JP6226236B2 - Concrete composition and method for producing concrete composition - Google Patents

Concrete composition and method for producing concrete composition Download PDF

Info

Publication number
JP6226236B2
JP6226236B2 JP2014067122A JP2014067122A JP6226236B2 JP 6226236 B2 JP6226236 B2 JP 6226236B2 JP 2014067122 A JP2014067122 A JP 2014067122A JP 2014067122 A JP2014067122 A JP 2014067122A JP 6226236 B2 JP6226236 B2 JP 6226236B2
Authority
JP
Japan
Prior art keywords
concrete composition
hard sandstone
fine aggregate
aggregate
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014067122A
Other languages
Japanese (ja)
Other versions
JP2015189613A (en
Inventor
山田 一徳
一徳 山田
貴彦 武藤
貴彦 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2014067122A priority Critical patent/JP6226236B2/en
Publication of JP2015189613A publication Critical patent/JP2015189613A/en
Application granted granted Critical
Publication of JP6226236B2 publication Critical patent/JP6226236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、コンクリート組成物及びコンクリート組成物の製造方法に関する。   The present invention relates to a concrete composition and a method for producing a concrete composition.

一般に、コンクリートは、打設時からの時間の経過と共に乾燥し、それに伴い収縮する。このような乾燥収縮により生じるコンクリートのひずみは、コンクリート構造物にひび割れが発生する要因となり、構造物の耐久性の低下に大きな影響を及ぼす。そのため、乾燥収縮ひずみの小さいコンクリートが求められている。   Generally, concrete dries with the passage of time from the time of placing and shrinks accordingly. The strain of concrete caused by such drying shrinkage causes cracking in the concrete structure and greatly affects the deterioration of the durability of the structure. Therefore, a concrete having a small drying shrinkage strain is demanded.

近年、コンクリートの乾燥収縮ひずみの要因の一つとして、コンクリートを構成する骨材の粒径が指摘されている。例えば、下記の非特許文献1には、セメント硬化体では、骨材の寸法が小さいほど乾燥収縮量が大きいことについて開示されている。また、下記の非特許文献2には、細骨材と粗骨材とを含むコンクリートの乾燥収縮ひずみは、粗骨材体積率が高い方が乾燥収縮低減効果が高いことについて開示されている。   In recent years, the particle size of aggregates constituting concrete has been pointed out as one of the causes of drying shrinkage strain of concrete. For example, the following Non-Patent Document 1 discloses that in a hardened cement body, the amount of drying shrinkage increases as the size of the aggregate decreases. Non-Patent Document 2 below discloses that the drying shrinkage strain of concrete including fine aggregate and coarse aggregate has a higher effect of reducing dry shrinkage when the coarse aggregate volume ratio is higher.

「骨材の寸法および種類がセメント硬化体の乾燥収縮に及ぼす影響に関する一考」、土木学会中部支部研究発表会講演概要集、2010年、P479"A study on the effect of aggregate size and type on drying shrinkage of hardened cementitious materials", Summaries of Technical Papers of Chubu Branch, 2010, P479 「骨材量と骨材寸法がコンクリートの乾燥収縮に与える影響」、日本建築学会大会学術講演梗概集(北陸)、2010年、P915"Effects of aggregate amount and aggregate size on drying shrinkage of concrete," Architectural Institute of Japan Annual Meeting Abstract (Hokuriku), 2010, P915

しかしながら、粗骨材と細骨材を組み合わせて用いるコンクリート材料において、それぞれの粒径がコンクリートの乾燥収縮に対して及ぼす具体的な影響については、未だ明確に知られていない。そのため、コンクリート材料の製造プロセスでは、コンクリート材料に含まれる粗骨材及び/または細骨材の粒径を制御することによって、コンクリートの乾燥収縮ひずみを低減するための実用的な試みは行われていなかった。   However, in concrete materials using a combination of coarse and fine aggregates, the specific influence of the respective particle sizes on the drying shrinkage of the concrete is not yet clearly known. Therefore, in the concrete material manufacturing process, practical attempts have been made to reduce the drying shrinkage strain of concrete by controlling the particle size of coarse aggregate and / or fine aggregate contained in the concrete material. There wasn't.

また、一般的に、コンクリートは圧縮強度が高いことが要求されることから、低い乾燥収縮ひずみと高い圧縮強度とを両立可能なコンクリートが求められている。   In general, since concrete is required to have high compressive strength, there is a demand for concrete that can achieve both low drying shrinkage strain and high compressive strength.

本発明は、上記問題点に鑑み、乾燥収縮ひずみが低減された、圧縮強度の高いコンクリート組成物及び該コンクリート組成物の製造方法を提供する。   In view of the above problems, the present invention provides a concrete composition having a high compressive strength with reduced drying shrinkage strain and a method for producing the concrete composition.

本発明者らは、前記課題を達成するため鋭意検討した結果、細骨材と粗骨材とを含むコンクリート組成物では、粗骨材の粒径はコンクリート組成物の乾燥収縮ひずみにあまり影響を及ぼさないことを見出した。その上で、細骨材の粒径によるコンクリート組成物の乾燥収縮ひずみへの影響は、骨材材料によって大きく異なり、特に細骨材として硬質砂岩を用いた場合には、細骨材の粒径はコンクリート組成物の乾燥収縮ひずみに大きく影響を及ぼすことが判明した。このことから、細骨材として硬質砂岩を用いた場合には、該細骨材の粒径を調整することによって、コンクリート組成物の乾燥収縮ひずみを低減し得ることを見出し、本発明を完成させた。   As a result of intensive studies to achieve the above problems, the present inventors have found that in a concrete composition containing fine aggregate and coarse aggregate, the particle size of the coarse aggregate has a great influence on the drying shrinkage strain of the concrete composition. I found out that it would not reach. In addition, the effect of the fine aggregate particle size on the drying shrinkage strain of the concrete composition varies greatly depending on the aggregate material, especially when hard sandstone is used as the fine aggregate. Has been found to greatly affect the drying shrinkage strain of concrete compositions. From this, when hard sandstone was used as the fine aggregate, it was found that the dry shrinkage strain of the concrete composition can be reduced by adjusting the particle size of the fine aggregate, and the present invention was completed. It was.

すなわち、本発明のコンクリート組成物は、硬質砂岩を含む細骨材と、粗骨材と、セメントと、水とを含むコンクリート組成物であって、コンクリート組成物中の細骨材全体に含まれる硬質砂岩の重量平均粒径D50(メディアン径)が0.85mmを超え、前記硬質砂岩に含まれる粒径0.3mm以下の硬質砂岩の量が、該硬質砂岩全体量に対して15重量%未満であることを特徴とする。
That is, the concrete composition of the present invention is a concrete composition containing fine aggregate containing hard sandstone, coarse aggregate, cement, and water, and is contained in the entire fine aggregate in the concrete composition. The weight average particle diameter D50 (median diameter) of the hard sandstone exceeds 0.85 mm, and the amount of hard sandstone having a particle diameter of 0.3 mm or less contained in the hard sandstone is less than 15% by weight with respect to the total amount of the hard sandstone. and wherein the der Rukoto.

