JP6218473B2 - Electroless Ni-P-Sn plating solution - Google Patents

Electroless Ni-P-Sn plating solution Download PDF

Info

Publication number
JP6218473B2
JP6218473B2 JP2013151613A JP2013151613A JP6218473B2 JP 6218473 B2 JP6218473 B2 JP 6218473B2 JP 2013151613 A JP2013151613 A JP 2013151613A JP 2013151613 A JP2013151613 A JP 2013151613A JP 6218473 B2 JP6218473 B2 JP 6218473B2
Authority
JP
Japan
Prior art keywords
complexing agent
electroless
plating solution
acid
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013151613A
Other languages
Japanese (ja)
Other versions
JP2015021178A (en
Inventor
由加利 小野
由加利 小野
恒太 小野寺
恒太 小野寺
齋藤 博之
博之 齋藤
廣一 志方
廣一 志方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualtec Co Ltd
Original Assignee
Qualtec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualtec Co Ltd filed Critical Qualtec Co Ltd
Priority to JP2013151613A priority Critical patent/JP6218473B2/en
Publication of JP2015021178A publication Critical patent/JP2015021178A/en
Application granted granted Critical
Publication of JP6218473B2 publication Critical patent/JP6218473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemically Coating (AREA)

Description

本発明は、無電解ニッケル−リン−スズ(Ni−P−Sn)めっき液及び無電解Ni−P−Snめっき方法に関する。   The present invention relates to an electroless nickel-phosphorus-tin (Ni-P-Sn) plating solution and an electroless Ni-P-Sn plating method.

次亜リン酸塩を還元剤とする無電解ニッケルめっき浴から得られるNi−P皮膜は、電析ニッケル皮膜に比較して優れた耐食性を示す。Ni−P皮膜の中でも、特にP含量の多い皮膜が耐食性に優れているが、ニッケルに他の金属元素を添加して合金化することにより、さらに耐食性、硬さなどの特性が優れた無電解めっき皮膜を作製することができる。   A Ni-P film obtained from an electroless nickel plating bath using hypophosphite as a reducing agent exhibits excellent corrosion resistance as compared with an electrodeposited nickel film. Among Ni-P coatings, coatings with a high P content are particularly excellent in corrosion resistance, but by adding other metal elements to nickel for alloying, electroless properties with excellent corrosion resistance, hardness, etc. A plating film can be produced.

Ni−P−Sn合金めっきでは、Sn含有量が高くなるほど耐食性が向上するとされている。このことからSn含有量のより高いNi−P−Sn合金めっき皮膜を形成することが可能な無電解めっき液の開発が行われている(例えば、特許文献1)。特許文献1には、2価のNiイオン:0.05〜0.12mol/L、2価のNiイオンに対するクエン酸イオンのモル比:1.2以上3未満、4価のSnイオン:0.04〜0.08mol/L、グルコン酸イオン:4価のSnイオンの等モル以上、次亜リン酸イオン:0.1〜0.3mol/Lを含むと共に、pHが8〜12に調整された水溶液からなる無電解Ni−Sn−Pめっき液が記載されている。   In Ni-P-Sn alloy plating, it is said that the corrosion resistance improves as the Sn content increases. For this reason, an electroless plating solution capable of forming a Ni—P—Sn alloy plating film having a higher Sn content has been developed (for example, Patent Document 1). In Patent Document 1, divalent Ni ions: 0.05 to 0.12 mol / L, molar ratio of citrate ions to divalent Ni ions: 1.2 or more and less than 3, tetravalent Sn ions: 0. 04-0.08 mol / L, gluconate ion: equimolar or more of tetravalent Sn ion, hypophosphite ion: 0.1-0.3 mol / L and pH was adjusted to 8-12 An electroless Ni—Sn—P plating solution comprising an aqueous solution is described.

しかしながら、特許文献1では皮膜の耐食性評価はなされておらず、また、めっき液中のSnイオン濃度が同じ場合でも皮膜の析出速度に大きな差があった。これらのことから、特許文献1に記載のめっき液では、Snイオン濃度に関係なく、速い析出速度で耐食性の高いNi−P−Sn合金めっき皮膜を形成することが難しかった。   However, Patent Document 1 does not evaluate the corrosion resistance of the film, and there is a large difference in the film deposition rate even when the Sn ion concentration in the plating solution is the same. For these reasons, with the plating solution described in Patent Document 1, it is difficult to form a Ni—P—Sn alloy plating film having high corrosion resistance at a high deposition rate regardless of the Sn ion concentration.

特開平6−256963号公報JP-A-6-256963

本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、めっき液中のSnイオン濃度に関係なく、速い析出速度で耐食性の高いNi−P−Sn合金めっき皮膜を形成することが可能な無電解Ni−P−Snめっき液を提供することである。   The present invention has been made in view of the current state of the prior art described above, and its main purpose is Ni-P-Sn alloy plating with a high deposition rate and high corrosion resistance regardless of the Sn ion concentration in the plating solution. An electroless Ni—P—Sn plating solution capable of forming a film is provided.

