑えられ、高い触媒活性を維持することができる。 Preferably the specific surface area of the inorganic support material is 10 to 300 m 2 / g, more preferably 10~250m 2 / g, more preferably 15~150m 2 / g, 20~100m 2 More preferably, it is / g. When the specific surface area is in such a range, the adsorption of impurities to the inorganic carrier material can be suppressed, and high catalytic activity can be maintained.

無機系担体物質の比表面積は、窒素吸着法で得た吸着等温線から求めた値を意味するものとする。さらに、平均細孔径および平均細孔容積は、BJH(Barret−Joyner−Halenda)法における脱着等温線から求めた値を意味する。
ここで、窒素吸着法について説明する。
まず、測定対象物を乾燥させたものを試料として測定セルに入れ、窒素ガス気流中、250℃で40分間脱ガス処理を行い、その上で試料を窒素30体積%とヘリウム70体積%の混合ガス気流中で液体窒素温度に保ち、窒素を試料に吸着させて窒素吸着等温線・脱着等温線を得る。この窒素吸着等温線を用いてBET理論により比表面積を求める。また、脱着等温線を用いてBJH(Barret−Joyner−Halenda)法により、試料の細孔径分布曲線を得て、その曲線に現れるメソ孔(粒子表面の細孔)側およびマクロ孔(粒子間細孔)側のピークのうち、メソ孔側のピークの細孔径を平均細孔径として求める。また、同じくBJH法により細孔分布曲線を得て、曲線に現れるピークを平均細孔容積として求める。この窒素吸着法は、例えば従来公知の細孔分布測定装置を用いて行うことができる。
The specific surface area of the inorganic carrier material means a value obtained from an adsorption isotherm obtained by a nitrogen adsorption method. Furthermore, an average pore diameter and an average pore volume mean the value calculated | required from the desorption isotherm in BJH (Barret-Joyner-Halenda) method.
Here, the nitrogen adsorption method will be described.
First, the dried measurement object is placed in a measurement cell as a sample, degassed in a nitrogen gas stream at 250 ° C. for 40 minutes, and then the sample is mixed with 30% by volume of nitrogen and 70% by volume of helium. A liquid nitrogen temperature is maintained in a gas stream, and nitrogen is adsorbed on the sample to obtain a nitrogen adsorption isotherm / desorption isotherm. Using this nitrogen adsorption isotherm, the specific surface area is determined by BET theory. Further, a pore diameter distribution curve of a sample is obtained by a BJH (Barret-Joyner-Halenda) method using a desorption isotherm, and mesopores (pores on the particle surface) side and macropores (interparticle fine particles) appearing on the curve Of the peaks on the (pore) side, the pore diameter of the peak on the mesopore side is determined as the average pore diameter. Similarly, a pore distribution curve is obtained by the BJH method, and a peak appearing in the curve is obtained as an average pore volume. This nitrogen adsorption method can be performed using, for example, a conventionally known pore distribution measuring apparatus.

無機系担体物質は球状かペレット状であることが好ましいが、円柱状、破砕片状、ハニカム状、粉末状等の種々の形態であってもよい。   The inorganic carrier material is preferably in the form of a sphere or pellet, but may be in various forms such as a columnar shape, a crushed piece shape, a honeycomb shape, and a powder shape.

<金属系微粒子>
本発明の触媒における金属系微粒子について説明する。
金属系微粒子は、少なくともPdおよびCuを含む。硝酸性窒素の還元分解反応に対する活性に優れているからである。また、PdおよびCu以外に、他の金属を含んでいてもよい。他の金属として、Pt、Au、Ag、Ru、Ni、W、V、Mo、Fe等が挙げられる。
<Metallic fine particles>
The metal-based fine particles in the catalyst of the present invention will be described.
The metal-based fine particles contain at least Pd and Cu. This is because it is excellent in activity against the reductive decomposition reaction of nitrate nitrogen. In addition to Pd and Cu, other metals may be included. Examples of other metals include Pt, Au, Ag, Ru, Ni, W, V, Mo, and Fe.

さらに、金属系微粒子中におけるPd:Cuの質量比が30:70〜99:1であることが好ましい。また、金属系微粒子におけるPdおよびCuの合計含有率が90質量%以上であることが好ましく、95質量%以上であることがより好ましく、98質量%以上であることがより好ましく、実質的に100質量%であることがさらに好ましい。   Furthermore, the mass ratio of Pd: Cu in the metal-based fine particles is preferably 30:70 to 99: 1. Further, the total content of Pd and Cu in the metal-based fine particles is preferably 90% by mass or more, more preferably 95% by mass or more, more preferably 98% by mass or more, and substantially 100%. More preferably, it is mass%.

金属系微粒子の平均一次粒子径は1〜9nmである。平均一次粒子径をこのような範囲とすることで、凝集しづらく、かつ触媒活性を高く維持することができる。なお、金属系微粒子の平均一次粒子径は、以下の方法により求めた値を意味するものとする。透過型電子顕微鏡により撮影した金属系微粒子の粒子の画像を解析して投影面積円相当径を求める。そして、不作為に選んだ50個の粒子についての投影面積円相当径を単純平均し、得られた値を金属系微粒子の平均一次粒子径とする。   The average primary particle diameter of the metal-based fine particles is 1 to 9 nm. By setting the average primary particle size in such a range, it is difficult to agglomerate and the catalytic activity can be kept high. In addition, the average primary particle diameter of metal-type fine particles shall mean the value calculated | required with the following method. The image of the metal-based fine particles taken with a transmission electron microscope is analyzed to determine the projected area equivalent circle diameter. Then, the projected area equivalent circle diameters of 50 randomly selected particles are simply averaged, and the obtained value is used as the average primary particle size of the metal-based fine particles.

<金属系微粒子担持触媒>
金属系微粒子担持触媒、すなわち本発明の触媒は、上記のような無機系担体物質に金属系微粒子を担持させたものである。
金属系微粒子担持触媒における金属系微粒子の含有率は、0.1〜10質量%であることが好ましく、0.3〜7質量%であることがより好ましく、0.5〜3質量%であることがさらに好ましい。金属系微粒子の含有率がこのような範囲であると、高い触媒活性を得ることができる。
金属系微粒子の含有率がこのような範囲であると、金属系微粒子が凝集し難く、より十分な触媒活性を得ることができる。
<Metal-based fine particle supported catalyst>
The metal-based fine particle-supported catalyst, that is, the catalyst of the present invention is one in which metal-based fine particles are supported on the above inorganic carrier material.
The content of the metal-based fine particles in the metal-based fine particle supported catalyst is preferably 0.1 to 10% by mass, more preferably 0.3 to 7% by mass, and 0.5 to 3% by mass. More preferably. When the content of the metal-based fine particles is within such a range, high catalytic activity can be obtained.
When the content of the metal-based fine particles is within such a range, the metal-based fine particles are difficult to aggregate and a more sufficient catalytic activity can be obtained.

金属系微粒子担持触媒の平均一次粒子径は5〜200nmであることが好ましい。なお、平均一次粒子径は無機系担体物質の場合と同じ方法で測定して得られる値を意味するものとする。   The average primary particle size of the metal-based fine particle supported catalyst is preferably 5 to 200 nm. In addition, an average primary particle diameter shall mean the value obtained by measuring with the same method as the case of an inorganic type carrier substance.

