JP6222949B2 - Imaging device and imaging apparatus - Google Patents

Imaging device and imaging apparatus Download PDF

Info

Publication number
JP6222949B2
JP6222949B2 JP2013054139A JP2013054139A JP6222949B2 JP 6222949 B2 JP6222949 B2 JP 6222949B2 JP 2013054139 A JP2013054139 A JP 2013054139A JP 2013054139 A JP2013054139 A JP 2013054139A JP 6222949 B2 JP6222949 B2 JP 6222949B2
Authority
JP
Japan
Prior art keywords
focus detection
pixel
imaging
pupil
spectral transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013054139A
Other languages
Japanese (ja)
Other versions
JP2014178638A (en
Inventor
友美 渡邉
友美 渡邉
福田 浩一
浩一 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013054139A priority Critical patent/JP6222949B2/en
Publication of JP2014178638A publication Critical patent/JP2014178638A/en
Application granted granted Critical
Publication of JP6222949B2 publication Critical patent/JP6222949B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Description

本発明は、撮像素子および撮像装置に関する。   The present invention relates to an imaging element and an imaging apparatus.

撮影レンズの焦点状態を検出する方式の1つとして、2次元に配列された各画素にマイクロレンズが形成された撮像素子を用いた瞳分割位相差方式(撮像面位相差方式)がある。例えば、特許文献1には、撮像画素が2次元的に配列された撮像素子に、部分的に1対の焦点検出用画素を配置した構成が記載されている。1対の焦点検出用画素は、開口部を有する遮光層により、撮影レンズの射出瞳の異なる領域を受光するように構成され、瞳分割を行っている。焦点検出用画素の信号から像ずれ量を求めて焦点検出を行う。また、従来技術として、焦点検出用画素の瞳分割性能を良好にするため、焦点検出用画素のマクロレンズ曲率を、撮像画素のマイクロレンズ曲率と異ならせる構成がある。また、焦点検出用画素の受光感度を向上させるために、透過率が低下するカラーフィルタを配置しない構成がある。   As one of methods for detecting the focus state of the photographing lens, there is a pupil division phase difference method (imaging surface phase difference method) using an image pickup element in which a microlens is formed in each pixel arranged two-dimensionally. For example, Patent Document 1 describes a configuration in which a pair of focus detection pixels is partially arranged on an image sensor in which image pickup pixels are two-dimensionally arranged. The pair of focus detection pixels are configured to receive different areas of the exit pupil of the photographing lens by a light shielding layer having an opening, and perform pupil division. The focus detection is performed by obtaining the image shift amount from the signal of the focus detection pixel. Further, as a conventional technique, there is a configuration in which the macro lens curvature of the focus detection pixel is different from the micro lens curvature of the imaging pixel in order to improve the pupil division performance of the focus detection pixel. Further, in order to improve the light receiving sensitivity of the focus detection pixels, there is a configuration in which a color filter that decreases the transmittance is not provided.

特開2000−156823号公報JP 2000-156823 A

しかしながら、焦点検出用画素の構成が、撮像画素の構成と異なるために、斜め入射光による焦点検出用画素から隣接画素へのクロストーク光量と、撮像画素から隣接画素へのクロストーク光量とが異なる場合がある。この場合、撮影条件によっては焦点検出用画素周辺の撮像画素で光量の浮きや沈みが発生する。   However, since the configuration of the focus detection pixel is different from the configuration of the imaging pixel, the crosstalk light amount from the focus detection pixel to the adjacent pixel due to the oblique incident light is different from the crosstalk light amount from the imaging pixel to the adjacent pixel. There is a case. In this case, depending on the photographing conditions, the light amount floats or sinks in the imaging pixels around the focus detection pixels.

本発明は、上記課題に鑑みてなされ、その目的は、斜め入射光による焦点検出用画素から隣接画素へのクロストーク光量と、撮像画素から隣接画素へのクロストーク光量の差異を低減する技術を実現することである。   The present invention has been made in view of the above problems, and an object of the present invention is to reduce the difference between the crosstalk light amount from the focus detection pixel to the adjacent pixel and the crosstalk light amount from the imaging pixel to the adjacent pixel due to obliquely incident light. Is to realize.

上記課題を解決し、目的を達成するために、本発明の撮像素子は、結像光学系の瞳領域を通過する光束を受光する複数の撮像画素と、前記瞳領域の部分領域である瞳部分領域を通過する所定の波長成分を含む光束を受光する複数の焦点検出用画素と、を有し、前記瞳領域の重心と前記瞳部分領域の重心とが異なっている撮像素子であって、前記焦点検出用画素に前記所定の波長成分において異なる複数の分光透過率を有する前記光束が透過可能な透過部材を配置し、前記透過部材は、前記所定の波長成分において前記撮像画素に隣接する周辺部分の分光透過率が中央部分の分光透過率よりも小さくなるように構成される。
In order to solve the above problems and achieve the object, an imaging device of the present invention includes a plurality of imaging pixels that receive a light beam passing through a pupil region of an imaging optical system, and a pupil part that is a partial region of the pupil region. A plurality of focus detection pixels that receive a light beam including a predetermined wavelength component that passes through the region, and an image sensor in which a centroid of the pupil region and a centroid of the pupil partial region are different from each other, A transmissive member capable of transmitting the light fluxes having a plurality of different spectral transmittances in the predetermined wavelength component is disposed in the focus detection pixel, and the transmissive member is a peripheral portion adjacent to the imaging pixel in the predetermined wavelength component Is configured to be smaller than the spectral transmittance of the central portion.

本発明によれば、斜め入射光による焦点検出用画素から隣接画素へのクロストーク光量と、撮影画素から隣接画素へのクロストーク光量の差異を低減することができる。   According to the present invention, it is possible to reduce the difference between the crosstalk light amount from the focus detection pixel to the adjacent pixel and the crosstalk light amount from the photographing pixel to the adjacent pixel due to the oblique incident light.

