JP6213960B2 - Substrate holder - Google Patents

Substrate holder Download PDF

Info

Publication number
JP6213960B2
JP6213960B2 JP2013233649A JP2013233649A JP6213960B2 JP 6213960 B2 JP6213960 B2 JP 6213960B2 JP 2013233649 A JP2013233649 A JP 2013233649A JP 2013233649 A JP2013233649 A JP 2013233649A JP 6213960 B2 JP6213960 B2 JP 6213960B2
Authority
JP
Japan
Prior art keywords
substrate
dlc film
film
dlc
holding plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013233649A
Other languages
Japanese (ja)
Other versions
JP2015094002A (en
Inventor
康世 松浦
康世 松浦
征秀 加藤
征秀 加藤
康浩 梅津
康浩 梅津
磯貝 宏道
宏道 磯貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno Quartz Inc
Original Assignee
Techno Quartz Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Quartz Inc filed Critical Techno Quartz Inc
Priority to JP2013233649A priority Critical patent/JP6213960B2/en
Publication of JP2015094002A publication Critical patent/JP2015094002A/en
Application granted granted Critical
Publication of JP6213960B2 publication Critical patent/JP6213960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、例えば液晶パネルまたはウェーハの露光装置用ないし検査装置用の基板を保持する基板保持盤に好適で、基板保持盤の全周面にDLC(ダイヤモンドライクカーボン)膜を被覆し、基板載置面の摩耗を防止し基板の摺動を円滑にするとともに、側面のDLC膜の膜厚を他部位周面よりも厚く形成して、露光または検査時に側面から基板保持盤へ入射する光を抑制し基板載置面の低反射率を維持して、露光装置ないし検査装置の大型化と表面の低反射率化を図るとともに、他部位周面のDLC膜の膜厚を薄膜化して、DLC膜コーティングの合理化と低廉化を図り安価に製作できるようにした、基板保持盤に関する。 The present invention is suitable for, for example, a substrate holding plate for holding a substrate for a liquid crystal panel or wafer exposure apparatus or inspection apparatus. A DLC (diamond-like carbon) film is coated on the entire peripheral surface of the substrate holding plate to mount the substrate. The surface of the DLC film on the side surface is made thicker than the peripheral surface of other parts to prevent wear on the mounting surface, and light incident on the substrate holding plate from the side surface during exposure or inspection Suppressing and maintaining the low reflectivity of the substrate mounting surface to increase the size of the exposure apparatus or inspection apparatus and reduce the reflectivity of the surface, and reduce the thickness of the DLC film on the peripheral surface of the other part to reduce the DLC. achieving rationalization and cost reduction of the membrane coating was to be manufactured at a low cost, it relates to a substrate holding plate.

微細なパタ−ンを形成する露光装置では、波長365nm(i線)、405nm(h線)、436nm(g線)の光線が使用され、光学検査用の装置では、白色光が使用される
これらの装置において、液晶パネル基板やSiCウェ−ハ等の透明基板を対象として露光処理または光学的な検査をする場合、基板保持盤からの光の反射によって、露光が不要な領域まで光が照射されたり、反射光のコントラストの変化から傷や異物等の擬似的な欠陥が検出されたりする不具合が生じていた。
In an exposure apparatus that forms a fine pattern, light beams having wavelengths of 365 nm (i-line), 405 nm (h-line), and 436 nm (g-line) are used, and in an optical inspection apparatus, white light is used. In the above-mentioned apparatus, when an exposure process or optical inspection is performed on a transparent substrate such as a liquid crystal panel substrate or a SiC wafer, light is irradiated to an area that does not require exposure due to reflection of light from the substrate holder. Or a flaw such as a flaw or a foreign object is detected from a change in contrast of reflected light.

このため、基板保持盤表面を黒色化したり粗面にして、前記表面の低反射率化を図るようにしている。
例えば、黒色系セラミックス製の基板保持盤表面を所定の粗面に研削後、ブラスト加工したり、アルミニウム製の基板載置台の表面をアルマイト処理して艶消し処理し、基板保持盤表面を低反射率化したものがある(例えば、特許文献1および2参照)。
For this reason, the surface of the substrate holding plate is blackened or roughened to reduce the reflectance of the surface.
For example, the surface of the substrate holding board made of black ceramics is ground to a specified rough surface and then blasted, or the surface of the aluminum substrate mounting table is alumite treated to make the surface of the board holding plate low reflective. There are some which have become efficient (see, for example, Patent Documents 1 and 2).

しかし、前者の場合は、セラミックス製基板保持盤の焼結成形時に収縮や割れを生じ易いため、大型化が難しく歩留まりが低い上に、反射率が6〜10%と比較的高いという問題があった。また、後者の場合は、母材であるアルミニウムの熱変形による露光精度の低下や、繰り返し使用による載置面の摩耗によって、反射率が経年的に上昇変化する問題があった。   However, in the former case, shrinkage and cracking are liable to occur during the sintering of the ceramic substrate holder, so that it is difficult to increase the size and the yield is low, and the reflectivity is relatively high at 6 to 10%. It was. In the latter case, there is a problem that the reflectance increases and changes over time due to a decrease in exposure accuracy due to thermal deformation of aluminum as a base material and wear of the mounting surface due to repeated use.

このような問題を解決するものとして、基板保持盤の表面に第1の被覆層を被覆し、この第1の被覆層を透明材料からなる第2の被覆層で被覆したものや、冶具本体表面にSiC製の内部層とAl23製の透明な表面層との二層からなるセラミック薄膜層を被覆したもの、更にアルミニウム板等の母材表面にセラミックス皮膜を溶射し、該セラミックス皮膜の表面に凹凸部を形成し、該凹凸部の表面に透明な超薄膜を形成して、基板保持盤の表面の反射率を低くしたものがある(例えば、特許文献3乃至5参照)。 In order to solve such problems, the surface of the substrate holding plate is coated with a first coating layer, and the first coating layer is coated with a second coating layer made of a transparent material, or the surface of the jig body. A ceramic thin film layer comprising two layers of an inner layer made of SiC and a transparent surface layer made of Al 2 O 3 was coated, and a ceramic film was sprayed on the surface of a base material such as an aluminum plate. There is a type in which a concavo-convex portion is formed on the surface and a transparent ultra-thin film is formed on the surface of the concavo-convex portion to reduce the reflectance of the surface of the substrate holder (see, for example, Patent Documents 3 to 5).

しかし、前記内外二層の被覆層ないし皮膜は製作に手間が掛かり高価になるとともに、前二者の保持盤表面の反射率は約13%で高く、また後者の反射率は6〜7%であるが、均一なセラミックス皮膜を得難く、またその製作が高価になって近時の低反射率化と大型化ないしその軽量化と高精度化への対応が難しいという問題があった。   However, the inner and outer two coating layers or coatings are time-consuming and expensive to manufacture, and the former two holders have a high reflectance of about 13%, and the latter has a reflectance of 6-7%. However, there is a problem that it is difficult to obtain a uniform ceramic film, and the production thereof is expensive, and it is difficult to cope with the recent low reflectance, large size, light weight, and high accuracy.

ところで、基板保持盤は経年的な使用によって基板の載置面が摩耗するため、基板保持盤の表面と裏面並びに側面に、耐摩耗性と摺動性に優れるDLC膜をコーティングして、摩耗を抑制するとともに、基板の摺動を円滑にするようにしたものがある(例えば、特許文献6および7参照)。   By the way, since the mounting surface of the substrate wears over time due to the use of the substrate holding plate, the surface, the back surface and the side surface of the substrate holding plate are coated with a DLC film having excellent wear resistance and slidability. There is one that suppresses and makes the substrate slide smoothly (see, for example, Patent Documents 6 and 7).