斯かるコンクリート組成物では、該硬質砂岩の重量平均粒径D50について0.85mmを超える大きさとし、粒径の小さい硬質砂岩の割合を小さくすることによって、コンクリートの乾燥収縮ひずみを効果的に低減することができる。   In such a concrete composition, the weight average particle diameter D50 of the hard sandstone is larger than 0.85 mm, and the proportion of hard sandstone having a small particle diameter is reduced, thereby effectively reducing the drying shrinkage strain of the concrete. be able to.

加えて、斯かるコンクリート組成物では、細骨材に硬質砂岩を含むため、比較的高い圧縮強度を備えるという利点も有する。   In addition, such a concrete composition also has an advantage of having a relatively high compressive strength because the fine aggregate contains hard sandstone.

また、本発明に係るコンクリート組成物においては、好ましくは、細骨材が、該細骨材に含まれる硬質砂岩の重量平均粒径D50よりも小さい重量平均粒径D50を有する石灰岩をさらに含んでいる。   In the concrete composition according to the present invention, preferably, the fine aggregate further includes limestone having a weight average particle diameter D50 smaller than the weight average particle diameter D50 of the hard sandstone contained in the fine aggregate. Yes.

本発明者らは、石灰岩を骨材とするコンクリート組成物についても、粒径と乾燥収縮ひずみとの関係を検討した結果、細骨材として石灰岩を用いた場合には、細骨材の粒径はコンクリート組成物の乾燥収縮ひずみにはあまり影響を及ぼさないことも見出した。そのため、斯かるコンクリート組成物では、乾燥収縮ひずみに悪影響を及ぼすことなく、細骨材全体の粒度分布を所定の範囲に調整することができるため、圧縮強度や流動性などのコンクリート組成物に要求される特性を効果的に高めることができる。   As a result of studying the relationship between the particle size and the drying shrinkage strain, the present inventors also examined the relationship between the particle size and the drying shrinkage strain for the concrete composition using limestone as an aggregate. It has also been found that does not significantly affect the drying shrinkage strain of concrete compositions. Therefore, in such a concrete composition, since the particle size distribution of the whole fine aggregate can be adjusted to a predetermined range without adversely affecting the drying shrinkage strain, it is required for the concrete composition such as compressive strength and fluidity. It is possible to effectively enhance the characteristics to be achieved.

また、本発明は、硬質砂岩を含む細骨材と、粗骨材と、セメントと、水とを混練するコンクリート組成物の製造方法であって、細骨材全体に含まれる硬質砂岩の重量平均粒径D50が0.85mmを超え、前記硬質砂岩に含まれる粒径0.3mm以下の硬質砂岩の量が、該硬質砂岩全体量に対して15重量%未満となるように該硬質砂岩の粒径を調整するコンクリート組成物の製造方法にも関する。 Further, the present invention is a method for producing a concrete composition in which fine aggregate containing hard sandstone, coarse aggregate, cement, and water are kneaded, and is a weight average of hard sandstone contained in the entire fine aggregate particle size D50 exceeds 0.85 mm, the particle size 0.3mm below contained in hard sandstone amount of hard sandstone, of the hard sandstone so that a less than 15% by weight relative to the total rigid sandstone amount It also relates to a method for producing a concrete composition that adjusts the particle size.

斯かるコンクリート組成物の製造方法によれば、乾燥収縮ひずみが効果的に低減された、圧縮強度の高いコンクリート組成物を製造することができる。   According to such a method for producing a concrete composition, it is possible to produce a concrete composition having a high compressive strength in which drying shrinkage strain is effectively reduced.

本発明によれば、乾燥収縮ひずみが低減され、圧縮強度の高いコンクリート組成物及び該コンクリート組成物の製造方法を提供し得る。   ADVANTAGE OF THE INVENTION According to this invention, dry shrinkage | contraction distortion is reduced and a concrete composition with a high compressive strength and the manufacturing method of this concrete composition can be provided.

以下、本発明の詳細を説明する。なお、本明細書において、コンクリート及びコンクリート組成物とは、細骨材、粗骨材、セメント及び水を含む構成材料を混合したものとし、未硬化体及び硬化体を含む。また、細骨材とは、一般には10mm網ふるいを全部通り、5mm網ふるいを質量で85%以上通る骨材のことをいうが、本明細書では、細骨材とは、5mm網ふるいを全て通る、粒径が5mm以下の骨材とし、それより大きい粒径の骨材を含まないものとする。同様に、本明細書において、粗骨材とは、5mm網ふるい上に全てとどまる、細骨材より大きい粒径を有する骨材とする。
また、本明細書において、粒径とは、JIS A 1102に従う骨材のふるい分け試験方法によって測定したJIS Z 8801−1の試験用ふるいの目開きで表したものとする。加えて、細骨材を所定の目開きの試験用ふるいにかけた際、該試験用ふるい上にとどまる重量が全体の半分以上である場合に、重量平均粒径D50が該目開きの大きさを超えるとする。
Details of the present invention will be described below. In this specification, the concrete and the concrete composition are a mixture of constituent materials including fine aggregate, coarse aggregate, cement, and water, and include uncured bodies and cured bodies. In addition, the fine aggregate generally refers to an aggregate that passes through the entire 10 mm mesh screen and passes through the 5 mm mesh screen by 85% or more. In this specification, the fine aggregate refers to a 5 mm mesh screen. Assume that all the aggregates have a particle size of 5 mm or less, and do not include aggregates with a larger particle size. Similarly, in this specification, the coarse aggregate is an aggregate having a particle size larger than that of the fine aggregate, all remaining on the 5 mm mesh screen.
Moreover, in this specification, a particle size shall be represented with the opening of the test sieve of JISZ8801-1 measured by the aggregate screening test method according to JISA1102. In addition, when the fine aggregate is passed through a test sieve having a predetermined opening, when the weight remaining on the test sieve is more than half of the whole, the weight average particle diameter D50 is the size of the opening. Suppose it exceeds.