本発明に係る実施形態の撮像装置の構成を示す図。1 is a diagram illustrating a configuration of an imaging apparatus according to an embodiment of the present invention. 本実施形態の画素配列を概略的に示す図。FIG. 3 is a diagram schematically showing a pixel array of the present embodiment. 本実施形態の第1焦点検出用画素の概略構成を示す平面図及び断面図。FIG. 2 is a plan view and a cross-sectional view illustrating a schematic configuration of a first focus detection pixel of the present embodiment. 本実施形態の第2焦点検出用画素の概略構成を示す平面図及び断面図。The top view and sectional drawing which show schematic structure of the 2nd focus detection pixel of this embodiment. 本実施形態の撮像画素の概略構成を示す平面図及び断面図。The top view and sectional drawing which show schematic structure of the imaging pixel of this embodiment. 本実施形態の変形例の焦点検出用画素の概略構成を示す平面図及び断面図。The top view and sectional drawing which show schematic structure of the pixel for a focus detection of the modification of this embodiment. 本実施形態の撮像画素と焦点検出用画素が隣接する撮像素子の断面図。FIG. 3 is a cross-sectional view of an image sensor in which an imaging pixel and a focus detection pixel of the present embodiment are adjacent to each other. G撮像画素とR撮像画素が隣接する従来のCMOS撮像素子の平面図及び断面図。The top view and sectional drawing of the conventional CMOS image pick-up element with which G image pick-up pixel and R image pick-up pixel adjoin. 撮像画素とW焦点検出用画素が隣接する従来のCMOS撮像素子の平面図及び断面図。The top view and sectional drawing of the conventional CMOS image sensor with which an imaging pixel and the W focus detection pixel adjoin. 本実施形態の光軸に平行な入射光の光強度分布を例示する図。The figure which illustrates light intensity distribution of the incident light parallel to the optical axis of this embodiment. 本実施形態の透過部材の開口部の形状を例示する図。The figure which illustrates the shape of the opening part of the permeation | transmission member of this embodiment. 本実施形態の瞳分割を説明する図。The figure explaining the pupil division of this embodiment.

以下に、本発明を実施するための形態について詳細に説明する。尚、以下に説明する実施の形態は、本発明を実現するための一例であり、本発明が適用される装置の構成や各種条件によって適宜修正又は変更されるべきものであり、本発明は以下の実施の形態に限定されるものではない。また、後述する各実施形態の一部を適宜組み合わせて構成しても良い。   Hereinafter, embodiments for carrying out the present invention will be described in detail. The embodiment described below is an example for realizing the present invention, and should be appropriately modified or changed according to the configuration and various conditions of the apparatus to which the present invention is applied. It is not limited to the embodiment. Moreover, you may comprise combining suitably one part of each embodiment mentioned later.

本発明の撮像素子及び撮像装置は、特にデジタルビデオカメラやデジタルスチルカメラ(以下、カメラ)に有用なものであり、2次元に配列された各画素にマイクロレンズが形成された撮像素子を用いて瞳分割位相差方式で焦点検出を行う。   The image pickup device and the image pickup apparatus of the present invention are particularly useful for a digital video camera and a digital still camera (hereinafter referred to as a camera), and use an image pickup device in which a microlens is formed on each pixel arranged two-dimensionally. Focus detection is performed by the pupil division phase difference method.

[装置構成]図1を参照して、本発明に係る実施形態のカメラの構成について説明する。本実施形態のカメラは、撮像素子を有したカメラ本体と結像光学系が一体となっており、動画及び静止画が記録可能である。   [Apparatus Configuration] With reference to FIG. 1, the configuration of a camera according to an embodiment of the present invention will be described. In the camera of this embodiment, a camera body having an image sensor and an imaging optical system are integrated, and a moving image and a still image can be recorded.

図1において、101は結像光学系の先端に配置された第1レンズ群で、光軸方向に進退可能に保持される。102は絞り兼シャッタ(以下、絞り)で、その開口面積を調節することで撮影時の光量調節を行うほか、静止画撮影時には露光秒時調節用シャッタとしての機能も備える。103は第2レンズ群である。そして絞り102及び第2レンズ群103は一体となって光軸方向に駆動され、第1レンズ群101との連動により変倍作用(ズーム機能)を実現する。   In FIG. 1, reference numeral 101 denotes a first lens group disposed at the tip of the imaging optical system, which is held so as to be able to advance and retract in the optical axis direction. Reference numeral 102 denotes an aperture / shutter (hereinafter referred to as “aperture”), which adjusts the light amount at the time of shooting by adjusting the aperture area, and also has a function as an exposure time adjustment shutter at the time of still image shooting. Reference numeral 103 denotes a second lens group. The diaphragm 102 and the second lens group 103 are integrally driven in the optical axis direction, and realize a zooming function (zoom function) in conjunction with the first lens group 101.

105は第3レンズ群で、光軸方向の進退により焦点調節を行う。106は光学的ローパスフィルタで、撮影画像の偽色やモアレを軽減するための光学素子である。107はCMOS撮像素子とその周辺回路で構成されたCMOSイメージセンサ(以下、撮像素子)である。   Reference numeral 105 denotes a third lens group that performs focus adjustment by advancing and retreating in the optical axis direction. Reference numeral 106 denotes an optical low-pass filter, which is an optical element for reducing false colors and moire in a captured image. Reference numeral 107 denotes a CMOS image sensor (hereinafter referred to as an image sensor) composed of a CMOS image sensor and its peripheral circuits.

111はズームアクチュエータで、不図示のカム筒を手動もしくはアクチュエータで回動することにより、第1レンズ群101ないし第3レンズ群103を光軸方向に駆動し、ズーム機能を実現する。112は絞りアクチュエータで、絞り102の開口面積を制御して撮影光量を調節すると共に、静止画撮影時の露光時間制御を行う。114はフォーカスアクチュエータで、第3レンズ群105を光軸方向に駆動して焦点調節を行う。   Reference numeral 111 denotes a zoom actuator that drives a first lens group 101 to a third lens group 103 in the optical axis direction by rotating a cam cylinder (not shown) manually or by an actuator, thereby realizing a zoom function. Reference numeral 112 denotes an aperture actuator that controls the aperture area of the aperture 102 to adjust the amount of photographing light and controls the exposure time during still image shooting. A focus actuator 114 adjusts the focus by driving the third lens group 105 in the optical axis direction.

115は撮影時の被写体照明用電子フラッシュで、キセノン管を用いた閃光照明装置が好適であるが、連続発光するLEDを備えた照明装置を用いても良い。116はAF(オートフォーカス)補助光源であり、所定の開口パターンを有したマスクの像を、投光レンズを介して被写界に投影し、暗い被写体あるいは低コントラスト被写体に対する焦点検出能力を向上させる。   Reference numeral 115 denotes an electronic flash for illuminating a subject at the time of photographing, and a flash illumination device using a xenon tube is suitable, but an illumination device including an LED that emits light continuously may be used. Reference numeral 116 denotes an AF (autofocus) auxiliary light source, which projects a mask image having a predetermined aperture pattern onto a subject field via a projection lens, thereby improving the focus detection capability for a dark subject or a low-contrast subject. .

121はCPUで、カメラ本体の種々の制御を司るために、演算部、ROM、RAM、A/Dコンバータ、D/Aコンバータ、通信インターフェイス回路等を有する。CPU121は、ROMに記憶された所定のプログラムに基づいて、カメラが有する各種回路を駆動し、AF、撮影、画像処理と記録等の一連の動作を実行する。   Reference numeral 121 denotes a CPU, which has a calculation unit, ROM, RAM, A / D converter, D / A converter, communication interface circuit, and the like to manage various controls of the camera body. The CPU 121 drives various circuits included in the camera based on a predetermined program stored in the ROM, and executes a series of operations such as AF, photographing, image processing, and recording.