しかし、これらの基板保持盤は、低反射率を得るための適切なDLC膜の厚さが明示されておらず、一様な厚さのDLC膜コーティングで低反射率を得ようとすると、膜厚が10μm以上も必要となり、コーティングに時間が掛かりコ−ティング費用が高価になるとともに、DLC膜の残留応力の増加によって剥離し易くなる問題があった。
また、DLC膜が経年的な使用によって摩耗すると、基板載置面が短期間で摩耗し、基板の露光時に外部に散乱した光や周辺の光が側面のDLC膜から基板保持盤に入射して反射率が変化し、良好で一様な露光作用を得られず、近時の基板保持盤の大型化と低反射率化に対応できなくなる等の問題があった。
However, these substrate holders do not clearly show the appropriate DLC film thickness for obtaining a low reflectivity, and when attempting to obtain a low reflectivity with a uniform DLC film coating, The thickness is required to be 10 μm or more, and it takes time to coat and the coating cost is high, and there is a problem that it is easy to peel off due to an increase in residual stress of the DLC film.
In addition, when the DLC film is worn out over time, the substrate mounting surface is worn out in a short period of time, and light scattered around the substrate and surrounding light are incident on the substrate holding plate from the side DLC film. There was a problem that the reflectivity changed, a good and uniform exposure action could not be obtained, and it was not possible to cope with the recent increase in size and low reflectivity of the substrate holding plate.

特許文献1:特許第4518876号公報
特許文献2:特開2005−332910号公報
特許文献3:特許第3095514号公報
特許文献4:特開平8−139168号公報
特許文献5:特開2012−203286号公報
特許文献6:特開2005−101247号公報
特許文献7:特開2004−9165号公報
Patent Document 1: Japanese Patent No. 4518887 Patent Document 2: Japanese Patent Laid-Open No. 2005-332910 Patent Document 3: Japanese Patent No. 3095514 Patent Document 4: Japanese Patent Laid-Open No. 8-139168 Patent Document 5: Japanese Patent Laid-Open No. 2012-203286 Patent Document 6: Japanese Patent Application Laid-Open No. 2005-101247 Patent Document 7: Japanese Patent Application Laid-Open No. 2004-9165

本発明はこのような問題を解決し、例えば液晶パネルまたはウェーハの露光装置用ないし検査装置用の基板を保持する基板保持盤に好適で、基板保持盤の全周面にDLC(ダイヤモンドライクカーボン)膜を被覆し、基板載置面の摩耗を防止し基板の摺動を円滑にするとともに、側面のDLC膜の膜厚を他部位周面よりも厚く形成して、露光または検査時に側面から基板保持盤へ入射する光を抑制し基板載置面の低反射率を維持し、露光装置ないし検査装置の大型化と表面の低反射率化を図るとともに、他部位周面のDLC膜の膜厚を薄膜化して、DLC膜コーティングの合理化と低廉化を図り安価に製作できるようにした、基板保持盤を提供することを目的とする。 The present invention solves such a problem, and is suitable for a substrate holding plate for holding a substrate for a liquid crystal panel or wafer exposure device or inspection device, for example, and DLC (Diamond Like Carbon) on the entire peripheral surface of the substrate holding plate. Covers the film, prevents abrasion of the substrate mounting surface, makes the substrate slide smoothly, and forms the DLC film on the side surface thicker than the peripheral surface of the other part, so that the substrate is exposed from the side surface during exposure or inspection. The light incident on the holding plate is suppressed to maintain the low reflectivity of the substrate mounting surface, and the exposure apparatus or inspection apparatus is increased in size and the surface has a low reflectivity. An object of the present invention is to provide a substrate holding plate that can be manufactured at a low cost by reducing the thickness of the DLC film and thereby rationalizing and reducing the cost of the DLC film coating.

請求項1の発明は、母材表面側に複数のピンと凹部と吸引孔を形成し、母材表面と裏面および側面の全周面と前記吸引孔の内面をDLC(ダイヤモンドライクカーボン)コーティングし、前記側面のDLC膜の膜厚を、前記側面以外の他部位周面のDLC膜よりも肉厚に形成した基板保持盤において、少なくとも前記ピンと凹部を含む母材表面側のDLC膜に透明な薄膜をコーティングし、母材表面の透明な薄膜によって低反射率化を促進し、良好な露光作用ないし検査精度または検査環境を得られるとともに、母材表面側のDLC膜の損傷によって母材が露出しても低反射率を維持して、良好な露光作用ないし検査精度または検査環境を得られ、露光装置ないし検査装置の大型化と高精度化と高機能化を図る一方、他部位周面のDLC膜の薄膜化を図り、そのDLC膜コーティング時間と費用を低減して、合理的かつ安価に製作し得るようにするとともに、一部のDLC膜が剥離しても、しばらくの間、継続使用ないし装置の稼働率と生産性の向上を図るようにし、しかも吸引孔の内面をDLCコーティングし、吸引孔による反射を防止して、基板保持盤表面の低反射率化を促進するようにしている。 In the first aspect of the present invention, a plurality of pins, recesses and suction holes are formed on the surface side of the base material, and the entire surface of the base material surface, the back surface and the side surface and the inner surface of the suction hole are DLC (diamond-like carbon) coated , A thin film transparent to the DLC film on the surface side of the base material including at least the pins and the recesses in the substrate holding plate in which the thickness of the DLC film on the side surface is made thicker than the DLC film on the peripheral surface of the other part other than the side surface The substrate is coated with a transparent thin film on the surface of the base material to promote low reflectivity, so that a good exposure action, inspection accuracy or inspection environment can be obtained, and the base material is exposed due to the damage of the DLC film on the surface of the base material. However, while maintaining a low reflectivity, it is possible to obtain a good exposure action or inspection accuracy or inspection environment, and to increase the size, accuracy, and functionality of the exposure apparatus or inspection apparatus, while DLC on the peripheral surface of other parts Membrane Achieving form a film, by reducing the DLC film coating time and expense, as well as to be produced reasonably low cost, also a part of the DLC film is peeled off, while, to not continue using apparatus I Ru FIG increased productivity and utilization Unishi, yet to DLC coating an inner surface of the suction holes, to prevent reflection by the suction holes, and by Unishi to promote reduction of reflectance of the substrate holding plate surface .

請求項2の発明は、薄膜の膜厚を2μm以下に形成し、基板保持盤の平面度を維持して低反射率化を保持するようにしている。 The invention of claim 2, the thickness of the thin film is formed 2μm or less, and the so that to hold the reduction of reflectance to maintain the flatness of the substrate holding plate.

請求項の発明は、母材表面の全反射率を5%以下にし、従来の基板保持盤に比べて全反射率を低下し、露光装置における二重露光を確実に防止して良好な露光作用ないし検査精度または検査環境を得られるようにしている。また、検査装置においては、反射光強度が低くなることによって、保持盤に起因するコントラスト変化を抑制し、検査基板の欠陥に起因するコントラストの変化を確実に検出できるようにしている。 The invention of claim 3 makes the total reflectance of the base material surface 5% or less, lowers the total reflectance as compared with the conventional substrate holder, and reliably prevents double exposure in the exposure apparatus. Action, inspection accuracy or inspection environment can be obtained. Further, in the inspection device, by the reflected light intensity is lowered, suppressing the contrast change due to the retaining disc, and in so that can reliably detect a change in contrast due to the defect of the test board.