本発明者らは、上記した目的を達成すべく鋭意研究を重ねた結果、無電解Ni−P−Snめっき液を建浴するに際して、錯化剤として、オキシカルボン酸と、アミノカルボン酸及び/又はエチレンジアミン誘導体とを併用し、4価のSnイオンとオキシカルボン酸とアミノカルボン酸及び/又はエチレンジアミン誘導体とのモル比を特定の範囲に設定することにより、めっき液中のSnイオン濃度に関係なく、速い析出速度で耐食性の高いNi−P−Sn合金めっき皮膜を形成することができることを見出し、ここに本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned object, the present inventors, as a complexing agent, used oxycarboxylic acid, aminocarboxylic acid and / or as a complexing agent when building an electroless Ni—P—Sn plating solution. Or by using together with ethylenediamine derivative, and setting the molar ratio of tetravalent Sn ion, oxycarboxylic acid, aminocarboxylic acid and / or ethylenediamine derivative to a specific range, regardless of Sn ion concentration in the plating solution The present inventors have found that a Ni-P-Sn alloy plating film having high corrosion resistance can be formed at a high deposition rate, and the present invention has been completed here.

即ち、本発明は、下記の無電解Ni−P−Snめっき液及び無電解Ni−P−Snめっき方法を提供するものである。
1.水溶性ニッケル塩、次亜リン酸又はその塩、水溶性の4価スズ化合物、第1錯化剤、及び第2錯化剤を含有する水溶液であって、前記第1錯化剤がオキシカルボン酸又はその塩であり、第2錯化剤がアミノカルボン酸及びエチレンジアミン誘導体からなる群から選択される少なくとも1種であり、前記水溶性の4価スズ化合物、前記第1錯化剤及び前記第2錯化剤のモル比が1:(10〜25):(1〜5)である、無電解Ni−P−Snめっき液。
2.前記第1錯化剤が、グリコール酸、クエン酸、リンゴ酸、乳酸、サリチル酸、酒石酸、及びそれらの塩からなる群から選択される少なくとも1種である、上記項1に記載の無電解Ni−P−Snめっき液。
3.前記第2錯化剤が、グリシン、アラニン、エチレンジアミン四酢酸、N−(2−ヒドロキシエチル)エチレンジアミン−N,N’,N’−三酢酸、及びN,N,N’,N’−テトラキス(2−ヒドロキシエチル)エチレンジアミンからなる群から選択される少なくとも1種である、上記項1又は2に記載の無電解Ni−P−Snめっき液。
4.上記項1〜3のいずれか1項に記載の無電解Ni−P−Snめっき液に被めっき物を接触させる、無電解Ni−P−Snめっき方法。
That is, the present invention provides the following electroless Ni—P—Sn plating solution and electroless Ni—P—Sn plating method.
1. An aqueous solution containing a water-soluble nickel salt, hypophosphorous acid or a salt thereof, a water-soluble tetravalent tin compound, a first complexing agent, and a second complexing agent, wherein the first complexing agent is oxycarboxylic An acid or a salt thereof, and the second complexing agent is at least one selected from the group consisting of aminocarboxylic acids and ethylenediamine derivatives, the water-soluble tetravalent tin compound, the first complexing agent, and the first complexing agent. An electroless Ni—P—Sn plating solution in which the molar ratio of the two complexing agents is 1: (10-25) :( 1-5).
2. The electroless Ni- according to Item 1, wherein the first complexing agent is at least one selected from the group consisting of glycolic acid, citric acid, malic acid, lactic acid, salicylic acid, tartaric acid, and salts thereof. P-Sn plating solution.
3. The second complexing agent is glycine, alanine, ethylenediaminetetraacetic acid, N- (2-hydroxyethyl) ethylenediamine-N, N ′, N′-triacetic acid, and N, N, N ′, N′-tetrakis ( The electroless Ni—P—Sn plating solution according to Item 1 or 2, which is at least one selected from the group consisting of 2-hydroxyethyl) ethylenediamine.
4). The electroless Ni-P-Sn plating method which makes a to-be-plated object contact the electroless Ni-P-Sn plating solution of any one of said items 1-3.

本発明の無電解Ni−P−Snめっき液によれば、耐食性の高いNi−P−Sn合金皮膜を6μm/時以上の速い析出速度で形成することができる。さらに、本発明の無電解Ni−P−Snめっき液は、めっき液中のSnイオン含有量を変化させた場合でも、めっき析出速度の変化が小さく、速い析出速度を維持することが可能である。   According to the electroless Ni—P—Sn plating solution of the present invention, an Ni—P—Sn alloy film having high corrosion resistance can be formed at a high deposition rate of 6 μm / hour or more. Furthermore, even when the electroless Ni—P—Sn plating solution of the present invention changes the Sn ion content in the plating solution, the change in the plating deposition rate is small and it is possible to maintain a high deposition rate. .