122は電子フラッシュ制御回路で、撮影動作に同期して照明装置115を点灯制御する。   Reference numeral 122 denotes an electronic flash control circuit that controls lighting of the illumination device 115 in synchronization with the photographing operation.

123は補助光源駆動回路で、焦点検出動作に同期してAF補助光源116を点灯制御する。   An auxiliary light source driving circuit 123 controls lighting of the AF auxiliary light source 116 in synchronization with the focus detection operation.

124は撮像素子駆動回路で、撮像素子107の撮像動作を制御し、撮像素子107から取得したアナログ画像信号をデジタル信号に変換してCPU121に出力する。125は画像処理回路で、撮像素子107から取得した画像信号のγ変換、カラー補間、画像圧縮等の処理を行い、デジタル画像データを生成する。   An image sensor driving circuit 124 controls the imaging operation of the image sensor 107, converts an analog image signal acquired from the image sensor 107 into a digital signal, and outputs the digital signal to the CPU 121. An image processing circuit 125 performs processing such as γ conversion, color interpolation, and image compression of the image signal acquired from the image sensor 107 to generate digital image data.

126はフォーカス駆動回路で、後述する焦点検出結果に基づいてフォーカスアクチュエータ114を駆動し、第3レンズ群105を光軸方向に駆動して焦点調節を行う。   A focus driving circuit 126 drives a focus actuator 114 based on a focus detection result described later, and drives the third lens group 105 in the optical axis direction to perform focus adjustment.

128は絞り駆動回路で、絞りアクチュエータ112を駆動して絞り102の開口面積を調節する。   Reference numeral 128 denotes an aperture driving circuit that drives the aperture actuator 112 to adjust the aperture area of the aperture 102.

129はズーム駆動回路で、撮影者による操作スイッチ132を介したズーム操作に応じてズームアクチュエータ111を駆動する。   A zoom drive circuit 129 drives the zoom actuator 111 in response to a zoom operation via the operation switch 132 by the photographer.

131はLCD等の表示器で、カメラの撮影モードに関する情報、撮影前のプレビュー画像と撮影後の確認用画像、焦点検出時の合焦状態表示画像等を表示する。   Reference numeral 131 denotes a display device such as an LCD, which displays information related to the shooting mode of the camera, a preview image before shooting and a confirmation image after shooting, a focus state display image when focus is detected, and the like.

132は操作スイッチ群で、電源スイッチ、シャッタースイッチ、ズーム操作スイッチ、撮影モード選択スイッチ等で構成される。   An operation switch group 132 includes a power switch, a shutter switch, a zoom operation switch, a shooting mode selection switch, and the like.

133はカメラ本体に対して着脱可能なフラッシュメモリで、撮影済み画像データを記録する。   Reference numeral 133 denotes a flash memory that can be attached to and detached from the camera body, and records photographed image data.

[撮像素子の構成]次に、図2を参照して、本実施形態の撮像素子の画素配列について概説する。   [Configuration of Image Sensor] Next, the pixel arrangement of the image sensor of this embodiment will be outlined with reference to FIG.

図2は、本実施形態の撮像素子の画素配列を、20列×20行の範囲で示している。図2に示すように、本実施形態の撮像素子は、水平方向にM画素、垂直方向にN画素がそれぞれ2次元に配列された矩形の画素群からなり、高解像度の画像データが取得可能となっている。   FIG. 2 shows the pixel array of the image sensor of the present embodiment in a range of 20 columns × 20 rows. As shown in FIG. 2, the image pickup device of the present embodiment is composed of a rectangular pixel group in which M pixels in the horizontal direction and N pixels in the vertical direction are two-dimensionally arranged, and high-resolution image data can be acquired. It has become.

図2に示す2行×2列の画素群200は、R(赤)の分光透過率を有するカラーフィルタが配置された画素200Rが左上に、G(緑)の分光透過率を有するカラーフィルタ(後述する透過部材)が配置された画素200Gが右上と左下に、B(青)の分光透過率を有するカラーフィルタが配置された画素200Bが右下にそれぞれ配置されている。また、図2に示す2行×2列の焦点検出用画素群210(220、230、240、250)は、右上と左下の2画素にGの分光透過率を有するカラーフィルタが配置された撮像画素210G(220G、230G、240G、250G)と、左上に白色(W)の分光透過率を有する透過部材が配置された第1焦点検出用画素210SA(220SA、230SA、240SA、250SA)と、右下に白色(W)の分光透過率を有する透過部材が配置された第2焦点検出用画素210SB(220SB、230SB、240SB、250SB)が配置されている。なお、本実施形態では、カラーフィルタは透過部材に含まれる。焦点検出用画素は、後述するように、遮光層で部分領域である瞳部分領域を通過する光束を受光するように設計されるので、受光感度を保つために分光透過率の大きい透過部材が配置されることが一般的である。   A pixel group 200 of 2 rows × 2 columns shown in FIG. 2 includes a color filter (G) having a spectral transmittance of G (green) on the upper left side of a pixel 200R in which a color filter having a spectral transmittance of R (red) is arranged. A pixel 200G on which a transmission member (to be described later) is arranged is arranged on the upper right and lower left, and a pixel 200B on which a color filter having a spectral transmittance of B (blue) is arranged on the lower right. Further, the 2 × 2 focus detection pixel group 210 (220, 230, 240, 250) shown in FIG. 2 has an image pickup in which a color filter having a spectral transmittance of G is arranged in the upper right and lower left pixels. Pixel 210G (220G, 230G, 240G, 250G), first focus detection pixel 210SA (220SA, 230SA, 240SA, 250SA) in which a transmissive member having a white (W) spectral transmittance is arranged on the upper left, and right A second focus detection pixel 210SB (220SB, 230SB, 240SB, 250SB) in which a transmissive member having a white (W) spectral transmittance is disposed is disposed below. In the present embodiment, the color filter is included in the transmissive member. As will be described later, the focus detection pixel is designed to receive a light beam that passes through a pupil partial region, which is a partial region, by a light shielding layer. Therefore, a transmissive member having a large spectral transmittance is disposed to maintain light receiving sensitivity. It is common to be done.

[画素構成]次に、図3乃至図5を参照して、焦点検出用画素群230の構成について説明する。   [Pixel Configuration] Next, the configuration of the focus detection pixel group 230 will be described with reference to FIGS.