請求項1の発明は、少なくとも前記ピンと凹部を含む母材表面側のDLC膜に透明な薄膜をコーティングしたから、母材表面の透明な薄膜によって低反射率化を促進し、良好な露光作用ないし検査精度または検査環境を得られるとともに、母材表面側のDLC膜の損傷によって母材が露出しても低反射率を維持して、良好な露光作用ないし検査精度または検査環境を得られ、露光装置ないし検査装置の大型化と高精度化と高機能化を図る一方、他部位周面のDLC膜の薄膜化を図り、そのDLC膜コーティング時間と費用を低減して、合理的かつ安価に製作し得るようにするとともに、一部のDLC膜が剥離しても、しばらくの間、継続使用ないし装置の稼働率と生産性の向上を図るようにし、しかも吸引孔の内面をDLCコーティングし、吸引孔による反射を防止して、基板保持盤表面の低反射率化を促進することができるIn the first aspect of the present invention , since a transparent thin film is coated on the DLC film on the base material surface side including at least the pins and the recesses, the transparent thin film on the base material surface promotes a low reflectivity, and good exposure action or In addition to obtaining inspection accuracy or inspection environment and maintaining low reflectivity even when the base material is exposed due to damage to the DLC film on the surface of the base material, it is possible to obtain good exposure action or inspection accuracy or inspection environment, and exposure While increasing the size, accuracy, and functionality of equipment and inspection equipment, the DLC film on the periphery of other parts is made thinner, and the DLC film coating time and cost are reduced, making it reasonably and inexpensively. together so as to be, even if some of the DLC film is peeled off, while, by Ru FIG increased productivity and utilization of from continued use device Unishi, yet to DLC coating an inner surface of the suction holes , To prevent reflection by引孔can facilitate the reduction of reflectance of the substrate holding plate surface.

請求項の発明は、薄膜の膜厚を2μm以下に形成したから、基板保持盤の平面度を維持し低反射率化を保持することができる。 In the second aspect of the present invention, since the thickness of the thin film is 2 μm or less, the flatness of the substrate holder can be maintained and the low reflectance can be maintained .

請求項の発明は、母材表面の全反射率を5%以下にしたから、従来の基板保持盤に比べて全反射率を低下し、露光装置における二重露光を確実に防止して良好な露光作用ないし検査精度または検査環境を得られるようにしている。また、検査装置においては、反射光強度が低くなることによって、保持盤に起因するコントラスト変化を抑制し、検査基板の欠陥に起因するコントラストの変化を確実に検出することがきる。 In the invention of claim 3 , since the total reflectivity of the base material surface is 5% or less, the total reflectivity is reduced as compared with the conventional substrate holding plate, and double exposure in the exposure apparatus is reliably prevented, which is good. It is possible to obtain a sufficient exposure action, inspection accuracy or inspection environment. Further, in the inspection apparatus, the reflected light intensity is lowered, so that the contrast change due to the holding plate can be suppressed, and the contrast change due to the defect of the inspection substrate can be detected reliably .

本発明を適用した基板と基板保持盤の要部を拡大して示す斜視図である。It is a perspective view which expands and shows the principal part of the board | substrate and board | substrate holding board to which this invention is applied. 図1のA−A線に沿う基板保持盤の拡大断面図である。It is an expanded sectional view of the board | substrate holding board along the AA line of FIG. 本発明に係る基板保持盤の製造工程を順に示す説明図で、(a)は基板保持盤の母材を板状に切断した拡大断面図、(b)は切断した板状の母材に吸引孔を加工した状況を示す拡大断面図、(c)は吸引孔を形成後の表面にエッジとピンと凹部を形成した状況の要部を示す拡大断面図、(d)は前記加工後の表面側にDLC膜をコーティングした前半の状況の要部を示す拡大断面図、(e)は前半コーティング後、基板を反転し裏面側にDLC膜をコーティングした後半の状況の要部を示す拡大断面図、(f)はDLC膜コーティング後の表面に薄膜をコーティングした状況の要部を示す拡大断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows the manufacturing process of the board | substrate holding board which concerns on this invention in order, (a) is an expanded sectional view which cut | disconnected the base material of the board | substrate holding board in plate shape, (b) is attracted | sucked to the cut plate-shaped base material. An enlarged cross-sectional view showing the state of processing the hole, (c) is an enlarged cross-sectional view showing the main part of the state where the edge, the pin and the recess are formed on the surface after forming the suction hole, (d) is the surface side after the processing An enlarged cross-sectional view showing the main part of the first half of the situation where the DLC film is coated on, (e) is an enlarged cross-sectional view showing the main part of the second half of the situation where the substrate is inverted and the back side is coated with the DLC film after the first half coating, (F) is an expanded sectional view which shows the principal part of the condition which coated the thin film on the surface after DLC film coating.

本発明の基板保持盤の種々の実験例の要部を示す拡大断面図で、(a)〜(e)は実験例1〜5を示している。It is an expanded sectional view which shows the principal part of the various experiment examples of the board | substrate holding board of this invention, (a)-(e) has shown Experiment Examples 1-5. 前記実験例2,3と従来技術の全反射率の測定結果を比較して示すグラフである。It is a graph which compares and shows the measurement result of the total reflectance of the said experimental examples 2 and 3 and a prior art.

以下、本発明を液晶露光装置の液晶基板保持盤に適用した図示の実施形態について説明すると、図1乃至図4において1は石英ガラスを母材とする透明な基板保持盤で、矩形板状に形成され、その表面1aの周囲にエッジ2が突設され、該エッジ2の内側の表面1a側に多数のピン3と凹部4がそれぞれ等間隔に形成され、このピン3上にウエハ等の石英ガラス製の基板5を載置している。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention applied to a liquid crystal substrate holding disk of a liquid crystal exposure apparatus will be described below. In FIGS. An edge 2 is formed around the surface 1a, and a large number of pins 3 and recesses 4 are formed at equal intervals on the surface 1a on the inner side of the edge 2. On the pins 3, quartz such as a wafer is formed. A glass substrate 5 is placed.

前記ピン3と凹部4は、表面1aの表面を所望の平面度に研削後、サンドブラストまたは研削加工によって形成され、このうちピン3はエッジ2よりも幅狭の直径1mmφ、高さ0.2mmの円錐台形状または円筒状に形成され、隣接するピン3とは2mmピッチで形成されている。
前記適宜な凹部4に吸引孔6が形成され、該吸引孔6の下側開口部は真空ポンプ(図示略)に連通していて、ピン3周辺の空気を吸引して減圧し、ピン3上に載置した基板5を吸着保持するようにしている。
The pin 3 and the recess 4 are formed by sand blasting or grinding after the surface 1a is ground to a desired flatness. Of these, the pin 3 has a diameter 1 mmφ narrower than the edge 2 and a height of 0.2 mm. It is formed in a truncated cone shape or a cylindrical shape, and is formed at a pitch of 2 mm with the adjacent pins 3.
A suction hole 6 is formed in the appropriate recess 4, and the lower opening of the suction hole 6 communicates with a vacuum pump (not shown). The substrate 5 placed on the substrate is sucked and held.

前記基板保持盤1の全周面、すなわち表面1a側のエッジ2とピン3と凹部4の全周面、および裏面1bの全周面と側面1cの全周面、吸引孔6の内面全面に耐磨耗性と摺動性に優れ、導電性を有するDLC膜7,7aがコーティングされている。
このうち、側面1cの全周面を除くDLC膜7の膜厚を10μm以下、実施形態では3μm以下に形成し、側面1cの全周面のDLC膜7aの膜厚を3〜6μmに形成し、側面1cのDLC膜7aを他のDLC膜7よりも肉厚に形成している。
On the entire peripheral surface of the substrate holder 1, that is, the entire peripheral surface of the edge 2, the pin 3 and the recess 4 on the front surface 1 a side, the entire peripheral surface of the back surface 1 b and the side surface 1 c, and the entire inner surface of the suction hole 6. The DLC films 7 and 7a, which are excellent in wear resistance and slidability and have conductivity, are coated.
Of these, the thickness of the DLC film 7 excluding the entire peripheral surface of the side surface 1c is formed to be 10 μm or less, in the embodiment, 3 μm or less, and the thickness of the DLC film 7a on the entire peripheral surface of the side surface 1c is formed to 3 to 6 μm. The DLC film 7a on the side surface 1c is formed thicker than the other DLC films 7.