<金属系微粒子担持触媒の製造方法>
本発明は平均一次粒子径が5〜200nmであり、Ti、Al、Si、Sn、およびZnからなる群から選ばれる少なくとも1つ以上の酸化物を主成分として含む無機系担体物質を得る担体調整工程と、少なくともPdおよびCuを含み、平均一次粒子径が1〜9nmである金属系微粒子の分散液を得る分散液調整工程と、前記無機系担体物質を前記分散液に浸漬させて、金属系微粒子・担体混合体を得る浸漬工程と、前記金属系微粒子・担体混合体を乾燥させて金属系微粒子担持触媒を得る乾燥工程と、を備える金属系微粒子担持触媒の製造方法である。
このような金属系微粒子担持触媒の製造方法を、以下では「本発明の製造方法」ともいう。本発明の触媒は、本発明の製造方法によって製造することができる。
<Method for producing metal-based fine particle supported catalyst>
The present invention provides a carrier preparation for obtaining an inorganic carrier material having an average primary particle size of 5 to 200 nm and containing at least one oxide selected from the group consisting of Ti, Al, Si, Sn, and Zn as a main component A step of preparing a dispersion of metal-based fine particles containing at least Pd and Cu and having an average primary particle diameter of 1 to 9 nm; and immersing the inorganic carrier substance in the dispersion A method for producing a metal-based fine particle-supported catalyst, comprising: an immersing step for obtaining a fine particle / carrier mixture; and a drying step for drying the metal-based fine particle / carrier mixture to obtain a metal-based fine particle-supported catalyst.
Hereinafter, such a method for producing a metal-based fine particle-supported catalyst is also referred to as “the production method of the present invention”. The catalyst of the present invention can be produced by the production method of the present invention.

担体調整工程について説明する。
担体調整工程では、平均一次粒子径が5〜200nmであり、Ti、Al、Si、Sn、およびZnからなる群から選ばれる少なくとも1つ以上の酸化物を主成分として含む無機系担体物質を調整する。この工程は目的の無機系担体物質が得られれば特に制限はなく、例えば従来公知の方法(固相混合法、液相混合法、共沈法、含浸法など)によって得た酸化物の混合物を、必要に応じて乾燥させ、その後、焼成して得ることができる。
The carrier adjustment process will be described.
In the carrier adjustment step, an inorganic carrier material having an average primary particle diameter of 5 to 200 nm and containing at least one oxide selected from the group consisting of Ti, Al, Si, Sn, and Zn as a main component is prepared. To do. This step is not particularly limited as long as the desired inorganic carrier material is obtained. For example, an oxide mixture obtained by a conventionally known method (solid phase mixing method, liquid phase mixing method, coprecipitation method, impregnation method, etc.) is used. If necessary, it can be dried and then calcined.

担体調整工程では、Ti、Al、Si、Sn、およびZnからなる群から選ばれる少なくとも1つ以上の酸化物を湿式粉砕してスラリー状とした後、必要に応じて乾燥させ、その後、焼成することで無機系担体物質を得ることが好ましい。湿式粉砕とは、前記原料を水や有機溶媒に浸した状態で分散、粉砕、解砕または混合する方法であり、例えば前記原
料と水とをボールミルに入れて粉砕等する方法である。
In the carrier adjustment step, at least one oxide selected from the group consisting of Ti, Al, Si, Sn, and Zn is wet-pulverized to form a slurry, and then dried as necessary, and then fired. Thus, it is preferable to obtain an inorganic carrier material. The wet pulverization is a method in which the raw material is dispersed, pulverized, pulverized or mixed in a state where the raw material is immersed in water or an organic solvent. For example, the raw material and water are put in a ball mill and pulverized.

また、前記スラリー状の原料を乾燥させることが好ましい。乾燥は、例えば従来公知の静置式乾燥機、噴霧式乾燥機、減圧式乾燥機、真空乾燥機を用いて乾燥することができる。さらに、温度100〜200℃、2〜10時間乾燥させることが好ましい。   Moreover, it is preferable to dry the slurry-like raw material. Drying can be performed using, for example, a conventionally known stationary dryer, spray dryer, vacuum dryer, or vacuum dryer. Furthermore, it is preferable to dry at a temperature of 100 to 200 ° C. for 2 to 10 hours.

次に乾燥させた原料を焼成することが好ましい。焼成する方法は特に限定されず、例えば従来公知の方法で行うことができる。例えば従来公知の焼成炉(トンネル炉、マッフル炉、ロータリーキルン等)を用いて500〜1000℃程度の温度の雰囲気内において2〜10時間程度、焼成して、無機系担体物質を得ることができる。   Next, it is preferable to fire the dried raw material. The method for firing is not particularly limited, and can be performed by, for example, a conventionally known method. For example, an inorganic carrier material can be obtained by baking for about 2 to 10 hours in an atmosphere at a temperature of about 500 to 1000 ° C. using a conventionally known baking furnace (a tunnel furnace, a muffle furnace, a rotary kiln or the like).

上記の工程で得られる無機系担体物質は通常粉末状である。無機系担体物質は球状かペレット状に成形することが好ましい。   The inorganic carrier material obtained in the above process is usually in powder form. The inorganic carrier material is preferably formed into a spherical shape or a pellet shape.

分散液調整工程について説明する。
分散液調整工程では、上記の特定の金属成分を含み、かつ上記の特定の平均一次粒子径範囲である金属系微粒子の分散液を調整する。この工程は目的の金属系微粒子の分散液が得られれば特に制限はなく、例えば従来公知の方法を用いることができる。
The dispersion liquid adjusting step will be described.
In the dispersion liquid adjusting step, a dispersion liquid of metal-based fine particles containing the specific metal component and having the specific average primary particle diameter range is adjusted. This step is not particularly limited as long as a desired dispersion of metal-based fine particles can be obtained. For example, a conventionally known method can be used.

例えば、所定量のPd金属塩およびCu金属塩を含む金属塩を水に溶解させ、金属塩水溶液を得る。これら金属塩は、Pd:Cuの質量比が30:70〜99:1であることが好ましい。Pd金属塩として、例えば硝酸パラジウム、塩化パラジウム、酢酸パラジウム、テトラアンミンパラジウムを用いることができる。また、Cu金属塩として硝酸銅、塩化銅等を用いることができる。さらに、PdおよびCu以外に他の金属塩、例えば塩化白金、硝酸銀、硝酸ニッケルを加えることができる。この際、PdおよびCuを含めた全体の金属元素において、他の金属塩の含有率が5質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましい。   For example, a metal salt containing a predetermined amount of Pd metal salt and Cu metal salt is dissolved in water to obtain an aqueous metal salt solution. These metal salts preferably have a Pd: Cu mass ratio of 30:70 to 99: 1. As the Pd metal salt, for example, palladium nitrate, palladium chloride, palladium acetate, or tetraammine palladium can be used. Moreover, copper nitrate, copper chloride, etc. can be used as Cu metal salt. In addition to Pd and Cu, other metal salts such as platinum chloride, silver nitrate and nickel nitrate can be added. At this time, in the total metal elements including Pd and Cu, the content of other metal salts is preferably 5% by mass or less, more preferably 1% by mass or less, and 0.5% by mass or less. More preferably.

また、上記の金属塩水溶液に安定化剤と還元剤を加えることが好ましい。安定化剤は従来公知のものを用いることができるが、クエン酸三ナトリウムを用いることが好ましい。還元剤は従来公知のものを用いることができるが、硫酸第一鉄を用いることが好ましい。なお、還元剤の添加量は金属塩の合計モル数の1〜3倍量が好ましい。その後、N2等の不活性ガス雰囲気下で1〜30時間攪拌することが好ましい。このようにして金属系微粒子の分散液が得られる。   Moreover, it is preferable to add a stabilizer and a reducing agent to the aqueous metal salt solution. A conventionally known stabilizer can be used, but trisodium citrate is preferably used. Although a conventionally well-known thing can be used for a reducing agent, It is preferable to use ferrous sulfate. The addition amount of the reducing agent is preferably 1 to 3 times the total number of moles of the metal salt. Then, it is preferable to stir for 1 to 30 hours in inert gas atmosphere, such as N2. In this way, a dispersion of metal-based fine particles is obtained.

浸漬工程について説明する。
浸漬工程では、金属系微粒子の分散液に無機系担体物質を浸漬させて、金属系微粒子・担体混合体を得る。
The dipping process will be described.
In the dipping step, an inorganic carrier material is immersed in a dispersion of metal fine particles to obtain a metal fine particle / carrier mixture.