図3(a)は図2に示す撮像素子の1つの第1焦点検出用画素230SAを、撮像素子の受光面側(+z側)から見た平面図であり、図3(b)は図3(a)のa−a断面図である。また、図4(a)は図2に示す撮像素子の1つの第2焦点検出用画素230SBを、撮像素子の受光面側(+z側)から見た平面図であり、図4(b)は図4(a)のb−b断面図である。また、図5(a)は図2に示す撮像素子の1つの撮像画素230Gを、撮像素子の受光面側(+z側)から見た平面図であり、図5(b)は図5(a)のc−c断面図である。   FIG. 3A is a plan view of one first focus detection pixel 230SA of the image sensor shown in FIG. 2 viewed from the light receiving surface side (+ z side) of the image sensor, and FIG. It is aa sectional drawing of (a). FIG. 4A is a plan view of one second focus detection pixel 230SB of the image sensor shown in FIG. 2 as viewed from the light receiving surface side (+ z side) of the image sensor, and FIG. It is bb sectional drawing of Fig.4 (a). 5A is a plan view of one imaging pixel 230G of the imaging device shown in FIG. 2 as viewed from the light receiving surface side (+ z side) of the imaging device, and FIG. 5B is a plan view of FIG. It is cc sectional drawing of).

図示のように、第1焦点検出用画素230SA、第2焦点検出用画素230SBおよび撮像画素230Gは、p型層300とn型層301の間にn−イントリンシック層302を挟んだpin構造の光電変換部(以下、フォトダイオード(PD))が形成される。PDの領域は、n−イントリンシック層302に形成される空乏層とその周辺に少数キャリアの拡散距離だけ拡がった領域であり、概ね、n−イントリンシック層302とn型層301を合わせた領域と重なる。必要に応じて、n−イントリンシック層302を省略し、pn接合PDとしても良い。   As illustrated, the first focus detection pixel 230SA, the second focus detection pixel 230SB, and the imaging pixel 230G have a pin structure in which an n-intrinsic layer 302 is sandwiched between a p-type layer 300 and an n-type layer 301. A photoelectric conversion unit (hereinafter referred to as a photodiode (PD)) is formed. The PD region is a depletion layer formed in the n-intrinsic layer 302 and a region extending around the depletion layer by a diffusion distance of minority carriers, and is generally a region in which the n-intrinsic layer 302 and the n-type layer 301 are combined. And overlap. If necessary, the n-intrinsic layer 302 may be omitted to form a pn junction PD.

各画素の受光側には、入射光を集光するためのマイクロレンズ305が形成される。   A microlens 305 for collecting incident light is formed on the light receiving side of each pixel.

図3に示す第1焦点検出用画素230SAでは、マイクロレンズ305とPDとの間に、第1開口部331aを有する第1遮光層330aが形成され、PDの受光面の重心に対し、第1開口部331aの重心が−x方向に偏心して構成される。   In the first focus detection pixel 230SA shown in FIG. 3, a first light shielding layer 330a having a first opening 331a is formed between the microlens 305 and the PD, and the first light shielding layer 330a has a first center with respect to the center of gravity of the light receiving surface of the PD. The center of gravity of the opening 331a is decentered in the −x direction.

一方、図4に示す第2焦点検出用画素230SBでは、マイクロレンズ305とPDとの間に、第2開口部331bを有する第2遮光層330bが形成され、PDの受光面の重心に対し、第2開口部331bの重心が+x方向に偏心して構成される。このように、第1遮光層330aの第1開口部331aの重心と第2遮光層330bの第2開口部331bの重心が異なるように構成している。また、第1遮光層330aの第1開口部331aの重心と第2遮光330bの第2開口部331bの重心の平均値がPDの受光面の重心と概ね一致するように構成される。   On the other hand, in the second focus detection pixel 230SB shown in FIG. 4, a second light shielding layer 330b having a second opening 331b is formed between the microlens 305 and the PD, and the center of gravity of the light receiving surface of the PD is The center of gravity of the second opening 331b is decentered in the + x direction. Thus, the center of gravity of the first opening 331a of the first light shielding layer 330a is different from the center of gravity of the second opening 331b of the second light shielding layer 330b. In addition, the average value of the center of gravity of the first opening 331a of the first light shielding layer 330a and the center of gravity of the second opening 331b of the second light shielding 330b is configured to substantially coincide with the center of gravity of the light receiving surface of the PD.

図5に示す撮像画素230Gでは、マイクロレンズ305とPDとの間に、開口部331cを有する遮光層330cが形成され、PDの受光面の重心と開口部331cの重心が一致するように構成される。   In the imaging pixel 230G shown in FIG. 5, a light shielding layer 330c having an opening 331c is formed between the microlens 305 and the PD, and the center of gravity of the light receiving surface of the PD and the center of gravity of the opening 331c are configured to match. The

図12(a)、(b)の400は結像光学系の射出瞳、500は撮像画素230Gの瞳強度分布(瞳領域)、530aは第1焦点検出用画素230SAの瞳強度分布(第1瞳部分領域)、530bは第2焦点検出用画素230SBの瞳強度分布(第2瞳部分領域)である。被写体からの光束は、結像光学系の射出瞳400を通過してそれぞれの画素に入射する。   In FIGS. 12A and 12B, 400 is an exit pupil of the imaging optical system, 500 is a pupil intensity distribution (pupil region) of the imaging pixel 230G, and 530a is a pupil intensity distribution (first) of the first focus detection pixel 230SA. (Pupil partial area) 530b is the pupil intensity distribution (second pupil partial area) of the second focus detection pixel 230SB. The light flux from the subject passes through the exit pupil 400 of the imaging optical system and enters each pixel.

図12(c)の撮像画素230Gの瞳領域500は、PDの受光面と、マイクロレンズ305によって、概ね、共役関係になっており、撮像画素230Gで受光可能な瞳領域となっている。この場合、瞳距離が数10mmであるのに対し、マイクロレンズ305の直径は数μmであるため、マイクロレンズ305の絞り値が数万となり、数10mmレベルの回折ボケが生じる。よって、PDの受光面の像は、明瞭な領域とならずに、受光率分布となる。   The pupil region 500 of the imaging pixel 230G in FIG. 12C is generally in a conjugate relationship with the light receiving surface of the PD and the microlens 305, and is a pupil region that can be received by the imaging pixel 230G. In this case, the pupil distance is several tens of mm, whereas the diameter of the microlens 305 is several μm. Therefore, the aperture value of the microlens 305 becomes several tens of thousands, resulting in diffraction blur of several tens of mm. Therefore, the image of the light receiving surface of the PD does not become a clear area but has a light receiving rate distribution.

撮像画素230Gの瞳領域500は、結像光学系の射出瞳400を通過した光束をより多く受光できるように可能な限り大きく、また、瞳領域500の重心が、所定の瞳距離で結像光学系の光軸と概ね一致するように構成されている。   The pupil region 500 of the imaging pixel 230G is as large as possible so that more light flux that has passed through the exit pupil 400 of the imaging optical system can be received, and the center of gravity of the pupil region 500 is imaged optically at a predetermined pupil distance. The optical axis of the system is generally coincident.