前記DLC膜7,7aは、基板保持盤1に対するピン3と凹部4と吸引孔6の形成後、例えば実施形態のようなプラズマCVD法、或いはスパッタリング法によってコーティングしている。
すなわち、前記各部を形成した基板保持盤1を反応器8に搬入し、これを反応器8内に配置したカソード電極9に載置し、このカソード電極9と対向配置したアノード電極(図示略)間に高周波電圧を印加する。
The DLC films 7 and 7a are coated by, for example, the plasma CVD method or the sputtering method as in the embodiment after the pins 3, the recesses 4 and the suction holes 6 are formed on the substrate holding plate 1.
That is, the substrate holding plate 1 in which each part is formed is carried into the reactor 8, placed on the cathode electrode 9 disposed in the reactor 8, and an anode electrode (not shown) disposed opposite to the cathode electrode 9. A high frequency voltage is applied between them.

これと同時に反応器8の入口側(図示略)から、例えば原料ガスであるメタンを供給して原料ガスをプラズマ10化し、反応器8内部のガスを出口側(図示略)から真空ポンプ(図示略)で排出する。
このようにして、原料ガスのメタンを分解し、分解した炭素をカソ−ド電極9上の基板保持盤1に付着させDLC膜7を堆積して、凹部4と吸引孔6の内面を含む基板保持盤1の表面1a側周面と、側面1c周面にDLC膜をコ−ティングする。
At the same time, for example, methane, which is a raw material gas, is supplied from the inlet side (not shown) of the reactor 8 to turn the raw material gas into a plasma 10, and the gas inside the reactor 8 is vacuum pumped (not shown) from the outlet side (not shown). Omitted).
In this way, the source gas methane is decomposed, the decomposed carbon is attached to the substrate holding plate 1 on the cathode electrode 9, the DLC film 7 is deposited, and the substrate including the recess 4 and the inner surface of the suction hole 6 is deposited. A DLC film is coated on the peripheral surface of the holding surface 1 on the surface 1a side and the peripheral surface of the side surface 1c.

そして、前記周面を所定肉厚にDLC膜コーティング後、該コーティングを一旦中断し、カソード電極9上の基板保持盤1を反転して配置し、つまり裏面1bを上向きに配置し、エッジ2とピン3と凹部4を下向きに配置した後、反応器8内のプラズマ10化とDLC膜コーティングを再開し、吸引孔6の内面を含む基板保持盤1の裏面1bと側面1c周面にDLC膜コーティングする。
この場合、基板保持盤1を反転する代わりに、基板保持盤1を回転させながら表裏両面にDLC膜コーティングすることも可能であり、その場合は基板保持盤1の保持部におけるDLC膜コーティングに対応する必要がある。
Then, after coating the DLC film with a predetermined thickness on the peripheral surface, the coating is temporarily interrupted, the substrate holding plate 1 on the cathode electrode 9 is inverted and arranged, that is, the back surface 1b is arranged upward, After the pins 3 and the recesses 4 are disposed downward, the plasma 10 in the reactor 8 and the DLC film coating are restarted, and the DLC film is formed on the peripheral surface of the back surface 1b and the side surface 1c of the substrate holder 1 including the inner surface of the suction hole 6. Coating.
In this case, instead of inverting the substrate holder 1, it is also possible to coat the DLC film on both the front and back surfaces while rotating the substrate holder 1. In this case, DLC film coating on the holding part of the substrate holder 1 is supported. There is a need to.

このように基板保持盤1を反転し、その表面1a側と裏面1b側から前後二回に亘ってDLC膜コーティングすることによって、吸引孔6の内面を精密にDLC膜コーティングできるとともに、側面1c周面を前後二回に亘ってDLC膜コーティングすることによって、当該部のDLC膜7aを他の表面1a側周面および裏面1bのDLC膜7よりも容易かつ安価に肉厚に形成できるとともに、露光時に側面1cから基板保持盤1へ入射する光を抑制し、基板保持盤1表面の低反射率を維持できる。   In this way, by reversing the substrate holding plate 1 and coating the DLC film twice in front and rear from the front surface 1a side and the back surface 1b side, the inner surface of the suction hole 6 can be precisely coated with the DLC film, and the side surface 1c By coating the surface with the DLC film twice before and after, the DLC film 7a of the part can be easily and cheaply formed thicker than the DLC film 7 on the other surface 1a side peripheral surface and the back surface 1b, and exposure Sometimes, light incident on the substrate holder 1 from the side surface 1c can be suppressed, and the low reflectance of the surface of the substrate holder 1 can be maintained.

そして、側面1cのDLC膜7aを他の表面のDLC膜7よりも肉厚に形成することによって、他の表面のDLC膜7の薄膜化を促がし、当該部のDLC膜7のコーティングの合理化と低廉化を図れる。
実施形態では基板保持盤1の表面1a側周面と裏面1bのDLC被膜の膜厚を3μm以下に形成し、側面1c周面のDLC被膜の膜厚を前記部位の膜厚以上の3〜6μmに形成している。
Then, by forming the DLC film 7a on the side surface 1c thicker than the DLC film 7 on the other surface, the thinning of the DLC film 7 on the other surface is promoted, and the coating of the DLC film 7 on the relevant part is promoted. Streamline and reduce costs.
In the embodiment, the film thickness of the DLC film on the front surface 1a side surface and the back surface 1b of the substrate holder 1 is 3 μm or less, and the film thickness of the DLC film on the side surface 1c is 3 to 6 μm, which is equal to or greater than the film thickness of the above part. Is formed.

この後、少なくとも前記基板保持盤1の表面1a側の表面、つまりエッジ2とピン3と凹部4周面のDLC被膜上に無機透明の薄膜11を形成している。
前記薄膜11は、基板保持盤1の全表面にDLC膜コーティング後、基板保持盤1の表面1a側の表面に、硬化被膜が透明になる低粘性コート剤を塗布して形成され、その膜厚を2μm以下に形成している。したがって、薄膜11による基板保持盤1の平面度の悪化の懸念が無く、顕著な反射率低減が可能である。
実施形態では前記コート剤として、アルコキシシラン化合物を含むものやシロキサン系の無機系コート剤を使用し、基板保持盤1の表面1a側の表面に硬化被膜の無機透明の薄膜11を形成している。
Thereafter, an inorganic transparent thin film 11 is formed at least on the surface of the substrate holding plate 1 on the surface 1a side, that is, on the DLC film on the peripheral surface of the edge 2, the pin 3, and the recess 4.
The thin film 11 is formed by coating a DLC film on the entire surface of the substrate holder 1 and then applying a low-viscosity coating agent on the surface 1a side of the substrate holder 1 so that the cured film is transparent. Is formed to be 2 μm or less. Therefore, there is no concern about the deterioration of the flatness of the substrate holder 1 due to the thin film 11, and a significant reduction in reflectance is possible.
In the embodiment, as the coating agent, an alkoxysilane compound-containing one or a siloxane-based inorganic coating agent is used, and an inorganic transparent thin film 11 of a cured coating is formed on the surface 1 a side of the substrate holder 1. .