浸漬させる前に金属系微粒子の分散液中の不純物を除去することが好ましい。不純物の除去方法として、遠心分離器により金属系微粒子を沈殿させた後、上澄みを除去することが好ましい。金属系微粒子の沈殿物には、新たに水を加え、1〜10質量%の金属系微粒子の分散液とすることが好ましい。   It is preferable to remove impurities in the dispersion of metal-based fine particles before the immersion. As a method for removing impurities, it is preferable to precipitate the metal-based fine particles with a centrifuge and then remove the supernatant. Preferably, water is newly added to the precipitate of the metal fine particles to form a dispersion of 1 to 10% by mass of the metal fine particles.

次に、金属系微粒子の分散液に無機系担体物質を浸漬させる。この浸漬は、大気中または減圧雰囲気下で行うことが好ましい。また、浸漬は0.1〜2時間行うことが好ましい。これにより、金属系微粒子・担体混合体が得られる。この金属系微粒子・担体混合体の態様は、液体または固体である。   Next, the inorganic carrier material is immersed in a dispersion of metal fine particles. This immersion is preferably performed in the air or in a reduced pressure atmosphere. The immersion is preferably performed for 0.1 to 2 hours. Thereby, a metallic fine particle / carrier mixture is obtained. The embodiment of the metallic fine particle / carrier mixture is a liquid or a solid.

乾燥工程について説明する。
乾燥工程では、金属系微粒子・担体混合体を乾燥することで、金属系微粒子担持触媒を得る。
The drying process will be described.
In the drying step, the metal-based fine particle-supported catalyst is obtained by drying the metal-based fine particle / carrier mixture.

乾燥は、例えば凍結乾燥、噴霧乾燥、静置乾燥等の従来公知の方法を用いることができる。金属系微粒子・担体混合体が固体である場合は静置乾燥、液体である場合は噴霧乾燥または凍結乾燥を用いることができる。また、乾燥温度は100〜200℃が好ましい。また、乾燥時間は1〜20時間行うことが好ましい。さらに、乾燥工程は大気中、真空中、不活性ガス雰囲気下、または還元ガス雰囲気下で行うことが好ましい。
上記の乾燥後、例えば粉末状の金属系微粒子担持触媒が得られる。
For the drying, a conventionally known method such as freeze drying, spray drying, or stationary drying can be used. When the metal-based fine particle / carrier mixture is solid, static drying can be used, and when it is liquid, spray drying or freeze drying can be used. The drying temperature is preferably 100 to 200 ° C. The drying time is preferably 1 to 20 hours. Furthermore, the drying step is preferably performed in air, vacuum, inert gas atmosphere, or reducing gas atmosphere.
After the drying, for example, a powdered metal-based fine particle-supported catalyst is obtained.

<硝酸性窒素含有水の処理方法>
本発明は、本発明の触媒を硝酸性窒素含有水に接触させる硝酸性窒素含有水の処理方法である。
このような硝酸性窒素含有水の処理方法を、以下では「本発明の処理方法」ともいう。
<Method of treating nitrate-containing water>
The present invention is a method for treating nitrate nitrogen-containing water by contacting the catalyst of the present invention with nitrate nitrogen-containing water.
Such a treatment method for nitrate nitrogen-containing water is hereinafter also referred to as “treatment method of the present invention”.

本発明の処理方法を説明する。
本発明の処理方法では、本発明の触媒を用いて、硝酸性窒素含有水における硝酸性窒素について還元分解処理を行う。
The processing method of the present invention will be described.
In the treatment method of the present invention, reductive decomposition treatment is performed on nitrate nitrogen in nitrate nitrogen-containing water using the catalyst of the present invention.

硝酸性窒素含有水とは、硝酸性窒素を含む水溶液を指し、例えば生活排水や工業排水等が挙げられる。また、硝酸性窒素とは、NO3、NO2等であり、水溶液中では通常、イオンとして存在するものである。硝酸性窒素含有水における硝酸性窒素の濃度はNとして、100〜100,000ppmが好ましく、300〜60,000ppmであることがより好ましい。硝酸性窒素の濃度は例えば従来公知の方法(UV法、イオンクロマトグラフ法)により測定することができる。
また、上記硝酸性窒素含有水には、硝酸性窒素以外の物質を含んでもよい。例えば、NH3、ClO3、ClO2、ClO、Na、Cl、Fe、Ni等の無機物質や、クエン酸、シュウ酸、EDTAやEDDS等の有機物などが挙げられる。
Nitrate nitrogen-containing water refers to an aqueous solution containing nitrate nitrogen, and examples thereof include domestic wastewater and industrial wastewater. Nitrate nitrogen is NO 3 , NO 2 or the like, and usually exists as ions in an aqueous solution. The concentration of nitrate nitrogen in the nitrate nitrogen-containing water is preferably 100 to 100,000 ppm, more preferably 300 to 60,000 ppm as N. The concentration of nitrate nitrogen can be measured, for example, by a conventionally known method (UV method, ion chromatography method).
The nitrate nitrogen-containing water may contain substances other than nitrate nitrogen. Examples thereof include inorganic substances such as NH 3 , ClO 3 , ClO 2 , ClO, Na, Cl, Fe, and Ni, and organic substances such as citric acid, oxalic acid, EDTA, and EDDS.

また、触媒を添加する前に、硝酸性窒素含有水のpHを好ましくは6〜12、より好ましくは7〜11の範囲とする。pHをこのような範囲とすることで、触媒の金属系微粒子の溶出や触媒活性の低下、副生物のNH3量の増加を防止することができる。 Further, before adding the catalyst, the pH of the nitrate nitrogen-containing water is preferably 6 to 12, more preferably 7 to 11. By adjusting the pH to such a range, it is possible to prevent elution of metal fine particles of the catalyst, a decrease in catalytic activity, and an increase in the amount of by-product NH 3 .

本発明の触媒の添加量は、硝酸性窒素含有水において、触媒中の金属系微粒子が0.00001〜0.5質量%となるように添加することが好ましく、0.0001〜0.1質量%となるように添加することがより好ましい。
添加量がこのような範囲であると、より十分な触媒活性を得ることができ、かつ経済的にも好ましい。
The addition amount of the catalyst of the present invention is preferably such that the metal-based fine particles in the catalyst are 0.00001 to 0.5% by mass in nitrate nitrogen-containing water, and 0.0001 to 0.1% by mass. It is more preferable to add so that it may become%.
When the addition amount is within such a range, more sufficient catalytic activity can be obtained and it is economically preferable.

本発明の触媒と硝酸性窒素含有水との接触時間は、硝酸性窒素含有水の量、処理前の硝酸性窒素の濃度、処理後の目標とする硝酸性窒素の濃度、硝酸性窒素含有水中の不純物(有機物や金属)の濃度、触媒中の金属系微粒子の含有量、無機系担体触媒の粒子径等によって異なるが、概ね20時間以下、通常3〜15時間の範囲であることが好ましい。
また、接触中の温度は、好ましくは20℃〜100℃、より好ましくは40℃〜80℃の範囲とする。接触時の温度がこのような範囲であると、より十分な触媒活性を得るとともに、触媒の劣化の進行をより遅らせることができる。
The contact time between the catalyst of the present invention and nitrate nitrogen-containing water is the amount of nitrate nitrogen-containing water, the concentration of nitrate nitrogen before treatment, the target concentration of nitrate nitrogen after treatment, and the nitrate nitrogen-containing water. Depending on the concentration of impurities (organic matter or metal), the content of metal-based fine particles in the catalyst, the particle size of the inorganic carrier catalyst, etc., it is preferably about 20 hours or less, usually 3 to 15 hours.
The temperature during the contact is preferably 20 ° C to 100 ° C, more preferably 40 ° C to 80 ° C. When the temperature at the time of contact is in such a range, sufficient catalyst activity can be obtained, and the progress of catalyst deterioration can be further delayed.