図12(a)の第1焦点検出用画素230SAの第1瞳部分領域530aは、第1遮光層330aの重心が−x方向に偏心している第1開口部331aと、マイクロレンズ305によって、概ね、共役関係になっている。これにより、第1瞳部分領域530aは、第1焦点検出用画素230SAで受光可能な瞳部分領域となっている。第1焦点検出用画素230SAの第1瞳部分領域530aは、撮像画素230Gの瞳領域500より小さく、瞳面上で+X側に重心が偏心している。   The first pupil partial region 530a of the first focus detection pixel 230SA in FIG. 12A is generally formed by the first opening 331a in which the center of gravity of the first light shielding layer 330a is eccentric in the −x direction and the microlens 305. , In a conjugate relationship. Thus, the first pupil partial region 530a is a pupil partial region that can be received by the first focus detection pixel 230SA. The first pupil partial region 530a of the first focus detection pixel 230SA is smaller than the pupil region 500 of the imaging pixel 230G, and the center of gravity is eccentric to the + X side on the pupil plane.

図12(b)の第2焦点検出用画素230SBの第2瞳部分領域530bは、第2遮光層330bの重心が+x方向に偏心している第2開口部331bと、マイクロレンズ305によって、概ね、共役関係になっている。これにより、第2瞳部分領域530bは、第2焦点検出用画素230SBで受光可能な瞳領域となっている。第2焦点検出用画素230SBの第2瞳部分領域530bは、撮像画素の瞳領域500より小さく、瞳面上で−X側に重心が偏心している。   The second pupil partial region 530b of the second focus detection pixel 230SB of FIG. 12B is roughly constituted by the second opening 331b in which the center of gravity of the second light shielding layer 330b is decentered in the + x direction and the microlens 305. It is a conjugate relationship. Thus, the second pupil partial region 530b is a pupil region that can be received by the second focus detection pixel 230SB. The second pupil partial region 530b of the second focus detection pixel 230SB is smaller than the pupil region 500 of the imaging pixel, and the center of gravity is decentered on the −X side on the pupil plane.

第1焦点検出用画素230SAの第1瞳部分領域530aの重心と第2焦点検出用画素230SBの第2瞳部分領域530bの重心は異なっているため、反対方向に偏心している。これにより、結像光学系の射出瞳400をX方向に瞳分割することができる。同様にして、第1遮光層330aの第1開口部331aの重心を−y方向に偏心させ、第2遮光層330bの第2開口部331bの重心を+y方向に偏心させると、結像光学系の射出瞳400をY方向に瞳分割することができる。   Since the center of gravity of the first pupil partial region 530a of the first focus detection pixel 230SA and the center of gravity of the second pupil partial region 530b of the second focus detection pixel 230SB are different, they are decentered in the opposite direction. Thereby, the exit pupil 400 of the imaging optical system can be divided into pupils in the X direction. Similarly, when the center of gravity of the first opening 331a of the first light shielding layer 330a is decentered in the -y direction and the center of gravity of the second opening 331b of the second light shielding layer 330b is decentered in the + y direction, the imaging optical system The exit pupil 400 can be divided in the Y direction.

本実施形態では、第1瞳部分領域530aの重心と第2瞳領域530bの重心が異ならせ、第1瞳部分領域530aの重心と第2瞳領域530bの重心との平均を、所定の瞳距離で、瞳領域500の重心と概ね一致させている。   In this embodiment, the center of gravity of the first pupil partial region 530a and the center of gravity of the second pupil region 530b are made different, and the average of the center of gravity of the first pupil partial region 530a and the center of gravity of the second pupil region 530b is determined as a predetermined pupil distance. Thus, the center of gravity of the pupil region 500 is substantially matched.

上述した本実施形態の撮像素子は、結像光学系の瞳領域を通過する光束を受光する複数の撮像画素と、瞳領域の部分領域である瞳部分領域を通過する光束を受光する複数の焦点検出用画素とを有し、瞳領域の重心と瞳部分領域の重心とが異なるように構成される。そして、遮光層により部分領域のみを通過した光束がPDに受光され、PDでの受光光量が低下するので、焦点検出用画素の透過部材には分光透過率の大きい透過部材、または吸光のない素材で構成されることが望ましい。   The imaging device of the present embodiment described above includes a plurality of imaging pixels that receive a light beam that passes through a pupil region of the imaging optical system, and a plurality of focal points that receive a light beam that passes through a pupil partial region that is a partial region of the pupil region. The detection pixel is configured so that the center of gravity of the pupil region and the center of gravity of the pupil partial region are different. Since the light beam that has passed through only the partial region is received by the PD due to the light shielding layer and the amount of light received by the PD is reduced, the transmission member of the focus detection pixel is a transmission member having a large spectral transmittance or a material that does not absorb light. It is desirable to consist of

本実施形態では、図3及び図4に示す焦点検出用画素230SA、230SBには、異なる分光透過率を有する2つの透過部材340a、340bが配置される。つまり、本実施形態では、焦点検出用画素に異なる複数の分光透過率を有する透過部材が配置される。透過部材340bは、分光透過率の大きい透過部材とすることで受光率が低下しないようにすることが望ましい。さらに、本実施形態では、カラーフィルタを形成するためのフォトリソプロセス数を増加させず、製造プロセスを簡略化するために、透過部材340bは、透過部材340bの上下の部材と同じ部材が充填されて構成される。   In the present embodiment, the focus detection pixels 230SA and 230SB shown in FIGS. 3 and 4 are provided with two transmission members 340a and 340b having different spectral transmittances. That is, in the present embodiment, a transmissive member having a plurality of different spectral transmittances is arranged in the focus detection pixel. The transmissive member 340b is desirably a transmissive member having a large spectral transmittance so that the light receiving rate does not decrease. Furthermore, in this embodiment, in order to simplify the manufacturing process without increasing the number of photolithography processes for forming the color filter, the transmissive member 340b is filled with the same members as the upper and lower members of the transmissive member 340b. Composed.

反対に、透過部材340aは斜め入射光による隣接画素へのクロストーク光量を抑制するために、透過部材340bよりも分光透過率を小さくするか、隣接画素と同じ分光透過率とするか、2つ隣の画素(第2隣接画素)と同じ分光透過率とする。   On the other hand, the transmission member 340a has a smaller spectral transmittance than the transmission member 340b or the same spectral transmittance as that of the adjacent pixel in order to suppress the amount of crosstalk to the adjacent pixel due to the oblique incident light. The spectral transmittance is the same as that of the adjacent pixel (second adjacent pixel).