次に、発明者は構成を異にした種々の基板保持盤1を製作し、それらの平面度や反射率、製作コストを比較して、最良の基板保持盤1を採択した。
先ず、実験例1の基板保持盤1は、図4(a)のように表面1a側のみに膜厚3μmのDLC膜7をコーティングし、それらの表面には薄膜11をコーティングせず、また側面1cと吸引孔6内にDLC膜7をコーティングしていない。
Next, the inventor manufactured various substrate holding plates 1 having different configurations, and compared the flatness, reflectivity, and manufacturing cost thereof, and adopted the best substrate holding plate 1.
First, as shown in FIG. 4 (a), the substrate holder 1 of Experimental Example 1 is coated with a DLC film 7 having a film thickness of 3 μm only on the surface 1a side, and the thin film 11 is not coated on the surface. The DLC film 7 is not coated in 1c and the suction hole 6.

実験例2の基板保持盤1は、図4(b)のように表面1a側と裏面1b側に膜厚3μmのDLC膜7をコーティングし、それらの表面には薄膜11をコーティングせず、また側面1cに膜厚4〜6μmのDLC膜7をコーティングし、吸引孔6内に膜厚2〜6μmのDLC膜7をコーティングしている。
実験例3の基板保持盤1は、図4(c)のように表面1a側と裏面1b側に膜厚3μmのDLC膜7をコーティングし、それらの表面に極薄の薄膜11をコーティングするとともに、側面1cに膜厚4〜6μmのDLC膜7をコーティングし、吸引孔6内に膜厚2〜6μmのDLC膜7をコーティングしている。
As shown in FIG. 4B, the substrate holder 1 of Experimental Example 2 is coated with a DLC film 7 having a film thickness of 3 μm on the front surface 1a side and the back surface 1b side, and the front surface is not coated with the thin film 11; The side surface 1c is coated with a DLC film 7 having a film thickness of 4 to 6 μm, and the suction hole 6 is coated with a DLC film 7 having a film thickness of 2 to 6 μm.
As shown in FIG. 4C, the substrate holder 1 of Experimental Example 3 is coated with a DLC film 7 having a film thickness of 3 μm on the front surface 1a side and the back surface 1b side, and an extremely thin thin film 11 is coated on these surfaces. The side surface 1c is coated with a DLC film 7 having a film thickness of 4 to 6 μm, and the suction hole 6 is coated with a DLC film 7 having a film thickness of 2 to 6 μm.

実験例4の基板保持盤1は、図4(d)のように表面1a側と裏面1b側に膜厚10μmのDLC膜7をコーティングし、それらの表面に極薄の薄膜11をコーティングするとともに、側面1cに膜厚5〜20μmのDLC膜7をコーティングし、吸引孔6内に膜厚5〜20μmのDLC膜7をコーティングし、全体的にDLC膜7を肉厚にしている。
実験例5の基板保持盤1は、拡大して示した図4(e)のように表面1a側と裏面1b側に膜厚1μmのDLC膜7をコーティングし、それらの表面に極薄の薄膜11をコーティングするとともに、側面1cに膜厚1.5〜2μmのDLC膜7aをコーティングし、吸引孔6内に膜厚1〜2μmのDLC膜7をコーティングし、全体的にDLC膜7を肉薄にしている。
As shown in FIG. 4D, the substrate holder 1 of Experimental Example 4 is coated with a DLC film 7 having a film thickness of 10 μm on the front surface 1a side and the back surface 1b side, and an extremely thin thin film 11 is coated on these surfaces. The DLC film 7 having a film thickness of 5 to 20 μm is coated on the side surface 1c, and the DLC film 7 having a film thickness of 5 to 20 μm is coated in the suction hole 6 so that the DLC film 7 is made thick as a whole.
As shown in FIG. 4 (e), the substrate holding plate 1 of Experimental Example 5 is coated with a DLC film 7 having a thickness of 1 μm on the front surface 1a side and the back surface 1b side, and an extremely thin thin film is formed on these surfaces. 11, the side surface 1 c is coated with a DLC film 7 a having a film thickness of 1.5 to 2 μm, the DLC film 7 having a film thickness of 1 to 2 μm is coated in the suction hole 6, and the DLC film 7 is thinned as a whole. I have to.

こうして製作した5種類の基板保持盤1に対し、平面度と波長360〜740nmに亘る反射率を測定する。
この場合、平面度測定にはミツトヨ製三次元測定器(RVA1500A)を使用し、基材表面のエッジ部およびピン先端部を合計20箇所測定した。また、反射率測定にはコニカミノルタ製分光側色計CM−2600dを使用して表面側の10箇所について、全反射率および拡散反射率を測定した。
The flatness and the reflectance over a wavelength range of 360 to 740 nm are measured for the five types of substrate holders 1 thus manufactured.
In this case, a Mitutoyo three-dimensional measuring instrument (RVA1500A) was used for the flatness measurement, and a total of 20 edges and pin tips were measured on the substrate surface. Further, for the reflectance measurement, the total reflectance and the diffuse reflectance were measured at 10 points on the surface side using a spectroscopic color meter CM-2600d manufactured by Konica Minolta.

前記反射率の結果は表1の通りで、正反射成分と拡散反射成分を足し合わせた全全反射率の測定結果は図5の通りである。
このうち、反射率は表面側の薄膜11のコーティングの有無によって、反射率が大きく変化し、薄膜11がコーティングされている、例えば実験例3が、コーティングされていない、例えば実験例2に比べて、反射率が著しく改善されていることが分かる。
また、全反射率は図5のように、実験例3が波長360〜720nmの全域に亘って約4%を維持し、実験例2が約8%であるのに比べて非常に低く、従来技術(特許文献5)と比べても360〜500nmの範囲で大幅に反射率を低下できる結果を得られた。
The result of the reflectance is as shown in Table 1, and the measurement result of the total total reflectance obtained by adding the regular reflection component and the diffuse reflection component is as shown in FIG.
Of these, the reflectivity varies greatly depending on the presence or absence of coating of the thin film 11 on the surface side, and the thin film 11 is coated, for example, Experimental Example 3 is not coated, for example, compared to Experimental Example 2, for example. It can be seen that the reflectance is remarkably improved.
Further, as shown in FIG. 5, the total reflectance is about 4% in the experimental example 3 over the entire wavelength range of 360 to 720 nm, and is very low compared with the experimental example 2 of about 8%. Even when compared with the technique (Patent Document 5), the reflectance can be significantly reduced in the range of 360 to 500 nm.

このことから薄膜11のコーティングが有利であると考えられる。これは薄膜11とDLC膜7の二重皮膜を入射光が伝播する際の屈折に原因していると考えられる。
製造コストは、DLC膜7の肉厚ないしその塗布作業の手間に関係し、DLC膜7が肉厚のものが薄肉のものよりも高いことが分かる。
これらの結果を実験例毎にまとめて総合評価したところ、次のような結果を得た。

Figure 0006213960
From this, it is considered that the coating of the thin film 11 is advantageous. This is considered to be caused by refraction when incident light propagates through the double film of the thin film 11 and the DLC film 7.
It can be seen that the manufacturing cost is related to the thickness of the DLC film 7 or the time for applying the DLC film 7, and that the DLC film 7 is thicker than the thin one.
When these results were collectively evaluated for each experimental example, the following results were obtained.
Figure 0006213960

こうして平面度と反射率と製造コストを総合評価すると、実験例3が最も良い結果を得られた。実験例3を再掲すると次のようである。
表面1a側と裏面1b側に膜厚3μmのDLC膜7をコーティングし、それらの表面に極薄の薄膜11をコーティングし、側面1cに膜厚4〜6μmのDLC膜7aをコーティングし、吸引孔6内に膜厚2〜6μmのDLC膜7をコーティングする。
前記実験例3を前記実施形態と比較すると、両者は側面1cのDLC膜7aの膜厚以外は共通し、ただ実施形態の側面1cのDLC膜7aの膜厚が3〜6μmであるのに対し、実験例3のそれは4〜6μmであり、その範囲が僅かに狭くなっているが、概ね両者の構成は同一である、といえる。
Thus, when the flatness, reflectance, and manufacturing cost were comprehensively evaluated, Experimental Example 3 gave the best results. Experimental example 3 is shown again as follows.
The surface 1a side and the back surface 1b side are coated with a DLC film 7 having a film thickness of 3 μm, the surface is coated with a very thin thin film 11, and the side surface 1c is coated with a DLC film 7a having a film thickness of 4 to 6 μm. 6 is coated with a DLC film 7 having a film thickness of 2 to 6 μm.
Comparing the experimental example 3 with the above embodiment, both are common except for the thickness of the DLC film 7a on the side surface 1c, whereas the thickness of the DLC film 7a on the side surface 1c of the embodiment is 3 to 6 μm. In Experimental Example 3, it is 4 to 6 μm, and the range is slightly narrow, but it can be said that the configurations of both are almost the same.

