JP6211202B2 - Optical transmission method and optical transmission system - Google Patents

Optical transmission method and optical transmission system Download PDF

Info

Publication number
JP6211202B2
JP6211202B2 JP2016547265A JP2016547265A JP6211202B2 JP 6211202 B2 JP6211202 B2 JP 6211202B2 JP 2016547265 A JP2016547265 A JP 2016547265A JP 2016547265 A JP2016547265 A JP 2016547265A JP 6211202 B2 JP6211202 B2 JP 6211202B2
Authority
JP
Japan
Prior art keywords
correlation
phase noise
light
optical
local oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016547265A
Other languages
Japanese (ja)
Other versions
JPWO2016038654A1 (en
Inventor
吉田 剛
剛 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016038654A1 publication Critical patent/JPWO2016038654A1/en
Application granted granted Critical
Publication of JP6211202B2 publication Critical patent/JP6211202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers

Description

本発明は、光伝送方法および光伝送システムに関し、特に、波長多重方式を用いた長距離大容量光伝送を実現する光伝送方法および光伝送システムに関する。   The present invention relates to an optical transmission method and an optical transmission system, and more particularly to an optical transmission method and an optical transmission system that realize long-distance large-capacity optical transmission using a wavelength multiplexing method.

光ファイバにより長距離大容量伝送を行うためには、高密度な信号多重化と、ファイバ非線形光学効果の克服とが課題である。   In order to perform long-distance and large-capacity transmission using an optical fiber, high-density signal multiplexing and overcoming the fiber nonlinear optical effect are problems.

複数の光搬送波もしくは光サブ搬送波(サブキャリア)に異なる情報を載せて高密度波長多重を行うことにより、光ファイバ当たりの伝送容量を増大させることが可能である。ここで、多重化する光搬送波や光サブ搬送波を、それぞれチャネルと呼ぶ。また、変調方式を多値化することによっても、伝送容量の増大が可能である。   It is possible to increase the transmission capacity per optical fiber by performing high-density wavelength multiplexing by placing different information on a plurality of optical carriers or optical subcarriers (subcarriers). Here, the optical carrier wave and the optical subcarrier wave to be multiplexed are each called a channel. Also, the transmission capacity can be increased by making the modulation system multi-valued.

従来の変調方式としては、光の有無に2値信号を割り付け、1シンボル当たり1ビットを伝送するオンオフキーイング(On Off Keying:OOK)が用いられていた。しかしながら、4値位相変調(Quaternary Phase−Shift Keying:QPSK)や16値直交振幅変調(Quadrature Amplitude Modulation:QAM)のように、信号点を増やして、1シンボル当たりの伝送ビット数を増やすことで、伝送容量を増大させることが可能である。QPSKおよび16QAMにおいては、光送信器において、同位相軸(In−Phase軸:I軸)と、直交位相軸(Quadrature−Phase軸:Q軸)とに、信号を割り当てる。   As a conventional modulation method, on-off keying (OOK) in which a binary signal is assigned to the presence or absence of light and one bit is transmitted per symbol has been used. However, by increasing the number of signal points and increasing the number of transmission bits per symbol, such as quaternary phase modulation (Quaternary Phase-Shift Keying: QPSK) and 16 value quadrature amplitude modulation (Quadrature Amplitude Modulation: QAM), It is possible to increase the transmission capacity. In QPSK and 16QAM, signals are assigned to the same phase axis (In-Phase axis: I axis) and quadrature phase axis (Quadrature-Phase axis: Q axis) in the optical transmitter.

また、偏波多重方式(Polarization Multiplexing)を用いることで、1シンボル当たりの伝送ビット数を2倍に増やす方式が知られている。偏波多重方式においては、直交する2つの偏波成分(垂直偏波、水平偏波)に、独立に信号を割り当てることが可能である。   Further, a method is known in which the number of transmission bits per symbol is doubled by using a polarization multiplexing method. In the polarization multiplexing method, signals can be independently assigned to two orthogonal polarization components (vertical polarization and horizontal polarization).

OOK信号の復調には、受信側で光信号の有無を検出して識別する直接検波方式が用いられてきた。また、差動2値位相変調(Differential Binary Phase−Shift Keying:DBPSK)信号、差動QPSK(DQPSK)信号等の復調には、光信号を遅延干渉させた後に直接検波する、(直接)遅延検波方式が用いられてきた。   For the demodulation of the OOK signal, a direct detection method that detects and identifies the presence or absence of an optical signal on the receiving side has been used. In addition, in the demodulation of differential binary phase modulation (Differential Phase-Shift Keying: DBPSK) signal, differential QPSK (DQPSK) signal, etc., direct detection is performed after delay interference of the optical signal, or (direct) delay detection. A scheme has been used.

偏波多重方式を用いた信号の多くは、受信端で局部発振光源と受信信号とを混合干渉させて検波するコヒーレント検波を行って得られた電気信号を、デジタル信号処理により補償するデジタルコヒーレント方式が用いられている(例えば、非特許文献1、2参照)。   A digital coherent method that compensates for the electrical signal obtained by performing coherent detection, which detects signals by mixing interference between the local oscillation light source and the received signal at the receiving end, using digital signal processing. Is used (for example, see Non-Patent Documents 1 and 2).

一方、長距離光伝送を行う場合には、受信端での信号品質を確保すべく、ビットレート、変調方式、検波方式に応じて、所定の光信号電力対雑音電力比が必要である。そのため、高い光電力で信号伝送を行う必要がある。このとき、光ファイバ中で生じる非線形光学効果に起因する波形歪みが、信号品質を劣化させる。   On the other hand, when performing long-distance optical transmission, a predetermined optical signal power-to-noise power ratio is required according to the bit rate, modulation method, and detection method in order to ensure signal quality at the receiving end. Therefore, it is necessary to perform signal transmission with high optical power. At this time, the waveform distortion caused by the nonlinear optical effect generated in the optical fiber degrades the signal quality.

非線形光学効果による信号品質の劣化を低減のためには、伝送路の局所的な波長分散(Chromatic Dispersion:CD)を増加させる方式が考えられる。このような方式を採用することにより、非線形性起因の波形歪みの同相累積を避け、伝送性能劣化を低減することが可能である(例えば、非特許文献3参照)。   In order to reduce the degradation of signal quality due to the nonlinear optical effect, a method of increasing the local chromatic dispersion (CD) of the transmission line is conceivable. By adopting such a method, it is possible to avoid in-phase accumulation of waveform distortion caused by non-linearity and reduce transmission performance degradation (see, for example, Non-Patent Document 3).

コヒーレント光伝送方式では、デジタル信号処理による大規模なCD補償(デジタルCD補償)が可能である。したがって、コヒーレント光伝送方式は、局所CDが大きく、伝送路内CD補償のない伝送路への適用が好適とされる。   In the coherent optical transmission system, large-scale CD compensation (digital CD compensation) by digital signal processing is possible. Therefore, the coherent optical transmission system is preferably applied to a transmission line having a large local CD and no CD compensation in the transmission line.