図3(a)及び図4(a)では透過部材340aにおける透過部材340bが充填される開口部は、図11(a)に示すような四角形状であるが、図11(b)に示すような円形状でも良い。   In FIG. 3A and FIG. 4A, the opening filled with the transmission member 340b in the transmission member 340a has a quadrangular shape as shown in FIG. 11A, but as shown in FIG. 11B. A circular shape may be used.

図10に、マイクロレンズの光軸に平行に光が入射した場合の焦点検出用画素内の光強度分布の例を示す。ここで、Pは画素周期、fはマイクロレンズの焦点距離、dは透過部材の開口部の開口径、hは透過部材とマイクロレンズ焦点位置との距離、Hはマイクロレンズの主点である。図3及び図4の透過部材340aの開口部340bの開口径dは、マイクロレンズの光軸に平行に光が入射した場合の焦点検出用画素の受光感度が低下しないように、概ね、式(1)の条件を満たすように構成することが望ましい。画素周期Pが4.3μm、マイクロレンズの焦点距離fが6.5μm、透過部材とマイクロレンズ焦点位置との距離hが3.9μmの例では、透過部材の開口部の開口径dは2.73μmである。   FIG. 10 shows an example of the light intensity distribution in the focus detection pixel when light enters parallel to the optical axis of the microlens. Here, P is the pixel period, f is the focal length of the microlens, d is the aperture diameter of the opening of the transmissive member, h is the distance between the transmissive member and the microlens focal position, and H is the principal point of the microlens. The opening diameter d of the opening 340b of the transmissive member 340a in FIGS. 3 and 4 is generally expressed by an expression (not shown) so that the light receiving sensitivity of the focus detection pixel does not decrease when light enters parallel to the optical axis of the microlens. It is desirable to configure so as to satisfy the condition 1). In an example in which the pixel period P is 4.3 μm, the focal length f of the microlens is 6.5 μm, and the distance h between the transmitting member and the microlens focal position is 3.9 μm, the opening diameter d of the opening of the transmitting member is 2. 73 μm.

d=h/√{(f/p)2−1/4}・・・(1)
図3及び図4の透過部材340aの開口部340bは、図3の遮光層330a(図4の遮光層330b)の開口部331a、331bの光軸からの偏心量などに合わせて、光軸から偏心させて構成しても良い。
d = h / √ {(f / p) 2 −1/4} (1)
The opening 340b of the transmissive member 340a in FIGS. 3 and 4 is formed from the optical axis in accordance with the amount of eccentricity from the optical axis of the openings 331a and 331b of the light shielding layer 330a in FIG. 3 (the light shielding layer 330b in FIG. 4). You may make it eccentric.

比較のために、図8及び図9を用いて従来の構成について説明する。   For comparison, a conventional configuration will be described with reference to FIGS.

図8(a)はG撮像画素とR撮像画素が隣接する従来のCMOS撮像素子の平面図、図8(b)は図8(a)のd−d断面であって、R撮像画素に入射光が斜めに入射した場合の画素内部での光強度分布の一例を示している。一方、図9(a)は撮像画素と白色(W)焦点検出用画素が隣接する従来のCMOS撮像素子の平面図、図9(b)は図9(a)のe−e断面であって、W焦点検出用画素に入射光が斜めに入射した場合の画素内部での光線(図中の矢印)の光路の一例を示している。図8及び図9の340G、340W、340Rは透過部材であり、一般的にはベイヤー配列の規則に即したカラーフィルタが配置される。図8(b)と図9(b)を比較すると、斜め入射光による隣接画素へのクロストーク光量が、図9(b)の方が多くなる。このように、焦点検出用画素の構成が、撮影画素の構成と異なることにより、斜め入射光による焦点検出用画素から隣接画素へのクロストーク光量と、撮影画素から隣接画素へのクロストーク光量が異なってしまう。   8A is a plan view of a conventional CMOS image sensor in which a G image pickup pixel and an R image pickup pixel are adjacent to each other, and FIG. 8B is a dd cross section of FIG. 8A and is incident on the R image pickup pixel. An example of the light intensity distribution inside the pixel when light is incident obliquely is shown. On the other hand, FIG. 9A is a plan view of a conventional CMOS image sensor in which an imaging pixel and a white (W) focus detection pixel are adjacent to each other, and FIG. 9B is an ee cross section of FIG. 4 shows an example of an optical path of light rays (arrows in the drawing) inside the pixel when incident light is incident on the W focus detection pixel obliquely. 340G, 340W, and 340R in FIGS. 8 and 9 are transmissive members, and generally color filters that conform to the rules of the Bayer arrangement are arranged. Comparing FIG. 8B and FIG. 9B, the crosstalk light amount to the adjacent pixels due to the oblique incident light is larger in FIG. 9B. As described above, since the configuration of the focus detection pixel is different from the configuration of the photographing pixel, the crosstalk light amount from the focus detection pixel to the adjacent pixel due to the oblique incident light and the crosstalk light amount from the photographing pixel to the adjacent pixel are increased. It will be different.

[効果の説明]次に、図7を参照して、本実施形態の効果について説明する。   [Explanation of Effects] Next, effects of the present embodiment will be described with reference to FIG.

図7は本実施形態の撮像画素と焦点検出用画素が隣接する撮像素子の断面図であって、入射光が斜めに入射した場合の画素内部での光強度分布の一例を示している。   FIG. 7 is a cross-sectional view of an imaging device in which the imaging pixel and the focus detection pixel of this embodiment are adjacent to each other, and shows an example of the light intensity distribution inside the pixel when incident light is incident obliquely.

図7に示すように、焦点検出用画素の透過部材340aの分光透過率は、、第2隣接画素(2つ隣のR撮像画素)のRカラーフィルタの分光透過率と同じであり、透過部材340bの分光透過率は白色(W)の分光透過率となっている。本実施形態の焦点検出用画素では、周辺部分の透過部材340aは可視域の分光透過率が小さく、中央部分の透過部材340bは可視域の分光透過率が大きくなるように構成される。また、焦点検出用画素の透過部材の一部(開口部)は、焦点検出用画素の受光感度を保つために、可視域の分光透過率が撮像画素よりも大きい。   As shown in FIG. 7, the spectral transmittance of the transmissive member 340a of the focus detection pixel is the same as the spectral transmittance of the R color filter of the second adjacent pixel (two adjacent R imaging pixels), and the transmissive member The spectral transmittance of 340b is white (W). In the focus detection pixel of the present embodiment, the transmissive member 340a in the peripheral portion is configured to have a small spectral transmittance in the visible region, and the transmissive member 340b in the central portion is configured to have a large spectral transmittance in the visible region. In addition, a part of the transmission member of the focus detection pixel (opening) has a spectral transmittance in the visible region larger than that of the imaging pixel in order to maintain the light receiving sensitivity of the focus detection pixel.