このように構成した液晶基板保持盤は、母材を透明な石英ガラスとしたから、軽量で液晶基板サイズないし基板ステ−ジの大型化に伴なう基板保持盤1の大型化に対応できるとともに、熱変形が極めて小さく、露光装置においては露光精度の低下を防止することもできる。
また、検査装置においては、保持盤に起因する反射光の強度が低く、検査基板の欠陥に起因するコントラストの変化を確実に検出できるとともに、反射光のコントラストの変化を抑制し、擬似的な傷や異物等の検出を未然に防止し、検査精度を向上し得る。
Since the liquid crystal substrate holding disk constructed as described above is made of transparent quartz glass as a base material, it is lightweight and can cope with the increase in size of the liquid crystal substrate or the increase in the size of the substrate holding disk 1 due to the increase in the substrate stage. Further, thermal deformation is extremely small, and it is possible to prevent a reduction in exposure accuracy in the exposure apparatus.
In addition, in the inspection apparatus, the intensity of the reflected light caused by the holding plate is low, and it is possible to reliably detect a change in contrast due to a defect in the inspection substrate, and to suppress a change in the contrast of the reflected light, resulting in a pseudo flaw. The detection accuracy can be improved by preventing the detection of foreign matter and foreign matters.

しかも、基板保持盤1の表面と吸引孔6の内面に耐摩耗性と摺動性に優れるDLC膜7,7aをコーティングしたから、経年的な使用による摩耗を抑制し、基板5の長期に亘る円滑な移動を促がし、基板5の脱着を容易かつ速やかに行なえる。
したがって、従来のセラミックス製のように、焼結時の収縮や割れを生じ易くて歩留まりが悪かったり、またアルミニウムにブラックアルマイトをコーティングしたもののように、熱変形によって露光精度が低下するとともに、経年的な使用によってブラックアルマイトが摩耗し、反射率が変化する不具合から解消される。
In addition, since the surface of the substrate holder 1 and the inner surface of the suction hole 6 are coated with the DLC films 7 and 7a having excellent wear resistance and slidability, wear due to aging is suppressed, and the substrate 5 is kept for a long time. Smooth movement is promoted, and the substrate 5 can be easily and quickly attached and detached.
Therefore, shrinkage and cracking are likely to occur during sintering as in the case of conventional ceramics, resulting in poor yields, and exposure accuracy decreases due to thermal deformation, such as when aluminum is coated with black alumite. The anodized black anodized wears away from the problem of changing reflectance.

更に、基板保持盤1は全面をDLC膜コーティングしたから、表面側のDLC膜コーティングがトラブルまたは劣化により剥離しても、他部位のDLC膜によって反射率は上昇することなく低反射率を維持できるため、直ちに装置を停止して基板保持盤を交換する必要がない。したがって、新たな基盤保持盤を準備している間も装置を稼働し得るから、装置稼働率の大幅な向上と生産性の向上を図れる。   Further, since the entire surface of the substrate holding plate 1 is coated with the DLC film, even if the DLC film coating on the surface side is peeled off due to trouble or deterioration, the DLC film at the other part can maintain the low reflectance without increasing the reflectance. Therefore, it is not necessary to immediately stop the apparatus and replace the substrate holding plate. Therefore, since the apparatus can be operated while preparing a new base holding panel, the apparatus operating rate can be greatly improved and the productivity can be improved.

前記基板保持盤1を製作する場合は、先ず透明な石英ガラスのインゴットを切断し、これを基板保持盤1を形成可能な寸法の矩形板状に切り出す。
この状況は図3(a)のようで、前記切断をダイヤモンド砥粒を固着した金属ブレードを用い、または切削油等の流体中に砥粒を混在させ、これをノズルから高速で噴射させて行なう。
When the substrate holding plate 1 is manufactured, first, a transparent quartz glass ingot is cut, and the substrate holding plate 1 is cut into a rectangular plate having a size capable of forming the substrate holding plate 1.
This situation is as shown in FIG. 3 (a), and the cutting is performed by using a metal blade with diamond abrasive grains fixed thereto or by mixing abrasive grains in a fluid such as cutting oil and injecting the abrasive grains from a nozzle at a high speed. .

次に、前記切り出した石英ガラス板の表裏両面を研削加工し、所望の厚さに精密に加工するとともに、それらの両面を所定の平面度と平坦度に加工し、この石英ガラス板に吸引孔6を形成する。この状況は図3(b)のようである。
この後、石英ガラス板の表面1aをサンドブラストおよび研削加工して、外周にエッジ2を形成し、その内側に多数のピン3と凹部4を形成する。この状況は図1および図2、図3(c)のようである。
Next, both the front and back sides of the cut quartz glass plate are ground and precisely processed to a desired thickness, and both sides are processed to a predetermined flatness and flatness, and suction holes are formed in the quartz glass plate. 6 is formed. This situation is as shown in FIG.
Thereafter, the surface 1a of the quartz glass plate is sandblasted and ground to form an edge 2 on the outer periphery, and a large number of pins 3 and recesses 4 are formed on the inside. This situation is as shown in FIGS. 1, 2, and 3 (c).

そして、前記基板保持盤1の全周面、すなわち表面1a側のエッジ2とピン3と凹部4の全周面、および裏面1bの全周面と側面1cの全周面、吸引孔6の内面全面に耐磨耗性と摺動性に優れるDLC膜7,7aをコーティングする。
前記コーティングは、側面1cの全周面を除くDLC膜7の膜厚を10μm以下、実施形態では3μm以下に形成し、側面1cの全周面のDLC膜7aの膜厚を3〜6μmに形成し、側面1cのDLC膜7aを他のDLC膜7よりも肉厚に形成する。
Then, the entire peripheral surface of the substrate holder 1, that is, the peripheral surface of the edge 2, the pin 3 and the recess 4 on the front surface 1 a side, the entire peripheral surface of the back surface 1 b and the side surface 1 c, and the inner surface of the suction hole 6. The entire surface is coated with DLC films 7 and 7a having excellent wear resistance and sliding properties.
In the coating, the DLC film 7 excluding the entire peripheral surface of the side surface 1c is formed to have a thickness of 10 μm or less, and in the embodiment, 3 μm or less, and the DLC film 7a on the entire peripheral surface of the side surface 1c is formed to have a thickness of 3 to 6 μm. Then, the DLC film 7 a on the side surface 1 c is formed thicker than the other DLC films 7.