硝酸性窒素含有水と本発明の触媒との接触は、還元剤の存在下で行うことが好ましい。還元剤として、ヒドラジン、水素化硼素ナトリウム、次亜リン酸ナトリウム、キノン、ヒドロキノン、水素ガス等を用いることができる。還元剤の添加量は、硝酸性窒素含有水における硝酸性窒素のN量に対し1〜3mol倍量とすることが好ましく、1〜2mol倍量とすることがより好ましい。   The contact between the nitrate nitrogen-containing water and the catalyst of the present invention is preferably carried out in the presence of a reducing agent. As the reducing agent, hydrazine, sodium borohydride, sodium hypophosphite, quinone, hydroquinone, hydrogen gas and the like can be used. The addition amount of the reducing agent is preferably 1 to 3 mol times the amount of N of nitrate nitrogen in the nitrate nitrogen-containing water, and more preferably 1 to 2 mol times.

本発明の処理方法では、本発明の触媒を硝酸性窒素含有水に接触することができれば、特に制限されず、例えば従来の処理設備を用いることができる。例えば、完全混合槽型、流通型、多段型、バッチ型等の処理設備が挙げられる。   In the processing method of this invention, if the catalyst of this invention can be contacted with nitrate nitrogen containing water, it will not restrict | limit in particular, For example, the conventional processing equipment can be used. For example, complete mixing tank type, distribution type, multistage type, batch type processing equipment, etc. may be mentioned.

本発明の触媒と硝酸性窒素含有水との接触は、硝酸性窒素含有水を金属系微粒子担持触媒に通液させる流通型の方式が好ましい。処理設備において連続運転が可能となり、硝酸性窒素含有水を効率的に処理することができ、さらには触媒と硝酸性窒素含有水の分離が不要となり、触媒の交換が容易になるからである。
具体的には、金属系微粒子担持触媒を充填した反応塔の一方から、硝酸性窒素含有水を流入させ、反応塔内部に保持された触媒と接触させる。この際、硝酸性窒素含有水に還元剤を混合してから反応塔に流入させることが好ましい。これにより、硝酸性窒素が還元分解され、硝酸性窒素含有水は処理液となり、反応塔のもう一方から流出する。
また、反応答に通液させる際の通液速度(SV値)は5〜30L/hが好ましく、10〜25L/hがより好ましい。
さらに、流通型における還元剤は、硝酸性窒素含有水と予め混合してから反応塔に流入させてもよいし、硝酸性窒素含有水を反応塔に流入させると同時に、還元剤を反応塔に流入させてもよい。
The contact between the catalyst of the present invention and the nitrate nitrogen-containing water is preferably a flow-through system in which the nitrate nitrogen-containing water is passed through the metal-based fine particle-supported catalyst. This is because continuous operation is possible in the treatment facility, nitrate-nitrogen-containing water can be efficiently treated, and further, separation of the catalyst and nitrate-nitrogen-containing water is unnecessary, and the catalyst can be easily replaced.
Specifically, nitrate nitrogen-containing water is introduced from one of the reaction towers filled with the metal-based fine particle-supported catalyst and brought into contact with the catalyst held inside the reaction tower. At this time, it is preferable to mix the reducing agent with the nitrate nitrogen-containing water and then flow into the reaction tower. Thereby, nitrate nitrogen is reduced and decomposed, and nitrate nitrogen-containing water becomes a treatment liquid and flows out from the other side of the reaction tower.
Moreover, 5-30 L / h is preferable and, as for the liquid transmission speed | rate (SV value) at the time of letting it pass in a counter response, 10-25 L / h is more preferable.
Furthermore, the reducing agent in the flow type may be premixed with nitrate nitrogen-containing water and then flowed into the reaction tower. At the same time, nitrate nitrogen-containing water is allowed to flow into the reaction tower, and at the same time, the reducing agent is fed into the reaction tower. It may be allowed to flow.

流通型以外の方式においては、処理水から触媒を分離して触媒を繰り返し使用することができるが、必要に応じて再生して用いることもできる。この分離手段は特に制限はされないが、例えば限外濾過膜やセラミックフィルター等を用いることができる。   In systems other than the circulation type, the catalyst can be repeatedly used by separating the catalyst from the treated water, but it can also be regenerated and used as necessary. The separation means is not particularly limited, and for example, an ultrafiltration membrane or a ceramic filter can be used.

本発明の実施例について説明する。尚、本発明は以下の実施例に限定されるものではない。   Examples of the present invention will be described. In addition, this invention is not limited to a following example.

〔実施例1〕
<担体の調整>
担体として、日揮触媒化成(株)社製のTiO2粉末(TMB−AA1514)を用いた。用いたTiO2粉末の細孔径は34nmであり、細孔容積は0.27nmであり、比表面積は30m2/gであった。
以降の実施例および比較例においても同様のTiO2粉末を用いた。
[Example 1]
<Adjustment of carrier>
As a carrier, TiO 2 powder (TMB-AA1514) manufactured by JGC Catalysts & Chemicals Co., Ltd. was used. The used TiO 2 powder had a pore diameter of 34 nm, a pore volume of 0.27 nm, and a specific surface area of 30 m 2 / g.
The same TiO 2 powder was used in the following examples and comparative examples.

<金属系微粒子の調整>
純水100gに、金属系微粒子を構成するPdとCuの質量比が80/20となるように、硝酸パラジウム二水和塩3gおよび硝酸銅三水和塩1.15gを溶解した金属塩水溶液を調整した。この金属塩水溶液に、安定化剤として30質量%のクエン酸三ナトリウム水溶液20gと、還元剤として25質量%の硫酸第一鉄水溶液15gを加え、窒素雰囲気下で10時間撹拌し、金属系微粒子の分散液(A)を得た。この分散液(A)中の金属系微粒子の平均一次粒子径は4nmであった。
<Preparation of metal-based fine particles>
A metal salt aqueous solution in which 3 g of palladium nitrate dihydrate and 1.15 g of copper nitrate trihydrate are dissolved in 100 g of pure water so that the mass ratio of Pd and Cu constituting the metal-based fine particles is 80/20. It was adjusted. To this metal salt aqueous solution, 20 g of a 30% by mass trisodium citrate aqueous solution as a stabilizer and 15 g of a 25% by mass ferrous sulfate aqueous solution as a reducing agent are added and stirred for 10 hours in a nitrogen atmosphere. A dispersion (A) was obtained. The average primary particle diameter of the metal-based fine particles in this dispersion (A) was 4 nm.

<触媒の調整>
上記の分散液(A)を遠心分離器により上澄み液と沈殿物とに分離し、上澄みを取り除くことで不純物を除去した後、さらに沈殿物に純水を加え、2質量%の金属系微粒子の分散液(B)を得た。この分散液(B)に前記担体を25℃で1時間浸漬させ、Pd−Cuコロイド/担体粉末混合体を得た。次に、Pd−Cuコロイド/担体粉末混合体を、真空乾燥機で150℃、12時間乾燥し、金属系微粒子担持触媒(以下、触媒)を調整した。この触媒中の金属担持量は1.0質量%であった。
<Catalyst adjustment>
The dispersion (A) is separated into a supernatant and a precipitate by a centrifuge, and impurities are removed by removing the supernatant. Then, pure water is added to the precipitate, and 2% by mass of metallic fine particles. A dispersion (B) was obtained. The carrier was immersed in this dispersion (B) at 25 ° C. for 1 hour to obtain a Pd—Cu colloid / carrier powder mixture. Next, the Pd—Cu colloid / carrier powder mixture was dried in a vacuum dryer at 150 ° C. for 12 hours to prepare a metal-based fine particle supported catalyst (hereinafter referred to as catalyst). The amount of metal supported in this catalyst was 1.0% by mass.

〔比較例1〕
TiO2粉末の代わりに、活性炭を担体として用いた。それ以外は、実施例1と同様の方法で触媒を調整した。
[Comparative Example 1]
Activated carbon was used as a carrier instead of TiO 2 powder. Otherwise, the catalyst was prepared in the same manner as in Example 1.

〔比較例2〕
TiO2粉末の代わりに、Al23粉末を担体として用いた。それ以外は、実施例1と同様の方法で触媒を調整した。
[Comparative Example 2]
Al 2 O 3 powder was used as a carrier instead of TiO 2 powder. Otherwise, the catalyst was prepared in the same manner as in Example 1.