本発明の無電解Ni−P−Snめっき液は、水溶性ニッケル塩、次亜リン酸又はその塩、水溶性の4価スズ化合物、第1錯化剤、及び第2錯化剤を含有する水溶液であって、前記第1錯化剤がオキシカルボン酸又はその塩であり、第2錯化剤がアミノカルボン酸及びエチレンジアミン誘導体からなる群から選択される少なくとも1種であり、前記水溶性の4価のスズ化合物、前記第1錯化剤及び前記第2錯化剤のモル比が1:(10〜25):(1〜5)である。   The electroless Ni—P—Sn plating solution of the present invention contains a water-soluble nickel salt, hypophosphorous acid or a salt thereof, a water-soluble tetravalent tin compound, a first complexing agent, and a second complexing agent. An aqueous solution, wherein the first complexing agent is oxycarboxylic acid or a salt thereof, and the second complexing agent is at least one selected from the group consisting of an aminocarboxylic acid and an ethylenediamine derivative, and the water-soluble The molar ratio of the tetravalent tin compound, the first complexing agent and the second complexing agent is 1: (10-25) :( 1-5).

本発明の無電解Ni−P−Snめっき液は、水溶性ニッケル塩として、従来の無電解Ni−P−Snめっき液に配合されているものと同様の化合物を用いることができる。このような水溶性ニッケル塩の具体例として、例えば、硫酸ニッケル、塩化ニッケル等の無機ニッケル塩を挙げることができる。水溶性ニッケル塩は、一種単独で又は二種類以上を混合して用いることができる。   In the electroless Ni—P—Sn plating solution of the present invention, the same compound as that blended in the conventional electroless Ni—P—Sn plating solution can be used as the water-soluble nickel salt. Specific examples of such water-soluble nickel salts include inorganic nickel salts such as nickel sulfate and nickel chloride. A water-soluble nickel salt can be used individually by 1 type or in mixture of 2 or more types.

めっき液中の水溶性ニッケル塩の濃度は、金属ニッケルとして、0.05〜0.18mol/L程度とすることが好ましく、0.1〜0.15mol/L程度とすることがより好ましい。このような濃度とすることで、めっき析出速度を遅くすることを防止することができ、析出した皮膜が適正なNi含有量を有することができる。   The concentration of the water-soluble nickel salt in the plating solution is preferably about 0.05 to 0.18 mol / L, more preferably about 0.1 to 0.15 mol / L, as metallic nickel. By setting such a concentration, it is possible to prevent the plating deposition rate from being slowed, and the deposited film can have an appropriate Ni content.

本発明の無電解Ni−P−Snめっき液では、還元剤として、次亜リン酸又はその塩を用いる。次亜リン酸又はその塩の具体例として、次亜リン酸、次亜リン酸ナトリウム、次亜リン酸カリウム等を挙げることができる。   In the electroless Ni—P—Sn plating solution of the present invention, hypophosphorous acid or a salt thereof is used as a reducing agent. Specific examples of hypophosphorous acid or a salt thereof include hypophosphorous acid, sodium hypophosphite, potassium hypophosphite and the like.

めっき液中の還元剤濃度は0.1〜0.5mol/L程度とすることが好ましく、0.2〜0.4mol/L程度とすることがより好ましい。このような濃度とすることで、めっき析出速度を遅くすることを防止することができるとともに、めっき液の分解を防止することができる。   The reducing agent concentration in the plating solution is preferably about 0.1 to 0.5 mol / L, more preferably about 0.2 to 0.4 mol / L. By setting it as such a density | concentration, it can prevent that a plating deposition rate is made slow, and can prevent decomposition | disassembly of a plating solution.

水溶性の4価スズ化合物としては、水に溶けて4価のスズイオンを供給することができるスズ化合物を用いる。水溶性スズ化合物として、例えば、塩化スズ(IV)(SnCl)、硫酸スズ(IV)(Sn(SO)等の無機スズ塩等を挙げることができる。本発明では、上記水溶性スズ化合物は、一種単独で又は二種以上を混合して用いることができる。 As the water-soluble tetravalent tin compound, a tin compound that is soluble in water and can supply tetravalent tin ions is used. Examples of the water-soluble tin compound include inorganic tin salts such as tin (IV) chloride (SnCl 4 ) and tin (IV) sulfate (Sn (SO 4 ) 2 ). In this invention, the said water-soluble tin compound can be used individually by 1 type or in mixture of 2 or more types.