伝送路内CD補償のない伝送路では、ファイバ種別や伝送距離に依存して、数万ps/nmから数10万ps/nmに及ぶCDが累積し、受信部において残留する可能性がある。   In a transmission path without CD compensation within the transmission path, CDs ranging from several tens of thousands ps / nm to several hundred thousand ps / nm may accumulate and remain in the receiving unit depending on the fiber type and transmission distance.

20ps/nm/kmの局所CDを有するファイバを1万km伝送した場合、累積CDは、20万ps/nmとなる。ボーレート30Gbaud級の信号においては、1000シンボル級の符号間干渉を引き起こす。CDによる符号間干渉は、既知の線形な波形歪みとして表現される。このため、残留CDの符号間干渉長に応じた規模の波形等化器により、理想的には残留CDを完全に補償することができる。   When a fiber having a local CD of 20 ps / nm / km is transmitted through 10,000 km, the cumulative CD is 200,000 ps / nm. A baud rate 30 Gbaud class signal causes 1000 symbol class intersymbol interference. Intersymbol interference due to CD is expressed as a known linear waveform distortion. Therefore, ideally, the residual CD can be completely compensated by a waveform equalizer having a scale corresponding to the intersymbol interference length of the residual CD.

しかしながら、コヒーレント光伝送方式では、光源線幅による位相雑音がもたらす瞬時周波数変動が、大規模デジタルCD補償により拡大された位相雑音(Equalization Enhanced Phase Noise:EEPN)となり、性能劣化をもたらすことが知られている(例えば、非特許文献4参照)。   However, in the coherent optical transmission system, it is known that the instantaneous frequency fluctuation caused by the phase noise due to the light source line width becomes phase noise (Equalization Enhanced Phase Noise: EEPN) expanded by large-scale digital CD compensation, resulting in performance degradation. (For example, refer nonpatent literature 4).

例えば、受信部におけるデジタルCD補償(受信デジタルCD補償)を行う場合のEEPNによる性能劣化を低減するためには、受信デジタルCD補償よりも上流で、局部発振光の位相雑音補償を行う必要がある。   For example, in order to reduce performance degradation due to EEPN when performing digital CD compensation (received digital CD compensation) in the receiving unit, it is necessary to perform phase noise compensation of local oscillation light upstream of the received digital CD compensation. .

受信デジタルCD補償によるEEPNは、局部発振光源の位相雑音のみが関連する。一方、送信部でデジタルCD補償(送信デジタルCD補償)を行う場合には、送信光源の位相雑音が関連することとなる。   The EEPN by the received digital CD compensation relates only to the phase noise of the local oscillation light source. On the other hand, when digital CD compensation (transmission digital CD compensation) is performed in the transmission unit, phase noise of the transmission light source is related.

受信信号光の位相雑音と、局部発振光の位相雑音とは、通常、区別することができない。そこで、局部発振光を2分岐して、信号干渉用とは別に局部発振光解析用の経路をもつことで、局発光位相雑音推定を行う方法が開示されている(例えば、特許文献1参照)。   The phase noise of the received signal light and the phase noise of the local oscillation light cannot usually be distinguished. Therefore, a method is disclosed in which local oscillation phase noise estimation is performed by branching the local oscillation light into two and having a path for local oscillation light analysis separately from signal interference (see, for example, Patent Document 1). .

また、単一光源から出力された光を複数サブキャリアで変調する場合において、複数サブキャリアに割りつけたパイロット信号を受信側で差分解析する方法(例えば、特許文献2参照)や、特定の変調方式を用いることで、局部発振光の位相雑音変化を追跡可能な方法(例えば、特許文献3参照)が開示されている。   In addition, in the case where light output from a single light source is modulated with a plurality of subcarriers, a method of performing differential analysis on the receiving side of pilot signals assigned to the plurality of subcarriers (see, for example, Patent Document 2) or specific modulation A method (for example, see Patent Document 3) that can track the phase noise change of the local oscillation light by using the method is disclosed.

これらの方法により、局部発振光の位相雑音を受信信号光の位相雑音と区別して、局部発振光の位相雑音のみを抽出して推定し、補償することができる。その後、受信デジタルCD補償を行うことで、EEPNによる性能劣化を低減することができる。   By these methods, the phase noise of the local oscillation light can be distinguished from the phase noise of the received signal light, and only the phase noise of the local oscillation light can be extracted and estimated and compensated. Thereafter, by performing reception digital CD compensation, performance degradation due to EEPN can be reduced.

米国特許出願公開第2012/0213532号明細書US Patent Application Publication No. 2012/0213532 米国特許第8647690号明細書US Pat. No. 8,647,690 米国特許出願公開第2013/0230312号明細書US Patent Application Publication No. 2013/0230312

Optical Internetworking Forum、「100G Ultra Long Haul DWDM Framework Document」、2009年6月Optical Internetworking Forum, “100G Ultra Long Haul DWDM Framework Document”, June 2009 E. Yamazaki、外27名、「Fast optical channel recovery in field demonstration of 100−Gbit/s Ethernet over OTN using real−time DSP」、Optics Express、vol. 19、no. 14、pp. 13179―13184、2011年E. Yamazaki, 27 others, “Fast optical channel recovery in field demonstration of 100-Gbit / s Ethernet over OTN using real-time DSP”, Optics Exp. 19, no. 14, pp. 13179-13184, 2011 P.Poggiolini、「The GN Model of Non−Linear Propagation in Uncompensated Coherent Optical Systems」、Journal of Lightwave Technology、vol. 30、no. 24、pp. 3857―3879、2012年P. Poggiolini, “The GN Model of Non-Linear Propagation in Uncompensated Coherent Optical Systems”, Journal of Lightwave Technology, vol. 30, no. 24, pp. 3857-3879, 2012 W.Shieh and Keang−Po Ho、「Equalization−enhanced phase noise for coherent detection systems using electronic digital signal processing」、Optics Express、vol. 16、no. 20、pp. 15718―15727、2008年W. Shieh and Keang-Po Ho, “Equalization-enhanced phase noise for coherent detection systems using electronic digital signal processing”, Optics ex. 16, no. 20, pp. 15718-15727, 2008

上記の特許文献1〜3の方法は、受信デジタルCD補償によるEEPNに起因する性能劣化を低減するためには有効であった。しかしながら、特許文献1の方法では、局部発振光源から出力された光を2分岐する光学部品、局部発振光解析用の電気光学部品、電気的にデジタル信号処理するための専用のアナログ・デジタル変換器が必要となるなど、部品構成が複雑化してしまう課題があった。   The methods of Patent Documents 1 to 3 described above are effective for reducing performance degradation caused by EEPN due to reception digital CD compensation. However, in the method of Patent Document 1, an optical component that divides the light output from the local oscillation light source into two parts, an electro-optical component for local oscillation light analysis, and a dedicated analog / digital converter for electrical digital signal processing However, there is a problem that the component configuration becomes complicated.

また、特許文献2および特許文献3の方法では、サブキャリア多重を行うことが必要であり、特定の変調方式を用いる必要がある点で、汎用性に課題があった。   Further, the methods of Patent Document 2 and Patent Document 3 have a problem in versatility in that it is necessary to perform subcarrier multiplexing and to use a specific modulation method.