本実施形態の構成により、図9(b)の従来例で生じていた斜め入射光による隣接画素へのクロストーク光が、可視域の分光透過率が小さい透過部材340aにより吸収され、減少する。図7の構成と図9(b)の従来例とを比較すると、図7の構成によって焦点検出用画素から隣接画素へのクロストーク光量が低減されるので、図8(b)の撮影画素から隣接画素へのクロストーク光量による差異が低減される。   With the configuration of the present embodiment, crosstalk light to adjacent pixels due to obliquely incident light that occurred in the conventional example of FIG. 9B is absorbed and reduced by the transmissive member 340a having a small visible spectral transmittance. When the configuration of FIG. 7 is compared with the conventional example of FIG. 9B, the amount of crosstalk from the focus detection pixel to the adjacent pixel is reduced by the configuration of FIG. Difference due to the amount of crosstalk light to adjacent pixels is reduced.

このように、本実施形態によれば、斜め入射光による焦点検出用画素から隣接画素へのクロストーク光量と、撮影画素から隣接画素へのクロストーク光量の差異を低減することができる。   As described above, according to the present embodiment, it is possible to reduce the difference between the crosstalk light amount from the focus detection pixel to the adjacent pixel and the crosstalk light amount from the photographing pixel to the adjacent pixel due to the oblique incident light.

焦点検出用画素から隣接画素へのクロストーク光量と、撮影画素から隣接画素へのクロストーク光量の差異をより低減するために、焦点検出用画素の透過部材340aの分光透過率は、撮像素子全体の透過部材の配列(例えば、ベイヤー配列)に即して設定され、第2隣接画素(2つ隣の画素)の透過部材の分光透過率と同等であることが望ましい。   In order to further reduce the difference between the crosstalk light amount from the focus detection pixel to the adjacent pixel and the crosstalk light amount from the imaging pixel to the adjacent pixel, the spectral transmittance of the transmission member 340a of the focus detection pixel It is desirable that the transmission member is set in accordance with the arrangement of the transmissive members (for example, Bayer arrangement) and is equal to the spectral transmittance of the transmissive member of the second adjacent pixel (two adjacent pixels).

また、図6に示すように、隣接撮像画素の透過部材340に対して、焦点検出用画素の透過部材340aの一部が重なり合った構成となっても良い。   In addition, as illustrated in FIG. 6, a configuration may be adopted in which part of the transmission member 340 a of the focus detection pixel overlaps the transmission member 340 of the adjacent imaging pixel.

また、製造プロセスを簡略化するために、焦点検出用画素に隣接する撮像画素の透過部材340の分光透過率と焦点検出用画素の透過部材340bの分光透過率とを同等としても良い。   In order to simplify the manufacturing process, the spectral transmittance of the transmissive member 340 of the imaging pixel adjacent to the focus detection pixel may be equal to the spectral transmittance of the transmissive member 340b of the focus detection pixel.

以上説明したように、本実施形態によれば、斜め入射光による焦点検出用画素から隣接画素へのクロストーク光量と、撮影画素から隣接画素へのクロストーク光量の差異を低減することができる。   As described above, according to the present embodiment, it is possible to reduce the difference between the crosstalk light amount from the focus detection pixel to the adjacent pixel and the crosstalk light amount from the photographing pixel to the adjacent pixel due to the oblique incident light.

Claims (12)

結像光学系の瞳領域を通過する光束を受光する複数の撮像画素と、
前記瞳領域の部分領域である瞳部分領域を通過する所定の波長成分を含む光束を受光する複数の焦点検出用画素と、を有し、
前記瞳領域の重心と前記瞳部分領域の重心とが異なっている撮像素子であって、
前記焦点検出用画素に前記所定の波長成分において異なる複数の分光透過率を有する前記光束が透過可能な透過部材を配置し、
前記透過部材は、前記所定の波長成分において前記撮像画素に隣接する周辺部分の分光透過率が中央部分の分光透過率よりも小さくなるように構成されることを特徴とする撮像素子。
A plurality of imaging pixels for receiving a light beam passing through a pupil region of the imaging optical system;
A plurality of focus detection pixels that receive a light beam including a predetermined wavelength component that passes through a pupil partial region that is a partial region of the pupil region;
An imaging device in which the center of gravity of the pupil region and the center of gravity of the pupil partial region are different,
A transmission member capable of transmitting the luminous flux having a plurality of different spectral transmittances in the predetermined wavelength component is disposed in the focus detection pixel;
The imaging device, wherein the transmission member is configured such that a spectral transmittance of a peripheral portion adjacent to the imaging pixel in the predetermined wavelength component is smaller than a spectral transmittance of a central portion.
前記中央部分の分光透過率を有する透過部材は、当該透過部材の上下の部材と同じ部材で構成されることを特徴とする請求項1に記載の撮像素子。   The imaging element according to claim 1, wherein the transmission member having the spectral transmittance of the central portion is configured by the same member as the upper and lower members of the transmission member. 前記中央部分の分光透過率は、白色の分光透過率であることを特徴とする請求項1に記載の撮像素子。   The image sensor according to claim 1, wherein the spectral transmittance of the central portion is white spectral transmittance. 前記周辺部分の分光透過率は、前記焦点検出用画素と隣接する撮像画素の透過部材と同じ分光透過率を有することを特徴とする請求項1乃至3のいずれか1項に記載の撮像素子。   4. The image sensor according to claim 1, wherein the spectral transmittance of the peripheral portion has the same spectral transmittance as that of a transmissive member of an imaging pixel adjacent to the focus detection pixel. 前記焦点検出用画素の透過部材は、前記焦点検出用画素と隣接する撮像画素の透過部材に対して一部が重なり合っていることを特徴とする請求項4に記載の撮像素子。   The imaging element according to claim 4, wherein a part of the transmission member of the focus detection pixel overlaps a transmission member of an imaging pixel adjacent to the focus detection pixel. 前記周辺部分の分光透過率は、撮像素子全体の透過部材の配列に即して設定され、2つ隣の第2隣接画素の透過部材と同じ分光透過率を有することを特徴とする請求項1乃至3のいずれか1項に記載の撮像素子。   2. The spectral transmittance of the peripheral portion is set in accordance with the arrangement of the transmissive members of the entire image sensor, and has the same spectral transmittance as that of the transmissive members of the two adjacent pixels adjacent to each other. 4. The imaging device according to any one of items 1 to 3. 前記焦点検出用画素は、第1焦点検出用画素と第2焦点検出用画素を含み、
前記第1焦点検出用画素の第1瞳部分領域の重心と、前記第2焦点検出用画素の第2瞳部分領域の重心とを光軸に対して互いに反対方向に偏心させ、
前記第1瞳部分領域の重心と、前記第2瞳部分領域の重心とを所定の瞳距離で平均することで、前記瞳領域の重心と一致させていることを特徴とする請求項1乃至6のいずれか1項に記載の撮像素子。
The focus detection pixels include a first focus detection pixel and a second focus detection pixel,
Decentering the centroid of the first pupil partial region of the first focus detection pixel and the centroid of the second pupil partial region of the second focus detection pixel in opposite directions with respect to the optical axis;
7. The center of gravity of the first pupil partial region and the center of gravity of the second pupil partial region are averaged at a predetermined pupil distance to match the center of gravity of the pupil region. The imaging device according to any one of the above.
請求項1乃至7のいずれか1項に記載の撮像素子と、
前記焦点検出用画素からの信号を用いて焦点検出を行う焦点検出手段と、
前記焦点検出手段による検出結果に応じて合焦状態になるように前記結像光学系を制御する制御手段と、を有することを特徴とする撮像装置。
The imaging device according to any one of claims 1 to 7,
Focus detection means for performing focus detection using a signal from the focus detection pixel;
An imaging apparatus comprising: control means for controlling the imaging optical system so as to be in a focused state in accordance with a detection result by the focus detection means.
前記焦点検出手段は、前記焦点検出用画素を用いて瞳分割位相差方式の焦点検出を行うことを特徴とする請求項8に記載の撮像装置。   9. The imaging apparatus according to claim 8, wherein the focus detection unit performs pupil division phase difference type focus detection using the focus detection pixels. 結像光学系の瞳領域を通過する光束を受光する複数の撮像画素と、前記撮像画素の近傍の焦点検出用画素と、を有する撮像素子であって、  An imaging device having a plurality of imaging pixels that receive a light beam passing through a pupil region of an imaging optical system, and focus detection pixels in the vicinity of the imaging pixels,
前記撮像画素に所定の波長成分における分光透過率を有するカラーフィルタを配置し、  A color filter having a spectral transmittance in a predetermined wavelength component is disposed in the imaging pixel,
前記焦点検出用画素に前記所定の波長成分における前記カラーフィルタと異なる分光透過率を有する第1の透過部材と、前記第1の透過部材の周辺部分であって前記焦点検出用画素の近傍の撮像画素のカラーフィルタの分光透過率と略一致する第2の透過部材とを配置することを特徴とする撮像素子。  A first transmissive member having a spectral transmittance different from that of the color filter in the predetermined wavelength component in the focus detection pixel, and an image of the vicinity of the focus detection pixel in a peripheral portion of the first transmissive member An image pickup device comprising: a second transmission member that substantially matches a spectral transmittance of a color filter of a pixel.
前記焦点検出用画素の近傍の撮像画素は前記焦点検出用画素に隣接することを特徴とする請求項10に記載の撮像素子。  The imaging device according to claim 10, wherein an imaging pixel in the vicinity of the focus detection pixel is adjacent to the focus detection pixel. 前記焦点検出用画素の近傍の撮像画素は前記焦点検出用画素の2つ隣に位置することを特徴とする請求項10に記載の撮像素子。  The imaging device according to claim 10, wherein an imaging pixel in the vicinity of the focus detection pixel is positioned next to the focus detection pixel.
JP2013054139A 2013-03-15 2013-03-15 Imaging device and imaging apparatus Expired - Fee Related JP6222949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013054139A JP6222949B2 (en) 2013-03-15 2013-03-15 Imaging device and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013054139A JP6222949B2 (en) 2013-03-15 2013-03-15 Imaging device and imaging apparatus