(細骨材)
本発明のコンクリート組成物は、硬質砂岩を含む細骨材を含み、コンクリート組成物中の細骨材全体に含まれる硬質砂岩の重量平均粒径D50(メディアン径)が0.85mmを超えることを特徴とする。本発明者らは、硬質砂岩の細骨材を含むコンクリート組成物では、粒径が0.85mm程度またはそれより小さい硬質砂岩の割合が多い細骨材を用いると、コンクリート組成物の乾燥収縮ひずみが大きくなることを見出した。したがって、本発明では、該硬質砂岩の重量平均粒径D50について0.85mmを超える大きさとし、粒径の小さい硬質砂岩の割合を小さくすることによって、コンクリート組成物の乾燥収縮ひずみを効果的に低減することができる。
なお、本明細書において、硬質砂岩とは、JIS A 5003に従う圧縮強さが200kgf/cm2以上の砂岩をいうが、本発明のコンクリート組成物に用いる細骨材に含まれる硬質砂岩の圧縮強さとしては、300kgf/cm2以上が好ましく、400kgf/cm2以上がより好ましい。
該硬質砂岩の重量平均粒径D50は、好ましくは1.0mmを超えてもよく、より好ましくは1.2mmを超えてもよい。また、コンクリート組成物の十分な流動性を確保するため、該硬質砂岩の重量平均粒径D50は、好ましくは2.0mm以下であってもよく、より好ましくは1.5mm以下であってもよい。
(Fine aggregate)
The concrete composition of the present invention includes a fine aggregate containing hard sandstone, and the weight average particle diameter D50 (median diameter) of the hard sandstone contained in the entire fine aggregate in the concrete composition exceeds 0.85 mm. Features. In the concrete composition containing the fine aggregate of hard sandstone, the dry shrinkage strain of the concrete composition is obtained when the fine aggregate having a large proportion of hard sandstone having a particle size of about 0.85 mm or less is used. Found that it will grow. Therefore, in the present invention, the weight average particle diameter D50 of the hard sandstone is more than 0.85 mm, and the proportion of hard sandstone having a small particle diameter is reduced, thereby effectively reducing the drying shrinkage strain of the concrete composition. can do.
In the present specification, the hard sandstone means a sandstone having a compressive strength of 200 kgf / cm 2 or more according to JIS A 5003, but the compressive strength of the hard sandstone contained in the fine aggregate used in the concrete composition of the present invention. as is preferably 300 kgf / cm 2 or more, 400 kgf / cm 2 or more and more preferably of.
The weight average particle diameter D50 of the hard sandstone may preferably exceed 1.0 mm, more preferably 1.2 mm. Moreover, in order to ensure sufficient fluidity of the concrete composition, the weight average particle diameter D50 of the hard sandstone may be preferably 2.0 mm or less, more preferably 1.5 mm or less. .

好ましくは、該硬質砂岩に含まれる粒径0.3mm以下の硬質砂岩の量が、該硬質砂岩全体量に対して15重量%未満であってもよい。粒径0.3mm以下の硬質砂岩は粒径が非常に小さいため、コンクリート組成物の乾燥収縮ひずみにより大きな影響を及ぼす。そのため、粒径0.3mm以下の硬質砂岩の含有量が少ない細骨材を用いたコンクリート組成物によれば、コンクリート組成物の乾燥収縮ひずみをさらに低減することができる。該硬質砂岩に含まれる粒径0.3mm以下の硬質砂岩の量は、該硬質砂岩全体量に対して、好ましくは10重量%未満であってもよく、より好ましくは8重量%未満であってもよい。さらに、該硬質砂岩は、粒径0.3mm以下の硬質砂岩を含まなくてもよい。   Preferably, the amount of hard sandstone having a particle size of 0.3 mm or less contained in the hard sandstone may be less than 15% by weight with respect to the total amount of the hard sandstone. Since hard sandstone having a particle size of 0.3 mm or less has a very small particle size, it greatly affects the drying shrinkage strain of the concrete composition. Therefore, according to the concrete composition using the fine aggregate with a small content of hard sandstone having a particle size of 0.3 mm or less, the drying shrinkage strain of the concrete composition can be further reduced. The amount of hard sandstone having a particle size of 0.3 mm or less contained in the hard sandstone may be preferably less than 10% by weight, more preferably less than 8% by weight, based on the total amount of the hard sandstone. Also good. Further, the hard sandstone may not include hard sandstone having a particle size of 0.3 mm or less.

特に、本発明のコンクリート組成物に含まれる細骨材は、該細骨材に含まれる硬質砂岩の重量平均粒径D50よりも小さい重量平均粒径D50を有する石灰岩をさらに含んでいてもよい。本発明者らは、石灰岩を含むコンクリート組成物において、細骨材中の石灰岩の粒径は、コンクリート組成物の乾燥収縮ひずみに対してあまり影響を及ぼさないことを見出した。そのため、斯かるコンクリート組成物により、乾燥収縮ひずみに悪影響を及ぼすことなく、細骨材全体の粒度分布を所定の範囲に調整することができるため、圧縮強度や流動性などのコンクリート組成物に要求される特性を効果的に高めることができる。
加えて、石灰岩は、一般に硬質砂岩よりも乾燥収縮ひずみが少ない骨材として知られている。したがって、斯かるコンクリート組成物では、小粒径の硬質砂岩(すなわち、硬質砂岩において特に乾燥収縮ひずみの大きい部分)を主として石灰岩に置換したものとなるため、同様の粒度分布を有する硬質砂岩のみからなる細骨材を用いたコンクリート組成物と比較して、コンクリート組成物の乾燥収縮ひずみを効率的により高めることができる。
In particular, the fine aggregate contained in the concrete composition of the present invention may further include limestone having a weight average particle diameter D50 smaller than the weight average particle diameter D50 of the hard sandstone contained in the fine aggregate. The present inventors have found that in a concrete composition containing limestone, the particle size of limestone in the fine aggregate has little influence on the drying shrinkage strain of the concrete composition. Therefore, such a concrete composition can adjust the particle size distribution of the whole fine aggregate to a predetermined range without adversely affecting the drying shrinkage strain, so that it is required for a concrete composition such as compressive strength and fluidity. It is possible to effectively enhance the characteristics to be achieved.
In addition, limestone is generally known as an aggregate with less drying shrinkage strain than hard sandstone. Therefore, in such a concrete composition, since hard sandstone having a small particle size (that is, a portion having a particularly large dry shrinkage strain in hard sandstone) is mainly replaced with limestone, only hard sandstone having a similar particle size distribution is used. Compared to the concrete composition using the fine aggregate, the drying shrinkage strain of the concrete composition can be increased more efficiently.

該石灰岩は、コンクリート組成物中の細骨材全体に対して、0〜99体積%、好ましくは25〜99体積%、さらに好ましく25〜50体積%含まれていてもよい。特に、粒径0.3mm以下の石灰岩が、コンクリート組成物中の細骨材全体に対して0〜50体積%、好ましくは0〜14体積%含まれていてもよい。該細骨材に含まれる該石灰岩の量を上記範囲とすることにより、乾燥収縮ひずみをさらに低減しつつ、圧縮強度や流動性などのコンクリート組成物に要求される特性をより効果的に高めることができる。
なお、該石灰岩の重量平均粒径D50は、好ましくは0.85mm以下であってもよく、より好ましくは0.6mm以下であってもよく、さらに好ましくは0.3mm以下であってもよい。
The limestone may be contained in an amount of 0 to 99% by volume, preferably 25 to 99% by volume, and more preferably 25 to 50% by volume with respect to the entire fine aggregate in the concrete composition. In particular, limestone having a particle size of 0.3 mm or less may be contained in an amount of 0 to 50% by volume, preferably 0 to 14% by volume, based on the entire fine aggregate in the concrete composition. By making the amount of the limestone contained in the fine aggregate within the above range, the properties required for the concrete composition such as compressive strength and fluidity can be more effectively enhanced while further reducing the drying shrinkage strain. Can do.
In addition, the weight average particle diameter D50 of the limestone may be preferably 0.85 mm or less, more preferably 0.6 mm or less, and further preferably 0.3 mm or less.