めっき液中の水溶性4価スズ化合物の濃度は、通常、0.005〜0.15mol/L程度であり、好ましくは0.02〜0.13mol/L程度である。めっき液に、このような範囲でSnイオンを添加することで、Snを0.3〜25重量%程度含む、Ni−P皮膜よりも耐食性の高い皮膜を得ることができる。   The concentration of the water-soluble tetravalent tin compound in the plating solution is usually about 0.005 to 0.15 mol / L, preferably about 0.02 to 0.13 mol / L. By adding Sn ions to the plating solution in such a range, it is possible to obtain a film having higher corrosion resistance than Ni-P film containing about 0.3 to 25% by weight of Sn.

本発明の無電解Ni−P−Snめっき液には、4価のスズイオンを溶解するために、第1錯化剤と第2錯化剤とを組み合わせて用いる。   In the electroless Ni—P—Sn plating solution of the present invention, a first complexing agent and a second complexing agent are used in combination in order to dissolve tetravalent tin ions.

第1錯化剤として、オキシカルボン酸又はその塩を用いる。オキシカルボン酸の具体例として、グリコール酸、クエン酸、リンゴ酸、乳酸、サリチル酸、酒石酸等を挙げることができる。オキシカルボン酸の塩として、そのナトリウム塩、カリウム塩等のアルカリ金属塩;カルシウム塩等のアルカリ土類金属塩;アンモニウム塩、アミン塩等を挙げることができる。これらの錯化剤は、一種単独又は二種以上混合して用いることができる。   As the first complexing agent, oxycarboxylic acid or a salt thereof is used. Specific examples of oxycarboxylic acid include glycolic acid, citric acid, malic acid, lactic acid, salicylic acid, tartaric acid and the like. Examples of the salt of oxycarboxylic acid include alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as calcium salt; ammonium salt and amine salt. These complexing agents can be used singly or in combination of two or more.

また、第2錯化剤としてアミノカルボン酸及びエチレンジアミン誘導体からなる群から選択される少なくとも1種を用いる。アミノカルボン酸の具体例として、グリシン、アラニン等を挙げることができる。エチレンジアミン誘導体の具体例として、エチレンジアミン四酢酸(EDTA)、N−(2−ヒドロキシエチル)エチレンジアミン−N,N’,N’−三酢酸(バーセノール)、N,N,N’,N’−テトラキス(2−ヒドロキシエチル)エチレンジアミン(クォードロール)等を挙げることができる。これらの錯化剤は、一種単独又は二種以上混合して用いることができる。   Further, at least one selected from the group consisting of aminocarboxylic acids and ethylenediamine derivatives is used as the second complexing agent. Specific examples of the aminocarboxylic acid include glycine and alanine. Specific examples of the ethylenediamine derivative include ethylenediaminetetraacetic acid (EDTA), N- (2-hydroxyethyl) ethylenediamine-N, N ′, N′-triacetic acid (Versenol), N, N, N ′, N′-tetrakis ( 2-hydroxyethyl) ethylenediamine (quadrol) and the like. These complexing agents can be used singly or in combination of two or more.

無電解Ni−P−Snめっき液に含まれる水溶性の4価スズ化合物と第1錯化剤と第2錯化剤とのモル比を1:(10〜25):(1〜5)、好ましくは1:(15〜20):(2〜3)に設定することが本発明の特徴である。4価スズ化合物と第1錯化剤と第2錯化剤とのモル比を1:(10〜25):(1〜5)とすることにより、耐食性の高いNi−P−Sn合金皮膜を速い析出速度で形成することができる。特に、2種類の錯化剤を特定の比率で併用することで、めっき液中のSnイオン含有量を変化させた場合でも、めっき析出速度の変化が小さく、速い析出速度を維持することが可能である。   The molar ratio of the water-soluble tetravalent tin compound, the first complexing agent and the second complexing agent contained in the electroless Ni—P—Sn plating solution is 1: (10-25) :( 1-5), It is a feature of the present invention that it is preferably set to 1: (15-20) :( 2-3). By setting the molar ratio of the tetravalent tin compound, the first complexing agent, and the second complexing agent to 1: (10-25) :( 1-5), a highly corrosion-resistant Ni—P—Sn alloy film is formed. It can be formed at a high deposition rate. In particular, when two kinds of complexing agents are used in a specific ratio, even when the Sn ion content in the plating solution is changed, the change in the plating deposition rate is small and it is possible to maintain a high deposition rate. It is.

