JP6212951B2 - Method for producing battery electrode member - Google Patents

Method for producing battery electrode member Download PDF

Info

Publication number
JP6212951B2
JP6212951B2 JP2013108212A JP2013108212A JP6212951B2 JP 6212951 B2 JP6212951 B2 JP 6212951B2 JP 2013108212 A JP2013108212 A JP 2013108212A JP 2013108212 A JP2013108212 A JP 2013108212A JP 6212951 B2 JP6212951 B2 JP 6212951B2
Authority
JP
Japan
Prior art keywords
electrode
coating
active material
conductive
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013108212A
Other languages
Japanese (ja)
Other versions
JP2014229479A (en
Inventor
加藤 茂幹
茂幹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2013108212A priority Critical patent/JP6212951B2/en
Publication of JP2014229479A publication Critical patent/JP2014229479A/en
Application granted granted Critical
Publication of JP6212951B2 publication Critical patent/JP6212951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Coating Apparatus (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池などに適用される電池用電極部材の製造方法に関する。より詳しくは、コーティングロールに保持搬送される基材表面に、正極塗料あるいは負極塗料を、ダイヘッドのスリットから吐出し、ほぼ全面に塗布膜を形成する連続塗工、あるいはバルブの開閉によって間欠的に吐出することで、塗工部および未塗工部を形成する間欠塗工された電池用電極部材において、その同一面上に少なくとも2種の塗料が塗布されている電池用電極部材の製造方法に関するものである。 The present invention relates to a method of manufacturing a battery electrode member which is applied to a lithium ion secondary battery. More specifically, the positive electrode paint or the negative electrode paint is discharged from the slit of the die head onto the surface of the substrate held and transported by the coating roll, and the coating film is formed on almost the entire surface, or intermittently by opening and closing the valve. by discharging, coated portions and the cell electrode member which is intermittently applied to form a Minuriko unit, method for producing a battery electrode member in which at least two paint is coated on the same surface It is about.

リチウムイオン二次電池の電極部材は、例えば、電気自動車、燃料電池車、ハイブリッド電気自動車、家庭用蓄電設備、電動工具、電車、小型ポータブル機器等に使用される二次電池(キャパシターを含む)の電極部分に使用される。特に近年、リチウムイオン二次電池は、自動車用に搭載されるなど、その発展が著しい。自動車分野にとっての電池への要求性能は、高容量化、高出力、サイクル安定性、コスト、占有容積、安全性などが重要視されている。   The electrode member of a lithium ion secondary battery is, for example, a secondary battery (including a capacitor) used in an electric vehicle, a fuel cell vehicle, a hybrid electric vehicle, a household power storage facility, an electric tool, a train, a small portable device, etc. Used for electrode parts. In particular, the development of lithium ion secondary batteries has been remarkable in recent years. As for the required performance of batteries for the automobile field, high capacity, high output, cycle stability, cost, occupied volume, safety, etc. are regarded as important.

リチウムイオン二次電池を構成している部品は、大きく、正極および負極電極、セパレータ、電解液に分けることができ、その中でも電極は、集電体、活物質、バインダ、導電材といった材料から構成されている。
近年、車載用のリチウムイオン二次電池に関して鋭意研究されているが、活物質などの材料面のみならず、電極形状や加工プロセスの面でも研究開発が進んでいる。
The components that make up a lithium ion secondary battery can be broadly divided into positive and negative electrodes, separators, and electrolytes, among which electrodes are made of materials such as current collectors, active materials, binders, and conductive materials. Has been.
In recent years, intensive research has been conducted on in-vehicle lithium ion secondary batteries, but research and development are progressing not only in terms of materials such as active materials but also in terms of electrode shapes and processing processes.

特に、電極作製の際、電極基材である集電体上に、前述したように活物質を含む材料を溶剤で希釈したスラリーを塗布する場合が多いが、塗工精度や乾燥条件によっては性能に大きく影響してしまう。
また、スラリー塗布後の乾燥膜は、膜密度向上や密着性向上、塗面平滑化、内部抵抗低減のため、プレスをする場合がほとんどである。
塗布精度に関しては、所望の厚みの平滑な塗布面を得ることや塗布位置や形状が非常に重要である。それができてこそ、安定な電池性能を維持できるのである。
In particular, during electrode preparation, a slurry obtained by diluting a material containing an active material with a solvent as described above is often applied onto a current collector that is an electrode base material. However, depending on the coating accuracy and drying conditions, the performance may be increased. It will greatly affect.
In addition, the dried film after slurry application is mostly pressed to improve film density, improve adhesion, smooth the coating surface, and reduce internal resistance.
Regarding coating accuracy, it is very important to obtain a smooth coated surface with a desired thickness and the coating position and shape. Only then can stable battery performance be maintained.

集電体上に、電極となる平滑な塗布面を得て、これを、積層あるいは捲回することで大容量の電池を得ることができ、材料の持つ理論値並の電池性能をロスなく発現させたりすることができる。
また、位置や形状についても、正極、負極となる電極塗膜の塗布位置が異なったり、塗布形状が設計通りでないと、電池容量に影響したり、電池反応に利用されない部分が生じたりする。さらに、部分的に析出が生じ、セパレータを突き破り対極と接触することによりショートするなど、性能面、コスト面、安全面からも影響は大きい。
By obtaining a smooth coated surface to be an electrode on the current collector and then stacking or winding it, a large-capacity battery can be obtained, and the battery performance equivalent to the theoretical value of the material is expressed without loss. You can make it.
In addition, regarding the position and shape, if the application position of the electrode coating film serving as the positive electrode and the negative electrode is different, or if the application shape is not as designed, the battery capacity is affected, or a part that is not used for the battery reaction may be generated. Furthermore, precipitation is partially generated, and the influence is great from the viewpoint of performance, cost, and safety, such as a short circuit caused by breaking through the separator and coming into contact with the counter electrode.

積層されてなる電池に用いられることが多い間欠塗工や、捲回されてなる電池に用いられる連続塗工では、いずれの場合もプレス加工されるケースが多いが、プレス加工する際、電極基材(例えば、アルミニウム箔、銅箔、樹脂基材等)と電極塗膜との伸びの違いから密着性が上手く取れなかったり、ハンドリング上ヒビが入ってしまったりすることがある。   In intermittent coating, which is often used for laminated batteries, and continuous coating, which is used for wound batteries, there are many cases where pressing is performed in either case. Due to the difference in elongation between the material (for example, aluminum foil, copper foil, resin base material, etc.) and the electrode coating film, the adhesion may not be well removed or cracks may occur on handling.

また、電池性能向上の1つとして放電容量を上げるために電極塗膜の厚みを厚くする場合があるが、電極塗膜の厚みを厚くした場合、クラックがより入りやすく、また、電極塗膜表面から電極基材(金属箔など)までの距離、すなわち、電極塗膜の厚み分だけ、電子移動距離が遠くなることになる。すなわち、電子移動距離が長い分抵抗となり、効率が下がってしまい電池性能低下を招いている。   In addition, as one of the battery performance improvement, there is a case where the thickness of the electrode coating film is increased in order to increase the discharge capacity, but when the thickness of the electrode coating film is increased, cracks are more likely to occur, and the surface of the electrode coating film The electron moving distance is increased by the distance from the electrode substrate (metal foil or the like), that is, the thickness of the electrode coating film. That is, resistance becomes longer due to the longer electron movement distance, and the efficiency is lowered, leading to a decrease in battery performance.

また、電極塗膜中のほとんどは、正極あるいは負極活物質であり、他に必要に応じた量の導電助剤やバインダが混合されている。活物質中では、イオンから電子のやり取りを行って導電助剤を介して電極基材へと伝えていくのであるが、活物質自体は、導電性が極少であるため、すぐそばに導電助剤がないと効率が悪く、電極基材から離れた塗膜表面側、つまり、電解液と触れている界面側などで反応、生成した電子が電極基材法線方向で電極基材に到達することは、抵抗が大きいことを意味し、電池性能としての損失も大きい。   Further, most of the electrode coating film is a positive electrode or negative electrode active material, and in addition, a conductive assistant and a binder in an amount as required are mixed. In the active material, electrons are exchanged from ions to the electrode base material via the conductive auxiliary agent. However, the active material itself has very low conductivity, so the conductive auxiliary agent is just around the corner. Otherwise, the efficiency will be poor, and the electrons generated from the reaction and generation on the coating film surface side away from the electrode substrate, that is, the interface side in contact with the electrolyte, will reach the electrode substrate in the normal direction of the electrode substrate. Means that the resistance is large, and the loss as battery performance is also large.

導電助剤の割合を増やしてしまうと活物質の量が必然的に減り、活物質の量が減ると電子のやり取りする反応野が減り、電池容量の低下を招くことがある。少々導電助剤の割合を増やしたといえども、効率的に導電助剤が配置されるわけではないため、電池性能の大きな向上は期待できない。
そこでこのような課題を解決するために、いくつかの特許が出願されている。
例えば、特許文献1では、下地層を設けることで、電極基材との密着性を向上させるようにしている。また、特許文献2では、シリコン系活物質などからなる柱状の電極を用いることで、充放電サイクル特性に優れた二次電極用電極が提案されている。
If the proportion of the conductive auxiliary agent is increased, the amount of the active material is inevitably reduced, and if the amount of the active material is reduced, the reaction field where electrons are exchanged may be reduced, resulting in a decrease in battery capacity. Even if the proportion of the conductive auxiliary agent is slightly increased, the conductive auxiliary agent is not efficiently arranged, so that a large improvement in battery performance cannot be expected.
In order to solve such problems, several patents have been filed.
For example, in patent document 1, it is trying to improve adhesiveness with an electrode base material by providing a base layer. Patent Document 2 proposes a secondary electrode electrode having excellent charge / discharge cycle characteristics by using a columnar electrode made of a silicon-based active material or the like.

さらに、ストライプ塗工と呼ばれる、同一面に塗工部と未塗工部とを設ける方法で塗工を行い、未塗工部に集電機能を持たせることで、低内部抵抗で大電流出力特性に優れたリチウム二次電池(例えば、特許文献3参照)、あるいは、2層分の電極活物質層を順次あるいは同時に塗布することで電極としての機能を持たせて、出力特性を向上させるようにしたもの(例えば、特許文献4参照)、さらに、バインダ濃度に傾斜をつけた層を部分的に設けることで、電極塗膜と集電体との密着性を向上させる方法(例えば、特許文献5参照)、が提案されている。   Furthermore, by applying a method of providing a coated part and an uncoated part on the same surface, called stripe coating, a current collecting function is provided to the uncoated part, resulting in a large current output with low internal resistance. A lithium secondary battery having excellent characteristics (see, for example, Patent Document 3) or two electrode active material layers are applied sequentially or simultaneously so as to have a function as an electrode to improve output characteristics. (See, for example, Patent Document 4), and a method for improving the adhesion between the electrode coating film and the current collector by partially providing a layer with a gradient in binder concentration (for example, Patent Document) 5)) has been proposed.

特開2012−156109号公報JP 2012-156109 A 特開2003−303586号公報JP 2003-303586 A 特許第3511517号明細書Japanese Patent No. 3511517 特許第5070680号明細書Japanese Patent No. 5070680 特開2013−12393号公報JP 2013-12393 A

上述の特許文献1では、下地層を設けることで電極基材との密着性は向上し、電子のやり取りもスムーズになり、抵抗が減じて電池性能も向上する。しかしながら、塗膜表面側など電極基材から遠いところで発生した電子については考慮されておらず、損失低減が図られていない。
また、特許文献2に示すような、柱状の電極を用いる場合、柱状形状を作製するために工程が増えてしまう。また、別工程で電極基材に細工を加えることで、柱状部分と塗膜部分との界面に歪みが生じ、上手く電子伝達できないため、逆に抵抗になってしまう場合も少なくない。
In the above-mentioned Patent Document 1, by providing the base layer, the adhesion with the electrode substrate is improved, the exchange of electrons becomes smooth, the resistance is reduced, and the battery performance is also improved. However, no consideration has been given to electrons generated far from the electrode substrate such as the surface of the coating film, and loss reduction has not been achieved.
In addition, when a columnar electrode as shown in Patent Document 2 is used, the number of steps increases in order to produce a columnar shape. In addition, when the electrode base material is crafted in a separate process, the interface between the columnar part and the coating film part is distorted, and the electrons cannot be transferred well, so there are many cases where the resistance becomes conversely.

さらに、特許文献3および特許文献4記載のいずれの方法においても、電池性能向上が顕著ではなく、特許文献5においても、電極塗膜と集電体との密着性については向上するものの、バインダリッチな層が内部抵抗となり、特定の電池評価条件では効果を出すものの、全体的に性能が減じてしまっていた。
そこで、本発明の目的は、ひびやクラックの発生を抑制しつつ、密着性に優れ電池性能を向上させることの可能な電池用電極部材の製造方法を提供することを目的としている。
Further, in any of the methods described in Patent Document 3 and Patent Document 4, the battery performance is not significantly improved, and in Patent Document 5, the adhesion between the electrode coating film and the current collector is improved, but the binder rich This layer has internal resistance, and although it is effective under specific battery evaluation conditions, the overall performance has been reduced.
It is an object of the present invention, while suppressing the occurrence of Hibiya cracks, and its object is to provide a manufacturing method of the possible battery electrode member of improving the excellent battery performance in adhesion.

発明の一態様は、コーティングロールに保持搬送される電極基材表面に、正極または負極の塗料を、ダイヘッドのスリットから吐出して電極塗膜を形成する電池用電極部材の製造方法において、前記ダイヘッドにより、正極あるいは負極活物質を含む塗料と、当該塗料を塗布して形成される活物質帯よりも体積抵抗率が低い導電帯となる塗料とを含む少なくとも2種の塗料を前記電極基材の幅方向の両端を除く領域に同時に吐出させ、且つ、前記活物質帯と前記導電帯とが前記電極基材の幅方向に隣接して交互に配置されさらに交互に配置された前記活物質帯及び前記導電帯の幅方向の両側には前記活物質帯が位置するように前記ダイヘッドのスリットを配置して前記吐出を行うことで、前記電極基材の幅方向の両端に未塗布部を形成するようにし、そのすぐ内側に前記活物質帯を形成することを特徴とする電池用電極部材の製造方法、である。
前記電極塗膜の塗布幅をW(mm)、前記活物質帯の1本当たりの塗布幅をL(mm)、前記活物質帯の本数をa(本)、前記導電帯の1本当たりの塗布幅をL′(mm)、前記導電帯の本数をb(本)とし、これらがW=L×a+L′×bの条件を満足するとき、前記活物質帯の塗布幅Lおよび前記導電帯の塗布幅L′は、0.02mm<L′<W/2およびL′×b<W/2を共に満足するようになっていてよい。
前記電極塗膜は、連続塗工または間欠塗工により形成されるものであってよい。
One aspect of the present invention is a method for producing an electrode member for a battery, in which a positive or negative electrode paint is discharged from a slit of a die head to form an electrode coating film on the surface of an electrode substrate held and conveyed by a coating roll. At least two kinds of paints including a paint containing a positive electrode or a negative electrode active material by a die head and a paint having a conductive band having a volume resistivity lower than that of an active material band formed by applying the paint. The active material bands that are simultaneously discharged to the region excluding both ends in the width direction of the electrode material, and the active material bands and the conductive bands are alternately arranged adjacent to each other in the width direction of the electrode base material, and are alternately arranged. And by forming the slit of the die head so that the active material band is located on both sides in the width direction of the conductive band and performing the discharge, uncoated portions are formed at both ends in the width direction of the electrode substrate. Do Unishi a method for manufacturing a battery electrode member characterized by forming the active material band immediately inside is.
The coating width of the electrode coating film is W (mm), the coating width per one of the active material bands is L (mm), the number of the active material bands is a (book), the per one of the conductive bands When the coating width is L ′ (mm) and the number of conductive bands is b (lines) and these satisfy the condition of W = L × a + L ′ × b, the coating width L of the active material band and the conductive band The coating width L ′ may satisfy both 0.02 mm <L ′ <W / 2 and L ′ × b <W / 2.
The electrode coating film may be formed by continuous coating or intermittent coating.

本発明の一態様によれば、コーティングロールに抱かれて走行する基材表面に、正極塗料あるいは負極塗料を、ダイヘッドのスリットから吐出し電極塗面を形成した電池用電極部材において、同一面に少なくとも2種の塗料が吐出されてなる塗膜を水平方向に隣接して形成し、さらに、その1種以上が活物質を含む塗膜(活物質帯)よりも導電性が良好な塗膜(導電帯)であるため、電極基材を離れた塗膜表面側で反応し電子となったものが塗膜あるいは電極基材の法線方向に必ず移動するのではなく、本発明で記した低抵抗な導電帯側すなわち塗膜あるいは電極基材に平行に近い方向にひきつけることもできる。そのため電極内での抵抗を下げ電流ロスを少なくすることができる。
また、少なくとも2種の塗膜を同時に形成することで、異種材料同士の密着性に関しても境界が混和し塗膜同士の密着性を向上させることができる。
According to one aspect of the present invention, in a battery electrode member in which a positive electrode paint or a negative electrode paint is ejected from a slit of a die head to form an electrode coating surface on the surface of a substrate that is carried by a coating roll, the same surface is provided. A coating film in which at least two types of coating materials are discharged is formed adjacent to the horizontal direction, and one or more types of coating films (active material bands) having better conductivity than a coating film containing an active material (active material zone) Because it is a conductive band), the electrons that have reacted and become electrons on the coating surface side away from the electrode substrate do not necessarily move in the normal direction of the coating film or electrode substrate, It can also be attracted to the side of the resistive conductive band, that is, in a direction nearly parallel to the coating film or electrode substrate. Therefore, the resistance in the electrode can be reduced and current loss can be reduced.
Further, by forming at least two kinds of coating films at the same time, the boundary between the different materials can be mixed and the adhesion between the coating films can be improved.

本発明に適用した塗工設備全体を表す構成図の一例である。It is an example of the block diagram showing the whole coating equipment applied to this invention. 本発明に適用した塗工ヘッドの一例を示す断面図である。It is sectional drawing which shows an example of the coating head applied to this invention. 本発明に適用した塗工ヘッドの一例を示す断面図である。It is sectional drawing which shows an example of the coating head applied to this invention. 本発明に適用した塗工ヘッドの一例を示す断面図である。It is sectional drawing which shows an example of the coating head applied to this invention. 本発明に適用した塗工ヘッドの一例を示す断面図である。It is sectional drawing which shows an example of the coating head applied to this invention. 本発明における電池用電極部材の電極面の一例を示す構成図である。It is a block diagram which shows an example of the electrode surface of the electrode member for batteries in this invention. (a)は本発明における導電帯側のシム板の一例を示す構成図、(b)活物質帯側のシム板の一例を示す構成図である。(A) is a block diagram which shows an example of the shim board by the side of the conductive band in this invention, (b) It is a block diagram which shows an example of the shim board by the side of an active material band.

以下、本発明の実施形態を説明する。
なお、下記に記載した形態のみに限定されるものではない。
(塗工装置)
まず、本発明における電池用電極部材を作製するにあたり用いる塗工装置について説明する。
Embodiments of the present invention will be described below.
In addition, it is not limited only to the form described below.
(Coating equipment)
First, the coating apparatus used when producing the battery electrode member in this invention is demonstrated.

図1は、塗工装置100の一例を示す概略構成図であって、給液タンク1、送液ポンプ2、切替バルブ3、塗工ヘッド4、ストレーナ5、コーティングロール6、および電極基材7を備え、給液タンク1、送液ポンプ2、切替バルブ3および塗工ヘッド4間は配管を介して接続されている。
給液タンク1の塗布液は、送液ポンプ2およびストレーナ5を介して塗工ヘッド4に供給される。送液ポンプ2とストレーナ5との間には切替バルブ3が介挿され、切替バルブ3を操作することにより、送液ポンプ2から吐出された塗布液の供給先を、ストレーナ5側と給液タンク1側との間で切り替える。
FIG. 1 is a schematic configuration diagram illustrating an example of a coating apparatus 100, which includes a liquid supply tank 1, a liquid feed pump 2, a switching valve 3, a coating head 4, a strainer 5, a coating roll 6, and an electrode base material 7. The liquid supply tank 1, the liquid feed pump 2, the switching valve 3 and the coating head 4 are connected via a pipe.
The coating liquid in the liquid supply tank 1 is supplied to the coating head 4 via the liquid feed pump 2 and the strainer 5. A switching valve 3 is inserted between the liquid feed pump 2 and the strainer 5, and by operating the switching valve 3, the supply destination of the coating liquid discharged from the liquid feed pump 2 is changed between the strainer 5 side and the liquid feed. Switch between tank 1 side.

給液タンク1は、塗布送液塗料量に対し、不足ない十分な容量があればよく、容量は特に規定されるものではない。また、給液タンク1中の塗料中の無機成分の沈降防止や分散状態の確保のため、攪拌翼を設けることも可能である。また、必要に応じ給液タンク1内を減圧したり加圧したりし、脱泡、送液の補助を行うようにしてもよい。また、給液タンク1の内壁面と塗料との抵抗を下げ、流動性をよくするため、給液タンク1の内壁面をフッ素加工や鏡面加工しても構わない。また、1つの装置で給液タンク1と送液ポンプ2とを兼ねていてもよい。   The liquid supply tank 1 only needs to have a sufficient capacity with respect to the amount of coating liquid to be fed, and the capacity is not particularly defined. In addition, a stirring blade can be provided to prevent sedimentation of inorganic components in the coating material in the liquid supply tank 1 and to ensure a dispersed state. Further, the inside of the liquid supply tank 1 may be depressurized or pressurized as necessary to assist defoaming and liquid feeding. Further, in order to reduce the resistance between the inner wall surface of the liquid supply tank 1 and the paint and improve the fluidity, the inner wall surface of the liquid supply tank 1 may be subjected to fluorine processing or mirror surface processing. Moreover, you may serve as the liquid supply tank 1 and the liquid feeding pump 2 with one apparatus.

送液ポンプ2は、モーノポンプ、ダイヤフラムポンプ、サインポンプ、ベローズポンプ、チューブフラムポンプ、プランジャポンプ、シリンジポンプなどを適用することができる。これらポンプのうちいずれかのポンプを、塗料粘度と吐出量、脈動、摺動異物等の特性に合わせて、適宜選択するとよい。
送液ポンプ2の吐出量は、一定時間内に塗布する量、すなわち、塗布幅、塗布厚み、塗布速度により決定され、決定された1回転あたりの吐出量を満足し且つ均一に塗膜するために必要な回転数が、時間あたりの回転数の規格内となるポンプであれば、適用することができ制限されることはない。但し、可能な限り規格内で運転することのできる適切な吐出量のポンプを選択するとよい。
As the liquid feed pump 2, a Mono pump, a diaphragm pump, a sine pump, a bellows pump, a tube diaphragm pump, a plunger pump, a syringe pump, or the like can be applied. Any one of these pumps may be appropriately selected in accordance with characteristics such as paint viscosity and discharge amount, pulsation, and sliding foreign matter.
The discharge amount of the liquid feed pump 2 is determined by the amount to be applied within a certain period of time, that is, the application width, the application thickness, and the application speed. In order to satisfy the determined discharge amount per rotation and uniformly coat the coating film As long as the number of rotations required for the pump is within the specification of the number of rotations per hour, it can be applied and is not limited. However, it is preferable to select a pump having an appropriate discharge amount that can be operated within the specifications as much as possible.

切替バルブ3は、ピストンバルブ、ダイヤフラムバルブ、サンプリングバルブ、ボールバルブ、バタフライバルブ、チャッキバルブ、シリンジバルブなどを適用することができる。一方の方向への流路を遮断し、他方の方向に流路を変更できる切替可能なバルブであれば適用することができる。可能であれば、バルブの開閉で送液管内あるいは塗工ヘッド4内部の圧力に影響を及ぼさないバルブを選択するとよい。   As the switching valve 3, a piston valve, a diaphragm valve, a sampling valve, a ball valve, a butterfly valve, a check valve, a syringe valve, or the like can be applied. Any switchable valve that can block the flow path in one direction and change the flow path in the other direction can be applied. If possible, it is preferable to select a valve that does not affect the pressure in the liquid feeding pipe or the coating head 4 by opening and closing the valve.

塗工ヘッド4は、スロットダイ方式のダイヘッドである。塗工ヘッド4の、ヘッドの刃先形状、刃先角度、マニホールド形状、マニホールド容量、ヘッド内面の鏡面度、供給口径、供給位置は、特に限定されるものではないが、同時に同一面に複数の異塗料を塗布するため、図2、図3、図4、図5に示すように、マニホールドを少なくとも2個持ち、シム形状やセッティングの位置すなわち各部材の配置位置を調整することによって、刃先で塗料が合流する、あるいは、塗布された後塗料が合流するようになっている。つまり、図6に示すように、塗布された後の塗膜が、一方の塗料からなる所定幅の塗膜と、他方の塗料からなる所定幅の塗膜とが、水平方向に隣接して形成されるようになっている。   The coating head 4 is a slot die type die head. The cutting edge shape, cutting edge angle, manifold shape, manifold capacity, specularity of the head inner surface, supply port diameter, and supply position of the coating head 4 are not particularly limited. 2, 3, 4, and 5, the paint is applied to the blade edge by holding at least two manifolds and adjusting the shim shape and the setting position, that is, the arrangement position of each member. The paints are merged or applied after being applied. That is, as shown in FIG. 6, the coated film is formed with a coating film of a predetermined width made of one paint and a coating film of a predetermined width made of the other paint adjacent to each other in the horizontal direction. It has come to be.

なお、図6は、電極面の構成の一例を示したものであり、32は一方の塗料からなる活物質帯塗布部、33は他方の塗料からなる導電帯塗布部であり、活物質帯塗布部32および導電帯塗布部33とが電極塗膜となる。
電極面に塗料を塗布することによって、図6に示すように、活物質帯塗布部32と導電帯塗布部33とが水平方向にストライプ状に交互に形成される。なお、図6中の31は未塗布部である。
FIG. 6 shows an example of the configuration of the electrode surface, 32 is an active material band application portion made of one paint, and 33 is a conductive band application portion made of the other paint. The part 32 and the conductive band application part 33 serve as an electrode coating film.
By applying the coating material on the electrode surface, as shown in FIG. 6, the active material band application part 32 and the conductive band application part 33 are alternately formed in stripes in the horizontal direction. In addition, 31 in FIG. 6 is an uncoated part.

塗工ヘッド4の形態は、前述の図2、図3、図4、図5にあるように、種類の異なる塗料毎に上流ヘッドおよび下流ヘッドをそれぞれ持っていてもよいし、全体で1つの上流および下流のダイヘッドを持ち、中間に上下を仕切る板を用い、さらにその上下に塗布用のシムをセットし各塗料の吐出口は、その上下のマニホールドに接したシムで形状を決定するようにしてもよい。もちろん、中間にセットされる板は送液塗布時の圧力でも変形しないことが求められる。   As shown in FIG. 2, FIG. 3, FIG. 4, and FIG. 5, the coating head 4 may have an upstream head and a downstream head for each of the different types of paints. Hold upstream and downstream die heads, use a plate that divides the top and bottom in the middle, and set application shims on the top and bottom, and determine the shape of each paint discharge port with the shims in contact with the top and bottom manifolds. May be. Of course, the plate set in the middle is required not to be deformed even by the pressure during liquid feeding application.

なお、図2、図3、図4、図5において、11は、活物質帯塗布側のダイヘッド及びマニホールド、12は活物質帯塗布側の給液口、13は活物質帯塗布側のシム板、14は仕切り鋼板、15は活物質帯塗布側の下流ダイヘッド、16は挟みダイヘッド、17は導電帯塗布側のダイヘッドおよびマニホールド、18は導電帯塗布側のシム板、19は導電帯塗布側の下流ダイヘッド、20は導電帯塗布側の給液口である。   2, 3, 4, and 5, 11 is a die head and manifold on the active material band application side, 12 is a liquid supply port on the active material band application side, and 13 is a shim plate on the active material band application side. , 14 is a partition steel plate, 15 is a downstream die head on the active material band application side, 16 is a sandwich die head, 17 is a die head and manifold on the conductive band application side, 18 is a shim plate on the conductive band application side, and 19 is a conductive band application side. The downstream die head 20 is a liquid supply port on the conductive band application side.

図7(a)、図7(b)は、活物質帯塗布側のシム板13、導電帯塗布側のシム板18の形状の一例を示したものである。
活物質帯塗布側のシム板13は幅Lmmの、a本のストライプ状のシム(図7(a)の34)を備えた形状となる。導電帯塗布側のシム板18は幅L‘mmの、b本のストライプ状のシム(図7(b)の36)を備えた形状となる。
FIGS. 7A and 7B show examples of the shapes of the shim plate 13 on the active material band application side and the shim plate 18 on the conductive band application side.
The shim plate 13 on the active material band application side has a shape having a striped shim (34 in FIG. 7A) having a width of Lmm. The shim plate 18 on the conductive band application side has a shape having b striped shims (36 in FIG. 7B) having a width L ′ mm.

そして、電極塗膜の塗布幅をW(mm)とし、活物質帯となる塗膜の1本当たりの塗布幅(つまりシム板13のシムの開口部の幅)をL(mm)、活物質帯の本数をa(本)、導電帯となる塗膜の1本当たりの塗布幅(つまりシム板18のシムの開口部の幅)をL‘(mm)、導電帯の本数をb(本)とし、すなわち、W=L×a+L’×bであるとき、活物質帯の塗布幅Lおよび導電帯の塗布幅L‘が、0.02mm<L’<W/2およびL’×b<W/2を共に満足するように設定する。   The coating width of the electrode coating film is W (mm), the coating width per coating film (that is, the width of the shim opening of the shim plate 13) is L (mm), and the active material. The number of bands is a (book), the coating width per coating film (that is, the width of the shim opening of the shim plate 18) is L '(mm), and the number of conductive bands is b (book). ), That is, when W = L × a + L ′ × b, the coating width L of the active material band and the coating width L ′ of the conductive band are 0.02 mm <L ′ <W / 2 and L ′ × b < Set to satisfy both W / 2.

なお、シムの先端は直角でもよいし、液が多少広がるように、またネックインによるツノ防止などのために切り欠きやセッティングが施されていても構わない。なお、図7(a)において35は、活物質帯塗布側のシム34の開口部(幅Lmm)を表す。図7(b)において37は、導電帯塗布側のシム36の開口部(幅L‘mm)を表す。   The tip of the shim may be right-angled, or may be cut out or set so that the liquid spreads somewhat, or to prevent horns due to neck-in. In FIG. 7A, reference numeral 35 denotes the opening (width Lmm) of the shim 34 on the active material band application side. In FIG. 7B, 37 represents the opening (width L′ mm) of the shim 36 on the conductive band application side.

但し、ストライプ状のシムには精度が要求される。レーザ加工の場合には10μm程度、湿式エッチングなどの場合には1μm程度の開口部を得ることができるが、開口部が狭い場合、配管内およびダイ内圧力が上昇しすぎてしまうため塗布する塗料粘度を相当低くしなければならない。さらに、基本的には、配管途中にストレーナ5を通し塗料中の粒子を解すが塗料中の粉体の粒子径が大きいもので十数μmのものもあるため、それより開口部が広くないと粒子が詰まってしまい、そもそも塗布できなくなってしまう。   However, accuracy is required for the striped shim. An opening of about 10 μm can be obtained in the case of laser processing, and about 1 μm in the case of wet etching, etc., but if the opening is narrow, the pressure in the pipe and the die will rise too much, and the coating material to be applied The viscosity must be considerably reduced. Furthermore, basically, the strainer 5 is passed in the middle of the pipe to dissolve the particles in the paint, but there are some that have a large particle size of the powder in the paint and a few tens of μm, so the opening is not wider than that. Particles are clogged and can no longer be applied.

また、活物質帯よりも導電帯の面積の方が大きいと、そもそも、活物質帯でさせうる反応野が少なく、電池性能が減じてしまう。そのため、本発明では、開口部幅を上述のように限定している。
塗工ヘッド4への塗料供給方法に関しては、塗布幅によって適宜選択するとよいが、基本的には、幅方向の圧力ムラすなわち塗布ムラを軽減させる場合、センター部より供給する場合が好ましいが適宜選択が必要である。
If the area of the conductive band is larger than that of the active material band, the reaction field that can be generated in the active material band is small in the first place, and the battery performance is reduced. Therefore, in the present invention, the opening width is limited as described above.
The method for supplying the coating material to the coating head 4 may be appropriately selected depending on the application width. Basically, when reducing pressure unevenness in the width direction, that is, application unevenness, it is preferable to supply from the center portion, but appropriately selected. is necessary.

また、塗工ヘッド4において、2種類の塗料を吐出する刃先の位置が同一ということは、各塗料塗布時のギャップがほぼ同じになるということを示している。したがって、塗料固形分をほぼ同等の大きさにし、ウェット膜厚すなわち、塗工ヘッド4の2種類の塗料を吐出する刃先の設定ギャップをほぼ同等にする必要がある。塗料固形分、ウェット膜厚は多少前後しても塗布可能であって、乾燥後2種の塗料の膜厚が同等の膜厚となれば問題はない。可能であれば、2種塗料ともネックインによってできる両端のツノ状の盛り上がりがない方が好ましい。   Moreover, in the coating head 4, the position of the blade edge which discharges two types of paints being the same indicates that the gaps at the time of applying the paints are substantially the same. Therefore, it is necessary to make the paint solids substantially the same size, and to make the wet film thickness, that is, the setting gap of the cutting edge for discharging two kinds of paints of the coating head 4 substantially the same. The coating can be applied even if the solid content of the paint and the wet film thickness are somewhat different, and there is no problem if the film thicknesses of the two kinds of paints after drying are equivalent. If possible, it is preferable that the two types of paint do not have horn-like bulges at both ends caused by neck-in.

活物質帯は、主として、正極あるいは負極の活物質を含み、導電助剤、バインダ、溶剤、必要に応じ添加剤を含む。
正極にはリチウム含有遷移金属酸化物を活物質として用い、その活物質表面あるいは電解液が浸透した内部で、リチウムイオンと電子の共受を行い、電流が生じる。
正極活物質としては、リチウムイオンを吸蔵放出可能な化合物であり、無機化合物としては、組成式、LiMO、または、Li(但し、Mは遷移金属、0≦x≦1、1≦y≦2)で表記される。
The active material zone mainly includes a positive electrode or negative electrode active material, and includes a conductive additive, a binder, a solvent, and, if necessary, an additive.
Lithium-containing transition metal oxide is used as an active material for the positive electrode, and lithium ions and electrons are exchanged on the surface of the active material or inside the electrolyte so that an electric current is generated.
The positive electrode active material is a compound that can occlude and release lithium ions, and the inorganic compound includes a composition formula, Li x MO 2 or Li y M 2 O 4 (where M is a transition metal, 0 ≦ x ≦ 1, 1 ≦ y ≦ 2).

複合酸化物、トンネル上の空孔を有する酸化物、層状構造の金属カルコゲン化物、リチウムイオン含有のカルコゲン化合物を用いることが出来る。
その具体例として、LiCoO、NiO、Ni、MnO4、LMn、MnO、Fe、Fe、FeO、V、V13、VO、Nb、Bi、Sb等のV族金属化合物、CrO、Cr、MoO、MoS、WO、SeO等のVI族金属化合物、TiO、TiS、SiO、SnO、CuO、CuO、AgO、CuS、CuSO等が挙げられる。
A composite oxide, an oxide having pores on a tunnel, a layered metal chalcogenide, or a lithium ion-containing chalcogen compound can be used.
As a specific example, LiCoO 2, NiO 2, Ni 2 O 3, Mn 2 O4, LMn 2 O 4, MnO 2, Fe 2 O 3, Fe 3 O 4, FeO 2, V 2 O 5, V 6 O 13 Group VI metal compounds such as VO x , Nb 2 O 5 , Bi 2 O 3 , Sb 2 O 3, etc., and Group VI metal compounds such as CrO 3 , Cr 2 O 3 , MoO 3 , MoS 2 , WO 3 , SeO 2 TiO 2 , TiS 2 , SiO 2 , SnO, CuO, CuO 2 , Ag 2 O, CuS, CuSO 4 and the like.

また、上記の遷移金属を2種以上混合したもの、あるいは、2種以上の遷移金属を含有する化合物、いわゆる、2元系、3元系でも構わない。
さらに、有機物系としては、ポリピロール、ポリアニリン、ポリパラフェニレン、ポリアセチレン、ポリアセン系材料等の導電性高分子化合物などが挙げられる。
正極の電極層組成や作製法自体に特に制限はないが、最終的に、必要な材料を混合した塗料を電極基材7に塗布、乾燥して、電極化することが好適である。
Further, a mixture of two or more of the above transition metals, or a compound containing two or more transition metals, so-called binary system or ternary system may be used.
Furthermore, examples of the organic material include conductive polymer compounds such as polypyrrole, polyaniline, polyparaphenylene, polyacetylene, and polyacene materials.
The electrode layer composition of the positive electrode and the production method itself are not particularly limited, but it is preferable to finally apply a paint mixed with necessary materials to the electrode substrate 7 and dry it to form an electrode.

負極活物質としては、天然グラファイト、人造黒鉛、アモルファスカーボン、カ−ボンブラック、アモルファスカーボンなどを含む材料やこれらに若干量異種元素が存在する場合や、これらが添加された炭素化物や金属リチウムやその合金、スズ、シリコンらそれら合金で、リチウムイオンの吸放出可能なものが挙げられる。   Examples of the negative electrode active material include materials containing natural graphite, artificial graphite, amorphous carbon, carbon black, amorphous carbon, and the like, and when a slight amount of different elements are present in these, Among these alloys, tin, silicon and the like, those capable of absorbing and releasing lithium ions can be mentioned.

導電助剤としては、活物質で生じた電子を集電体までロスなく伝導させるために、導電剤が含有されている。この導電剤は、カーボン系材料を用いることが多く、いかに少量で効率良く電子を伝導するか、活物質やバインダとの馴染み具合により適宜選択するとよい。その具体例としては、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンウィスカー、炭素繊維、天然黒鉛、人造黒鉛、カーボンナノ粒子およびナノチューブ、酸化チタン、酸化ルテニウム、アルミニウム、ニッケル等の金属粉やファイバーなどが挙げられ、これら1種また2種以上を混合して使用してもよく、必要に応じては、分散媒を添加することも可能である。
分散媒としては、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド、ジメチルスルホアミド、水等の極性溶媒が挙げられる。
As the conductive assistant, a conductive agent is contained in order to conduct electrons generated in the active material to the current collector without loss. A carbon-based material is often used as the conductive agent, and it is preferable to select an appropriate amount depending on how familiar the active material and the binder are with how efficiently electrons are conducted in a small amount. Specific examples include carbon black, ketjen black, acetylene black, carbon whisker, carbon fiber, natural graphite, artificial graphite, carbon nanoparticles and nanotubes, titanium oxide, ruthenium oxide, aluminum, nickel and other metal powders and fibers. These may be used alone or in combination of two or more. If necessary, a dispersion medium may be added.
Examples of the dispersion medium include polar solvents such as N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylsulfamide, and water.

バインダとしては、フッ素系の樹脂が挙げられる。例えば、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−塩化3フッ化エチレン(CTFE)共重合体、フッ化ビニリデン−ヘキサフルオロプロピレンフッ素ゴム、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレンフッ素ゴム、フッ化ビニリデン−テトラフルオロエチレン−パーフルオロアルキルビニルエーテルフッ素ゴム等フッ素系ポリマ、ポリプロピレンオキサイド、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、プロピレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックスなどが挙げられ、1種または、2種以上を組み合わせて用いることができる。このほかに、ポリアクリル、ポリオレフィン、ポリアミド、ポリイミド、ポリアミドイミド、エポキシ樹脂、ベークライトなども、単体あるいは複数を組み合わせて用いてもよい。   An example of the binder is a fluorine-based resin. For example, polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-trifluoroethylene chloride (CTFE) copolymer, vinylidene fluoride-hexafluoropropylene fluororubber, vinylidene fluoride- Fluoropolymers such as tetrafluoroethylene-hexafluoropropylene fluorine rubber, vinylidene fluoride-tetrafluoroethylene-perfluoroalkyl vinyl ether fluorine rubber, polypropylene oxide, polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, propylene / Examples include butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, and various latexes. Can. In addition, polyacryl, polyolefin, polyamide, polyimide, polyamideimide, epoxy resin, bakelite, etc. may be used alone or in combination.

また、電極層厚以下の粒子径のアルミナ粒子、シリカ粒子、ラテックス粒子やその他イオン伝導性を妨げず、当該イオン伝導性物質中で安定な非電子伝導性微粒子を、膜厚制御や加工性、膜の機械的強度の向上や、形状を安定化させる目的で充填しても構わない。また、同様の理由から、多孔質の非電子伝導性高分子マトリックス材料(各種不織布など)を充填しても構わない。もちろん、電子伝導性物質で、上記の理由を捕捉できるのであればなおよい。   In addition, alumina particles, silica particles, latex particles and other non-ionic conductive particles that have a particle diameter equal to or smaller than the electrode layer thickness are not disturbed, and stable non-electron conductive fine particles in the ionic conductive material can be used for film thickness control and processability. It may be filled for the purpose of improving the mechanical strength of the film or stabilizing the shape. For the same reason, a porous non-electron conductive polymer matrix material (such as various nonwoven fabrics) may be filled. Of course, it is better if the above-mentioned reason can be captured by an electron conductive substance.

添加剤としては、電池性能への影響を考慮すると特段入れないほうが好ましいが、もし、塗料のレベリング性や電極基材7への濡れ性向上、塗料同士の相性、粘度調整、レオロジー性改善等々で使用する場合は、できる限り最小源とし、また可能であれば、溶剤乾燥時に一緒に揮発してしまう方が好ましい。   As the additive, it is preferable not to be added in consideration of the influence on the battery performance. However, if the leveling property of the coating material, the wettability to the electrode substrate 7 is improved, the compatibility between the coating materials, the viscosity adjustment, the rheological property improvement, etc. When used, it is preferable to minimize the source as much as possible and, if possible, volatilize together when the solvent is dried.

また導電帯は、活物質帯よりも体積抵抗率の低い導電性が良好な塗膜からなり、導電帯の導電性塗膜成分は主として、導電助剤、バインダ、溶剤、必要に応じた添加剤からなっている。導電助剤としては、電極塗膜と同様のものを使用すればよく、但し、バインダ、添加剤は可能な限り少なく分散していることが好ましい。分散が良好であれば、使用する必要はない。活物質帯と同時塗布のため、粘度等の兼ね合いもあるが、可能であれば、導電助剤:バインダ比=50/50から99/1(重量比)の間が好ましい。可能であれば、導電助剤比率が95/5以上となるとさらに好ましい。またバインダや溶剤も電極塗膜と同様のものを使用できる。むしろ同じものを使用したほうが、塗布時の濡れ性、レベリング性などが近似するため好ましい。   In addition, the conductive band comprises a coating film having a lower volume resistivity than the active material band and good conductivity. The conductive coating film component of the conductive band mainly includes a conductive additive, a binder, a solvent, and an additive as necessary. It is made up of. As the conductive auxiliary agent, the same as the electrode coating film may be used. However, it is preferable that the binder and the additive are dispersed as little as possible. If the dispersion is good, there is no need to use it. Since it is applied simultaneously with the active material zone, there is a balance between viscosity and the like, but if possible, the ratio of conductive assistant: binder ratio = 50/50 to 99/1 (weight ratio) is preferable. If possible, it is more preferable that the conductive auxiliary agent ratio is 95/5 or more. In addition, the same binder and solvent as the electrode coating film can be used. Rather, it is preferable to use the same material because the wettability and leveling property at the time of application are approximate.

コーティングロール6は、真円で歪みのないロールであることが求められる。塗工ヘッド4の刃先とコーティングロール6との隙間は数μm単位での設定が必要な場合が多いためである。表面はクロムめっき、表面研磨され、多少の電極基材7の搬送速度とロール周速とに差があっても電極基材7に傷をつけずに搬送できるようになっている。また、もちろん、左右差もなく設置されていることが必要である。   The coating roll 6 is required to be a perfect circle and no distortion. This is because the gap between the cutting edge of the coating head 4 and the coating roll 6 often needs to be set in units of several μm. The surface is chrome-plated and surface-polished so that the electrode base material 7 can be transported without being damaged even if there is a slight difference between the transport speed of the electrode base material 7 and the roll peripheral speed. Of course, it must be installed without any difference between left and right.

電極基材7に関しては、電池用基材としては、一般的に金属箔が用いられることが多く、銅箔、アルミ箔が多く、単一金属や合金、さらには、複数の金属を積層あるいは貼合させることもできる。但し、金属箔に限定されるものではなく、プラスチック基材でも導電性のあるものもしくは導電性のものが練り込まれたもの、または、表面にコーティングを施し表面導電性を持たせたもの、金属とプラスチックとの貼合したものなどでも構わない。偏肉のない基材で電極として用いられるのであれば適宜選択は可能である。   Regarding the electrode base material 7, as the battery base material, metal foil is generally used in many cases, copper foil and aluminum foil are often used, and a single metal or alloy, or a plurality of metals are laminated or pasted. It can also be combined. However, it is not limited to metal foils, but plastic substrates that are conductive or kneaded with conductive materials, or those that have surface conductivity by coating the surface, metal It may be a material bonded with plastic. If it is used as an electrode with a substrate having no uneven thickness, it can be appropriately selected.

図1に示すストレーナ5は必ずしも必要ではないが、送液中で凝集した塗料内粒子を解す効果をもたらし、塗布塗膜にスジ引きなどを軽減し、塗面に凝集物がないようにし、送液、塗布圧力を安定化させることで、塗工精度を向上させ、結果電池性能も向上をさせている。
ストレーナ5の形状は、パンチングメタル、ワイヤーエッジなど形状は適宜選択するとよい。また、目の粗さ、耐圧性については、送液する塗料、送液量、送液圧などを考慮し、選択するとよい。
Although the strainer 5 shown in FIG. 1 is not necessarily required, it has the effect of releasing the particles in the paint aggregated in the liquid feeding, reduces streaks in the coated film, prevents the coating surface from being aggregated, By stabilizing the liquid and coating pressure, the coating accuracy is improved and, as a result, the battery performance is also improved.
The shape of the strainer 5 may be appropriately selected from shapes such as punching metal and wire edges. Further, the roughness of the eyes and the pressure resistance may be selected in consideration of the paint to be fed, the amount of liquid to be fed, the liquid feeding pressure, and the like.

以上のような構成を有する塗工設備を用いて、電極塗膜の塗工を行うと、図6に示すように、活物質帯としての塗膜と導電帯としての塗膜とがストライプ状に交互に水平方向に隣接して形成された電極塗膜が形成されることになる。つまり、外観上ストライプ状に、体積抵抗率の小さい導電性良好な導電帯が形成されていることになる。
ここで、導電帯としての塗膜は、電帯活物質帯としての塗膜よりも、導電性が良好な塗膜であるため、電極基材7を離れた塗膜表面側で反応し電子となったものが塗膜あるいは電極基材7の法線方向に必ず移動するのではなく、低抵抗な導電帯側すなわち塗膜あるいは電極基材7に平行に近い方向にひきつけることもできる。そのため、電池用電極部材内での抵抗を下げることができ、すなわち電流ロスを少なくすることができる。
When the electrode coating film is applied using the coating equipment having the above-described configuration, as shown in FIG. 6, the coating film as the active material band and the coating film as the conductive band are striped. The electrode coating film formed alternately adjacent in the horizontal direction is formed. That is, a conductive band having a small volume resistivity and good conductivity is formed in a stripe shape in appearance.
Here, since the coating film as the conductive band is a coating film having better conductivity than the coating film as the electric band active material band, it reacts on the surface side of the coating film away from the electrode substrate 7 and reacts with electrons. The formed material does not necessarily move in the normal direction of the coating film or the electrode substrate 7 but can be attracted to the low-resistance conductive band side, that is, in a direction almost parallel to the coating film or the electrode substrate 7. Therefore, the resistance in the battery electrode member can be lowered, that is, the current loss can be reduced.

また、上述のように、少なくとも2種の塗膜を同時に形成することで、異種材料同士の密着性に関して境界が混和し、塗膜同士の密着性も向上させることができる。
さらに、導電帯は、活物質を含まないためその分活物質帯よりもバインダーを多めに混合でき且つ導電助剤も多いことから、導電性良好で密着良好な電極塗膜を実現することができ、電池寿命的にも有利である。
Further, as described above, by forming at least two kinds of coating films at the same time, the boundary is mixed with respect to the adhesion between different materials, and the adhesion between the coating films can be improved.
Furthermore, since the conductive band does not contain an active material, it can be mixed with a larger amount of binder than the active material band, and there are more conductive assistants, so an electrode coating with good conductivity and good adhesion can be realized. This is also advantageous in terms of battery life.

また、低抵抗で電子を移動させることができるため、大きな電流値での充放電や長期にわたる充放電が可能になり全体的に電池性能を向上させることができる。
なお、連続塗工、間欠塗工のいずれによって、電極塗膜を作製する場合であっても適用することができる。
In addition, since electrons can be moved with low resistance, charging / discharging with a large current value and charging / discharging over a long period of time are possible, and battery performance can be improved as a whole.
In addition, even if it is a case where an electrode coating film is produced by any of continuous coating and intermittent coating, it can apply.

また、電極塗膜を、2種類の塗料により形成する場合について説明したが、これに限るものではなく、3種類以上の塗料によって形成することもできる。この場合には、活物質帯となる1種類の塗料と、導電帯となる2種類以上の塗料とにより、電極塗膜を形成すればよい。導電帯となる塗料が複数ある場合には、導電帯となる複数の塗膜の塗布幅の合計を前述のL‘(mm)とし、導電帯となる複数の塗膜の本数の合計を前述のb(本)とし、前記条件を満足するように設定すればよい。
また、活物質帯および導電帯は、複数設ける場合に限るものではなく、導電帯1本を配置し、その両側に活物質帯を配置することで、電極塗膜を形成してもよい。
Moreover, although the case where the electrode coating film is formed with two types of paints has been described, the present invention is not limited to this, and the electrode coating film can be formed with three or more types of paints. In this case, an electrode coating film may be formed with one type of paint that becomes an active material band and two or more types of paint that becomes a conductive band. In the case where there are a plurality of paints that become conductive bands, the total coating width of the plurality of paint films that become conductive bands is the aforementioned L ′ (mm), and the total number of the plurality of paint films that become conductive bands is the aforementioned b (book) may be set so as to satisfy the above condition.
Further, the active material band and the conductive band are not limited to the case of providing a plurality, and the electrode coating film may be formed by arranging one conductive band and arranging the active material band on both sides thereof.

以下、実施例を説明する。
但し、実施例が本発明を制限するものではない。
Examples will be described below.
However, the examples do not limit the present invention.

(実施例1)
<塗料作製および基材>
活物質帯用の正極電極用塗料として、下記の正極塗料を準備した。
活物質:LiMn2O4(三井金属社製):90質量部、導電材:アセチレンブラック(電気化学工業社製):5質量部、バインダ:PVDF(クレハ社製):5質量部、溶剤としてNMP(三菱化学製)を混合し、粘度約10000mPa・sの塗料を作製した。また、導電帯用の塗料としての導電良好塗料は下記の通りとした。
導電材:アセチレンブラック(電気化学工業製):97質量部、バインダ:PVDF(クレハ社製):3質量部、分散剤:BYK製:0.1質量部に溶剤としてNMP(三菱化学製)を混合し、粘度:約6000mPa・sの塗料を得た。
Example 1
<Paint preparation and substrate>
The following positive electrode paints were prepared as positive electrode paints for the active material zone.
Active material: LiMn2O4 (manufactured by Mitsui Kinzoku Co., Ltd.): 90 parts by mass, conductive material: acetylene black (manufactured by Denki Kagaku Kogyo): 5 parts by mass, binder: PVDF (manufactured by Kureha): 5 parts by mass, NMP as a solvent (Mitsubishi) Chemical) was mixed to prepare a paint having a viscosity of about 10,000 mPa · s. The conductive good paint as the conductive band paint was as follows.
Conductive material: Acetylene black (manufactured by Denki Kagaku Kogyo): 97 parts by mass, binder: PVDF (manufactured by Kureha): 3 parts by mass, dispersant: manufactured by BYK: 0.1 part by mass of NMP (manufactured by Mitsubishi Chemical) as a solvent By mixing, a paint having a viscosity of about 6000 mPa · s was obtained.

電極基材7として、15μm厚みのアルミニウム箔(1085材、東海アルミニウム社製)を使用した。対極となる負極電極用塗料としては下記の材料を準備した。活物質:天然黒鉛(日立化成製):90質量部導電剤:アセチレンブラック(電気化学工業製):4質量部、バインダ:SBR(日本ゼオン製):4質料部(固形分換算)増粘剤:CMC(カルボキシメチルセルロース):2部、さらに希釈溶剤として水を用い、固形分50%となるように塗料を調製した。基材は電解銅箔(古河電工製)を使用した。   As the electrode substrate 7, an aluminum foil having a thickness of 15 μm (1085 material, manufactured by Tokai Aluminum Co., Ltd.) was used. The following materials were prepared as the negative electrode paint for the counter electrode. Active material: Natural graphite (manufactured by Hitachi Chemical): 90 parts by mass Conductive agent: Acetylene black (manufactured by Denki Kagaku Kogyo): 4 parts by mass, Binder: SBR (manufactured by Nippon Zeon): 4 parts by mass (solid content conversion) thickener : CMC (Carboxymethylcellulose): 2 parts, Furthermore, water was used as a diluent solvent, and a coating material was prepared so as to have a solid content of 50%. The base material used was electrolytic copper foil (Furukawa Electric).

<装置および製造方法>
上記で作製した3種の塗料のうち正極側に活物質帯と帯電帯とを設けることにし、負極側は1種の塗料だけ塗布し、対極として用いるだけとする。
<Apparatus and manufacturing method>
Of the three types of coating materials prepared above, an active material zone and a charging zone are provided on the positive electrode side, and only one type of coating material is applied on the negative electrode side and used only as a counter electrode.

正極側は活物質帯、帯電帯いずれの塗布部も平均膜厚(乾燥時)が100μmになるようにスロットダイ方式で連続塗工した。活物質帯塗布側のシム板の厚みは1.5mm、導電帯塗布側のシム板の厚みは1.0mmで連続塗工した。その際、図1に示した、内面テフロン(登録商標)コーティングされて攪拌翼のついた給液タンク1内に塗料を貯め、配管接続された送液ポンプ2(モーノポンプ:兵神装備株式会社製)より、呼び径1Sの送液配管でつなぎ、切替バルブ3(株式会社コガネイ社製)から塗工ヘッド4へと接続した。また、未塗布部の領域では、切替バルブ3から給液タンク1に還流させることで、未塗布部を形成するように配管した。このとき、塗工ヘッド4のセッティングは、図3に示すように形成し、刃先部分の活物質帯側のシム板13、および帯電帯側のシム板18の位置は、電極基材7に塗布される寸前に2種の塗料同士が接した状態で電極基材7に塗布されるようにセットした。   On the positive electrode side, continuous coating was carried out by a slot die method so that the average film thickness (at the time of drying) of the coated part of both the active material zone and the charging zone was 100 μm. The thickness of the shim plate on the active material band application side was 1.5 mm, and the thickness of the shim plate on the conductive band application side was 1.0 mm. At that time, as shown in FIG. 1, a liquid feed pump 2 (Mono pump: manufactured by Hyojin Equipment Co., Ltd.) is stored in a liquid supply tank 1 coated with an inner surface Teflon (registered trademark) and equipped with a stirring blade. ) Were connected by a liquid feeding pipe having a nominal diameter of 1S, and connected from the switching valve 3 (manufactured by Koganei Co., Ltd.) to the coating head 4. Moreover, in the area | region of the unapplied part, it piped so that an unapplied part may be formed by making it return to the liquid supply tank 1 from the switching valve 3. FIG. At this time, the setting of the coating head 4 is formed as shown in FIG. 3, and the positions of the shim plate 13 on the active material band side and the shim plate 18 on the charging band side of the blade edge portion are applied to the electrode substrate 7. It was set to be applied to the electrode base material 7 in a state where the two kinds of paints were in contact with each other just before being applied.

当該条件下のもと、電極基材7の塗布幅400mmに対し、活物質塗布部幅合計:塗布幅W:約300mm、活物質帯L:9mmを30本、導電帯L‘:1mm幅を30本交互に設けるように塗布し、塗布速度2m/分の速度で塗工、乾燥を行ない、電池用電極部材を得た。
負極電極については、上記材料をスロットダイ方式で塗布し、正極容量の1.2倍にあたる容量相当の厚みを塗布幅300mmで連続塗布し、電池用電極部材を準備した。
Under the conditions, the active material application part width total: application width W: about 300 mm, active material band L: 30 mm, conductive band L ′: 1 mm width with respect to the application width 400 mm of the electrode substrate 7 Thirty coatings were applied alternately, and coating and drying were performed at a coating speed of 2 m / min to obtain a battery electrode member.
For the negative electrode, the above material was applied by a slot die method, and a thickness corresponding to a capacity corresponding to 1.2 times the positive electrode capacity was continuously applied with a coating width of 300 mm to prepare a battery electrode member.

(実施例2)
実施例1と同様の塗料を準備し塗工を行なった。
但し、その際、電極基材7の塗布幅:300mmに対し、活物質帯塗布部幅L:19mmを15本、導電帯塗布幅:1mm幅を15本交互に設けるように塗布し、塗布速度2m/分の速度で連続塗工を行ない、電池用電極が得られた。
(Example 2)
A coating similar to that in Example 1 was prepared and applied.
However, at that time, with respect to the coating width of the electrode base material 7: 300 mm, the active material band coating portion width L: 15 mm and the conductive band coating width: 15 mm are coated alternately so that the coating speed is 15 mm. Continuous coating was performed at a speed of 2 m / min to obtain a battery electrode.

(比較例1)
実施例1と同様の塗料を準備し塗工を行なった。
但し、その際、塗布幅W:300mmに対し、活物質帯塗布幅L:4mmが30本、導電帯塗布幅L‘:6mm、30本交互に設けるように塗布し、塗布速度2m/分の速度で連続塗工を行ない電池用電極が得られた。
(Comparative Example 1)
A coating similar to that in Example 1 was prepared and applied.
However, at that time, with respect to the coating width W: 300 mm, the active material band coating width L: 30 mm and the conductive band coating width L ′: 6 mm, 30 are coated alternately, and the coating speed is 2 m / min. A continuous electrode was applied at a speed to obtain a battery electrode.

(比較例2)
実施例1と同様の塗料を準備し連続塗工を行なった
但し、その際、導電性良好塗布部がなく、活物質塗布部のみとし、リチウムイオン電池電極膜を得た。
(Comparative Example 2)
The same coating material as in Example 1 was prepared, and continuous coating was performed. However, at that time, there was no coating portion with good conductivity, and only the active material coating portion was obtained to obtain a lithium ion battery electrode film.

(評価項目、評価方法)
実施例および比較例で得られた塗膜をプレス機にセットし、プレスを実施し、活物質帯部分が所望の密度(2.6g/cm)になるようにプレスを実施し、シートを得た。
(Evaluation items and evaluation methods)
The coating films obtained in Examples and Comparative Examples were set in a press machine, pressed, and pressed so that the active material band portion had a desired density (2.6 g / cm 3 ). Obtained.

(1)電池性能1:
得られた各電極シートを用い、コインセルを作製した。電解液はLiPFを1mol含み、エチレンカーボネート/ジメチルカーボネート(1/1vol)の比で混合したものを、セパレータはPP(セルガード社製)のものを用いた。
そのコインセルを25℃環境下で、0.1C、0.2C、0.5C、1C、2C、5C、10Cの順で各3サイクル充放電したとき、0.5Cと5Cでの各放電容量の平均値から放電容量保存比Aを算出した。
A=5C時の放電容量/0.5C時の放電容量
(1) Battery performance 1:
A coin cell was produced using each of the obtained electrode sheets. The electrolyte contained 1 mol of LiPF 6 and mixed at a ratio of ethylene carbonate / dimethyl carbonate (1/1 vol), and the separator used was PP (manufactured by Celgard).
When the coin cell was charged and discharged for 3 cycles in the order of 0.1 C, 0.2 C, 0.5 C, 1 C, 2 C, 5 C, and 10 C in a 25 ° C. environment, each discharge capacity at 0.5 C and 5 C was The discharge capacity storage ratio A was calculated from the average value.
A = Discharge capacity at 5C / Discharge capacity at 0.5C

(2)電池性能2:
充放電性能1(すなわち電池性能1)の測定時における5C時の放電容量(電極膜重量当たり)において、実施例1の放電容量(mAh/g)を100%とした場合の各例での放電容量比率を算出した。
(2) Battery performance 2:
Discharge in each example when the discharge capacity (mAh / g) of Example 1 is set to 100% in the discharge capacity (per electrode film weight) at 5 C when measuring charge / discharge performance 1 (that is, battery performance 1) The volume ratio was calculated.

(3)密着性:
得られたシートを1インチの紙管に塗工流れ方向に一旦巻きつけ、ほどいた後、活物質帯と導電帯とを含むように、流れ方向にセロテープ(登録商標)(ニチバン製:25mm幅)を貼り付け、180度の方向に引っ張りはがし、塗膜の密着性について評価した。
評価:○:剥離なし △:一部剥離あり ×:全面剥離
(結果)
測定結果を下記表1に示す。
(3) Adhesion:
The obtained sheet was once wound around a 1-inch paper tube in the coating flow direction, unwound, and then covered with cello tape (registered trademark) (manufactured by Nichiban: 25 mm width) so as to include an active material band and a conductive band. ) Was peeled off and peeled in the direction of 180 degrees, and the adhesion of the coating film was evaluated.
Evaluation: ○: No peeling △: Partial peeling ×: Full peeling (result)
The measurement results are shown in Table 1 below.

Figure 0006212951
Figure 0006212951

表1の結果からも、本発明により電池性能向上、電極基材へ密着向上が確認できた。   From the results of Table 1, it was confirmed that the battery performance was improved and the adhesion to the electrode substrate was improved according to the present invention.

1 :給液タンク
2 :送液ポンプ
3 :切替バルブ
4 :塗工ヘッド
5 :ストレーナ
6 :コーティングロール
7 :電極基材
11:活物質帯塗布側ダイヘッド及びマニホールド
12:活物質帯塗布側給液口
13:活物質帯塗布側シム板
14:仕切り鋼板
15:活物質帯塗布側下流ダイヘッド
16:挟みダイヘッド
17:導電帯塗布側ダイヘッドおよびマニホールド
18:導電帯塗布側シム板
19:導電帯塗布側下流ダイヘッド
20:導電帯塗布側給液口
11:活物質帯塗布側ダイヘッド及びマニホールド
31:未塗布部(耳部)
32:活物質帯塗布部
33:導電帯塗布部
34:活物質帯塗布シム
35:活物質塗布シム開口部
36:導電帯塗布シム
37:導電帯塗布シム開口部
1: Liquid supply tank 2: Liquid feed pump 3: Switching valve 4: Coating head 5: Strainer 6: Coating roll 7: Electrode substrate 11: Active material band application side die head and manifold 12: Active material band application side liquid supply Mouth 13: Active material band application side shim plate 14: Partition steel plate 15: Active material band application side downstream die head 16: Pinch die head 17: Conductive band application side die head and manifold 18: Conductive band application side shim plate 19: Conductive band application side Downstream die head 20: conductive band application side liquid supply port 11: active material band application side die head and manifold 31: unapplied part (ear part)
32: Active material band application part 33: Conductive band application part 34: Active material band application shim 35: Active material application shim opening 36: Conductive band application shim 37: Conductive band application shim opening

Claims (3)

コーティングロールに保持搬送される電極基材表面に、正極または負極の塗料を、ダイヘッドのスリットから吐出して電極塗膜を形成する電池用電極部材の製造方法において、
前記ダイヘッドにより、正極あるいは負極活物質を含む塗料と、当該塗料を塗布して形成される活物質帯よりも体積抵抗率が低い導電帯となる塗料とを含む少なくとも2種の塗料を前記電極基材の幅方向の両端を除く領域に同時に吐出させ、且つ、前記活物質帯と前記導電帯とが前記電極基材の幅方向に隣接して交互に配置されさらに交互に配置された前記活物質帯及び前記導電帯の幅方向の両側には前記活物質帯が位置するように前記ダイヘッドのスリットを配置して前記吐出を行うことで、前記電極基材の幅方向の両端に未塗布部を形成するようにし、そのすぐ内側に前記活物質帯を形成することを特徴とする電池用電極部材の製造方法。
In the method for producing an electrode member for a battery in which a positive electrode or negative electrode paint is discharged from a slit of a die head to form an electrode coating film on the electrode substrate surface held and conveyed by the coating roll,
By the die head, at least two kinds of paints including a paint containing a positive electrode or a negative electrode active material and a paint having a conductive band having a volume resistivity lower than that of an active material band formed by applying the paint are applied to the electrode base. The active material that is simultaneously discharged to a region excluding both ends in the width direction of the material, and the active material bands and the conductive bands are alternately arranged adjacent to each other in the width direction of the electrode base material, and are alternately arranged. By disposing the slit of the die head so that the active material band is located on both sides in the width direction of the band and the conductive band and performing the discharge, uncoated portions are formed at both ends in the width direction of the electrode substrate. A method for producing a battery electrode member, characterized in that the active material zone is formed immediately inside .
前記電極塗膜の塗布幅をW(mm)、前記活物質帯の1本当たりの塗布幅をL(mm)、前記活物質帯の本数をa(本)、前記導電帯の1本当たりの塗布幅をL′(mm)、前記導電帯の本数をb(本)とし、これらがW=L×a+L′×bの条件を満足するとき、  The coating width of the electrode coating film is W (mm), the coating width per one of the active material bands is L (mm), the number of the active material bands is a (book), the per one of the conductive bands When the coating width is L ′ (mm), the number of the conductive bands is b (lines), and these satisfy the condition of W = L × a + L ′ × b,
前記活物質帯の塗布幅Lおよび前記導電帯の塗布幅L′は、  The application width L of the active material band and the application width L ′ of the conductive band are:
0.02mm<L′<W/2およびL′×b<W/2を共に満足することを特徴とする請求項1に記載の電池用電極部材の製造方法。  The battery electrode member manufacturing method according to claim 1, wherein both 0.02 mm <L ′ <W / 2 and L ′ × b <W / 2 are satisfied.
前記電極塗膜は、連続塗工または間欠塗工により形成されることを特徴とする請求項1または請求項2に記載の電池用電極部材の製造方法。  The method for producing a battery electrode member according to claim 1 or 2, wherein the electrode coating film is formed by continuous coating or intermittent coating.
JP2013108212A 2013-05-22 2013-05-22 Method for producing battery electrode member Active JP6212951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013108212A JP6212951B2 (en) 2013-05-22 2013-05-22 Method for producing battery electrode member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013108212A JP6212951B2 (en) 2013-05-22 2013-05-22 Method for producing battery electrode member

Publications (2)

Publication Number Publication Date
JP2014229479A JP2014229479A (en) 2014-12-08
JP6212951B2 true JP6212951B2 (en) 2017-10-18

Family

ID=52129153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013108212A Active JP6212951B2 (en) 2013-05-22 2013-05-22 Method for producing battery electrode member

Country Status (1)

Country Link
JP (1) JP6212951B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4119240A4 (en) * 2021-01-22 2023-12-27 Contemporary Amperex Technology Co., Limited Coating system

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6588204B2 (en) * 2014-12-15 2019-10-09 三星エスディアイ株式会社Samsung SDI Co., Ltd. ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, LITHIUM ION SECONDARY BATTERY, AND METHOD FOR PRODUCING ELECTRODE FOR LITHIUM ION SECONDARY BATTERY
US10818928B2 (en) 2014-12-15 2020-10-27 Samsung Sdi Co., Ltd. Electrode for rechargeable lithium battery, rechargeable lithium battery, and method of fabricating electrode for rechargeable lithium battery
JP6367133B2 (en) * 2015-02-10 2018-08-01 株式会社ヒラノテクシード Coating equipment
JP6514989B2 (en) * 2015-08-12 2019-05-15 株式会社ヒラノテクシード Coating device
JP2017107917A (en) * 2015-12-07 2017-06-15 株式会社キャタラー Electrode and power storage device
KR102134587B1 (en) * 2016-02-12 2020-07-16 주식회사 엘지화학 Electrode Coating Apparatus Capable of Simultaneously Coating Different Substances Constituting Electrode for Secondary Battery
JP6863452B2 (en) * 2017-04-04 2021-04-21 日本電気株式会社 Method of manufacturing electrodes for secondary batteries and method of manufacturing secondary batteries
KR102190114B1 (en) * 2017-08-17 2020-12-11 주식회사 엘지화학 Slot Die Coater Changing Coating Formation of Electrode Active Material Slurry by Movement of Slots
JP7105138B2 (en) * 2018-08-21 2022-07-22 株式会社ヒラノテクシード Coating equipment
KR102362174B1 (en) * 2018-10-01 2022-02-10 주식회사 엘지에너지솔루션 Slot die coater adjusting device for adjusting the distance between the upper discharge port and the lower discharge port of the slot die coater and Electrode active material coating system comprising the same
JP7255052B2 (en) * 2019-02-15 2023-04-11 株式会社ヒラノテクシード Coating equipment
KR102368359B1 (en) 2019-05-14 2022-02-25 주식회사 엘지에너지솔루션 Slot die coating device having air vent
JP2021118062A (en) * 2020-01-23 2021-08-10 エムテックスマート株式会社 Secondary battery and manufacturing method of secondary battery
WO2021161649A1 (en) * 2020-02-12 2021-08-19 パナソニック株式会社 Coating die and coating device
JP6781941B1 (en) * 2020-05-25 2020-11-11 株式会社タンガロイ Die head
JP6781967B1 (en) * 2020-05-25 2020-11-11 株式会社タンガロイ Die head
WO2022092826A1 (en) * 2020-10-28 2022-05-05 주식회사 엘지에너지솔루션 Slot die coater

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529413B2 (en) * 2003-10-28 2010-08-25 日産自動車株式会社 Ultra-thin high-power battery electrode and high-power battery using the same
JP2010015852A (en) * 2008-07-04 2010-01-21 Hitachi Vehicle Energy Ltd Secondary battery
JP2010049898A (en) * 2008-08-21 2010-03-04 Panasonic Corp Die coating method, and manufacturing method for plasma display panel
JP2011151279A (en) * 2010-01-25 2011-08-04 Sony Corp Composite electrode, and electronic device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4119240A4 (en) * 2021-01-22 2023-12-27 Contemporary Amperex Technology Co., Limited Coating system

Also Published As

Publication number Publication date
JP2014229479A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
JP6212951B2 (en) Method for producing battery electrode member
JP6346290B2 (en) Multilayer battery and manufacturing method thereof
TWI616017B (en) Multi-layer battery electrode design for enabling thicker electrode fabrication
CN106797019B (en) Electrode for electrochemical cell
US8821593B2 (en) Method for manufacturing electrode for electrochemical element
CN112189267A (en) Electrochemical cell with one or more multilayer electrodes
CN108140802B (en) Electrode and method for manufacturing same
JP7211119B2 (en) SECONDARY BATTERY AND METHOD FOR MANUFACTURING SECONDARY BATTERY
CN101517787A (en) Method of producing electrode for secondary battery, and secondary battery
JP5288223B2 (en) Method for manufacturing battery electrode
JP5418088B2 (en) Current collector for lithium ion secondary battery
CN114556611A (en) Negative electrode and secondary battery comprising same
WO2011089722A1 (en) Cathode and method for manufacturing the same
CN113544874A (en) Layered electrode with high speed top layer
WO2019156172A1 (en) Lithium ion secondary battery, lithium ion secondary battery negative electrode structure, and production method for lithium ion secondary battery
CN111937189A (en) Electrode for lithium ion secondary battery, method for producing same, and lithium ion secondary battery
JP2020009764A (en) Grid current collector, and related device and methods
US20200280104A1 (en) Anode Subassemblies for Lithium-Metal Batteries, Lithium-Metal Batteries Made Therewith, and Related Methods
KR20200028258A (en) Anode for secondary battery and Secondary battery including the same
JP5534370B2 (en) Method for manufacturing battery electrode
CN111386616A (en) Method of manufacturing electrode for secondary battery and method of manufacturing secondary battery
CN113497217B (en) Electrode, preparation method thereof and battery
JP7254941B2 (en) Electrodes, laminates and secondary batteries
CN114514643A (en) Current collector including primer layer having improved adhesive strength and method of manufacturing the same
CN112740440A (en) Method for preparing electrode of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170904

R150 Certificate of patent or registration of utility model

Ref document number: 6212951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250