本発明のコンクリート組成物に含まれる細骨材としては、硬質砂岩を粉砕して製造される硬質砂岩の砕砂を用いることが好ましい。また、該細骨材が石灰岩を含む場合には、該硬質砂岩の砕砂に、石灰岩の砕砂を混合して用いることが好ましい。   As the fine aggregate contained in the concrete composition of the present invention, it is preferable to use hard sandstone crushed sand produced by pulverizing hard sandstone. Moreover, when the fine aggregate contains limestone, it is preferable to use crushed sand of limestone mixed with crushed sand of the hard sandstone.

なお、該細骨材は、他の砕砂等の人工細骨材、天然砂または再生砂などをさらに含んでいてもよいが、該細骨材は、硬質砂岩を主成分とすることが好ましい。該細骨材全体に含まれる硬質砂岩の量は、好ましくは、該細骨材全体の10重量%以上であってよく、より好ましくは、50重量%以上であってよい。また、いずれの場合においても、全ての細骨材に含まれる硬質砂岩全体の重量平均粒径D50が0.8mmを超えるように調整される。   The fine aggregate may further contain other artificial fine aggregates such as crushed sand, natural sand or reclaimed sand, but the fine aggregate is preferably composed of hard sandstone as a main component. The amount of hard sandstone contained in the whole fine aggregate may be preferably 10% by weight or more, more preferably 50% by weight or more of the whole fine aggregate. Moreover, in any case, it adjusts so that the weight average particle diameter D50 of the whole hard sandstone contained in all the fine aggregates may exceed 0.8 mm.

(粗骨材)
本発明のコンクリート組成物に含まれる粗骨材は、コンクリート組成物に一般的に用いられる粗骨材であれば、特に限定されない。すなわち、コンクリート組成物の乾燥収縮ひずみは、コンクリート組成物に含まれる粗骨材の粒径による影響をあまり受けないため、コンクリート組成物の粗骨材として許容され得る任意の粒径の粗骨材を用いることができる。
該粗骨材としては、例えば、川砂利、山砂利、海砂利などの天然骨材、硬質砂岩、硬質石灰岩、玄武岩、安山岩等の砕石などの人工骨材、または再生骨材等が挙げられる。該粗骨材は、一種または複数種を用いてもよい。また、該粗骨材として、該コンクリート組成物に使用される細骨材の主成分である硬質砂岩を(例えば、砕石として)用いることができる。
(Coarse aggregate)
The coarse aggregate contained in the concrete composition of the present invention is not particularly limited as long as it is a coarse aggregate generally used for a concrete composition. That is, since the drying shrinkage strain of the concrete composition is not significantly affected by the particle size of the coarse aggregate contained in the concrete composition, the coarse aggregate having an arbitrary particle size acceptable as the coarse aggregate of the concrete composition. Can be used.
Examples of the coarse aggregate include natural aggregate such as river gravel, mountain gravel and sea gravel, artificial aggregate such as crushed stone such as hard sandstone, hard limestone, basalt and andesite, or recycled aggregate. One or more kinds of the coarse aggregate may be used. Moreover, hard sandstone which is a main component of the fine aggregate used for the concrete composition (for example, as crushed stone) can be used as the coarse aggregate.

本発明のコンクリート組成物に含まれる細骨材と粗骨材との配合比率は、細骨材率(細骨材及び粗骨材の合計に対する細骨材の体積割合)として、好ましくは、34〜54%であり、より好ましくは、38〜50%とすることができる。細骨材率を該範囲とすることで、圧縮強度や流動性などのコンクリート組成物に要求される特性を保ちつつ、コンクリート組成物の乾燥収縮ひずみをより効果的に低減することができる。   The blending ratio of fine aggregate and coarse aggregate contained in the concrete composition of the present invention is preferably 34 as the fine aggregate ratio (volume ratio of fine aggregate to the total of fine aggregate and coarse aggregate). It is -54%, More preferably, it can be 38-50%. By setting the fine aggregate ratio within this range, it is possible to more effectively reduce the drying shrinkage strain of the concrete composition while maintaining the properties required for the concrete composition such as compressive strength and fluidity.

(セメント)
本発明のコンクリート組成物に含まれるセメントは、コンクリート組成物に一般的に用いられるセメントであれば、特に限定されない。該セメントとしては、例えば、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、高炉セメント、フライアッシュセメント、シリカセメント、アルミナセメント、ジェットセメント等が挙げられる。該セメントは、一種または複数種を用いてもよい。
(cement)
The cement contained in the concrete composition of the present invention is not particularly limited as long as it is a cement generally used for a concrete composition. Examples of the cement include ordinary portland cement, early-strength portland cement, ultra-early-strength portland cement, moderately hot portland cement, low heat portland cement, blast furnace cement, fly ash cement, silica cement, alumina cement, jet cement and the like. . One or more kinds of cement may be used.

(水)
本発明のコンクリート組成物に含まれる水としては、特に限定されず、例えば、水道水、工業用水、回収水、地下水、河川水、雨水等が使用できるが、セメントの水和反応やコンクリート硬化体に悪影響を及ぼす有機物、塩化物イオン、ナトリウムイオン、カリウムイオン等が含まれない、またはそれらの含有量が極めて微量であることが好ましい。該水としては、品質の安定した水道水または工業用水が特に好ましい。
(water)
The water contained in the concrete composition of the present invention is not particularly limited, and for example, tap water, industrial water, recovered water, ground water, river water, rain water, etc. can be used, but cement hydration reaction and concrete hardened body It is preferable that organic substances, chloride ions, sodium ions, potassium ions, and the like that have a negative effect are not contained, or their content is extremely small. As the water, tap water or industrial water with stable quality is particularly preferable.

本発明のコンクリート組成物における単位水量は、好ましくは、200kg/m3以下であり、より好ましくは、185kg/m3以下とすることができる。また、本発明のコンクリート組成物では、水/セメント比が、好ましくは35〜70重量%、より好ましくは40〜65重量%となるように、上記水が添加されてもよい。 Unit water content in the concrete composition of the present invention is preferably at 200 kg / m 3 or less, more preferably, it may be 185 kg / m 3 or less. In the concrete composition of the present invention, the water may be added so that the water / cement ratio is preferably 35 to 70% by weight, more preferably 40 to 65% by weight.