第1錯化剤は、水溶性の4価スズ化合物1モルに対して、10〜25モルとなる量で添加する。水溶性4価スズ化合物の濃度が、0.005〜0.15mol/L程度である場合、第1錯化剤の濃度は通常0.05〜3.75mol/L程度であり、好ましくは0.1〜3.25mol/L程度である。第2錯化剤は、水溶性の4価スズ化合物1モルに対して、1〜5モルとなる量で添加する。水溶性4価スズ化合物の濃度が、0.005〜0.15mol/L程度である場合、第2錯化剤の濃度は通常0.005〜0.75mol/L程度であり、好ましくは0.02〜0.65mol/L程度である。錯化剤全体の濃度が低すぎると、水酸化ニッケルの沈殿が生じやすくなるので好ましくない。一方、錯化剤全体の濃度が高すぎると、めっき皮膜の析出速度が非常に遅くなり、更にめっき液の粘性が高くなるため、均一析出性が低下するので好ましくない。   A 1st complexing agent is added in the quantity used as 10-25 mol with respect to 1 mol of water-soluble tetravalent tin compounds. When the concentration of the water-soluble tetravalent tin compound is about 0.005 to 0.15 mol / L, the concentration of the first complexing agent is usually about 0.05 to 3.75 mol / L, preferably 0.8. It is about 1-3.25 mol / L. A 2nd complexing agent is added in the quantity used as 1-5 mol with respect to 1 mol of water-soluble tetravalent tin compounds. When the concentration of the water-soluble tetravalent tin compound is about 0.005 to 0.15 mol / L, the concentration of the second complexing agent is usually about 0.005 to 0.75 mol / L, preferably 0.8. It is about 02 to 0.65 mol / L. If the concentration of the complexing agent as a whole is too low, precipitation of nickel hydroxide tends to occur, which is not preferable. On the other hand, if the concentration of the complexing agent as a whole is too high, the deposition rate of the plating film becomes very slow, and the viscosity of the plating solution increases.

本発明の無電解Ni−P−Snめっき液には、更に必要に応じて、無電解Ni−Pめっき液に配合されている公知の各種添加剤を添加することができる。添加剤として、液安定剤(例えば、Pb、Bi等の金属系安定剤)、pH調整剤、光沢剤、平滑剤、励起剤、ピンホール防止剤、界面活性剤等を挙げることができる。これらの添加剤の種類及び量は、通常の無電解Ni−Pめっき液と同様とすればよい。   The electroless Ni—P—Sn plating solution of the present invention can be added with various known additives blended in the electroless Ni—P plating solution as required. Examples of additives include liquid stabilizers (for example, metal stabilizers such as Pb and Bi), pH adjusters, brighteners, smoothing agents, excitation agents, pinhole inhibitors, surfactants, and the like. The types and amounts of these additives may be the same as those of a normal electroless Ni—P plating solution.

本発明の無電解Ni−P−Snめっき液はpH3.5〜10程度とすることが好ましく、pH4〜9程度とすることがより好ましい。pHが10を超えると、めっき液の安定性が悪くなり、pH3.5未満であると、めっき析出速度が遅くなる。   The electroless Ni—P—Sn plating solution of the present invention is preferably about pH 3.5-10, more preferably about pH 4-9. When the pH exceeds 10, the stability of the plating solution is deteriorated, and when the pH is less than 3.5, the plating deposition rate is decreased.

本発明の無電解Ni−P−Snめっき液を用いて無電解Ni−P−Sn皮膜を形成する方法については特に限定なく、必要な厚さのNi−P−Snめっき皮膜が形成されるまで、被めっき物を無電解Ni−P−Snめっき液に接触させればよい。通常は、無電解Ni−P−Snめっき液中に被めっき物を浸漬する方法によって処理すればよい。   The method for forming an electroless Ni—P—Sn film using the electroless Ni—P—Sn plating solution of the present invention is not particularly limited, and until a Ni—P—Sn plating film having a required thickness is formed. The object to be plated may be brought into contact with the electroless Ni—P—Sn plating solution. Usually, it may be processed by a method of immersing an object to be plated in an electroless Ni—P—Sn plating solution.

無電解Ni−P−Snめっきを行う際の液温については、具体的なめっき液の組成によって異なるが、通常、50℃以上とすることが好ましく、60〜100℃程度とすることがより好ましい。めっき液の液温が低すぎる場合には、めっき析出反応が緩慢になってNi−P−Snめっき皮膜の未析出又は外観不良が生じやすくなる。一方、めっき液の温度が高過ぎると、めっき液の蒸発が激しくなってめっき液組成を所定の範囲内で維持することが困難となり、更に、めっき液の分解が生じ易くなるので好ましくない。また、必要に応じて、無電解Ni−P−Snめっき液を撹拌してもよい。   About the liquid temperature at the time of performing electroless Ni-P-Sn plating, although it changes with specific compositions of a plating solution, it is usually preferable to set it as 50 degreeC or more, and it is more preferable to set it as about 60-100 degreeC. . When the temperature of the plating solution is too low, the plating deposition reaction becomes slow, and the Ni-P-Sn plating film is not easily deposited or poor appearance is likely to occur. On the other hand, if the temperature of the plating solution is too high, evaporation of the plating solution becomes violent and it becomes difficult to maintain the plating solution composition within a predetermined range, and further, decomposition of the plating solution is liable to occur. Moreover, you may stir electroless Ni-P-Sn plating solution as needed.