本発明は、かかる問題点を解決するためになされたものであって、簡易な部品構成により光源位相雑音を推定し、EEPNに起因する性能劣化を低減可能であり、かつ、サブキャリア多重の有無の制限、あるいは変調方式の制限を必要としない光伝送方法および光伝送システムを得ることを目的とする。   The present invention has been made to solve such a problem, and can estimate light source phase noise with a simple component configuration, reduce performance deterioration due to EEPN, and whether subcarrier multiplexing is present or not. It is an object of the present invention to obtain an optical transmission method and an optical transmission system that do not require the above-mentioned limitation or modulation scheme limitation.

本発明に係る光伝送方法は、直交偏波多重およびコヒーレント検波を用いる光伝送方法であって、受信信号光における直交偏波間での光位相雑音の相互相関である第1の相互相関と、局部発振光における直交偏波間での光位相雑音の相互相関である第2の相互相関とを排他的とする相関ステップと、コヒーレント検波を用いて、受信信号光の位相雑音と局部発振光の位相雑音とが混在する直交2偏波の電気信号を生成し、受信信号光の位相雑音および局部発振光の位相雑音のそれぞれを推定する推定ステップと、第1の相互相関の遅延差および第2の相互相関の遅延差が最大となる条件で、推定ステップによるそれぞれの位相雑音の推定結果を合成することにより、受信信号光の位相雑音、あるいは、局部発振光の位相雑音のいずれか一方を低減することを可能とし、受信信号光の位相雑音と局部発振光の位相雑音とを区別して推定かつ補償する補償ステップとを有するものである。   An optical transmission method according to the present invention is an optical transmission method using orthogonal polarization multiplexing and coherent detection, and includes a first cross-correlation that is a cross-correlation of optical phase noise between orthogonal polarizations in received signal light, and a local Using a correlation step exclusive of the second cross-correlation that is the cross-correlation of optical phase noise between orthogonal polarizations in the oscillation light, and the coherent detection, the phase noise of the received signal light and the phase noise of the local oscillation light Generating an orthogonal two-polarized electric signal, and estimating the phase noise of the received signal light and the phase noise of the local oscillation light, the delay difference of the first cross-correlation and the second mutual correlation By combining the estimation results of each phase noise in the estimation step under the condition that the correlation delay difference is maximized, either the phase noise of the received signal light or the phase noise of the local oscillation light is It possible to decrease, and has a compensation step of estimating and compensating distinguishes between phase noise of the phase noise and the local oscillator light of the received signal light.

また、本発明に係る光伝送システムは、光送信部と光受信部とを備える光伝送システムであって、光送信部は、無変調光を生成する送信光源と、送信光源で生成された無変調光に関して、直交偏波多重信号を生成する光変調部と、直交偏波間での光位相雑音の相互相関である第1の相互相関が、遅延差τにて最大となるように相関制御を行う相関制御部とを備え、光受信部は、局部発振光を無変調光として生成する局部発振光源と、相関制御部において相関制御された光信号を受信信号光として受信し、相関制御を行わないことで、局部発振光における直交偏波間での光位相雑音の相互相関である第2の相互相関が遅延差0で最大とさせ、受信信号光と局部発振光とを混合干渉させて検波し、電気信号を生成する光電気変換部と、光電気変換部により生成された電気信号に含まれている受信信号光の位相雑音および局部発振光の位相雑音のそれぞれを推定し、第1の相互相関の遅延差および第2の相互相関の遅延差が最大となる条件で、それぞれの位相雑音の推定結果を合成することにより、受信信号光の位相雑音、あるいは、局部発振光の位相雑音のいずれか一方を低減することを可能とし、受信信号光の位相雑音と局部発振光の位相雑音とを区別して推定かつ補償する位相雑音補償部と、位相雑音補償部によって位相雑音補償された信号に対して、残留波長分散を補償する信号処理を施す波長分散補償部とを備えるものである。   An optical transmission system according to the present invention is an optical transmission system including an optical transmission unit and an optical reception unit, and the optical transmission unit includes a transmission light source that generates unmodulated light and a non-modulated light generated by the transmission light source. With respect to the modulated light, correlation control is performed so that the first cross-correlation that is the cross-correlation of the optical phase noise between the orthogonal polarization and the optical modulation unit that generates the orthogonal polarization multiplexed signal is maximized with the delay difference τ. And a correlation control unit that performs the correlation control by receiving the local oscillation light source that generates the local oscillation light as unmodulated light and the optical signal that is correlation-controlled by the correlation control unit as the received signal light. The second cross-correlation, which is the cross-correlation of optical phase noise between orthogonally polarized waves in the local oscillation light, is maximized with a delay difference of 0, and the received signal light and the local oscillation light are mixed and detected. , Photoelectric conversion unit for generating electrical signals, and photoelectric conversion Each of the phase noise of the received signal light and the phase noise of the local oscillation light included in the electrical signal generated by the above-described steps is performed, and the delay difference of the first cross-correlation and the delay difference of the second cross-correlation are maximized. It is possible to reduce either the phase noise of the received signal light or the phase noise of the local oscillation light by combining the estimation results of the respective phase noises under the following conditions. Noise compensation unit that estimates and compensates by distinguishing between phase oscillation noise and local oscillation phase noise, and a chromatic dispersion compensation unit that performs signal processing to compensate residual chromatic dispersion for the signal that has been phase noise compensated by the phase noise compensation unit Are provided.

本発明は、受信信号光における直交偏波間での光位相雑音の相互相関と、局部発振光における直交偏波間での光位相雑音の相互相関とを排他的とすることで、受信部における信号処理により受信信号光と局部発振光の位相雑音を区別して抽出することを可能とすることを特徴とする光伝送方法である。この結果、簡易な部品構成により光源位相雑音を推定し、EEPNに起因する性能劣化を低減可能であり、かつ、サブキャリア多重の有無の制限、あるいは変調方式の制限を必要としない光伝送方法および光伝送システムを得ることができる。   The present invention makes exclusive use of the cross-correlation of optical phase noise between orthogonally polarized waves in received signal light and the cross-correlation of optical phase noise between orthogonally polarized waves in locally oscillated light, so that signal processing in the receiving unit is performed. Thus, it is possible to distinguish and extract the phase noise of the received signal light and the local oscillation light. As a result, it is possible to estimate the light source phase noise with a simple component configuration, reduce the performance degradation due to EEPN, and not to limit the presence or absence of subcarrier multiplexing or the limitation of the modulation scheme, and An optical transmission system can be obtained.

本発明の実施の形態1に係る光伝送方法を用いた光伝送システムの一例を示す図である。It is a figure which shows an example of the optical transmission system using the optical transmission method which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る光送信部の内部構成の一例を示すブロック図である。It is a block diagram which shows an example of the internal structure of the optical transmission part which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る光受信部の内部構成の一例を示すブロック図である。It is a block diagram which shows an example of the internal structure of the optical receiver which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る相関制御部による位相雑音の相関制御結果の一例を示した概念図である。It is the conceptual diagram which showed an example of the correlation control result of the phase noise by the correlation control part which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る局部発振光の位相雑音の相関の一例を示した概念図である。It is the conceptual diagram which showed an example of the correlation of the phase noise of the local oscillation light which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る位相回転部によって推定された局部発振光の位相を示す概念図である。It is a conceptual diagram which shows the phase of the local oscillation light estimated by the phase rotation part which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る光伝送システムにおける局部発振光源の周波数変動推定結果の一例を示した図である。It is the figure which showed an example of the frequency fluctuation | variation estimation result of the local oscillation light source in the optical transmission system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る光伝送システムにおけるEEPN補償による改善効果の一例を示した図である。It is the figure which showed an example of the improvement effect by EEPN compensation in the optical transmission system which concerns on Embodiment 1 of this invention.

以下に、本発明にかかる光伝送方法および光伝送システムの好適な実施の形態を、図面に基づいて詳細に説明する。   Exemplary embodiments of an optical transmission method and an optical transmission system according to the present invention will be described below in detail with reference to the drawings.

実施の形態1.
図1は、本発明の実施の形態1に係る光伝送方法を用いた光伝送システムの一例を示す図である。図1に示すように、本実施の形態1に係る光伝送システムは、光送信部1000と、光ファイバ、光中継器等で構成される光伝送部2000と、光受信部3000とで構成される。
Embodiment 1 FIG.
FIG. 1 is a diagram showing an example of an optical transmission system using the optical transmission method according to Embodiment 1 of the present invention. As shown in FIG. 1, the optical transmission system according to the first embodiment includes an optical transmission unit 1000, an optical transmission unit 2000 including an optical fiber, an optical repeater, and the like, and an optical reception unit 3000. The

図2は、本発明の実施の形態1に係る光送信部1000の内部構成の一例を示すブロック図である。光送信部1000は、送信光源1100と、光変調部1200と、相関制御部1300とで構成される。ここで、光変調部1200は、光分岐部1201と、X偏波光変調部1202と、Y偏波光変調部1203と、光合成部1204とで構成される。   FIG. 2 is a block diagram showing an example of an internal configuration of the optical transmission unit 1000 according to Embodiment 1 of the present invention. The optical transmission unit 1000 includes a transmission light source 1100, an optical modulation unit 1200, and a correlation control unit 1300. Here, the optical modulation unit 1200 includes an optical branching unit 1201, an X-polarization light modulation unit 1202, a Y-polarization light modulation unit 1203, and a light combining unit 1204.

図3は、本発明の実施の形態1に係る光受信部3000の内部構成の一例を示すブロック図である。光受信部3000は、アナログフロントエンド部3100と、位相雑音補償部3200と、波長分散補償部3300と、搬送波復元部3400とで構成される。   FIG. 3 is a block diagram showing an example of an internal configuration of the optical receiving unit 3000 according to Embodiment 1 of the present invention. The optical receiving unit 3000 includes an analog front end unit 3100, a phase noise compensation unit 3200, a chromatic dispersion compensation unit 3300, and a carrier wave restoration unit 3400.

ここで、アナログフロントエンド部3100は、局部発振光源3101と、光電気変換部3102と、アナログ・デジタル変換部(A/D変換部)3103とで構成される。また、位相雑音補償部3200は、信号事前整形部3201と、偏波分離部3202と、位相雑音推定部3203と、位相雑音分別部3204と、信号調整部3205と、位相回転部3206とで構成される。   Here, the analog front end unit 3100 includes a local oscillation light source 3101, a photoelectric conversion unit 3102, and an analog / digital conversion unit (A / D conversion unit) 3103. The phase noise compensation unit 3200 includes a signal pre-shaping unit 3201, a polarization separation unit 3202, a phase noise estimation unit 3203, a phase noise classification unit 3204, a signal adjustment unit 3205, and a phase rotation unit 3206. Is done.

以下、本実施の形態1に係る光伝送システムの動作を、図1〜図3の構成に基づいて詳細に説明する。   Hereinafter, the operation of the optical transmission system according to the first embodiment will be described in detail based on the configuration of FIGS.

光送信部1000の内部の送信光源1100は、無変調光を生成し、光変調部1200に対して出力する。送信光源1100で生成された無変調光の中心周波数は、例えば、C帯のITU−Tグリッドのいずれかの周波数に概略一致した周波数とする。なお、送信光源1100で生成された無変調光には、位相雑音が含まれている。このため、周波数スペクトルは、ある広がりをもち、その線幅は、kHz〜MHzオーダとなることが一般的である。   The transmission light source 1100 inside the optical transmission unit 1000 generates unmodulated light and outputs it to the optical modulation unit 1200. The center frequency of the unmodulated light generated by the transmission light source 1100 is, for example, a frequency that roughly matches one of the frequencies of the C-band ITU-T grid. Note that unmodulated light generated by the transmission light source 1100 includes phase noise. For this reason, the frequency spectrum has a certain spread, and the line width is generally in the order of kHz to MHz.

光変調部1200の内部の光分岐部1201は、送信光源1100で生成された無変調光を2分岐し、X偏波光変調部1202と、Y偏波光変調部1203に対して、それぞれ出力する。ここで、X偏波とY偏波は、例えば、水平偏波と垂直偏波にそれぞれ対応するものとする。   The optical branching unit 1201 inside the optical modulation unit 1200 branches the unmodulated light generated by the transmission light source 1100 into two, and outputs them to the X-polarization light modulation unit 1202 and the Y-polarization light modulation unit 1203, respectively. Here, it is assumed that the X polarization and the Y polarization correspond to, for example, a horizontal polarization and a vertical polarization, respectively.

X偏波光変調部1202は、光分岐部1201によって分岐された無変調光を、図示しない外部から入力されるX偏波変調用電気信号により変調し、光合成部1204に対して出力する。ここで、X偏波用電気信号は、例えば、ボーレート32GBaudのQPSK変調用信号とする。   The X-polarized light modulation unit 1202 modulates the unmodulated light branched by the light branching unit 1201 with an X-polarization modulation electric signal input from the outside (not shown), and outputs the modulated light to the light combining unit 1204. Here, the electric signal for X polarization is, for example, a QPSK modulation signal with a baud rate of 32 GBaud.

一方、Y偏波光変調部1203は、光分岐部1201によって分岐された無変調光を、図示しない外部から入力されるY偏波変調用電気信号により変調し、光合成部1204に対して出力する。ここで、Y偏波用電気信号は、例えば、ボーレート32GBaudのQPSK変調用信号とする。   On the other hand, the Y-polarized light modulation unit 1203 modulates the unmodulated light branched by the light branching unit 1201 with a Y-polarization modulation electric signal input from the outside (not shown), and outputs the modulated light to the light combining unit 1204. Here, the Y polarization electric signal is, for example, a QPSK modulation signal with a baud rate of 32 GBaud.

光合成部1204は、X偏波光変調部1202によって変調された信号光と、Y偏波光変調部1203によって変調された信号光とを、直交偏波合成し、相関制御部1300に対して出力する。   The light combining unit 1204 performs orthogonal polarization combining of the signal light modulated by the X-polarized light modulation unit 1202 and the signal light modulated by the Y-polarized light modulation unit 1203 and outputs the result to the correlation control unit 1300.

相関制御部1300は、光変調部1200によって直交偏波合成された信号光について、X偏波の位相雑音と、Y偏波の位相雑音との相関を制御して、光伝送部2000に出力する。   The correlation control unit 1300 controls the correlation between the X-polarized phase noise and the Y-polarized phase noise and outputs the signal light, which has been orthogonally polarized by the optical modulation unit 1200, to the optical transmission unit 2000. .

ここで、相関制御部1300によって行われる相関制御は、例えば、X偏波の信号光とY偏波の信号光との間に群遅延差τを与えることで実現される。これにより、X偏波の信号光の位相雑音φx_tx[t]と、Y偏波の信号光の位相雑音φy_tx[t]とは、遅延差τにて相互相関が最大となる。図4は、本発明の実施の形態1に係る相関制御部1300による位相雑音の相関制御結果の一例を示した概念図である。なお、直交偏波間への群遅延差付加は、例えば、偏波保持ファイバ等の複屈折媒質により実現できる。   Here, the correlation control performed by the correlation control unit 1300 is realized, for example, by giving a group delay difference τ between the X-polarized signal light and the Y-polarized signal light. As a result, the phase noise φx_tx [t] of the X-polarized signal light and the phase noise φy_tx [t] of the Y-polarized signal light have a maximum cross-correlation with the delay difference τ. FIG. 4 is a conceptual diagram showing an example of the phase noise correlation control result by the correlation control section 1300 according to Embodiment 1 of the present invention. The addition of the group delay difference between the orthogonal polarizations can be realized by a birefringent medium such as a polarization maintaining fiber, for example.

光伝送部2000は、光送信部1000から入力される光信号を伝送し、光受信部3000に出力する。なお、この光伝送部2000は、具体的には、光ファイバ、光中継器、光分岐挿入装置等で構成される。   The optical transmission unit 2000 transmits the optical signal input from the optical transmission unit 1000 and outputs the optical signal to the optical reception unit 3000. The optical transmission unit 2000 is specifically composed of an optical fiber, an optical repeater, an optical add / drop device, and the like.

光受信部3000の内部のアナログフロントエンド部3100は、その内部の局部発振光源3101において、無変調光を生成し、光電気変換部3102に出力する。ここで、局部発振光源3101から出力される無変調光の中心周波数は、受信信号光の中心周波数に概略一致した周波数とする。なお、この無変調光には、位相雑音が含まれているため、周波数スペクトルは、ある広がりをもち、その線幅は、kHz〜MHzオーダとなることが一般的である。   The analog front end unit 3100 inside the optical receiving unit 3000 generates unmodulated light in the local oscillation light source 3101 inside the optical receiving unit 3000 and outputs it to the photoelectric conversion unit 3102. Here, the center frequency of the unmodulated light output from the local oscillation light source 3101 is assumed to be a frequency that approximately matches the center frequency of the received signal light. Since the unmodulated light includes phase noise, the frequency spectrum has a certain spread and the line width is generally in the order of kHz to MHz.

光電気変換部3102は、光伝送部2000を介して入力される受信信号光と、局部発振光源3101から入力される無変調光とを混合干渉させた後に、電気信号に変換し、アナログ・デジタル変換部3103に出力する。ここで、光電気変換部3102としては、例えば、偏波ダイバーシチ型コヒーレントレシーバを用いればよい。   The photoelectric conversion unit 3102 mixes and interferes with the received signal light input via the optical transmission unit 2000 and the unmodulated light input from the local oscillation light source 3101, and then converts the mixed signal into an electrical signal. The data is output to the conversion unit 3103. Here, as the photoelectric conversion unit 3102, for example, a polarization diversity coherent receiver may be used.

光伝送部2000における位相擾乱が無視できる範囲内であるとすると、受信信号光のX偏波信号とY偏波信号との間の位相雑音は、図4に示す、光送信部1000の出力端における位相雑音の特徴と同様に、遅延差τで相互相関が最大となる。   Assuming that the phase disturbance in the optical transmission unit 2000 is within a negligible range, the phase noise between the X-polarized signal and the Y-polarized signal of the received signal light is the output end of the optical transmission unit 1000 shown in FIG. As with the phase noise feature in FIG. 4, the cross-correlation is maximized with the delay difference τ.

一方、光電気変換部3102においては、X偏波とY偏波との間での相関制御は行われず、受信信号光と無変調光とが混合干渉される。このため、X偏波の局部発振光の位相雑音φx_lo[t]と、Y偏波の局部発振光の位相雑音φy_lo[t]とは、遅延差0で相互相関が最大となる。図5は、本発明の実施の形態1に係る局部発振光の位相雑音の相関の一例を示した概念図である。   On the other hand, in the photoelectric conversion unit 3102, correlation control between the X polarization and the Y polarization is not performed, and reception signal light and unmodulated light are mixed and interfered. Therefore, the phase noise φx_lo [t] of the X-polarized local oscillation light and the phase noise φy_lo [t] of the Y-polarized local oscillation light have a maximum cross-correlation with a delay difference of zero. FIG. 5 is a conceptual diagram showing an example of the correlation of the phase noise of the local oscillation light according to Embodiment 1 of the present invention.

アナログ・デジタル変換部3103は、光電気変換部3102から入力される電気信号をアナログ・デジタル変換し、位相雑音補償部3200に出力する。   The analog / digital conversion unit 3103 performs analog / digital conversion on the electric signal input from the photoelectric conversion unit 3102 and outputs the converted signal to the phase noise compensation unit 3200.

位相雑音補償部3200の内部の信号事前整形部3201は、アナログ・デジタル変換部3103によってA/D変換されたデジタル信号に対して、デジタル信号処理により信号整形を行い、偏波分離部3202に出力する。   The signal pre-shaping unit 3201 inside the phase noise compensation unit 3200 performs signal shaping by digital signal processing on the digital signal A / D converted by the analog / digital conversion unit 3103, and outputs the signal to the polarization separation unit 3202. To do.

偏波分離部3202は、信号事前整形部3201によって信号整形されたデジタル信号に対して、X偏波信号とY偏波信号との分離を行い、分離したX偏波信号およびY偏波信号を、位相雑音推定部3203と信号調整部3205の両方に出力する。   The polarization separation unit 3202 separates the X-polarized signal and the Y-polarized signal from the digital signal shaped by the signal pre-shaping unit 3201, and outputs the separated X-polarized signal and Y-polarized signal. And output to both the phase noise estimation unit 3203 and the signal adjustment unit 3205.

ここで、偏波分離部3202に入力される信号は、一般的には、X偏波信号とY偏波信号が混ざっている。トレーニング信号等の既知信号を用いないブラインド型の偏波分離を行う場合には、一般に、偏波分離処理よりも上流で、残留するCD値を低減する必要がある。このため、信号事前整形部3201において、事前に残留CDを低減する等の処置が必要となる。一方、トレーニング信号等の既知信号を用いて偏波分離を行う場合には、偏波分離処理よりも上流で、残留するCD値を低減することは、必ずしも必要ではない。   Here, the signal input to the polarization separation unit 3202 is generally a mixture of an X polarization signal and a Y polarization signal. When performing blind polarization separation without using a known signal such as a training signal, it is generally necessary to reduce the remaining CD value upstream of the polarization separation processing. For this reason, the signal pre-shaping unit 3201 needs to take measures such as reducing the residual CD in advance. On the other hand, when performing polarization separation using a known signal such as a training signal, it is not always necessary to reduce the remaining CD value upstream of the polarization separation processing.

位相雑音推定部3203は、偏波分離されたX偏波信号およびY偏波信号について、それぞれ搬送波位相復元を行うことで、X偏波の位相雑音φx[t]とY偏波の位相雑音φy[t]とを推定し、それぞれの推定結果を、位相雑音分別部3204に出力する。   The phase noise estimation unit 3203 performs carrier wave phase recovery on the polarization-separated X-polarized signal and Y-polarized signal, respectively, so that the X-polarized phase noise φx [t] and the Y-polarized phase noise φy [T] is estimated, and each estimation result is output to the phase noise classification unit 3204.

X偏波の位相雑音φx[t]には、光送信部1000で相関制御した位相雑音φx_tx[t]と、局部発振光の位相雑音φx_lo[t]とが合成されて含まれている。同様に、Y偏波の位相雑音φy[t]には、光送信部1000で相関制御した位相雑音φy_tx[t]と、局部発振光の位相雑音φy_lo[t]とが合成されて含まれている。   The phase noise φx [t] of the X polarization includes the synthesized phase noise φx_tx [t] of which correlation control is performed by the optical transmitter 1000 and the phase noise φx_lo [t] of the local oscillation light. Similarly, the phase noise φy [t] of the Y polarization includes a combination of the phase noise φy_tx [t] subjected to correlation control by the optical transmission unit 1000 and the phase noise φy_lo [t] of the local oscillation light. Yes.

位相雑音分別部3204は、位相雑音推定部3203によって推定されたX偏波の位相雑音φx[t]とY偏波の位相雑音φy[t]とに基づき、局部発振光の位相変動成分の推定値Δφe_lo[t]を推定し、位相回転部3206に出力する。   Based on the X-polarized phase noise φx [t] and the Y-polarized phase noise φy [t] estimated by the phase noise estimating unit 3203, the phase noise classification unit 3204 estimates the phase fluctuation component of the local oscillation light. The value Δφe_lo [t] is estimated and output to the phase rotation unit 3206.

上述したように、受信信号光については、X偏波の位相雑音とY偏波の位相雑音の相互相関が遅延差τで最大となり、局部発振光については、X偏波の位相雑音とY偏波の位相雑音の相互相関が遅延差0で最大となる。このような特徴を利用することで、局部発振光の位相変動成分は、下式(1)により推定することができる。
Δφe_lo[t]
=φx[t+τ/2]−φy[t−τ/2]−φxy[t] (1)
As described above, with respect to the received signal light, the cross-correlation between the X-polarized phase noise and the Y-polarized phase noise is maximized by the delay difference τ, and with respect to the local oscillation light, the X-polarized phase noise and the Y-polarized light The cross-correlation of the wave phase noise is maximized with a delay difference of zero. By utilizing such a feature, the phase fluctuation component of the local oscillation light can be estimated by the following equation (1).
Δφe_lo [t]
= Φx [t + τ / 2] −φy [t−τ / 2] −φxy [t] (1)

これは、遅延差τで相互相関が最大となる成分をキャンセルする処理に相当する。ここで、上式(1)におけるφxy[t]は、φx[t]とφy[t]との間にある固定的な位相差であり、例えば、下式(2)のようにして求めることができる。
φx[t+τ/4]−φy[t−τ/4] (2)
This corresponds to a process of canceling a component having a maximum cross-correlation with the delay difference τ. Here, φxy [t] in the above equation (1) is a fixed phase difference between φx [t] and φy [t], and is obtained, for example, as in the following equation (2). Can do.
φx [t + τ / 4] −φy [t−τ / 4] (2)

信号調整部3205は、偏波分離部3202によって偏波分離されたデジタル信号に対して、信号事前整形部3201にて行った事前整形を元に戻す処置を行い、位相回転部3206に出力する。   The signal adjustment unit 3205 performs a process for returning the pre-shaping performed by the signal pre-shaping unit 3201 to the digital signal separated by the polarization separating unit 3202, and outputs the digital signal to the phase rotating unit 3206.

具体的には、信号調整部3205は、例えば、信号事前整形部3201において、事前に残留CDを低減した場合には、低減したCD値を元に戻す処理を行うこととなる。   Specifically, for example, when the residual CD is reduced in advance in the signal pre-shaping unit 3201, the signal adjustment unit 3205 performs a process of returning the reduced CD value to the original value.

位相回転部3206は、位相雑音分別部3204によって推定された局部発振光の位相変動成分推定値Δφe_lo[t]を積分して、局部発振光位相の推定値φe_lo[t]を求める。さらに、位相回転部3206は、求まった局部発振光位相の推定値φe_lo[t]に基づいて、信号調整部3205から入力されるデジタル信号に対して、角度−φe_lo[t]の位相回転を与え、波長分散補償部3300に出力する。   The phase rotation unit 3206 integrates the phase fluctuation component estimated value Δφe_lo [t] of the local oscillation light estimated by the phase noise sorting unit 3204 to obtain the estimated value φe_lo [t] of the local oscillation light phase. Further, the phase rotation unit 3206 gives a phase rotation of an angle −φe_lo [t] to the digital signal input from the signal adjustment unit 3205 based on the estimated local oscillation light phase value φe_lo [t] obtained. And output to the chromatic dispersion compensation unit 3300.

図6は、本発明の実施の形態1に係る位相回転部3206によって推定された局部発振光の位相φe_lo[t]を示す概念図である。変動成分さえ補償できていれば、EEPNによる劣化は、低減できる。このため、φx_lo[t]やφy_lo[t]に対しては、通常、オフセットをもつが、問題はない。   FIG. 6 is a conceptual diagram showing the phase φe_lo [t] of the local oscillation light estimated by the phase rotation unit 3206 according to Embodiment 1 of the present invention. As long as the fluctuation component can be compensated for, deterioration due to EEPN can be reduced. For this reason, although φx_lo [t] and φy_lo [t] usually have an offset, there is no problem.

波長分散補償部3300は、位相回転部3206によって位相雑音補償されたデジタル信号に対して、デジタル信号処理によるCD補償を行い、搬送波復元部3400に出力する。   The chromatic dispersion compensation unit 3300 performs CD compensation by digital signal processing on the digital signal that has been subjected to phase noise compensation by the phase rotation unit 3206 and outputs the result to the carrier wave restoration unit 3400.

搬送波復元部3400は、波長分散補償部3300によってCD補償が行われたデジタル信号に対して搬送波復元を行い、図示しない外部に出力され、復号される。   The carrier recovery unit 3400 performs carrier recovery on the digital signal that has been subjected to CD compensation by the chromatic dispersion compensation unit 3300, and is output to the outside (not shown) and decoded.

次に、本発明の効果を表すシミュレーション結果を示す。ロールオフ率0.1のRoot Raised Cosine型低域通過フィルタにより帯域整形した128Gbit/s偏波多重QPSK信号に対して、以下の条件によるシミュレーションを行った。
・光送信部1000により、X/Y偏波間に遅延差τ=1000symbolを付加する。
・光伝送部2000により、2万ps/nmのCDを与える。
・光受信部3000により、一括してデジタルCD補償する。
Next, simulation results representing the effects of the present invention are shown. A 128 Gbit / s polarization multiplexed QPSK signal shaped by a Root Raised Cosine type low-pass filter with a roll-off factor of 0.1 was simulated under the following conditions.
The optical transmission unit 1000 adds a delay difference τ = 1000 symbol between the X / Y polarized waves.
A CD of 20,000 ps / nm is provided by the optical transmission unit 2000.
-Digital CD compensation is performed collectively by the optical receiver 3000.

図7は、本発明の実施の形態1に係る光伝送システムにおける局部発振光源の周波数変動推定結果の一例を示した図である。より具体的には、送信光源1100、局部発振光源3101ともに、光源線幅を500kHzとして、局部発振光の位相変動を推定した例を示した図である。この図7の結果から、真値に対して、概ね0.1πの誤差範囲内で、局部発振光の位相変動が推定できていることがわかる。   FIG. 7 is a diagram illustrating an example of a frequency fluctuation estimation result of the local oscillation light source in the optical transmission system according to Embodiment 1 of the present invention. More specifically, both the transmission light source 1100 and the local oscillation light source 3101 are diagrams showing an example in which the phase fluctuation of the local oscillation light is estimated with the light source line width set to 500 kHz. From the result of FIG. 7, it can be seen that the phase fluctuation of the local oscillation light can be estimated within an error range of about 0.1π with respect to the true value.

図8は、本発明の実施の形態1に係る光伝送システムにおけるEEPN補償による改善効果の一例を示した図である。より具体的には、信号品質を示すQ値の光源線幅依存性を示した図である。この図8では、光信号電力対雑音電力比を15dB(雑音帯域幅:0.1nm)とし、偏波状態をランダムに変えて、それぞれビット誤り率を求め、ビット誤り率の平均値を求めた後、Q値に変換した結果を示している。   FIG. 8 is a diagram showing an example of the improvement effect by the EEPN compensation in the optical transmission system according to the first embodiment of the present invention. More specifically, it is a diagram showing the light source line width dependence of the Q value indicating the signal quality. In FIG. 8, the optical signal power to noise power ratio is 15 dB (noise bandwidth: 0.1 nm), the polarization state is changed randomly, the bit error rate is obtained, and the average value of the bit error rate is obtained. The result of conversion to a Q value is shown later.

線幅500kHzの条件では、本実施の形態1の光伝送システムを用いない場合には、1.3dBの性能劣化が生じた。これに対して、本実施の形態1の光伝送システムを用いることで、図8に示すように、性能劣化量が0.35dB緩和され、有効性を確認することができた。EEPNの影響は、変調方式の多値度が高いほど顕著である。このため、16QAM等より多値の変調方式においては、改善量が増加する可能性がある。   Under the condition of a line width of 500 kHz, performance degradation of 1.3 dB occurred when the optical transmission system of the first embodiment was not used. On the other hand, by using the optical transmission system of the first embodiment, as shown in FIG. 8, the performance deterioration amount was reduced by 0.35 dB, and the effectiveness could be confirmed. The effect of EEPN is more conspicuous as the multi-level of the modulation scheme is higher. For this reason, there is a possibility that the amount of improvement increases in a multi-level modulation scheme such as 16QAM.

以上のように、実施の形態1によれば、光送信部1000において、X偏波とY偏波との間で位相雑音の相互相関を制御している。この結果、受信信号光における直交偏波間での光位相雑音の相互相関と、局部発振光における直交偏波間での光位相雑音の相互相関とを排他的とすることができる。さらに、光受信部3000において、受信信号光の位相雑音と、局部発振光の位相雑音とを区別して推定することができる。   As described above, according to the first embodiment, the optical transmitter 1000 controls the cross-correlation of phase noise between the X polarization and the Y polarization. As a result, the cross-correlation between the optical phase noises between the orthogonal polarizations in the received signal light and the cross-correlation between the optical phase noises between the orthogonal polarizations in the local oscillation light can be made exclusive. Furthermore, in the optical receiving unit 3000, the phase noise of the received signal light and the phase noise of the local oscillation light can be distinguished and estimated.

また、局部発振光源から出力された光を2分岐する光学部品、局部発振光解析用の電気光学部品、電気的にデジタル信号処理するための専用のアナログ・デジタル変換器等を必要とせず、簡易な部品構成により光源位相雑音を推定し、EEPNに起因する性能劣化を低減することができる。   In addition, there is no need for an optical component that splits the light output from the local oscillation light source into two parts, an electro-optical component for local oscillation light analysis, or a dedicated analog / digital converter for electrical digital signal processing. The light source phase noise can be estimated with a simple component configuration, and the performance deterioration caused by the EEPN can be reduced.

さらに、本発明は、サブキャリア多重の有無や、変調方式を制限せず、汎用的である。このようにして、長距離大容量光伝送に有用な光伝送方法および光伝送システムを実現できる。   Furthermore, the present invention is general-purpose without limiting the presence or absence of subcarrier multiplexing and the modulation method. In this way, an optical transmission method and an optical transmission system useful for long-distance large-capacity optical transmission can be realized.

Claims (3)

直交偏波多重およびコヒーレント検波を用いる光伝送方法であって、
受信信号光における直交偏波間での光位相雑音の相互相関である第1の相互相関と、局部発振光における直交偏波間での光位相雑音の相互相関である第2の相互相関とを排他的とする相関ステップと、
前記コヒーレント検波を用いて、受信信号光の位相雑音と局部発振光の位相雑音とが混在する直交2偏波の電気信号を生成し、前記受信信号光の位相雑音および前記局部発振光の位相雑音のそれぞれを推定する推定ステップと、
前記第1の相互相関の遅延差および前記第2の相互相関の遅延差が最大となる条件で、前記推定ステップによるそれぞれの位相雑音の推定結果を合成することにより、前記受信信号光の位相雑音、あるいは、前記局部発振光の位相雑音のいずれか一方を低減することを可能とし、前記受信信号光の位相雑音と前記局部発振光の位相雑音とを区別して推定かつ補償する補償ステップと
を有する光伝送方法。
An optical transmission method using orthogonal polarization multiplexing and coherent detection,
The first cross-correlation that is the cross-correlation of the optical phase noise between the orthogonal polarizations in the received signal light and the second cross-correlation that is the cross-correlation of the optical phase noise between the orthogonal polarizations in the local oscillation light are exclusive. And a correlation step
Using the coherent detection, an orthogonal two-polarized electric signal in which the phase noise of the reception signal light and the phase noise of the local oscillation light are mixed is generated, and the phase noise of the reception signal light and the phase noise of the local oscillation light are generated. An estimation step for estimating each of
By combining the estimation results of the respective phase noises in the estimation step under the condition that the delay difference of the first cross-correlation and the delay difference of the second cross-correlation are maximized, the phase noise of the received signal light Or a compensation step that makes it possible to reduce any one of the phase noises of the local oscillation light, and to estimate and compensate the phase noise of the received signal light and the phase noise of the local oscillation light separately. Optical transmission method.
前記相関ステップは、
光送信部において、相関制御を行うことで、遅延差τにて前記第1の相互相関が最大となるように、前記受信信号光における直交偏波間に相関をもたせる相関第1ステップと、
光受信部において、相関制御を行わず、遅延差0にて前記第2の相互相関が最大となるように、前記局部発振光における直交偏波間に相関をもたせる相関第2ステップと
を含む請求項1に記載の光伝送方法。
The correlation step includes
In the optical transmission unit, by performing correlation control, a correlation first step for giving a correlation between orthogonal polarizations in the received signal light so that the first cross-correlation is maximized with a delay difference τ;
And a correlation second step of causing a correlation between orthogonal polarizations in the local oscillation light so that the second cross-correlation is maximized at a delay difference of 0 without performing correlation control in the optical receiver. 2. The optical transmission method according to 1.
光送信部と光受信部とを備える光伝送システムであって、
前記光送信部は、
無変調光を生成する送信光源と、
前記送信光源で生成された前記無変調光に関して、直交偏波多重信号を生成する光変調部と、
直交偏波間での光位相雑音の相互相関である第1の相互相関が、遅延差τにて最大となるように相関制御を行う相関制御部と
を備え、
前記光受信部は、
局部発振光を無変調光として生成する局部発振光源と、
前記相関制御部において相関制御された光信号を受信信号光として受信し、相関制御を行わないことで、前記局部発振光における直交偏波間での光位相雑音の相互相関である第2の相互相関が遅延差0で最大とさせ、前記受信信号光と前記局部発振光とを混合干渉させて検波し、電気信号を生成する光電気変換部と、
前記光電気変換部により生成された前記電気信号に含まれている前記受信信号光の位相雑音および前記局部発振光の位相雑音のそれぞれを推定し、前記第1の相互相関の遅延差および前記第2の相互相関の遅延差が最大となる条件で、それぞれの位相雑音の推定結果を合成することにより、前記受信信号光の位相雑音、あるいは、前記局部発振光の位相雑音のいずれか一方を低減することを可能とし、前記受信信号光の位相雑音と前記局部発振光の位相雑音とを区別して推定かつ補償する位相雑音補償部と、
前記位相雑音補償部によって位相雑音補償された信号に対して、残留波長分散を補償する信号処理を施す波長分散補償部と
を備える
光伝送システム。
An optical transmission system comprising an optical transmitter and an optical receiver,
The optical transmitter is
A transmission light source that generates unmodulated light;
Regarding the unmodulated light generated by the transmission light source, an optical modulation unit that generates an orthogonal polarization multiplexed signal;
A correlation control unit that performs correlation control so that a first cross-correlation that is a cross-correlation of optical phase noise between orthogonal polarizations is maximized with a delay difference τ;
The optical receiver is
A local oscillation light source that generates local oscillation light as unmodulated light;
A second cross-correlation that is a cross-correlation of optical phase noise between orthogonal polarizations in the local oscillation light by receiving the optical signal that has been subjected to correlation control in the correlation control unit as reception signal light and performing no correlation control. Is a maximum at a delay difference of 0, and the received signal light and the local oscillation light are mixed and interfered with each other to detect and generate an electrical signal,
Estimating each of phase noise of the received signal light and phase noise of the local oscillation light included in the electrical signal generated by the photoelectric conversion unit, the delay difference of the first cross-correlation and the first The phase noise of the received signal light or the phase noise of the local oscillation light is reduced by combining the estimation results of the respective phase noises under the condition that the delay difference of the cross-correlation between the two is maximized A phase noise compensator that distinguishes and estimates and compensates for the phase noise of the received signal light and the phase noise of the local oscillation light,
An optical transmission system comprising: a chromatic dispersion compensation unit that performs signal processing for compensating residual chromatic dispersion on a signal that has been phase noise compensated by the phase noise compensation unit.
JP2016547265A 2014-09-08 2014-09-08 Optical transmission method and optical transmission system Active JP6211202B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073628 WO2016038654A1 (en) 2014-09-08 2014-09-08 Optical transmission method and optical transmission system

Publications (2)

Publication Number Publication Date
JPWO2016038654A1 JPWO2016038654A1 (en) 2017-04-27
JP6211202B2 true JP6211202B2 (en) 2017-10-11

Family

ID=55458447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016547265A Active JP6211202B2 (en) 2014-09-08 2014-09-08 Optical transmission method and optical transmission system

Country Status (2)

Country Link
JP (1) JP6211202B2 (en)
WO (1) WO2016038654A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6925566B2 (en) * 2019-03-19 2021-08-25 三菱電機株式会社 Spatial optical transmitter and spatial optical communication system
JP7306652B2 (en) 2019-10-04 2023-07-11 Kddi株式会社 Optical transmitter and optical communication system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736837B2 (en) * 2011-02-23 2015-06-17 富士通株式会社 Optical receiver

Also Published As

Publication number Publication date
JPWO2016038654A1 (en) 2017-04-27
WO2016038654A1 (en) 2016-03-17

Similar Documents

Publication Publication Date Title
JP5278001B2 (en) Optical communication system and optical receiver
EP2924890B1 (en) Polarization state detector, optical transmitter, and optical receiver
JP5350284B2 (en) Optical transmission / reception system and optical receiver
US9667347B2 (en) Optical transmitter, optical receiver, method of compensating non-linear distortion, and communication apparatus
US10171173B2 (en) Optical signal transmission apparatus and optical signal transmission method
US8538278B2 (en) Superimposed training and digital filtering coherent optical receivers
JP5712935B2 (en) Method and apparatus for detecting chromatic dispersion and method and apparatus for compensating chromatic dispersion
US20090324224A1 (en) System, method and apparatus to suppress inter-channel nonlinearities in WDM systems with coherent detection
EP2858272B1 (en) Non-linear distortion compensator, method of compensating non-linear distortion, and optical receiver
US20190052388A1 (en) System and method for optical signal transmission
US9692521B1 (en) Polarization pre-compensation technique for polarization-division-multiplexed direct-detection optical communication systems
JP6211202B2 (en) Optical transmission method and optical transmission system
Morsy-Osman et al. Joint mitigation of laser phase noise and fiber nonlinearity using pilot-aided transmission for single-carrier systems
Lin Digital nonlinear compensation for next-generation optical communication systems using advanced modulation formats
EP3101828B1 (en) Optical transmission apparatus and optical transmission method
Wettlin et al. Comparison of direct-detection approaches for high-speed datacenter campus networks
WO2017002178A1 (en) Optical transmitter, optical receiver, optical transmission system, and optical transmission method
Deynu et al. Design of feedforward master–slave carrier phase recovery in frequency comb-based superchannel coherent transmission systems with nonlinear phase noise
Xia et al. 92-Gb/s field trial with ultra-high PMD tolerance of 107-ps DGD
Fattah et al. Electronic signal processing for cancelation of optical systems impairments
JP5750177B1 (en) Optical receiver, optical communication system, and polarization crosstalk compensation method
Portela et al. Experimental demonstration of joint-polarization phase recovery algorithms for dual-polarization 16-QAM transmission
Wang et al. Mode-division Multiplexed Transmission with Kramers-Kronig Direct Detection Receiver
Liu et al. QPSK-Assisted MIMO Equalization for 800-Gb/s/λ DP-256QAM Systems
PATRO et al. 100Gbps transmission using DSP module for Dispersion Compensation

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170912

R150 Certificate of patent or registration of utility model

Ref document number: 6211202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250