(添加物)
本発明のコンクリート組成物は、必要に応じて添加剤を含んでいてもよい。該添加剤としては、減水剤、分散剤、硬化促進剤等の通常のコンクリート組成物に配合される添加剤を適宜用いることができる。該添加剤は、1種だけ添加してもよく、2種以上を組み合わせて添加してもよい。
(Additive)
The concrete composition of this invention may contain the additive as needed. As the additive, additives blended in a normal concrete composition such as a water reducing agent, a dispersant, and a curing accelerator can be appropriately used. The additive may be added alone or in combination of two or more.

(製造方法)
本発明のコンクリート組成物の製造方法は、上述の細骨材を骨材材料として用いるために、細骨材全体に含まれる硬質砂岩の重量平均粒径D50が0.85mmを超えるように該硬質砂岩の粒径を調整することを特徴とする。該細骨材の粒径は、任意の方法で調整することができる。例えば、ふるい分けなどによって硬質砂岩の砕砂から粒径の小さい硬質砂岩(例えば、粒径0.85mm以下の硬質砂岩)を除去した後、必要に応じて除去した硬質砂岩を、細骨材中の硬質砂岩の重量平均粒径D50が0.85mmを超えるように(すなわち、目開き0.85mmの試験用ふるいの上に、細骨材全体の50重量%を超える量がとどまるように)加えることにより、硬質砂岩の粒径を調整してもよい。また、硬質砂岩材料から砕砂を製造する際の破砕条件を調整することにより、重量平均粒径D50が0.85mmを超える硬質砂岩からなる細骨材を直接製造してもよい。
(Production method)
The method for producing a concrete composition of the present invention uses the above-mentioned fine aggregate as an aggregate material, so that the hard sandstone contained in the entire fine aggregate has a weight average particle diameter D50 exceeding 0.85 mm. It is characterized by adjusting the particle size of sandstone. The particle size of the fine aggregate can be adjusted by any method. For example, after removing hard sandstone having a small particle size (for example, hard sandstone having a particle size of 0.85 mm or less) from the crushed sand of hard sandstone by sieving or the like, By adding the sandstone weight average particle size D50 to be greater than 0.85 mm (ie, the amount exceeding 50% by weight of the total fine aggregate remains on the test sieve having an aperture of 0.85 mm). The particle size of the hard sandstone may be adjusted. Moreover, you may directly manufacture the fine aggregate which consists of hard sandstone whose weight average particle diameter D50 exceeds 0.85 mm by adjusting the crushing conditions at the time of manufacturing crushed sand from hard sandstone material.

該細骨材には、上記硬質砂岩の重量平均粒径D50よりも小さい重量平均粒径D50を有する石灰岩をさらに混合してもよい。該石灰岩の粒径は、任意の方法で調整することができる。例えば、ふるい分けなどによって石灰岩の砕砂から粒径の大きい石灰岩を除去してもよく、石灰岩の破砕条件を調整することにより直接製造してもよい。また、該石灰岩と上記硬質砂岩とは、あらかじめ混合しておいてもよく、後述するセメント等との混練時に別々の細骨材として導入し、その際に混合してもよい。   The fine aggregate may further be mixed with limestone having a weight average particle diameter D50 smaller than the weight average particle diameter D50 of the hard sandstone. The particle size of the limestone can be adjusted by any method. For example, limestone having a large particle diameter may be removed from crushed limestone by sieving or the like, or may be produced directly by adjusting the crushed conditions of limestone. In addition, the limestone and the hard sandstone may be mixed in advance, or may be introduced as separate fine aggregates when kneaded with cement or the like described later, and then mixed.

本発明のコンクリート組成物は、上述の細骨材、粗骨材、セメント、水及び必要により添加剤を混練することにより製造される。該混練は、ミキサーなどの公知の混練装置を用いるなど、コンクリート製造に一般的に用いられる任意の方法により行うことができる。   The concrete composition of the present invention is produced by kneading the above-mentioned fine aggregate, coarse aggregate, cement, water and, if necessary, additives. The kneading can be performed by any method generally used in concrete production, such as using a known kneading apparatus such as a mixer.

以上のように、本発明のコンクリート組成物は、硬質砂岩を含む細骨材を含み、コンクリート組成物中の細骨材全体に含まれる硬質砂岩の重量平均粒径D50(メディアン径)が0.85mmを超えることを特徴とするため、コンクリート組成物の乾燥収縮ひずみを効果的に低減することができる。   As described above, the concrete composition of the present invention includes a fine aggregate containing hard sandstone, and the weight average particle diameter D50 (median diameter) of the hard sandstone contained in the entire fine aggregate in the concrete composition is 0. Since it is characterized by exceeding 85 mm, the drying shrinkage strain of the concrete composition can be effectively reduced.

さらに、本発明のコンクリート組成物において、細骨材が、該細骨材に含まれる硬質砂岩の重量平均粒径D50よりも小さい重量平均粒径D50を有する石灰岩をさらに含んでいる場合には、圧縮強度や流動性などのコンクリート組成物に要求される特性を効果的に高めると共に、コンクリート組成物の乾燥収縮ひずみを効率的により高めることができる。   Furthermore, in the concrete composition of the present invention, when the fine aggregate further includes limestone having a weight average particle diameter D50 smaller than the weight average particle diameter D50 of the hard sandstone contained in the fine aggregate, The properties required for the concrete composition such as compressive strength and fluidity can be effectively enhanced, and the drying shrinkage strain of the concrete composition can be efficiently increased.

また、本発明のコンクリート組成物の製造方法は、硬質砂岩を含む細骨材を用い、細骨材全体に含まれる硬質砂岩の重量平均粒径D50が0.85mmを超えるように該硬質砂岩の粒径を調整するため、乾燥収縮ひずみが効果的に低減されたコンクリート組成物を製造することができる。   Moreover, the method for producing a concrete composition of the present invention uses a fine aggregate containing hard sandstone, and the hard sandstone has a weight average particle diameter D50 exceeding 0.85 mm. In order to adjust the particle size, a concrete composition having effectively reduced drying shrinkage strain can be produced.

以下、本発明の具体的な実施例及び比較例を挙げることにより、本発明を明らかにする。なお、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be clarified by giving specific examples and comparative examples of the present invention. In addition, this invention is not limited to a following example.