前記DLC膜7,7aは、基板保持盤1に対するピン3と凹部4と吸引孔6の形成後、プラズマCVD法によってコーティングする。
すなわち、前記各部を形成した基板保持盤1を反応器8に搬入し、これを反応器8内に配置したカソ−ド電極9に載置し、このカソ−ド電極9と対向配置したアノ−ド電極(図示略)間に高周波電圧を印加する。
これと同時に反応器8の入口側(図示略)から、例えば原料ガスであるメタンを供給して原料ガスをプラズマ10化し、反応器8内部のガスを出口側(図示略)から真空ポンプ(図示略)で排出する。
The DLC films 7 and 7a are coated by the plasma CVD method after the pins 3, the recesses 4 and the suction holes 6 are formed on the substrate holder 1.
That is, the substrate holding plate 1 in which each of the above parts is formed is carried into a reactor 8 and placed on a cathode electrode 9 disposed in the reactor 8, and an anode disposed opposite to the cathode electrode 9. A high frequency voltage is applied between the two electrodes (not shown).
At the same time, for example, methane, which is a raw material gas, is supplied from the inlet side (not shown) of the reactor 8 to turn the raw material gas into a plasma 10, and the gas inside the reactor 8 is vacuum pumped (not shown) from the outlet side (not shown). Omitted).

このようにして、原料ガスのメタンを分解し、分解した炭素をカソード電極9上の基板保持盤1に付着させDLC膜7を堆積して、凹部4と吸引孔6の内面を含む基板保持盤1の表面1a側周面と、側面1c周面にDLC膜コーティングする。この状況は図3(d)のようである。   In this way, the source gas methane is decomposed, the decomposed carbon is attached to the substrate holding plate 1 on the cathode electrode 9 to deposit the DLC film 7, and the substrate holding plate including the recess 4 and the inner surface of the suction hole 6 is deposited. DLC film coating is performed on the surface 1a side peripheral surface of 1 and the side surface 1c peripheral surface. This situation is as shown in FIG.

そして、前記周面に所定膜厚のDLC膜コーティング後、該コーティングを一旦中断し、カソ−ド電極10上の基板保持盤1を反転して配置し、つまり裏面1bを上向きに配置し、エッジ2とピン3と凹部4を下向きに配置した後、反応器8内のプラズマ10化とDLC膜コーティングを再開し、吸引孔6の内面を含む基板保持盤1の裏面1bと側面1c周面にDLC膜コーティングする。この状況は図3(e),(f)のようである。
この場合、基板保持盤1を反転する代わりに、基板保持盤1を回転させながら表裏両面にDLC膜コーティングすることも可能であり、その場合は基板保持盤1の保持部におけるDLC膜コーティングの欠損部に対処する。
Then, after coating the DLC film with a predetermined film thickness on the peripheral surface, the coating is temporarily interrupted, and the substrate holding plate 1 on the cathode electrode 10 is inverted and arranged, that is, the back surface 1b is arranged upward, the edge 2, the pin 3, and the concave portion 4 are disposed downward, and then the plasma 10 in the reactor 8 is converted to plasma 10 and the DLC film coating is resumed, and the back surface 1 b and the side surface 1 c of the substrate holding plate 1 including the inner surface of the suction hole 6. DLC film coating. This situation is as shown in FIGS.
In this case, instead of inverting the substrate holding plate 1, it is also possible to coat the DLC film on both the front and back surfaces while rotating the substrate holding plate 1. In this case, the DLC film coating defect in the holding part of the substrate holding plate 1 is possible. Deal with the department.

このように基板保持盤1を反転し、その表面1a側と裏面1b側から前後二回に亘ってDLC膜コーティングすることによって、吸引孔6の内面を精密にDLC膜コーティングできる。
また、側面1c周面を前後二回に亘ってDLC膜コーティングすることによって、当該部のDLC膜7aを、他の表面1a側周面および裏面1bのDLC膜7よりも肉厚に形成でき、他の表面1a側周面および裏面1bのDLC膜7の膜厚の薄膜化を図れるから、当該部のDLC膜コーティングを合理的かつ安価に行なえる。
In this way, by inverting the substrate holder 1 and coating the DLC film twice in the front and rear directions from the front surface 1a side and the back surface 1b side, the inner surface of the suction hole 6 can be precisely coated with the DLC film.
In addition, by coating the peripheral surface of the side surface 1c twice before and after, the DLC film 7a of the part can be formed thicker than the DLC film 7 on the other surface 1a side peripheral surface and the back surface 1b, Since the film thickness of the DLC film 7 on the other peripheral surface of the front surface 1a and the back surface 1b can be reduced, the DLC film coating of the part can be performed reasonably and inexpensively.

このように側面1cのDLC膜7aを肉厚に形成することによって、露光時に側面1cから基板保持盤1へ入射する光を抑制し、基板保持盤1表面の低反射率を維持して良好な露光作用を奏する。その際、吸引孔6の内面もDLC膜コーティングされているから、基板保持盤1表面の低反射率化を促す。   By forming the DLC film 7a on the side surface 1c thick in this way, light incident on the substrate holding plate 1 from the side surface 1c at the time of exposure is suppressed, and the low reflectance on the surface of the substrate holding plate 1 is maintained and good. Exhibits exposure. At this time, since the inner surface of the suction hole 6 is also coated with the DLC film, the surface of the substrate holding plate 1 is promoted to have a low reflectance.

こうして製作した基板保持盤1を用いて基板5を露光する場合は、基板保持盤1を露光装置(図示略)の基板ステージ(図示略)上に配置し、その吸引孔6を真空ポンプ(図示略)に連通し、表面1a側に基板5を載置して真空ポンプを作動し、ピン3と凹部4周辺の空気を吸引して当該スペースを減圧し、基板5を保持する。
この状況の下で基板5の上方から露光光を照射し、これを投影光学系を介して基板5に入射し、所定のパターン像を基板5に結像する。
その際、基板5を透過した露光光の一部が基板保持盤1の表面1aに到達し、その一部が前記表面1aで反射して基板5に入射し、二重露光を引き起こす可能性がある。
When the substrate 5 is exposed using the substrate holder 1 thus manufactured, the substrate holder 1 is placed on a substrate stage (not shown) of an exposure apparatus (not shown), and the suction hole 6 is vacuum pumped (not shown). The substrate 5 is placed on the surface 1a side, the vacuum pump is operated, the air around the pins 3 and the recesses 4 is sucked to decompress the space, and the substrate 5 is held.
Under this condition, exposure light is irradiated from above the substrate 5, and this is incident on the substrate 5 through the projection optical system, and a predetermined pattern image is formed on the substrate 5.
At that time, a part of the exposure light transmitted through the substrate 5 reaches the surface 1a of the substrate holder 1 and a part of the exposure light may be reflected by the surface 1a and incident on the substrate 5 to cause double exposure. is there.

この場合、実施形態の基板保持盤1の表面1aはDLC膜7と薄膜11とで被覆され、当該部の全反射率は5%以下で僅少であるから、前記反射光の入射を抑制し二重露光を防止する。
その際、基板5の外周部で露光光が散乱し、この散乱光と基板保持盤1の外部の光が側面1cから内部に入射し得るが、側面1cのDLC膜7aは他の部位のDLC膜7よりも肉厚であるから、前記入射を抑制する。
しかも、吸引孔6の内面にはDLC膜7が被覆され、吸引孔6を透過して表面1a側へ伝播する入射光を遮蔽するから、基板保持盤1の表面1aにおける反射光を抑制する。
In this case, the surface 1a of the substrate holding plate 1 according to the embodiment is covered with the DLC film 7 and the thin film 11, and the total reflectance of the portion is 5% or less, so that the incidence of the reflected light is suppressed. Prevent heavy exposure.
At that time, the exposure light is scattered at the outer peripheral portion of the substrate 5 and the scattered light and the light outside the substrate holder 1 can enter the inside from the side surface 1c. Since it is thicker than the film 7, the incidence is suppressed.
In addition, the inner surface of the suction hole 6 is covered with the DLC film 7 and shields the incident light that passes through the suction hole 6 and propagates to the surface 1a side, so that the reflected light on the surface 1a of the substrate holder 1 is suppressed.