上記の方法で調整した実施例1、比較例1および2の触媒を模擬廃液(A)に反応させ、各触媒における硝酸性窒素の還元分解反応に対する活性について調べた。模擬廃液(A)は、NO3を990ppm、NO2を460ppm、Feを83ppm、Naを0.46質量%、Clを0.57質量%およびCODを750ppm含有する水溶液である。
各触媒の硝酸性窒素の還元分解反応に対する活性は下記の方法により調べた。
The catalysts of Example 1 and Comparative Examples 1 and 2 prepared by the above method were reacted with the simulated waste liquid (A), and the activity of each catalyst for the reductive decomposition reaction of nitrate nitrogen was examined. The simulated waste liquid (A) is an aqueous solution containing 990 ppm NO 3 , 460 ppm NO 2 , 83 ppm Fe, 0.46 mass% Na, 0.57 mass% Cl, and 750 ppm COD.
The activity of each catalyst for the reductive decomposition reaction of nitrate nitrogen was examined by the following method.

<バッチ式活性試験>
図1は触媒活性およびその持続性を調べる反応器1である。恒温槽7にはった湯により80℃に保たれたセパラブルフラスコ9内において、触媒を添加した模擬廃液(A)3に、窒素ガス(純度99.9%、200ml/min)をパージしながら、マグネティックスターラー6で加温撹拌した。この際、触媒の添加量は9.1g、模擬廃液(A)は200ml、撹拌速度は200rpmであった。そこへ、2.5質量%ヒドラジン水溶液15を、ローラーポンプ17により16.5ml/hの滴下速度で2時間供給し、供給が終わった後さらに1時間加温撹拌を行って、触媒を模擬廃液(A)に反応させた。反応中は、副生物のNH3が冷却管19から排気される。次に、この触媒を反応させた模擬廃液(A)を冷却し、濾過して触媒を分離し、処理液を得た。さらに、処理液から分離した触媒を用いて、上記の試験を3または4回繰り返した。
この試験方法をバッチ式活性試験と呼ぶ。
<Batch activity test>
FIG. 1 shows a reactor 1 for examining catalyst activity and its persistence. In a separable flask 9 maintained at 80 ° C. with hot water in the thermostat 7, nitrogen gas (purity 99.9%, 200 ml / min) was purged to the simulated waste liquid (A) 3 to which the catalyst was added. The mixture was heated and stirred with a magnetic stirrer 6. At this time, the amount of the catalyst added was 9.1 g, the simulated waste liquid (A) was 200 ml, and the stirring speed was 200 rpm. The 2.5 mass% hydrazine aqueous solution 15 was supplied to the roller pump 17 at a dropping rate of 16.5 ml / h for 2 hours, and after the supply was completed, the mixture was further heated and stirred for 1 hour to simulate a catalyst waste liquid. (A) was reacted. During the reaction, by-product NH 3 is exhausted from the cooling pipe 19. Next, the simulated waste liquid (A) reacted with this catalyst was cooled and filtered to separate the catalyst to obtain a treatment liquid. Furthermore, the above test was repeated 3 or 4 times using the catalyst separated from the treatment liquid.
This test method is called a batch activity test.

上記の試験において、3〜4回繰り返した際の各処理液の硝酸性窒素(NO3+NO2)のN量を測定した。硝酸性窒素のN量の測定はHPLC(日本ダイオネクス(株)製、ICS−90)を用いた。結果を第1表に示す。 In the above test, to measure the N content of each processing solution when repeated 3-4 times nitrate nitrogen (NO 3 + NO 2). The N amount of nitrate nitrogen was measured by HPLC (Nihon Dionex Co., Ltd., ICS-90). The results are shown in Table 1.

第1表より、繰り返し使用においても実施例1の触媒では、硝酸性窒素の還元分解反応に対する活性が高いことが認められた。   From Table 1, it was confirmed that the catalyst of Example 1 has high activity for the reductive decomposition reaction of nitrate nitrogen even in repeated use.

次に、模擬廃液(A)に、実施例1、比較例1または2の触媒に用いた担体のみを加え、バッチ式活性試験と同じ方法で反応させた。その後、得られた処理液について、第2表に示す各組成成分を測定した。NO3量、NO2量およびCl量の測定はHPLC(日本ダイオネクス(株)製、ICS−90)を用いた。Na量は原子吸光分析により、Fe量はICP発光分光分析により測定した。また、COD量は、過マンガン酸カリウムとシュウ酸を用いた酸化還元滴定により測定した。
ここでは繰り返し試験を行わず、模擬廃液(A)と担体との反応は1回のみ行った。
Next, only the carrier used for the catalyst of Example 1, Comparative Example 1 or 2 was added to the simulated waste liquid (A), and reacted in the same manner as in the batch type activity test. Then, each composition component shown in Table 2 was measured about the obtained processing liquid. The measurement of NO 3 amount, NO 2 amount and Cl amount was performed by HPLC (Nihon Dionex Co., Ltd., ICS-90). The amount of Na was measured by atomic absorption analysis, and the amount of Fe was measured by ICP emission spectroscopic analysis. The amount of COD was measured by oxidation-reduction titration using potassium permanganate and oxalic acid.
Here, the test was not repeated, and the reaction between the simulated waste liquid (A) and the carrier was performed only once.

第2表より、実施例1で用いたTiO2担体では、模擬廃液(A)中のFeや有機物の吸着量が低いことが示された。 Table 2 shows that the TiO 2 carrier used in Example 1 has a low adsorption amount of Fe and organic matter in the simulated waste liquid (A).

次に、実施例1、比較例1および2の触媒に用いた各種担体の平均細孔径、平均細孔容積および比表面積を調べた。なお、担体の平均細孔径、平均細孔容積および比表面積は、細孔分布測定装置(日本ベル社製、BELSORP−mini(II))を用いて、前述の窒素吸着法により測定した。測定結果を第3表に示す。   Next, the average pore diameter, average pore volume, and specific surface area of various carriers used in the catalysts of Example 1 and Comparative Examples 1 and 2 were examined. The average pore diameter, average pore volume, and specific surface area of the support were measured by the aforementioned nitrogen adsorption method using a pore distribution measuring device (BELSORP-mini (II), manufactured by Nippon Bell Co., Ltd.). The measurement results are shown in Table 3.

次に、種々の物性特性を持つTiO2担体を用いた触媒について、その触媒活性について調べた。 Next, the catalytic activity of the catalyst using the TiO 2 support having various physical properties was examined.

〔実施例2〕
<担体の調整>
TiO2粉末50gを純水100gに添加して懸濁した。その後、減圧下で80℃に加熱して水分を除去することで乾燥させ、この乾燥品を担体とした。
[Example 2]
<Adjustment of carrier>
50 g of TiO 2 powder was added to 100 g of pure water and suspended. Then, it was dried by heating to 80 ° C. under reduced pressure to remove moisture, and this dried product was used as a carrier.

<金属系微粒子の調整>
純水100gに、金属系微粒子を構成するPdとCuの質量比が70/30となるように、硝酸パラジウム二水和塩7.4gおよび硝酸銅三水和塩4.9gを溶解した金属塩水溶液を調整した。この金属塩水溶液に、安定化剤として30質量%のクエン酸三ナトリウム水溶液265gと、還元剤として25質量%の硫酸第一鉄水溶液129g(硝酸パラジウムと硝酸銅の合計モル数の2倍量のモル数に相当)を加え、窒素雰囲気下で20時間撹拌し、金属系微粒子の分散液(A)を得た。この分散液(A)中の金属系微粒子の平均一次粒子径は4nmであった。
<Preparation of metal-based fine particles>
A metal salt in which 7.4 g of palladium nitrate dihydrate and 4.9 g of copper nitrate trihydrate are dissolved in 100 g of pure water so that the mass ratio of Pd and Cu constituting the metal-based fine particles is 70/30. An aqueous solution was prepared. In this metal salt aqueous solution, 265 g of 30% by mass trisodium citrate aqueous solution as a stabilizer and 129 g of 25% by mass ferrous sulfate aqueous solution as a reducing agent (twice the total number of moles of palladium nitrate and copper nitrate) (Corresponding to the number of moles) was added and stirred under a nitrogen atmosphere for 20 hours to obtain a dispersion (A) of metal-based fine particles. The average primary particle diameter of the metal-based fine particles in this dispersion (A) was 4 nm.

<触媒の調整>
このようにして得られた担体(乾燥品)および金属系微粒子を用いて、実施例1と同様の方法により触媒を調整した。
<Catalyst adjustment>
A catalyst was prepared by the same method as in Example 1 using the carrier (dried product) and metal fine particles obtained in this manner.

〔実施例3〕
Pd−Cuコロイド/担体粉末混合体を、静置式乾燥機(Yamato社製、型番DS400)を用いて150℃、12時間、大気乾燥した以外は、実施例2と同様の方法で触媒を調整した。
Example 3
A catalyst was prepared in the same manner as in Example 2 except that the Pd—Cu colloid / carrier powder mixture was air-dried at 150 ° C. for 12 hours using a stationary dryer (manufactured by Yamato, model number DS400). .

〔実施例4〕
Pd−Cuコロイド/担体粉末混合体を、高温乾燥機(Yamato社製、型番DN410I)を用いて、窒素ガス(純度99.9%、5L/min)の雰囲気下で150℃、12時間、乾燥した以外は、実施例2と同様の方法で触媒を調整した。
Example 4
The Pd—Cu colloid / carrier powder mixture is dried at 150 ° C. for 12 hours in an atmosphere of nitrogen gas (purity 99.9%, 5 L / min) using a high-temperature dryer (manufactured by Yamato, model number DN410I). Except that, the catalyst was prepared in the same manner as in Example 2.

〔実施例5〕
担体の調整において、純水1000gに、TiO2粉末190gと、さらにAl23粉末10gを懸濁した以外は、実施例2と同様の方法で触媒を調整した。
Example 5
In preparing the carrier, a catalyst was prepared in the same manner as in Example 2 except that 190 g of TiO 2 powder and 10 g of Al 2 O 3 powder were suspended in 1000 g of pure water.

〔実施例6〕
担体の調整において、純水1000gに、TiO2粉末190gと、さらにシリカゾル(日揮触媒化成(株)社製、型番:1SI−30)33gを懸濁した以外は、実施例2と同様の方法で触媒を調整した。
Example 6
In the preparation of the carrier, the same method as in Example 2 was used except that 190 g of TiO 2 powder and 33 g of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd., model number: 1SI-30) were suspended in 1000 g of pure water. The catalyst was prepared.

〔実施例7〕
担体の調整において、粉末状の担体をペレット状に成形した。それ以外は実施例5と同様の方法で触媒を調整した。
Example 7
In preparing the carrier, the powdery carrier was formed into a pellet. Otherwise, the catalyst was prepared in the same manner as in Example 5.

〔実施例8〕
担体の調整において、粉末状の担体をペレット状に成形した。それ以外は実施例6と同様の方法で触媒を調整した。
Example 8
In preparing the carrier, the powdery carrier was formed into a pellet. Otherwise, the catalyst was prepared in the same manner as in Example 6.

〔実施例9〕
担体の調整において、純水1000gに、TiO2粉末190gと、さらに硝酸スズ(II)20水和物20gを懸濁した以外は、実施例2と同様の方法で触媒を調整した。
Example 9
In preparing the carrier, a catalyst was prepared in the same manner as in Example 2 except that 190 g of TiO 2 powder and 20 g of tin (II) nitrate hydrate were suspended in 1000 g of pure water.

〔実施例10〕
担体の調整において、純水1000gに、TiO2粉末190gと、さらに硝酸亜鉛6水和物20gを懸濁した以外は、実施例2と同様の方法で触媒を調整した。
Example 10
In preparing the carrier, a catalyst was prepared in the same manner as in Example 2 except that 190 g of TiO 2 powder and 20 g of zinc nitrate hexahydrate were suspended in 1000 g of pure water.

<触媒粒子のSEM観察>
実施例2の触媒の粒子を、走査型電子顕微鏡を用いて撮影した。SEM画像(倍率、300,000倍)を図2に示す。
<SEM observation of catalyst particles>
The catalyst particles of Example 2 were photographed using a scanning electron microscope. An SEM image (magnification, 300,000 times) is shown in FIG.

〔比較例3〕
担体の調整において、実施例2と同様の方法で得られた乾燥品をさらに1200℃で焼成したものを担体とした。それ以外は、実施例2と同様の方法で触媒を調整した。
[Comparative Example 3]
In the preparation of the carrier, a dried product obtained by the same method as in Example 2 was further calcined at 1200 ° C. to obtain a carrier. Otherwise, the catalyst was prepared in the same manner as in Example 2.

〔比較例4〕
金属系微粒子の調整において、パラジウムと銅の濃度を3倍量とした以外は、実施例2と同様の方法で触媒を調整した。
[Comparative Example 4]
A catalyst was prepared in the same manner as in Example 2 except that the concentration of palladium and copper was tripled in the adjustment of the metal-based fine particles.

〔比較例5〕
担体の調整において、TiO2粉末の代わりに活性炭を用いた以外は実施例2と同様の方法で触媒を調整した。
[Comparative Example 5]
In preparing the support, a catalyst was prepared in the same manner as in Example 2 except that activated carbon was used instead of TiO 2 powder.

〔比較例6〕
真空乾燥機で400℃、12時間乾燥して金属系微粒子担持触媒を調整したこと以外は、実施例2と同様の方法で触媒を調整した。
[Comparative Example 6]
The catalyst was prepared in the same manner as in Example 2 except that the metal-based fine particle supported catalyst was prepared by drying at 400 ° C. for 12 hours in a vacuum dryer.

次に、上記の実施例2〜10および比較例3〜6の各物性特性について調べた。   Next, the physical properties of Examples 2 to 10 and Comparative Examples 3 to 6 were examined.

担体および金属系微粒子の平均一次粒子径を、前述の方法により測定した。透過型電子顕微鏡は(株)日立製作所製、H−800を用いた。
また、担体の平均細孔径、平均細孔容積および比表面積を、細孔分布測定装置(日本ベル社製、BELSORP−mini(II))を用いて、前述の窒素吸着法により測定した。
The average primary particle diameter of the carrier and the metal-based fine particles was measured by the method described above. H-800 manufactured by Hitachi, Ltd. was used as the transmission electron microscope.
Further, the average pore diameter, average pore volume, and specific surface area of the support were measured by the above-described nitrogen adsorption method using a pore distribution measuring device (BELSORP-mini (II) manufactured by Nippon Bell Co., Ltd.).