(硬質砂岩コンクリート)
以下の実施例及び比較例の硬質砂岩コンクリート組成物を製造するに際し、下記材料を用いた。
細骨材(S):硬質砂岩(大阪府茨木産)、表乾密度2.65g/cm3、絶乾密度2.61g/cm3、吸水率1.68%、D50=0.8mm
粗骨材(G):硬質砂岩(大阪府茨木産)、表乾密度2.69g/cm3、絶乾密度2.66g/cm3、吸水率0.95%、D50=12.5mm
セメント(C):普通ポルトランドセメント(住友大阪セメント(株)社製)
AE減水剤:マスターポリヒード(BASFジャパン(株)社製)
(Hard sandstone concrete)
The following materials were used in producing the hard sandstone concrete compositions of the following examples and comparative examples.
Fine aggregate (S): hard sandstone (produced by Ibaraki, Osaka), surface dry density 2.65 g / cm 3 , absolute dry density 2.61 g / cm 3 , water absorption 1.68%, D50 = 0.8 mm
Coarse aggregate (G): Hard sandstone (Osaka Ibaraki production), Table dry density 2.69 g / cm 3, oven dry density of 2.66 g / cm 3, water absorption 0.95%, D50 = 12.5 mm
Cement (C): Ordinary Portland cement (manufactured by Sumitomo Osaka Cement Co., Ltd.)
AE water reducing agent: Master Polyhide (manufactured by BASF Japan Ltd.)

比較例1
表1に示す割合の上記細骨材、上記粗骨材、上記セメント及び水(W、水道水)に、該セメントに対し0.6重量%のAE減水剤を加えて混合して、比較例1のコンクリート組成物を得た。なお、表1では、「W/C」は、水/セメント比を意味し、「s/a」は、細骨材率(全骨材に占める細骨材の体積割合)を意味する。
Comparative Example 1
A comparative example in which 0.6% by weight of an AE water reducing agent is added to and mixed with the fine aggregate, the coarse aggregate, the cement and water (W, tap water) in the proportions shown in Table 1. 1 concrete composition was obtained. In Table 1, “W / C” means the water / cement ratio, and “s / a” means the fine aggregate ratio (volume ratio of fine aggregate in the total aggregate).

Figure 0006226236
Figure 0006226236

骨材の粒径調整
上記細骨材及び粗骨材を、JIS A 1102に従う骨材のふるい分け試験方法により、粒径別に分類した。具体的には、上記細骨材及び粗骨材を、JIS Z 8801−1に従う金属製試験用ふるい((株)飯田製作所社製)を用いて、それぞれ粒径5〜1.2mm、1.2〜0.3mm及び0.3mm以下の粒径の硬質砂岩からなる細骨材、並びに粒径15〜10mm及び10〜5mmの粒径の硬質砂岩からなる粗骨材を得た。
また、上記のように分類した細骨材及び粗骨材について、JIS Z 8801−1に従う金属製試験用ふるい((株)飯田製作所社製)を用いて、それぞれのD50を測定した。具体的には、各骨材に対して、JIS Z 8801−1の付表に列挙された目開きの試験用ふるいをそれぞれ用いて該ふるい上にとどまる骨材の重量の割合を測定し、該割合が50重量%を超える値及び50重量%を下回る値を示すデータ群から、それぞれ50重量%に最も近いデータを1つずつ選択した後、以下の式によりD50の値を推定した。
Adjustment of Aggregate Particle Size The fine aggregate and coarse aggregate were classified according to particle size by the aggregate screening test method according to JIS A1102. Specifically, the above-mentioned fine aggregate and coarse aggregate are each measured using a metal test sieve (made by Iida Seisakusho Co., Ltd.) according to JIS Z8801-1. Fine aggregates composed of hard sandstone having a particle size of 2 to 0.3 mm and 0.3 mm or less, and coarse aggregates composed of hard sandstone having a particle size of 15 to 10 mm and a particle size of 10 to 5 mm were obtained.
Moreover, about each fine aggregate and coarse aggregate classified as mentioned above, each D50 was measured using the sieve for metal tests (made by Iida Manufacturing Co., Ltd.) according to JISZ8801-1. Specifically, for each aggregate, the ratio of the weight of the aggregate staying on the sieve is measured using each of the sieve sieves listed in the appendix of JIS Z 8801-1, and the ratio From the data group showing a value exceeding 50% by weight and a value less than 50% by weight, data closest to 50% by weight was selected one by one, and then the value of D50 was estimated by the following equation.

Figure 0006226236
Ds,Dl:試験用ふるい上にとどまる骨材の割合が50重量%を超える/下回るデータにおける該試験用ふるいの目開き(mm)
rs,rl:試験用ふるい上にとどまる骨材の割合が50重量%を超える/下回るデータにおける該骨材の重量%
Figure 0006226236
Ds, Dl: Opening (mm) of the test sieve in the data in which the ratio of the aggregate remaining on the test sieve exceeds / below 50% by weight
rs, rl:% by weight of the aggregate in data where the percentage of aggregate remaining on the test sieve is above / below 50% by weight

実施例1
上記粒径調整により得た粒径5〜1.2mmの硬質砂岩(D50=2.0mm)からなる細骨材として用いた以外は比較例1と同様にして、実施例1のコンクリート組成物を得た。
Example 1
The concrete composition of Example 1 was obtained in the same manner as in Comparative Example 1 except that it was used as a fine aggregate made of hard sandstone (D50 = 2.0 mm) having a particle size of 5 to 1.2 mm obtained by adjusting the particle size. Obtained.

比較例2
上記粒径調整により得た粒径1.2〜0.3mmの硬質砂岩(D50=0.6mm)からなる細骨材として用いた以外は比較例1と同様にして、比較例2のコンクリート組成物を得た。
Comparative Example 2
The concrete composition of Comparative Example 2 was the same as Comparative Example 1 except that it was used as a fine aggregate made of hard sandstone (D50 = 0.6 mm) having a particle size of 1.2 to 0.3 mm obtained by the above particle size adjustment. I got a thing.

比較例3
上記粒径調整により得た粒径0.3mm以下の硬質砂岩(D50=0.2mm)からなる細骨材として用い、加えたAE減水剤をセメントに対して0.7重量%とした以外は比較例1と同様にして、比較例3のコンクリート組成物を得た。
Comparative Example 3
It was used as a fine aggregate made of hard sandstone (D50 = 0.2 mm) having a particle size of 0.3 mm or less obtained by adjusting the particle size, except that the added AE water reducing agent was 0.7% by weight based on cement. In the same manner as Comparative Example 1, a concrete composition of Comparative Example 3 was obtained.

比較例4
46 上記粒径調整により得た粒径15〜10mmの硬質砂岩(D50=12.5mm)からなる粗骨材として用いた以外は比較例1と同様にして、比較例5のコンクリート組成物を得た。
Comparative Example 4
46 A concrete composition of Comparative Example 5 was obtained in the same manner as Comparative Example 1 except that it was used as a coarse aggregate made of hard sandstone (D50 = 12.5 mm) having a particle size of 15 to 10 mm obtained by the above particle size adjustment. It was.