このようにして基板保持盤1の表面1aにおける反射率が低下され、前記表面1aにおける反射が抑制されて、前記二重露光の発生を阻止し良好かつ安定した露光を実現する。 また、検査装置においては、保持盤からの反射光強度が低いため、保持盤起因のコントラスト変化を無視することができ、検査基板に起因する欠陥を精度良く検出し検査精度を向上することができる。   In this way, the reflectance on the surface 1a of the substrate holder 1 is lowered, the reflection on the surface 1a is suppressed, the occurrence of the double exposure is prevented, and good and stable exposure is realized. Further, in the inspection apparatus, since the intensity of reflected light from the holding plate is low, the contrast change caused by the holding plate can be ignored, and the defect caused by the inspection substrate can be detected with high accuracy and the inspection accuracy can be improved. .

このように本発明の液晶基板保持盤は、基板保持盤の全周面にDLC(ダイヤモンドライクカーボン)膜を被覆し、基板載置面の摩耗を防止し基板の摺動を円滑にするとともに、側面のDLC膜の膜厚を他部位周面よりも厚く形成して、露光または検査時に側面から基板保持盤へ入射する光を抑制し基板載置面の低反射率を維持して、露光装置ないし検査装置の大型化と表面の低反射率化を図るとともに、他部位周面のDLC膜の膜厚を薄膜化して、DLC膜コーティングの合理化と低廉化を図り安価に製作できるから、例えば液晶パネルまたはウェーハの露光装置用ないし検査装置用の基板を保持する基板保持盤に好適である。 Thus, the liquid crystal substrate holding disk of the present invention covers the entire peripheral surface of the substrate holding disk with a DLC (diamond-like carbon) film, prevents wear of the substrate mounting surface and makes the substrate slide smoothly, An exposure apparatus that forms the DLC film on the side surface thicker than the peripheral surface of other parts, suppresses light incident on the substrate holding plate from the side surface during exposure or inspection, and maintains the low reflectance of the substrate mounting surface. In addition to increasing the size of the inspection device and lowering the reflectance of the surface, the thickness of the DLC film on the peripheral surface of other parts can be reduced, and the DLC film coating can be rationalized and reduced in cost. It is suitable for a substrate holding plate for holding a substrate for a panel or wafer exposure apparatus or inspection apparatus.

1 母材(基板保持盤)
1a 母材表面
1b 裏面
1c 側面
3 ピン
4 凹部
5 基板
6 吸引孔
7,7a DLC膜
11 薄膜
1 Base material (board holding board)
1a Base material surface 1b Back surface 1c Side surface 3 Pin 4 Recess 5 Substrate 6 Suction hole 7, 7a DLC film 11 Thin film

Claims (3)

母材表面側に複数のピンと凹部と吸引孔を形成し、母材表面と裏面および側面の全周面と前記吸引孔の内面をDLC(ダイヤモンドライクカーボン)コーティングし、前記側面のDLC膜の膜厚を、前記側面以外の他部位周面のDLC膜よりも肉厚に形成した基板保持盤において、少なくとも前記ピンと凹部を含む母材表面側のDLC膜に透明な薄膜をコーティングしたことを特徴とする基板保持盤。 The base material surface to form a plurality of pins and recesses and the suction holes, the entire peripheral surface of the base metal surface and the back surface and the side surface and the inner surface of the suction holes and DLC (diamond-like carbon) coating film of the DLC film of the side In the substrate holding plate formed with a thickness thicker than the DLC film on the peripheral surface other than the side surface, a transparent thin film is coated on the DLC film on the base material surface side including at least the pin and the recess. Board holding board. 前記薄膜の膜厚を2μm以下に形成した請求項1記載の基板保持盤。 The substrate holder according to claim 1 , wherein the thickness of the thin film is 2 μm or less . 前記母材表面の全反射率を5%以下にした請求項記載の基板保持盤。
Substrate holding plate according to claim 1, wherein the total reflectivity was less than 5% of the base material surface.
JP2013233649A 2013-11-12 2013-11-12 Substrate holder Active JP6213960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013233649A JP6213960B2 (en) 2013-11-12 2013-11-12 Substrate holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013233649A JP6213960B2 (en) 2013-11-12 2013-11-12 Substrate holder

Publications (2)

Publication Number Publication Date
JP2015094002A JP2015094002A (en) 2015-05-18
JP6213960B2 true JP6213960B2 (en) 2017-10-18

Family

ID=53196622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013233649A Active JP6213960B2 (en) 2013-11-12 2013-11-12 Substrate holder

Country Status (1)

Country Link
JP (1) JP6213960B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230060460A (en) 2021-10-27 2023-05-04 캐논 가부시끼가이샤 Substrate holding board, manufacturing method of device, and exposure device
WO2023100821A1 (en) * 2021-11-30 2023-06-08 京セラ株式会社 Height adjustment member, heat treatment apparatus and electrostatic chuck device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945753A (en) * 1995-07-28 1997-02-14 Kyocera Corp Object supporting device
JP2004009165A (en) * 2002-06-04 2004-01-15 Ngk Spark Plug Co Ltd Sucking chuck
EP1840657A1 (en) * 2006-03-28 2007-10-03 Carl Zeiss SMT AG Support structure for temporarily supporting a substrate
JP2010239026A (en) * 2009-03-31 2010-10-21 Tokyo Electron Ltd Substrate holding member and liquid treatment apparatus

Also Published As

Publication number Publication date
JP2015094002A (en) 2015-05-18

Similar Documents

Publication Publication Date Title
JP2017094486A (en) Glass edge finishing method
JP5063797B2 (en) Adsorption member, adsorption device, and adsorption method
JP6579056B2 (en) Wafer double-side polishing method
JP6213960B2 (en) Substrate holder
US10724140B2 (en) Thermal chemical vapor deposition system and operating method thereof
CN108468029A (en) It is modified the magnetron sputtering scan method promoted with face shape for silicon carbide optical mirror plane
TW201436973A (en) Rectangular mold-forming substrate
KR20080050387A (en) Sample holder, sample suction apparatus using such sample holder and sample processing method using such sample suction apparatus
KR102457699B1 (en) Wafer and method for analyzing shape of the same
JP4229380B2 (en) Vacuum chuck for substrate holding
TWI614118B (en) Mold-forming substrate and inspection method
CN116815148A (en) Film thickness measuring method
CN107251422B (en) Method for manufacturing device
JP2015214449A (en) Production method of glass substrate and glass substrate
JP6618843B2 (en) Photomask substrate recycling method, photomask substrate manufacturing method, photomask blank manufacturing method, photomask manufacturing method, and pattern transfer method
JP6668066B2 (en) Method for manufacturing mask blank substrate, method for manufacturing mask blank, and method for manufacturing exposure mask
JP2019065380A (en) Sputtering target
WO2018014568A1 (en) New process for copper polishing processing of sapphire wafer
Li et al. Fabrication of plasmonic nanopillar arrays based on nanoforming
JP7159383B2 (en) Substrate holder
TWI389766B (en) Carrier for holding an object to be polished
JP2016097643A (en) Stamper mounting roll and method for manufacturing stamper mounting roll
US20190131192A1 (en) Wafer and method for analyzing shape of the same
JP2012203286A (en) Liquid crystal substrate hold panel and manufacturing method thereof
JP2009140985A (en) Monitor wafer and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170912

R150 Certificate of patent or registration of utility model

Ref document number: 6213960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250