さらに、実施例2〜10および比較例3〜6の硝酸性窒素の還元分解反応に対する活性を以下の方法により調べた。
硝酸性窒素の含有量がNとして400ppmとなるように、硝酸ナトリウム(関東化学株式会社製、特級)および亜硝酸ナトリウム(関東化学株式会社製、特級)を純水に溶解して、硝酸性窒素含有水25kgを調整した。
次に、前述のバッチ式活性試験にて、硝酸性窒素含有水に各実施例および比較例の触媒を反応させた。得られた各処理液中に含まれる硝酸性窒素濃度(NO3およびNO2)をHPLC(日本ダイオネクス(株)製、ICS−90)により測定し、〔1−測定した硝酸性窒素濃度(ppm)/硝酸含有水中の硝酸性窒素含有量(400ppm)〕×100の値を、窒素分解率(%)として求めた。さらに、処理後の触媒を回収し、上記の測定を5回繰り返した。
また、実施例2で得られた触媒の窒素分解率を測定するに当たり、バッチ式活性試験における反応器1の加熱温度を40℃(実施例2−1)、60℃(実施例2−2)、80℃(実施例2−3)とした試験も行った。
Furthermore, the activity with respect to the reductive decomposition reaction of nitrate nitrogen in Examples 2 to 10 and Comparative Examples 3 to 6 was examined by the following method.
Sodium nitrate (Kanto Chemical Co., Ltd., special grade) and sodium nitrite (Kanto Chemical Co., Ltd., special grade) are dissolved in pure water so that the content of nitrate nitrogen is 400 ppm as N. 25 kg of water was adjusted.
Next, the catalyst of each Example and the comparative example was made to react with nitrate nitrogen containing water by the batch type activity test mentioned above. Nitrate nitrogen concentration (NO 3 and NO 2 ) contained in each treatment solution obtained was measured by HPLC (manufactured by Nippon Dionex Co., Ltd., ICS-90) and [1-measured nitrate nitrogen concentration (ppm ) / Nitrate nitrogen content in nitric acid-containing water (400 ppm)] × 100 was determined as a nitrogen decomposition rate (%). Further, the treated catalyst was recovered, and the above measurement was repeated 5 times.
Moreover, in measuring the nitrogen decomposition rate of the catalyst obtained in Example 2, the heating temperature of the reactor 1 in the batch type activity test was 40 ° C. (Example 2-1), 60 ° C. (Example 2-2). , 80 ° C. (Example 2-3) was also tested.

第4表に、実施例2〜10および比較例3〜6の各物性特性、並びに窒素分解率を示す。第4表に示す窒素分解率は上記の測定によって得られた5回分の測定結果の平均値である。   Table 4 shows physical properties and nitrogen decomposition rates of Examples 2 to 10 and Comparative Examples 3 to 6. The nitrogen decomposition rate shown in Table 4 is an average value of the measurement results for five times obtained by the above measurement.

第4表より、全ての実施例において、80%以上の高い窒素分解率が認められた。   From Table 4, a high nitrogen decomposition rate of 80% or more was observed in all examples.

次に、本発明の触媒処理を連続的に行った場合の硝酸性窒素の還元分解反応に対する活性を調べるため、下記に示すような試験を行った。   Next, in order to examine the activity for the reductive decomposition reaction of nitrate nitrogen when the catalyst treatment of the present invention was continuously performed, the following test was performed.

<カラム式活性試験>
カラム型反応塔を用いて、本発明の触媒における触媒活性を調べた。この反応塔は、その内部に触媒を保持したまま、反応塔内に液体を通液させることができる構造となっている。これにより、反応塔内を通過した液体は、内部で触媒と接触するため、還元分解された処理液となって反応塔から流出する。
円筒状のカラム型反応塔(外径12mm、内径10mm、長さ100mm)内に、実施例2で得られた触媒7gを充填した後、カラム型反応塔の長手方向が鉛直方向となるように設置した。反応塔内および硝酸性窒素含有水を40℃(実施例2−4)、60℃(実施例2−5)、80℃(実施例2−6)に保持しながら、反応塔の上側から反応塔内へ硝酸性窒素含有水とヒドラジンとの混合溶液を注入し、12.9L/h(SV値)の通液速度で反応塔内を通過させた。なお、硝酸性窒素含有水は硝酸性窒素の含有量がNとして400ppmとなるように調整したものを用いた。前記混合溶液は、硝酸性窒素含有水における硝酸性窒素中の硝酸に対し1.2mol倍相当量のヒドラジンを、硝酸性窒素含有水に2時間かけて添加したものであり、これを140ml用いた。この反応塔内を通過し、反応塔の下側から流出した混合溶液を処理液とした。
<Column type activity test>
The catalytic activity of the catalyst of the present invention was examined using a column type reaction tower. This reaction tower has a structure that allows liquid to pass through the reaction tower while keeping the catalyst inside. Thereby, since the liquid which passed through the inside of a reaction tower contacts a catalyst inside, it becomes a processing liquid reductively decomposed and flows out from a reaction tower.
A cylindrical column type reaction tower (outer diameter 12 mm, inner diameter 10 mm, length 100 mm) is filled with 7 g of the catalyst obtained in Example 2 so that the longitudinal direction of the column type reaction tower becomes the vertical direction. installed. The reaction was carried out from the upper side of the reaction tower while maintaining the nitrogen-containing water in the reaction tower at 40 ° C. (Example 2-4), 60 ° C. (Example 2-5), and 80 ° C. (Example 2-6). A mixed solution of nitrate nitrogen-containing water and hydrazine was injected into the tower and allowed to pass through the reaction tower at a liquid flow rate of 12.9 L / h (SV value). The nitrate nitrogen-containing water was adjusted so that the nitrate nitrogen content was 400 ppm as N. The mixed solution is obtained by adding hydrazine equivalent to 1.2 mol times the nitric acid in the nitrate nitrogen in the nitrate nitrogen-containing water to the nitrate nitrogen-containing water over 2 hours, and 140 ml thereof was used. . A mixed solution that passed through the reaction tower and flowed out from the lower side of the reaction tower was used as a treatment liquid.

この処理液の硝酸性窒素濃度(NO3およびNO2)をHPLC(日本ダイオネクス(株)製、ICS−90)により測定し、窒素分解率(%)を求めた。
結果を第5表に示す。
The nitrate nitrogen concentration (NO 3 and NO 2 ) of this treatment solution was measured by HPLC (manufactured by Nippon Dainex Co., Ltd., ICS-90) to determine the nitrogen decomposition rate (%).
The results are shown in Table 5.

次に、本発明の触媒を模擬廃液(B)に反応させる試験を繰り返し行い、触媒活性の持続性について調べた。模擬廃液(B)は、NO3を1000ppm、NO2を500ppm、NaClを10g/L、Feを100mg/LおよびEDTAを1000mg/L含有する水溶液である。また、模擬廃液(B)に反応させる触媒は実施例2と同じものを用いた。この触媒の金属担持量は1.2質量%であった。 Next, the test of reacting the catalyst of the present invention with the simulated waste liquid (B) was repeated to examine the sustainability of the catalyst activity. The simulated waste liquid (B) is an aqueous solution containing 1000 ppm NO 3 , 500 ppm NO 2 , 10 g / L NaCl, 100 mg / L Fe, and 1000 mg / L EDTA. The same catalyst as in Example 2 was used for the reaction with the simulated waste liquid (B). The amount of metal supported on this catalyst was 1.2% by mass.

触媒活性の持続性については、バッチ式活性試験およびカラム式活性試験の2通りの試験を行った。   For the sustainability of the catalyst activity, two types of tests, a batch type activity test and a column type activity test, were performed.

バッチ式活性試験では、実施例2の触媒9.1gを模擬廃液(B)200mlに添加して反応させた。得られた処理液から触媒を回収し、同じ試験を10回繰り返した。   In the batch type activity test, 9.1 g of the catalyst of Example 2 was added to 200 ml of the simulated waste liquid (B) and reacted. The catalyst was recovered from the obtained treatment liquid, and the same test was repeated 10 times.

カラム式活性試験では、実施例2の触媒9.1gを充填したカラム型反応塔に、模擬廃液(B)200mlを通液させ、処理液を得た。
その後、同じカラム型反応塔に新たに模擬廃液を200ml通液させ、さらに処理液を得る試験を10回繰り返した。
In the column-type activity test, 200 ml of simulated waste liquid (B) was passed through a column-type reaction tower packed with 9.1 g of the catalyst of Example 2 to obtain a treatment liquid.
Thereafter, 200 ml of a simulated waste liquid was newly passed through the same column type reaction tower, and a test for obtaining a treatment liquid was further repeated 10 times.

バッチ式およびカラム式活性試験方法における各繰り返し試験回数の処理液について、硝酸性窒素(NO3+NO2)のN量を測定した。硝酸性窒素のN量の測定はHPLC(日本ダイオネクス(株)製、ICS−90)を用いた。各繰り返し回数における硝酸性窒素のN量の変化を図3に示す。 The N amount of nitrate nitrogen (NO 3 + NO 2 ) was measured for the treatment solutions of each repetition test in the batch type and column type activity test methods. The N amount of nitrate nitrogen was measured by HPLC (Nihon Dionex Co., Ltd., ICS-90). FIG. 3 shows changes in the N amount of nitrate nitrogen at each repetition.