比較例5
上記粒径調整により得た粒径10〜5mmの硬質砂岩(D50=7.5mm)からなる粗骨材として用いた以外は比較例1と同様にして、比較例6のコンクリート組成物を得た。
Comparative Example 5
A concrete composition of Comparative Example 6 was obtained in the same manner as Comparative Example 1 except that it was used as a coarse aggregate made of hard sandstone (D50 = 7.5 mm) having a particle size of 10 to 5 mm obtained by the above particle size adjustment. .

乾燥収縮ひずみの評価方法
実施例1及び比較例1〜6のコンクリート組成物について、JIS A 11129−2に従う方法により乾燥材齢7日における乾燥収縮ひずみを測定した。結果を表2に示す。
Dry Shrinkage Strain Evaluation Method For the concrete compositions of Example 1 and Comparative Examples 1 to 6, the dry shrinkage strain at 7 days of dry material was measured by a method according to JIS A 11129-2. The results are shown in Table 2.

Figure 0006226236
Figure 0006226236

表2に示される実施例1及び比較例1によれば、細骨材の粒径を調整することにより粒径5〜1.2mmの硬質砂岩(すなわち、D50>0.85mmの硬質砂岩)からなる細骨材を用いた実施例1のコンクリート組成物では、細骨材の粒径を調整しなかった比較例1のコンクリート組成物と比較して、乾燥収縮ひずみが効果的に低減されたことが明らかになった。
さらに、表2に示される比較例1〜3によれば、粒径1.2mm未満の硬質砂岩(D50<0.85mmの硬質砂岩)からなる細骨材を用いた比較例2,3のコンクリート組成物では、実施例1のコンクリート組成物と比較して、乾燥収縮ひずみが大幅に増加している。これにより、硬質砂岩を細骨材とするコンクリート組成物の乾燥収縮ひずみは、細骨材の粒径に大きく影響を受けることも明らかになった。
また、表2に示される比較例4及び5によれば、粗骨材の粒径を調整しても、乾燥収縮ひずみはあまり影響を受けないことが明らかになった。
According to Example 1 and Comparative Example 1 shown in Table 2, by adjusting the particle size of the fine aggregate, from hard sandstone having a particle size of 5 to 1.2 mm (that is, hard sandstone having D50> 0.85 mm). In the concrete composition of Example 1 using the fine aggregate, the drying shrinkage strain was effectively reduced as compared with the concrete composition of Comparative Example 1 in which the particle size of the fine aggregate was not adjusted. Became clear.
Further, according to Comparative Examples 1 to 3 shown in Table 2, the concretes of Comparative Examples 2 and 3 using fine aggregates made of hard sandstone (D50 <0.85 mm hard sandstone) having a particle size of less than 1.2 mm. In the composition, compared with the concrete composition of Example 1, the drying shrinkage strain is greatly increased. As a result, it became clear that the drying shrinkage strain of the concrete composition using hard sandstone as a fine aggregate is greatly influenced by the particle size of the fine aggregate.
In addition, according to Comparative Examples 4 and 5 shown in Table 2, it became clear that even when the particle size of the coarse aggregate was adjusted, the drying shrinkage strain was not significantly affected.

(石灰岩コンクリート)
以下の実施例及び比較例の石灰岩コンクリート組成物を製造するに際し、下記材料を用いた。
細骨材(S):石灰岩(秋芳産)、表乾密度2.60g/cm3、絶乾密度2.54g/cm3、吸水率2.40%、D50=0.8mm
粗骨材(G):石灰岩(秋芳産)、表乾密度2.69g/cm3、絶乾密度2.67g/cm3、吸水率0.57%、D50=12.5mm、
(Limestone concrete)
In producing the limestone concrete compositions of the following Examples and Comparative Examples, the following materials were used.
Fine aggregate (S): Limestone (Akiyoshi production), Table dry density 2.60 g / cm 3, oven dry density of 2.54 g / cm 3, water absorption 2.40%, D50 = 0.8 mm
Coarse aggregate (G): Limestone (produced by Akiyoshi), surface dry density 2.69 g / cm 3 , absolute dry density 2.67 g / cm 3 , water absorption 0.57%, D50 = 12.5 mm,

参考例1
細骨材及び粗骨材として上記の石灰岩を用いた以外は比較例1と同様にして、参考例1のコンクリート組成物を得た。
Reference example 1
A concrete composition of Reference Example 1 was obtained in the same manner as Comparative Example 1 except that the above limestone was used as the fine aggregate and coarse aggregate.

骨材の粒径調整
上述の硬質砂岩コンクリート組成物の製造と同様の方法により、上記細骨材の粒径を調整し、粒径5〜1.2mm、1.2〜0.3mm及び0.3mm以下の粒径の石灰岩からなる細骨材を得た後、それぞれのD50を測定した。
Adjusting the particle size of the aggregate In the same manner as in the production of the hard sandstone concrete composition described above, the particle size of the fine aggregate is adjusted, and the particle size is 5 to 1.2 mm, 1.2 to 0.3 mm, and 0. After obtaining a fine aggregate made of limestone having a particle size of 3 mm or less, each D50 was measured.

参考例2
上記粒径調整により得た粒径5〜1.2mmの石灰岩(D50=2.0mm)からなる細骨材として用いた以外は参考例1と同様にして、参考例2のコンクリート組成物を得た。
Reference example 2
A concrete composition of Reference Example 2 was obtained in the same manner as Reference Example 1 except that it was used as a fine aggregate made of limestone (D50 = 2.0 mm) having a particle size of 5 to 1.2 mm obtained by the above particle size adjustment. It was.

参考例3
上記粒径調整により得た粒径1.2〜0.3mmの石灰岩(D50=0.6mm)からなる細骨材として用いた以外は参考例1と同様にして、参考例3のコンクリート組成物を得た。
Reference example 3
The concrete composition of Reference Example 3 in the same manner as Reference Example 1 except that it was used as a fine aggregate made of limestone (D50 = 0.6 mm) having a particle size of 1.2 to 0.3 mm obtained by the above particle size adjustment. Got.

参考例4
上記粒径調整により得た粒径0.3mm以下の石灰岩(D50=0.2mm)からなる細骨材として用い、加えたAE減水剤をセメントに対して0.5重量%とした以外は参考例1と同様にして、参考例4のコンクリート組成物を得た。
Reference example 4
It is used as a fine aggregate made of limestone (D50 = 0.2 mm) with a particle size of 0.3 mm or less obtained by the above particle size adjustment, except that the added AE water reducing agent is 0.5% by weight based on cement. The concrete composition of Reference Example 4 was obtained in the same manner as Example 1.

乾燥収縮ひずみの評価方法
参考例1〜7のコンクリート組成物について、上述の硬質砂岩コンクリート組成物と同様の方法により、乾燥材齢7日における乾燥収縮ひずみを測定した。結果を表3に示す。
Dry Shrinkage Strain Evaluation Method For the concrete compositions of Reference Examples 1 to 7, the dry shrinkage strain at a dry material age of 7 days was measured by the same method as the hard sandstone concrete composition described above. The results are shown in Table 3.

Figure 0006226236
Figure 0006226236

表3に示される参考例1〜4によれば、骨材を石灰岩とするコンクリート組成物では、細骨材の粒径を調整しても、乾燥収縮ひずみはあまり影響を受けないことが明らかになった。   According to Reference Examples 1 to 4 shown in Table 3, it is clear that the dry shrinkage strain is not significantly affected by adjusting the particle size of the fine aggregate in the concrete composition in which the aggregate is limestone. became.

Claims (3)

硬質砂岩を含む細骨材と、粗骨材と、セメントと、水とを含むコンクリート組成物であって、
コンクリート組成物中の細骨材全体に含まれる硬質砂岩の重量平均粒径D50が0.85mmを超え
前記硬質砂岩に含まれる粒径0.3mm以下の硬質砂岩の量が、該硬質砂岩全体量に対して15重量%未満であることを特徴とするコンクリート組成物。
A concrete composition comprising fine aggregate, including hard sandstone, coarse aggregate, cement, and water,
The weight average particle diameter D50 of the hard sandstone contained in the entire fine aggregate in the concrete composition exceeds 0.85 mm ,
A concrete composition characterized in that the amount of hard sandstone having a particle size of 0.3 mm or less contained in the hard sandstone is less than 15% by weight based on the total amount of the hard sandstone .
細骨材が、該細骨材に含まれる硬質砂岩の重量平均粒径D50よりも小さい重量平均粒径D50を有する石灰岩をさらに含む、請求項1に記載のコンクリート組成物。   The concrete composition according to claim 1, wherein the fine aggregate further comprises limestone having a weight average particle diameter D50 smaller than the weight average particle diameter D50 of the hard sandstone contained in the fine aggregate. 硬質砂岩を含む細骨材と、粗骨材と、セメントと、水とを混練するコンクリート組成物の製造方法であって、
細骨材全体に含まれる硬質砂岩の重量平均粒径D50が0.85mmを超え、前記硬質砂岩に含まれる粒径0.3mm以下の硬質砂岩の量が、該硬質砂岩全体量に対して15重量%未満となるように該硬質砂岩の粒径を調整するコンクリート組成物の製造方法。
A method for producing a concrete composition in which fine aggregate containing hard sandstone, coarse aggregate, cement, and water are kneaded,
The weight average particle diameter D50 of the hard sandstone contained in the entire fine aggregate exceeds 0.85 mm, and the amount of hard sandstone contained in the hard sandstone having a particle diameter of 0.3 mm or less is 15 with respect to the entire amount of the hard sandstone. method of manufacturing a concrete composition to adjust the particle size of the hard sandstone so that a less than wt%.
JP2014067122A 2014-03-27 2014-03-27 Concrete composition and method for producing concrete composition Active JP6226236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014067122A JP6226236B2 (en) 2014-03-27 2014-03-27 Concrete composition and method for producing concrete composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014067122A JP6226236B2 (en) 2014-03-27 2014-03-27 Concrete composition and method for producing concrete composition

Publications (2)

Publication Number Publication Date
JP2015189613A JP2015189613A (en) 2015-11-02
JP6226236B2 true JP6226236B2 (en) 2017-11-08

Family

ID=54424445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014067122A Active JP6226236B2 (en) 2014-03-27 2014-03-27 Concrete composition and method for producing concrete composition

Country Status (1)

Country Link
JP (1) JP6226236B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7438789B2 (en) * 2020-03-04 2024-02-27 大和ハウス工業株式会社 How to mix concrete
CN117185724B (en) * 2023-09-08 2024-03-08 邯郸市盛建新型建材股份有限公司 Cracking-resistant concrete and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302056A (en) * 1998-04-24 1999-11-02 Taiheiyo Cement Corp Low shrinkage, high strength and high flow concrete composition and its hardened body
US20090078161A1 (en) * 2007-09-20 2009-03-26 Nova Chemicals Inc. Methods of minimizing concrete cracking and shrinkage
JP2010228979A (en) * 2009-03-27 2010-10-14 Sumitomo Osaka Cement Co Ltd Method for modifying siliceous fine powder, modified siliceous fine powder and cement composition
JP2011006276A (en) * 2009-06-25 2011-01-13 Shimizu Corp Low shrinkage concrete
JP2011006310A (en) * 2009-06-29 2011-01-13 Sumitomo Metal Mining Siporex Kk Fine aggregate for concrete and method for evaluating the same
JP4903885B2 (en) * 2010-01-20 2012-03-28 住友大阪セメント株式会社 High-strength concrete composition using silica fume slurry and method for producing the same
JP5777208B2 (en) * 2011-08-04 2015-09-09 太平洋セメント株式会社 Prediction method of self-shrinkage strain of ultra high strength concrete

Also Published As

Publication number Publication date
JP2015189613A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
Felekoğlu et al. Optimization of fineness to maximize the strength activity of high-calcium ground fly ash–Portland cement composites
CA2903079C (en) Method for manufacturing of supplementary cementitious materials (scms)
Klarens et al. The use of bottom ash for replacing fine aggregate in concrete paving blocks
CN104496327A (en) Wet-mixed masonry mortar prepared by adopting aggregate chips
JP7022959B2 (en) Concrete composition and method for manufacturing concrete composition
Bawankule et al. Effect of partial replacement of cement by rice husk ash in concrete
Kachwala et al. Effect of rice husk ash as a partial replacement of ordinary Portland cement in concrete
Kretova et al. Gypsumcementpozzolana composites with application volcanic ash
JP6226236B2 (en) Concrete composition and method for producing concrete composition
JP6576123B2 (en) Concrete production method
JP6968637B2 (en) How to make concrete
JP5816731B2 (en) Method for producing high-strength concrete
JP2009161385A (en) Crushed shell material for concrete admixture and concrete containing the same
CN108863190A (en) A kind of semi-rigid Asphalt Pavement Base patching material semi-flexible
JP7068655B2 (en) High-strength concrete composition and high-strength concrete hardened body
JP2004284873A (en) Hydraulic complex material
JP7050548B2 (en) How to make concrete
JP6180946B2 (en) Concrete composition
JP2009215092A (en) Component of high-flow concrete, and method for producing high-flow concrete
JP5840341B2 (en) Method for producing high-strength concrete
Diyora et al. A Review On Compressive Strength of Plain Opc Cement Concrete with Flyash Using Different Water Cement Ratio
JP4166109B2 (en) High durability concrete composition
JP2008239403A (en) Hydraulic composition
CN108484023B (en) Preparation method of high-mixing-amount mining and mineral separation powder mortar
Aboluwarin et al. Investigating the effect of bamboo trunk ash blended cement in engineering properties of mortar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170928

R150 Certificate of patent or registration of utility model

Ref document number: 6226236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150