被めっき物の種類については、特に限定はなく、従来の無電解Ni−Pめっきの対象物と同様のものを被めっき物とすることができる。前処理方法も従来の無電解Ni−Pめっきの場合と同様にすればよく、また、被めっき物に対する触媒付与処理も、必要に応じて従来法と同様にして行うことができる。   There is no limitation in particular about the kind of to-be-plated object, The thing similar to the target object of the conventional electroless Ni-P plating can be used as a to-be-plated object. The pretreatment method may be the same as in the case of the conventional electroless Ni—P plating, and the catalyst application treatment to the object to be plated can be performed as necessary in the same manner as the conventional method.

本発明のめっき液により形成されるめっき皮膜は、Ni−P−Sn三元合金皮膜である。具体的なめっき皮膜組成は、配合される各成分の割合等によって変わり得るが、通常、Niが65〜87重量%程度、Pが8〜13重量%程度、及びSnが0.3〜25重量%程度の範囲となる。   The plating film formed by the plating solution of the present invention is a Ni—P—Sn ternary alloy film. The specific plating film composition may vary depending on the proportion of each component to be blended, etc., but usually Ni is about 65 to 87% by weight, P is about 8 to 13% by weight, and Sn is 0.3 to 25% by weight. % Range.

以下、実施例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1〜5及び比較例1〜4
下記表1に示す組成の無電解めっき液を調製した。なお、比較例1は実施例1の錯化剤をクエン酸のみにしためっき液であり、比較例2は水溶性の4価スズ化合物、第1錯化剤、第2錯化剤のモル比が1:(10〜25):(1〜5)から外れるめっき液である。また、比較例3は特許文献1の発明例2のめっき液であり、比較例4は比較例1のめっき液からSnClを除いためっき液である。
Examples 1-5 and Comparative Examples 1-4
An electroless plating solution having the composition shown in Table 1 below was prepared. Comparative Example 1 is a plating solution in which the complexing agent of Example 1 is citric acid only, and Comparative Example 2 is a molar ratio of a water-soluble tetravalent tin compound, a first complexing agent, and a second complexing agent. Is a plating solution deviating from 1: (10-25) :( 1-5). Comparative Example 3 is a plating solution of Invention Example 2 of Patent Document 1, and Comparative Example 4 is a plating solution obtained by removing SnCl 4 from the plating solution of Comparative Example 1.

試験基板として、Fe板(製品名:山本鍍金試験機 ハルセル鉄板Zn引き)(25mm×100mm、厚さ:0.3mm)を用いた。上記Fe板を30%塩酸で処理してZnめっきを剥離した後、電解脱脂(エンボンドCA−S(メルテックス株式会社製)、1.0A/cm、室温、10分間)及び酸処理(硫酸100g/L、室温、2分間)を行い、表1に示すpH及び浴温の無電解めっき液で30分めっき処理を行った。なお、pHはアンモニアで調整した。 As a test substrate, an Fe plate (product name: Yamamoto plating tester, Hull cell iron plate Zn drawing) (25 mm × 100 mm, thickness: 0.3 mm) was used. After the Fe plate was treated with 30% hydrochloric acid to remove the Zn plating, electrolytic degreasing (Enbond CA-S (Meltex Co., Ltd.), 1.0 A / cm 2 , room temperature, 10 minutes) and acid treatment (sulfuric acid) 100 g / L, room temperature, 2 minutes), and a plating treatment was performed for 30 minutes with an electroless plating solution having a pH and a bath temperature shown in Table 1. The pH was adjusted with ammonia.

Figure 0006218473
Figure 0006218473

上記した方法で形成された各無電解めっき皮膜について、下記の方法で特性を評価した。結果を下記表2に示す。
1.含スズ率、含リン率及び含ニッケル率
めっき皮膜断面についてEDS元素分析を行った。
2.めっき析出速度
めっき皮膜断面の膜厚を測定し、膜厚及び浸漬時間からめっき析出速度を算出した。
3.めっき皮膜の耐食性試験
めっき膜厚が約5μmとなるように作製したサンプルを30%硝酸に浸漬し(浸漬面積:25mm×40mm)、浸漬10分後にめっき皮膜の表面観察を目視で観察した。評価基準は、以下のとおりである。
◎:光沢を維持し、全く侵されていない
○:光沢が鈍くなる
△:多少の変色が見られる
×:腐食する
The characteristics of each electroless plating film formed by the above-described method were evaluated by the following method. The results are shown in Table 2 below.
1. Tin content, phosphorus content and nickel content The EDS elemental analysis was performed on the plating film cross section.
2. Plating deposition rate The thickness of the plating film cross section was measured, and the plating deposition rate was calculated from the film thickness and immersion time.
3. Corrosion Resistance Test of Plating Film A sample prepared so that the plating film thickness was about 5 μm was immersed in 30% nitric acid (immersion area: 25 mm × 40 mm), and the surface of the plating film was observed visually after 10 minutes of immersion. The evaluation criteria are as follows.
◎: Gloss is maintained and not affected at all ○: Gloss becomes dull △: Some discoloration is observed ×: Corrosion

Figure 0006218473
Figure 0006218473

以上の結果から、比較例1〜3のめっき液を用いた場合、スズ化合物を含まない比較例4のめっき液から形成される皮膜よりも耐食性が高い皮膜が得られるが、めっき析出速度が遅いことがわかる。これに対して、実施例1〜5のめっき液は、いずれもめっき析出速度が6μm/時以上で、スズ化合物を含まない比較例4のめっき液から形成される皮膜よりも耐食性の高い皮膜が得られることがわかる。また、めっき液中のSnイオン濃度を増加させても、めっき析出速度はあまり変化せず、6μm/時以上の高い析出速度を維持している。   From the above results, when the plating solutions of Comparative Examples 1 to 3 are used, a coating having higher corrosion resistance than the coating formed from the plating solution of Comparative Example 4 that does not contain a tin compound is obtained, but the plating deposition rate is slow. I understand that. On the other hand, the plating solutions of Examples 1 to 5 each have a plating deposition rate of 6 μm / hour or more and a coating with higher corrosion resistance than the coating formed from the plating solution of Comparative Example 4 that does not contain a tin compound. It turns out that it is obtained. Moreover, even if the Sn ion concentration in the plating solution is increased, the plating deposition rate does not change so much, and a high deposition rate of 6 μm / hour or more is maintained.

Claims (4)

水溶性ニッケル塩、次亜リン酸又はその塩、水溶性の4価スズ化合物、第1錯化剤、及び第2錯化剤を含有する水溶液であって、前記第1錯化剤がオキシカルボン酸又はその塩であり、第2錯化剤がアミノカルボン酸及びエチレンジアミン誘導体からなる群から選択される少なくとも1種であり、前記水溶性の4価スズ化合物、前記第1錯化剤及び前記第2錯化剤のモル比が1:(15〜20):(2〜3)であり、pHが3.5〜10である、無電解Ni−P−Snめっき液。 An aqueous solution containing a water-soluble nickel salt, hypophosphorous acid or a salt thereof, a water-soluble tetravalent tin compound, a first complexing agent, and a second complexing agent, wherein the first complexing agent is oxycarboxylic An acid or a salt thereof, and the second complexing agent is at least one selected from the group consisting of aminocarboxylic acids and ethylenediamine derivatives, the water-soluble tetravalent tin compound, the first complexing agent, and the first complexing agent. molar ratio of 2 complexing agent Ri 1 :( 15-20) :( 2-3) der, pH is 3.5 to 10, an electroless Ni-P-Sn plating solution. 前記第1錯化剤が、グリコール酸、クエン酸、リンゴ酸、乳酸、サリチル酸、酒石酸、及びそれらの塩からなる群から選択される少なくとも1種である、請求項1に記載の無電解Ni−P−Snめっき液。   The electroless Ni- according to claim 1, wherein the first complexing agent is at least one selected from the group consisting of glycolic acid, citric acid, malic acid, lactic acid, salicylic acid, tartaric acid, and salts thereof. P-Sn plating solution. 前記第2錯化剤が、グリシン、アラニン、エチレンジアミン四酢酸、N−(2−ヒドロキシエチル)エチレンジアミン−N,N’,N’−三酢酸、及びN,N,N’,N’−テトラキス(2−ヒドロキシエチル)エチレンジアミンからなる群から選択される少なくとも1種である、請求項1又は2に記載の無電解Ni−P−Snめっき液。   The second complexing agent is glycine, alanine, ethylenediaminetetraacetic acid, N- (2-hydroxyethyl) ethylenediamine-N, N ′, N′-triacetic acid, and N, N, N ′, N′-tetrakis ( The electroless Ni-P-Sn plating solution according to claim 1 or 2, which is at least one selected from the group consisting of 2-hydroxyethyl) ethylenediamine. 請求項1〜3のいずれか1項に記載の無電解Ni−P−Snめっき液に被めっき物を接触させる、無電解Ni−P−Snめっき方法。   The electroless Ni-P-Sn plating method which makes a to-be-plated object contact the electroless Ni-P-Sn plating solution of any one of Claims 1-3.
JP2013151613A 2013-07-22 2013-07-22 Electroless Ni-P-Sn plating solution Active JP6218473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013151613A JP6218473B2 (en) 2013-07-22 2013-07-22 Electroless Ni-P-Sn plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013151613A JP6218473B2 (en) 2013-07-22 2013-07-22 Electroless Ni-P-Sn plating solution

Publications (2)

Publication Number Publication Date
JP2015021178A JP2015021178A (en) 2015-02-02
JP6218473B2 true JP6218473B2 (en) 2017-10-25

Family

ID=52485891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013151613A Active JP6218473B2 (en) 2013-07-22 2013-07-22 Electroless Ni-P-Sn plating solution

Country Status (1)

Country Link
JP (1) JP6218473B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756908A (en) * 2016-12-27 2017-05-31 上海应用技术大学 A kind of high temperature resistant Ni B Ce Composite electroless deposits layer and its ultrasound wave auxiliary preparation method thereof
CN111647882A (en) * 2020-05-18 2020-09-11 中国石油天然气集团有限公司 Chemical plating solution of Ni-Sn-P alloy plating layer and chemical plating layer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1070268B (en) * 1976-10-19 1985-03-29 Alfachimici Spa COMPOSITION FOR THE ANELECTRIC DEPOSITION OF NICKEL-BASED ALLOYS
JPS59215474A (en) * 1983-05-23 1984-12-05 Nec Corp Electroless plating bath
JPH06256963A (en) * 1993-03-04 1994-09-13 Univ Waseda Electroless ni-sn-p alloy plating solution
JPH06256964A (en) * 1993-03-04 1994-09-13 Univ Waseda Electroless ni-sn alloy plating solution
JPH06256962A (en) * 1993-03-04 1994-09-13 Univ Waseda Electroless ni-sn-p alloy plating solution
US5614003A (en) * 1996-02-26 1997-03-25 Mallory, Jr.; Glenn O. Method for producing electroless polyalloys
JP2001181894A (en) * 1999-12-27 2001-07-03 Osaka Gas Co Ltd Member for exhausting part or heat exchanging part of engine or turbine
JP2001192889A (en) * 1999-12-28 2001-07-17 Osaka Gas Co Ltd Member for compressor
JP2001256967A (en) * 2000-03-13 2001-09-21 Mitsui Mining & Smelting Co Ltd Anode material for nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2013014809A (en) * 2011-07-05 2013-01-24 Nippon Kanizen Kk Electroless nickel plating film and electroless nickel plating solution

Also Published As

Publication number Publication date
JP2015021178A (en) 2015-02-02

Similar Documents

Publication Publication Date Title
JP6298530B2 (en) Electroless nickel plating solution and electroless nickel plating method
TWI548782B (en) Cyanide-free acidic matte silver electroplating compositions and methods
JP2011520036A (en) Pd electrolyte bath and Pd-Ni electrolyte bath
TWI540223B (en) Autocatalytic plating bath composition for deposition of tin and tin alloys
KR102234060B1 (en) Aqueous electroless nickel-phosphorus alloy plating bath and method of using the same
TWI545232B (en) Zinc-iron alloy layer material
JP6218473B2 (en) Electroless Ni-P-Sn plating solution
JP5584922B2 (en) Trivalent chromium chemical conversion treatment solution for forming a trivalent chromium chemical conversion coating on zinc or zinc alloy plating
JP2022107487A (en) Platinum electrolytic plating bath ant platinum-plated product
JP6960677B2 (en) Electroless Ni-Fe alloy plating solution
EP2978877B1 (en) Electroplating bath for zinc-iron alloys, method for depositing zinc-iron alloy on a device and such a device
JP2008248318A (en) Electroless nickel plating method, and steel member
WO2009093499A1 (en) Trivalent chromium plating bath
JPH09157884A (en) Nonacidic nickel plating bath and plating method using the bath
JP2000309875A (en) Substitution type electroless silver plating solution
WO2012052832A2 (en) Electroless nickel plating bath and electroless nickel plating method using same
JP6193137B2 (en) Electroless Ni-P plating solution and electroless Ni-P plating method
US9708693B2 (en) High phosphorus electroless nickel
JP2000309876A (en) Substitution type electroless tin-silver alloy plating solution
CN100365163C (en) Method for copper-plating or bronze-plating an object and liquid mixtures therefor
KR101365662B1 (en) ELECTROLESS Ni-P PLATING METHOD
JP2013199687A (en) Additive for electroless nickel plating solution, electroless nickel plating solution, and electroless nickel plating method
JP2013144835A (en) ELECTROLESS Ni-P-Sn PLATING SOLUTION
JP6028165B2 (en) High pH trivalent chromium colored conversion coating solution and processing method
JP4855494B2 (en) Iridium plating solution and plating method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170926

R150 Certificate of patent or registration of utility model

Ref document number: 6218473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250