図3より、上記の試験を10回繰り返しても、処理液中の硝酸性窒素のN量は低い値を示すことから、実施例2の触媒活性は高い持続性があることが認められた。   From FIG. 3, even if the above test was repeated 10 times, the N amount of nitrate nitrogen in the treatment liquid showed a low value, so that it was confirmed that the catalytic activity of Example 2 had high durability.

1 反応器
3 触媒を添加した模擬廃液(A)
5 スターラーバー
6 マグネティックスターラー
7 恒温槽
9 セパラブルフラスコ
11 温度コントローラ
17 ローラーポンプ
19 冷却管
21 窒素ガスボンベ
1 Reactor 3 Simulated waste liquid with catalyst added (A)
5 Stirrer bar 6 Magnetic stirrer 7 Constant temperature bath 9 Separable flask 11 Temperature controller 17 Roller pump 19 Cooling tube 21 Nitrogen gas cylinder

Claims (5)

少なくともPdおよびCuを含む金属系微粒子が無機系担体物質に担持された金属系微粒子担持触媒であって、
前記無機系担体物質は平均一次粒子径が5〜200nmであり、Ti、Al、Si、Sn、およびZnからなる群から選ばれる少なくとも1つ以上の酸化物を主成分として含み、
前記無機系担体物質の平均細孔径が5〜100nm、平均細孔容積が0.1〜1.5ml/g、比表面積が10〜300m 2 /gであり、
前記金属系微粒子は平均一次粒子径が1〜9nmであり、
硝酸性窒素含有水における硝酸性窒素の還元分解反応に用いる触媒である、金属系微粒子担持触媒。
A metal-based fine particle-supported catalyst in which metal-based fine particles containing at least Pd and Cu are supported on an inorganic carrier material,
The inorganic carrier material has an average primary particle diameter of 5 to 200 nm, and contains at least one oxide selected from the group consisting of Ti, Al, Si, Sn, and Zn as a main component,
The inorganic carrier material has an average pore diameter of 5 to 100 nm, an average pore volume of 0.1 to 1.5 ml / g, and a specific surface area of 10 to 300 m 2 / g,
The metal-based fine particles having an average primary particle size Ri 1~9nm der,
A metal-based fine particle-supported catalyst , which is a catalyst used for the reductive decomposition reaction of nitrate nitrogen in nitrate nitrogen-containing water .
前記無機系担体物質の主成分がTiO2である請求項1に記載の金属系微粒子担持触媒。 Metallic fine particles supported catalyst according to claim 1 the main component of the inorganic carrier material is TiO 2. 前記無機系担体物質が球状またはペレット状である請求項1または2に記載の金属系微粒子担持触媒。 3. The metal-based fine particle-supported catalyst according to claim 1, wherein the inorganic support material is spherical or pellet-shaped. 前記金属系微粒子中におけるPd:Cuの質量比が30:70〜99:1である請求項1〜のいずれかに記載の金属系微粒子担持触媒。 The metal-based fine particle-supported catalyst according to any one of claims 1 to 3 , wherein a mass ratio of Pd: Cu in the metal-based fine particle is 30:70 to 99: 1. 前記金属系微粒子の含有率が0.1〜10質量%である請求項1〜のいずれかに記載の金属系微粒子担持触媒。 The metal-based fine particle-supported catalyst according to any one of claims 1 to 4 , wherein a content of the metal-based fine particles is 0.1 to 10% by mass.
JP2014071647A 2014-03-31 2014-03-31 Metal-based fine particle supported catalyst Active JP6230464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014071647A JP6230464B2 (en) 2014-03-31 2014-03-31 Metal-based fine particle supported catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014071647A JP6230464B2 (en) 2014-03-31 2014-03-31 Metal-based fine particle supported catalyst

Publications (2)

Publication Number Publication Date
JP2015192935A JP2015192935A (en) 2015-11-05
JP6230464B2 true JP6230464B2 (en) 2017-11-15

Family

ID=54432515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014071647A Active JP6230464B2 (en) 2014-03-31 2014-03-31 Metal-based fine particle supported catalyst

Country Status (1)

Country Link
JP (1) JP6230464B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114797895A (en) * 2019-03-25 2022-07-29 河北地质大学 Composite catalyst and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59300865D1 (en) * 1992-03-13 1995-12-07 Solvay Umweltchemie Gmbh ABRASION-RESISTANT CARRIER CATALYST.
JP2007007541A (en) * 2005-06-30 2007-01-18 Catalysts & Chem Ind Co Ltd Method for treating nitrate nitrogen-containing water
JP4649281B2 (en) * 2005-07-12 2011-03-09 日揮触媒化成株式会社 Treatment method for nitrate-containing water
CN101715366A (en) * 2007-05-04 2010-05-26 Bp北美公司 The method and the catalyst that are used for oxidizing aromatic compounds
EP2474356A4 (en) * 2009-09-04 2014-08-27 Univ Hokkaido Nat Univ Corp Photoreduction catalyst, method for synthesizing ammonia using same, and method for decreasing nitrogen oxide in water using same

Also Published As

Publication number Publication date
JP2015192935A (en) 2015-11-05

Similar Documents

Publication Publication Date Title
Zeng et al. Reduction of nitrate by NaY zeolite supported Fe, Cu/Fe and Mn/Fe nanoparticles
CN109305917B (en) Synthesis method of halogenated aniline
Zhao et al. Catalytic reduction of aqueous nitrates by metal supported catalysts on Al particles
Chen et al. Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water
Mahmoud et al. Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods
Wang et al. Removal of lead (II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes
Chen et al. Preparation and characterization of lanthanum (III) loaded granular ceramic for phosphorus adsorption from aqueous solution
US20160023921A1 (en) Method for making activated carbon-supported transition metal-based nanoparticles
Mallick et al. Adsorption of hexavalent chromium on manganese nodule leached residue obtained from NH3–SO2 leaching
Lin et al. Effects of preparation conditions on gold/Y-type zeolite for CO oxidation
CN105164766B (en) Carbon body and ferromagnetic carbon body
Sharma et al. An ionic liquid-mesoporous silica blend as a novel adsorbent for the adsorption and recovery of palladium ions, and its applications in continuous flow study and as an industrial catalyst
CN104888839A (en) Mesoporous molecular sieve-based catalyst used for ammonia removing, and preparation method and applications thereof
Hwang et al. Fate of nitrogen species in nitrate reduction by nanoscale zero valent iron and characterization of the reaction kinetics
Tang et al. Halloysite-nanotubes supported FeNi alloy nanoparticles for catalytic decomposition of toxic phosphine gas into yellow phosphorus and hydrogen
Goswami et al. Removal of fluoride from drinking water using nanomagnetite aggregated schwertmannite
Shi et al. Functional kaolinite supported Fe/Ni nanoparticles for simultaneous catalytic remediation of mixed contaminants (lead and nitrate) from wastewater
CN104770395A (en) Metal nanoparticles-doped antibacterial agents and methods of preparation and use
Schlichter et al. Copper mesoporous materials as highly efficient recyclable catalysts for the reduction of 4-nitrophenol in aqueous media
Wang et al. Removal of chromium (VI) from wastewater by Mg-aminoclay coated nanoscale zero-valent iron
Jaworski et al. ZrO2-modified Al2O3-supported PdCu catalysts for the water denitrification reaction
WO2016136956A1 (en) Method of producing fine particles supporting noble metal solid solution
JP6230464B2 (en) Metal-based fine particle supported catalyst
KR20140108295A (en) Filtration medium comprising a metal sulfide
Fu et al. Removal of decabromodiphenyl ether (BDE-209) by sepiolite-supported nanoscale zerovalent iron

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160927

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171017

R150 Certificate of patent or registration of utility model

Ref document number: 6230464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250