Publications (2)

Publication Number Publication Date
JP2014178638A JP2014178638A (en) 2014-09-25
JP6222949B2 true JP6222949B2 (en) 2017-11-01

Family

ID=51698605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013054139A Expired - Fee Related JP6222949B2 (en) 2013-03-15 2013-03-15 Imaging device and imaging apparatus

Country Status (1)

Country Link
JP (1) JP6222949B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180024604A (en) * 2016-08-30 2018-03-08 삼성전자주식회사 Image sensor and driving method thereof
JP7218193B2 (en) * 2019-01-31 2023-02-06 キヤノン株式会社 Imaging device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179786A (en) * 2001-12-11 2003-06-27 Nippon Sheet Glass Co Ltd Image pickup optical system and electronic imaging apparatus using the same
JP2007322898A (en) * 2006-06-02 2007-12-13 Nikon Corp Focus detecting device and camera
JP5163068B2 (en) * 2007-11-16 2013-03-13 株式会社ニコン Imaging device
JP4973478B2 (en) * 2007-12-11 2012-07-11 ソニー株式会社 Imaging device and imaging apparatus
JP5593602B2 (en) * 2008-09-24 2014-09-24 ソニー株式会社 Imaging device and imaging apparatus
JP2010287627A (en) * 2009-06-09 2010-12-24 Canon Inc Solid-state imaging apparatus
JP5894728B2 (en) * 2009-09-09 2016-03-30 富士フイルム株式会社 Wafer level lens, lens module and imaging unit, wafer level lens manufacturing method, lens module manufacturing method, and imaging unit manufacturing method
JP5744545B2 (en) * 2011-01-31 2015-07-08 キヤノン株式会社 Solid-state imaging device and camera
JP5861257B2 (en) * 2011-02-21 2016-02-16 ソニー株式会社 Imaging device and imaging apparatus

Also Published As

Publication number Publication date
JP2014178638A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
JP6288909B2 (en) Imaging device and imaging apparatus
JP5513326B2 (en) Imaging device and imaging apparatus
JP5967950B2 (en) Imaging device and imaging apparatus
JP6120508B2 (en) Imaging device and imaging apparatus
JP5552214B2 (en) Focus detection device
JP6016396B2 (en) Imaging device and imaging apparatus
JP5898481B2 (en) Imaging apparatus and focus detection method
JP6174940B2 (en) Imaging device and imaging apparatus
JP2012216940A (en) Image sensor and image capturing apparatus
KR101950689B1 (en) Image processing apparatus, image capturing apparatus, image processing method, program, and storage medium
US20140071322A1 (en) Image pickup apparatus with image pickup device and control method for image pickup apparatus
JP7100735B2 (en) Image sensor and image sensor
JP6671130B2 (en) Imaging device, imaging device, focus detection device, image processing device, and control method therefor
JP2019041178A (en) Image sensor and imaging apparatus using the same
JP6222949B2 (en) Imaging device and imaging apparatus
JP2017188633A (en) Imaging device and imaging apparatus
JP5961208B2 (en) Imaging device and imaging apparatus
KR20170015158A (en) Control apparatus, image pickup apparatus, and control method
JP2012118269A (en) Imaging device
JP6232108B2 (en) Imaging device and imaging apparatus
JP2018107460A (en) Imaging element and imaging device
JP2016048738A (en) Image sensor and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171003

R151 Written notification of patent or utility model registration

Ref document number: 6222949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees