JP6214003B2 - Evaluation method of neutralization resistance - Google Patents

Evaluation method of neutralization resistance Download PDF

Info

Publication number
JP6214003B2
JP6214003B2 JP2014246458A JP2014246458A JP6214003B2 JP 6214003 B2 JP6214003 B2 JP 6214003B2 JP 2014246458 A JP2014246458 A JP 2014246458A JP 2014246458 A JP2014246458 A JP 2014246458A JP 6214003 B2 JP6214003 B2 JP 6214003B2
Authority
JP
Japan
Prior art keywords
reinforced concrete
neutralization
concrete column
cut surface
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014246458A
Other languages
Japanese (ja)
Other versions
JP2016109528A (en
Inventor
香織 根岸
香織 根岸
東 康弘
康弘 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2014246458A priority Critical patent/JP6214003B2/en
Publication of JP2016109528A publication Critical patent/JP2016109528A/en
Application granted granted Critical
Publication of JP6214003B2 publication Critical patent/JP6214003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐中性化特性の評価方法に関する。   The present invention relates to a method for evaluating resistance to neutralization.

鉄筋コンクリートは、通常はコンクリートがアルカリ性であるため鉄筋の腐食を防止する効果がある。しかし、大気中の二酸化炭素の影響でコンクリートのpHが時間と共に低下し(つまり中性化し)、鉄筋の腐食を進行させることが知られている。   Reinforced concrete usually has the effect of preventing corrosion of the reinforcing steel because the concrete is alkaline. However, it is known that the pH of concrete decreases with time due to the influence of carbon dioxide in the atmosphere (that is, becomes neutralized), and corrosion of the reinforcing bars proceeds.

例えば、鉄筋コンクリートに用いられるコンクリートが遠心力締固めによって製造されたコンクリートである場合、コンクリートの水セメント比(W/C)は26%程度と非常に低い。そのため、鉄筋コンクリートの外側(外周側)が密実となり、中性化に対する耐性が高い。一方、鉄筋コンクリートの中心側には空隙が存在するような粗の状態であるため、中性化に対する耐性は必ずしも高くない。つまり、鉄筋コンクリートの外側からの深さによって耐中性化特性の度合いが、異なることが予想される。   For example, when the concrete used for the reinforced concrete is concrete produced by centrifugal compaction, the water-cement ratio (W / C) of the concrete is as low as about 26%. Therefore, the outer side (outer peripheral side) of the reinforced concrete becomes solid and has high resistance to neutralization. On the other hand, the resistance to neutralization is not necessarily high because the reinforced concrete is in a rough state in which a void exists on the center side. That is, it is expected that the degree of neutralization resistance varies depending on the depth from the outside of the reinforced concrete.

ここで、鉄筋コンクリートの深さごとの耐中性化特性の評価を行う方法として、例えば、以下の方法が考えられる。すなわち、まず、試験対象の鉄筋コンクリート柱の表面から内部方向にかけて表面からの距離ごとにコンクリート部材を切り出す。その後、切り出した部材それぞれを樹脂等で封止し、中性化促進試験または暴露試験を行う。そして、試験後の鉄筋コンクリート柱の部材それぞれに対しフェノールフタレイン法により、pHを測定する。   Here, for example, the following methods can be considered as a method of evaluating the resistance to neutralization for each depth of reinforced concrete. That is, first, a concrete member is cut out for each distance from the surface from the surface of the reinforced concrete column to be tested to the inside. Thereafter, each cut-out member is sealed with a resin or the like, and a neutralization promotion test or an exposure test is performed. And pH is measured by the phenolphthalein method with respect to each member of the reinforced concrete pillar after a test.

佐藤周之他、「フェノールフタレイン法によるコンクリート中性化の詳細評価技術に関する基礎的研究」、コンクリート工学年次論文集、Vol.31、No.1、p2023-2028、2009.Sato, S. et al., “Fundamental study on detailed evaluation technology for carbonation of concrete by phenolphthalein method”, Annual report on concrete engineering, Vol.31, No.1, p2023-2028, 2009. 上田洋他、「コンクリート電柱の中性化および塩化物イオン浸透特性と型枠継ぎ目の影響」、土木学会第58回年次学術講演会、p67-68、2003.Ueda Hiroshi et al., “Neutralization of concrete utility poles and chloride ion permeation characteristics and the effect of formwork joints”, 58th Annual Conference of Japan Society of Civil Engineers, p67-68, 2003.

しかし、上記の方法では、試験対象の鉄筋コンクリート柱の表面から鉄筋近傍までの連続した(細やかな)耐中性化特性の評価を行うことができない。そこで、本発明は、前記した問題を解決し、試験対象の鉄筋コンクリート柱の表面から鉄筋近傍までの細やかな耐中性化特性の評価を行うことを課題とする。   However, in the above method, it is not possible to evaluate continuous (fine) neutralization resistance characteristics from the surface of the reinforced concrete column to be tested to the vicinity of the reinforcing bar. Then, this invention makes it a subject to solve the above-mentioned problem and to evaluate the detailed neutralization resistance characteristic from the surface of the reinforced concrete column of a test object to the reinforcement vicinity.

前記した課題を解決するため、本発明は、1本以上の鉄筋を備える鉄筋コンクリート柱の耐中性化特性の評価方法であって、評価の対象となる前記鉄筋コンクリート柱を、前記鉄筋コンクリート柱の内部の任意の1本の鉄筋に接し、前記鉄筋コンクリート柱の中心と前記鉄筋とを結ぶ線を延長した前記鉄筋コンクリート柱の外周との交点における前記鉄筋コンクリート柱との接線に平行かつ前記鉄筋の長さ方向に平行となる方向で前記鉄筋コンクリート柱のコンクリート部を切断し、前記切断した面を用いて、耐中性化特性の評価を行うことを特徴とする。   In order to solve the above-described problem, the present invention is a method for evaluating the neutralization characteristics of a reinforced concrete column including one or more reinforcing bars, and the reinforced concrete column to be evaluated is placed inside the reinforced concrete column. Parallel to the tangential line of the reinforced concrete column at the intersection of the reinforced concrete column and the outer periphery of the reinforced concrete column that extends from the center of the reinforced concrete column and the outer periphery of the reinforced concrete column. The concrete portion of the reinforced concrete column is cut in the direction to be, and the resistance to neutralization is evaluated using the cut surface.

本発明によれば、試験対象の鉄筋コンクリート柱の表面から鉄筋近傍までの細やかな耐中性化特性の評価を行うことができる。   ADVANTAGE OF THE INVENTION According to this invention, the detailed neutralization resistance characteristic from the surface of the reinforced concrete pillar of a test object to the reinforcement vicinity can be evaluated.

図1は、鉄筋コンクリート柱および鉄筋コンクリート柱から切り出した部材の例を示す図である。Drawing 1 is a figure showing an example of a member cut out from a reinforced concrete pillar and a reinforced concrete pillar. 図2は、本実施形態の耐中性化特性の評価方法の手順を示すフローチャートである。FIG. 2 is a flowchart showing a procedure of the evaluation method of the neutralization resistance characteristic of the present embodiment. 図3は、図1で切り出した部材を斜め方向および上方向から見た図である。FIG. 3 is a view of the member cut out in FIG. 1 as viewed obliquely and upward. 図4は、切断面の例を示す図である。FIG. 4 is a diagram illustrating an example of a cut surface. 図5は、切断面におけるフェノールフタレイン法の反応の予測例を示す図である。FIG. 5 is a diagram showing a prediction example of the reaction of the phenolphthalein method on the cut surface.

以下、図面を参照しながら、本発明を実施するための形態(実施形態)について説明する。なお、本発明は本実施形態に限定されない。   Hereinafter, embodiments (embodiments) for carrying out the present invention will be described with reference to the drawings. The present invention is not limited to this embodiment.

ここでは、耐中性化特性の評価の対象が、図1に示す鉄筋コンクリート柱101である場合を例に説明する。この鉄筋コンクリート柱101のコンクリート部分には遠心力締固めコンクリートが用いられる。鉄筋コンクリート柱101の形状は、例えば、図1に示すようなせっ頭円錐体型の他、円柱型であってももちろんよい。この鉄筋コンクリート柱101の内部には1本以上の鉄筋103が配置される。また、この鉄筋コンクリート柱101は中空部105を備える。   Here, the case where the object of evaluation of the neutralization resistance is the reinforced concrete column 101 shown in FIG. 1 will be described as an example. Centrifugal compacted concrete is used for the concrete portion of the reinforced concrete column 101. Of course, the shape of the reinforced concrete column 101 may be, for example, a columnar type as well as a frustoconical type as shown in FIG. One or more reinforcing bars 103 are arranged inside the reinforced concrete column 101. Further, the reinforced concrete column 101 includes a hollow portion 105.

次に、図2を用いて本実施形態の耐中性化特性の評価方法の手順を説明する。まず、評価者は、鉄筋コンクリート柱101のうち耐中性化特性を評価したい部材102を切り出す(S1)。例えば、評価者は、図1の鉄筋コンクリート柱101から、鉄筋103に対して垂直に切り込みを入れ、輪切り状の部材102を切り出す。   Next, the procedure of the evaluation method of the neutralization resistance characteristic of the present embodiment will be described with reference to FIG. First, the evaluator cuts out the member 102 for which the neutralization resistance characteristic is to be evaluated from the reinforced concrete column 101 (S1). For example, the evaluator makes a cut vertically to the reinforcing bar 103 from the reinforced concrete column 101 of FIG.

次に、評価者は、S1で切り出した部材102を所定の切断面で切断することで供試体106を作成する(S2)。例えば、評価者は、図3に示すように、部材102を、部材102内の任意の1本の鉄筋103(例えば、鉄筋103a)に接し、部材102の中心と鉄筋103aとを結ぶ線を延長した部材102の外周との交点における部材102との接線に平行かつ鉄筋103aの長さ方向に平行となる方向の切断面104で、部材102のコンクリート部を切断し、供試体106を得る。この供試体106の切断面104aは、例えば、図4に示すような状態となる。なお、図4の切断面104a内の塗りつぶし部分(例えば、符号401等に示す部分)は骨材であり、骨材が外側に寄っているのはコンクリートの製造時における遠心力によるものである。   Next, the evaluator creates the specimen 106 by cutting the member 102 cut out in S1 along a predetermined cut surface (S2). For example, as shown in FIG. 3, the evaluator touches the member 102 with any one reinforcing bar 103 (for example, the reinforcing bar 103a) in the member 102, and extends a line connecting the center of the member 102 and the reinforcing bar 103a. The concrete part of the member 102 is cut at a cutting surface 104 in a direction parallel to the tangent to the member 102 at the intersection with the outer periphery of the member 102 and parallel to the length direction of the reinforcing bar 103a, and the specimen 106 is obtained. The cut surface 104a of the specimen 106 is in a state as shown in FIG. 4, for example. Note that the filled portion (for example, a portion indicated by reference numeral 401 or the like) in the cut surface 104a in FIG. 4 is an aggregate, and the aggregate is close to the outside due to centrifugal force during the production of concrete.

S2の後、試験者は、供試体106に対し中性化促進試験または暴露試験を実施し(S3:試験実施)、耐中性化評価を行う(S4)。例えば、評価者は、供試体106の切断面104a以外をエポキシ樹脂等で封止し、中性化促進試験または暴露試験を実施する。そして、試験終了後、供試体106の切断面104aの中性化領域をフェノールフタレイン法により評価する。   After S2, the tester performs a neutralization promotion test or an exposure test on the specimen 106 (S3: test execution), and performs a neutralization evaluation (S4). For example, the evaluator seals the specimen 106 other than the cut surface 104a with an epoxy resin or the like, and performs a neutralization promotion test or an exposure test. After the test, the neutralized region of the cut surface 104a of the specimen 106 is evaluated by the phenolphthalein method.

フェノールフタレイン法による評価は、例えば、95%エタノール90mlにフェノールフタレインの粉末1gを溶かし、水を加えて100mlとしたものを試薬として用いる。そして、評価者は乾燥した切断面104aに噴霧器等で試薬が滴らない程度に噴霧し、噴霧した試薬の赤色の発色量により各部分の中性化の進行状態を評価する。   In the evaluation by the phenolphthalein method, for example, 1 g of phenolphthalein powder dissolved in 90 ml of 95% ethanol and 100 ml added with water is used as a reagent. Then, the evaluator sprays the dried cut surface 104a with a sprayer or the like to such an extent that the reagent does not drip, and evaluates the progress of neutralization of each part by the red color development amount of the sprayed reagent.

例えば、図5に示すように、供試体106の切断面104aに対しフェノールフタレイン法を実施することで、鉄筋コンクリート柱101の表面に近い部分から鉄筋103に近い部分までの中性化の評価を細やかに行うことができる。例えば、図3に示す切断面104の左右の端部(図5における符号301および符号302に示す部分に相当)におけるフェノールフタレインの反応状態を見ることで、鉄筋コンクリート柱101の表面に近い部分の中性化の進行状態を評価できる。また、切断面104aの中央部(符号303に示す部分)におけるフェノールフタレインの反応状態を見ることで、鉄筋コンクリート柱101の鉄筋103aに近い部分の中性化の進行状態を評価できる。   For example, as shown in FIG. 5, by performing the phenolphthalein method on the cut surface 104 a of the specimen 106, the neutralization evaluation from the portion close to the surface of the reinforced concrete column 101 to the portion close to the reinforcing bar 103 can be performed. Can be done finely. For example, by looking at the reaction state of phenolphthalein at the left and right end portions (corresponding to the portions indicated by reference numerals 301 and 302 in FIG. 5) of the cut surface 104 shown in FIG. The progress of neutralization can be evaluated. Further, by looking at the reaction state of phenolphthalein at the central portion (the portion indicated by reference numeral 303) of the cut surface 104a, it is possible to evaluate the progress of neutralization of the portion of the reinforced concrete column 101 close to the reinforcing bar 103a.

なお、鉄筋コンクリート柱101のコンクリート部分に遠心力締固めコンクリートを用いると、鉄筋コンクリート柱101の表面に近い部分はコンクリートが密実な状態なので中性化の進行が遅く、一方、中空部105に近い部分はコンクリートが粗な状態なので中性化の進行が速いと予測される。従って、上記のような方法で中性化の評価を行うと、図5の切断面104aにおける符号301および符号302に示す領域ではフェノールフタレインが赤く変色し(pH10以上)、符号303に示す領域ではフェノールフタレインが変色しない(pH8〜9程度)と考えられる。   When centrifugally compacted concrete is used for the concrete portion of the reinforced concrete column 101, the portion close to the surface of the reinforced concrete column 101 is in a state where the concrete is dense, so the progress of neutralization is slow, whereas the portion close to the hollow portion 105 It is predicted that the neutralization progresses rapidly because the concrete is rough. Therefore, when neutralization is evaluated by the method as described above, phenolphthalein turns red (pH 10 or more) in the region indicated by reference numerals 301 and 302 in the cut surface 104a in FIG. Then, it is considered that phenolphthalein does not change color (pH of about 8 to 9).

そして、上記のフェノールフタレイン法により得られた色の情報から各評価箇所のpHを得た後、これを中性化促進試験または暴露試験に要した時間で除することによって、各評価箇所の中性化速度を求める。これにより、各評価箇所の耐中性化特性を評価することができる。   And after obtaining the pH of each evaluation location from the color information obtained by the above phenolphthalein method, by dividing this by the time required for the neutralization promotion test or the exposure test, Find the neutralization rate. Thereby, the neutralization resistance characteristic of each evaluation location can be evaluated.

なお、切断面104aにおけるフェノールフタレイン法の評価箇所が、鉄筋コンクリート柱101の表面からどの程度の深さに位置するかは以下のようにして求めることができる。例えば、図5の切断面104aの右端から距離yに位置する点304の、部材102の表面(外周)からの深さdは以下のようにして求めることができる。   In addition, it can be calculated | required as follows how much the evaluation location of the phenolphthalein method in the cut surface 104a is located from the surface of the reinforced concrete pillar 101. FIG. For example, the depth d of the point 304 located at a distance y from the right end of the cut surface 104a in FIG. 5 from the surface (outer periphery) of the member 102 can be obtained as follows.

まず、部材102(鉄筋コンクリート柱101)における鉄筋103aのかぶり深さをt、部材102の直径をDとすると(図3参照)、切断面104の長さxは、以下の式(1)により求められる。   First, if the cover depth of the reinforcing bar 103a in the member 102 (reinforced concrete column 101) is t and the diameter of the member 102 is D (see FIG. 3), the length x of the cut surface 104 is obtained by the following equation (1). It is done.

例えば、t=20mm、D=300mmの場合は、以下の式(2)に示すように切断面104の長さx=74.8mmとなる。   For example, when t = 20 mm and D = 300 mm, the length x of the cut surface 104 is 74.8 mm as shown in the following formula (2).

従って、切断面104aの左端から距離yに位置する点304の、部材102の表面からの深さdは、以下の式(3)により求めることができる。   Therefore, the depth d from the surface of the member 102 of the point 304 located at the distance y from the left end of the cut surface 104a can be obtained by the following equation (3).

よって、例えば、t=20mm、D=300mmの場合、切断面104aの左端から距離yに位置する点304の、部材102の表面からの深さdは、以下の式(4)により求めることができる。   Therefore, for example, when t = 20 mm and D = 300 mm, the depth d from the surface of the member 102 of the point 304 located at the distance y from the left end of the cut surface 104a is obtained by the following equation (4). it can.

なお、本実施形態のように、鉄筋コンクリート柱101の部材102を、この部材102内の任意の1本の鉄筋103に接し、部材102の中心と鉄筋103aとを結ぶ線を延長した部材102の外周との交点における部材102との接線に平行かつ鉄筋103aの長さ方向に平行となる方向の切断面104で、部材102のコンクリート部を切断して供試体106を作成することで、鉄筋コンクリート柱101の深さ方向に大きく拡大された試験面を得ることができる。例えば、図3に示す部材102を切断面107や切断面108で切断して供試体を作成する場合よりも、上記の方法で切り出して供試体を作成した方が、深さ方向に大きく拡大された試験面を得ることができる。これにより鉄筋コンクリート柱101の深さ方向の耐中性化特性をきめ細かに評価できる。   As in the present embodiment, the member 102 of the reinforced concrete column 101 is in contact with any one reinforcing bar 103 in the member 102, and the outer periphery of the member 102 in which a line connecting the center of the member 102 and the reinforcing bar 103a is extended. A specimen 106 is prepared by cutting the concrete portion of the member 102 at a cutting surface 104 in a direction parallel to the tangent to the member 102 at the intersection with the member 102 and parallel to the length direction of the reinforcing bar 103a. A test surface greatly enlarged in the depth direction can be obtained. For example, rather than the case where the member 102 shown in FIG. 3 is cut at the cut surface 107 or the cut surface 108 to create a specimen, the specimen cut out by the above method is greatly enlarged in the depth direction. Test surface can be obtained. This makes it possible to meticulously evaluate the resistance to neutralization in the depth direction of the reinforced concrete column 101.

なお、鉄筋コンクリート柱101に用いられるコンクリートは、遠心力締固めコンクリート以外のコンクリート(例えば、振動締固めコンクリート等)あってもよいが、本実施形態の耐中性化特性の評価方法は、遠心力締固めコンクリートのように、外周部と中心部とで耐中性特性が異なると予想されるコンクリートに対し、特に適用効果が高いと考えられる。   The concrete used for the reinforced concrete column 101 may be concrete other than centrifugal compacted concrete (for example, vibration compacted concrete). However, the evaluation method of the neutralization resistance characteristic of the present embodiment is centrifugal force. It is considered that the application effect is particularly high for concrete, such as compacted concrete, which is expected to have different middle resistance characteristics between the outer peripheral portion and the central portion.

101 鉄筋コンクリート柱
102 部材
103 鉄筋
104 切断面
105 中空部
106 供試体
DESCRIPTION OF SYMBOLS 101 Reinforced concrete pillar 102 Member 103 Reinforcement 104 Cut surface 105 Hollow part 106 Specimen

Claims (3)

1本以上の鉄筋を備える鉄筋コンクリート柱の耐中性化特性の評価方法であって、
評価の対象となる前記鉄筋コンクリート柱を、前記鉄筋コンクリート柱の内部の任意の1本の鉄筋に接し、前記鉄筋コンクリート柱の中心と前記鉄筋とを結ぶ線を延長した前記鉄筋コンクリート柱の外周との交点における前記鉄筋コンクリート柱との接線に平行かつ前記鉄筋の長さ方向に平行となる方向で前記鉄筋コンクリート柱のコンクリート部を切断し、前記切断した面を用いて、耐中性化特性の評価を行うことを特徴とする耐中性化特性の評価方法。
A method for evaluating the neutralization characteristics of a reinforced concrete column comprising one or more reinforcing bars,
The reinforced concrete column to be evaluated is in contact with any one reinforcing bar inside the reinforced concrete column, and at the intersection of the outer periphery of the reinforced concrete column that extends a line connecting the center of the reinforced concrete column and the reinforcing bar. The concrete portion of the reinforced concrete column is cut in a direction parallel to a tangent to the reinforced concrete column and parallel to the length direction of the reinforcing bar, and the neutralization characteristic is evaluated using the cut surface. A method for evaluating the resistance to neutralization.
前記耐中性化特性の評価は、
前記鉄筋コンクリート柱の前記切断した面以外を封止して中性化促進試験または暴露試験を実施した後、
前記切断した面に対し、フェノールフタレイン法を用いることで行われることを特徴とする請求項1に記載の耐中性化特性の評価方法。
The evaluation of the neutralizing property is as follows:
After carrying out the neutralization promotion test or the exposure test by sealing other than the cut surface of the reinforced concrete column,
The method for evaluating neutralization resistance according to claim 1, wherein the cut surface is performed by using a phenolphthalein method.
前記鉄筋コンクリート柱のコンクリート部分は、
遠心力締固めにより作成されたコンクリートであることを特徴とする請求項1または2に記載の耐中性化特性の評価方法。
The concrete part of the reinforced concrete column is
3. The method for evaluating resistance to neutralization according to claim 1 or 2, wherein the concrete is made by centrifugal compaction.
JP2014246458A 2014-12-05 2014-12-05 Evaluation method of neutralization resistance Active JP6214003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014246458A JP6214003B2 (en) 2014-12-05 2014-12-05 Evaluation method of neutralization resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014246458A JP6214003B2 (en) 2014-12-05 2014-12-05 Evaluation method of neutralization resistance

Publications (2)

Publication Number Publication Date
JP2016109528A JP2016109528A (en) 2016-06-20
JP6214003B2 true JP6214003B2 (en) 2017-10-18

Family

ID=56123534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014246458A Active JP6214003B2 (en) 2014-12-05 2014-12-05 Evaluation method of neutralization resistance

Country Status (1)

Country Link
JP (1) JP6214003B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110541475A (en) * 2019-08-23 2019-12-06 中建科技(福州)有限公司 Device and method for adjusting flatness and height of precast concrete column

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316596A (en) * 1988-06-13 1989-12-21 Showa Denko Kk Corrosion resisting mortar-lined tube
JP3672527B2 (en) * 2001-12-10 2005-07-20 株式会社竹中工務店 Method and apparatus for estimating strength of concrete
AU2003236074B2 (en) * 2002-05-08 2008-05-22 Sekisui Chemical Co., Ltd. Method and equipment for inspecting reinforced concrete pipe
JP2011256085A (en) * 2010-06-10 2011-12-22 Sumitomo Osaka Cement Co Ltd Cement composition and cement hardened body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110541475A (en) * 2019-08-23 2019-12-06 中建科技(福州)有限公司 Device and method for adjusting flatness and height of precast concrete column
CN110541475B (en) * 2019-08-23 2020-12-08 中建科技(福州)有限公司 Device and method for adjusting flatness and height of precast concrete column

Also Published As

Publication number Publication date
JP2016109528A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
Šavija et al. Lattice modeling of rapid chloride migration in concrete
Bossio et al. Nondestructive assessment of corrosion of reinforcing bars through surface concrete cracks
Liu et al. Electrochemical chloride extraction and electrochemical injection of corrosion inhibitor in concrete: state of the knowledge
JP6289216B2 (en) Corrosion detection sensor and evaluation method for corrosive environment of steel in concrete
Imperatore et al. Strength decay of RC sections for chloride attack
Dousti et al. Corrosion assessment of RC deck in a jetty structure damaged by chloride attack
JP6214003B2 (en) Evaluation method of neutralization resistance
Meek et al. Corrosion protection of steel embedded in cement-stabilised rammed earth
Breysse Deterioration processes in reinforced concrete: an overview
Zhao et al. Seasonal variation of surface chloride ion content and chloride diffusion coefficient in a concrete dock
Castel et al. Microcell versus galvanic corrosion currents in carbonated concrete
JP2019078544A (en) Life evaluation method for reinforced concrete structure
CN106404913B (en) Tunnel-liner sulphate corrosion detection method
Castro-Borges et al. Electrochemical meaning of cumulative corrosion rate for reinforced concrete in a tropical natural marine environment
JP2011196160A (en) Crack repairing method for underground reinforced concrete structure
JP4731228B2 (en) Concrete deterioration prediction method
Sonawane et al. Development of deficient grout and corrosion due to water and solute transport
JP2015203690A (en) corrosion sensor
Zatar et al. Assessing the service life of corrosion-deteriorated reinforced concrete member highway bridges in West Virginia.
Oliveira et al. Analysis of development of carbonation and surface wear of the concrete: A case study in Ship Lock 1 of the transposition system of Tucuruí dam
Cheung et al. Service Life Prediction and Management of Concrete Bridge Structures Due to Corrosion
Garavaglia et al. Probabilistic model to predict the durability of concrete affected by salt crystallization
Kotsovou et al. Assessment of design methods for punching through numerical experiments
JP2005090219A (en) Method for regenerating concrete structure
JP2017142095A (en) Method and program for determining corrosion of reinforcing bar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170913

R150 Certificate of patent or registration of utility model

Ref document number: 6214003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150