JP6210400B2 - Steelmaking slag mixing method for soft soil - Google Patents

Steelmaking slag mixing method for soft soil Download PDF

Info

Publication number
JP6210400B2
JP6210400B2 JP2013045055A JP2013045055A JP6210400B2 JP 6210400 B2 JP6210400 B2 JP 6210400B2 JP 2013045055 A JP2013045055 A JP 2013045055A JP 2013045055 A JP2013045055 A JP 2013045055A JP 6210400 B2 JP6210400 B2 JP 6210400B2
Authority
JP
Japan
Prior art keywords
soft soil
steelmaking slag
mixing
belt conveyor
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013045055A
Other languages
Japanese (ja)
Other versions
JP2014173285A (en
Inventor
裕一 田中
裕一 田中
歩 松本
歩 松本
正 今村
正 今村
貴志 渋谷
貴志 渋谷
中川 雅夫
雅夫 中川
有三 赤司
有三 赤司
浩樹 菅野
浩樹 菅野
陽介 山越
陽介 山越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Penta Ocean Construction Co Ltd
Original Assignee
Nippon Steel Corp
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Penta Ocean Construction Co Ltd filed Critical Nippon Steel Corp
Priority to JP2013045055A priority Critical patent/JP6210400B2/en
Publication of JP2014173285A publication Critical patent/JP2014173285A/en
Application granted granted Critical
Publication of JP6210400B2 publication Critical patent/JP6210400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、浚渫土等の軟弱土に鉄鋼の精製過程で副産物として生じる製鋼スラグを混合させて軟弱土の強度を改良するための軟弱土に対する製鋼スラグ混合方法に関する。 The present invention relates to a method of mixing steelmaking slag with soft soil for improving the strength of soft soil by mixing steelmaking slag generated as a by-product in the refining process of steel with soft soil such as clay.

従来、浚渫土等の軟弱土に鉄鋼精製の過程で副産物として生じる製鋼スラグを混合させることにより軟弱土を強度改良してなるカルシア改質土を地盤材、干潟・浅場造成材等の土木材料として使用する方法が提案されている(例えば、特許文献1、段落0035を参照)。   Conventionally, calcia-modified soil, which improves strength of soft soil by mixing steelmaking slag generated as a by-product in the steel refining process with soft soil such as dredged soil, is used as a civil engineering material for ground, tidal flats, shallow ground preparation materials, etc. A method of use has been proposed (see, for example, Patent Document 1, paragraph 0035).

浚渫土等の軟弱土に製鋼スラグを混合する方法としては、機械式ミキサ等の攪拌装置に投入された一定量の軟弱土に対し所定の比率で製鋼スラグを添加し、それを攪拌装置により攪拌して強制的に混合する方法、軟弱土に製鋼スラグを所定の比率で添加したものを空気圧送し、それを圧送管内に生じるプラグ流の乱流効果を利用して攪拌混合する管中混合工法、土運船等に貯留された軟弱土に所定の比率で製鋼スラグを添加し、それをバックホウにて強制的に掻き混ぜる方法等が知られている。   As a method of mixing steelmaking slag with soft soil such as dredged soil, steelmaking slag is added at a predetermined ratio to a certain amount of soft soil put into a stirring device such as a mechanical mixer, and it is stirred by a stirring device. The method of mixing forcibly and the method of mixing in the pipe, in which steelmaking slag added to soft soil in a specified ratio is pneumatically fed and stirred using the turbulent effect of the plug flow generated in the pumping pipe A method of adding steelmaking slag at a predetermined ratio to soft soil stored in a ship or the like and forcibly stirring it with a backhoe is known.

また、二つの物質を簡易且つ大量に混合する方法として、ベルトコンベアの乗継ぎを利用して混合する方法も知られている(例えば、非特許文献1を参照)。   In addition, as a method for easily mixing a large amount of two substances, a method of mixing using a belt conveyor connection is also known (see, for example, Non-Patent Document 1).

更に、軟弱土と添加物とを混合する他の方法としては、添加物を添加した軟弱土を背の高い塔型筒状の混練装置に投入して装置内を落下させ、その際の落下エネルギを活用して軟弱土と添加物とを混合することも考えられる(例えば、特許文献2を参照)。   Furthermore, as another method of mixing the soft soil and the additive, the soft soil to which the additive is added is put into a tall tower-shaped cylindrical kneading device, and the inside of the device is dropped. It is also conceivable to mix soft soil and additives using, for example, Patent Document 2).

特開2009−121167号公報JP 2009-121167 A 特開平11−28719号公報JP 11-28719 A 事前混合処理工法技術マニュアル(改訂版) 沿岸技術研究センター 平成20年12月 61頁Pre-mixing treatment method technical manual (revised version) Coastal Technology Research Center, December 2008, p. 61

しかしながら、上述の如き従来の攪拌装置を使用した混合方法及び管中混合工法では、専用の設備を必要とする為に、施設が大掛かりなものにならざるを得ず、例えば、管中混合方式の場合、製鋼スラグを供給するためのリクレーマ船と軟弱土と製鋼スラグとを混合・圧送する空気圧送船を必要とし、施工費用が嵩むという問題があった。   However, in the mixing method and the mixing method in the pipe using the conventional stirring device as described above, a dedicated facility is required, so the facility must be large. For example, in the mixing method in the pipe In this case, a reclaimer ship for supplying steelmaking slag, a pneumatic ship for mixing and feeding soft soil and steelmaking slag are required, and there is a problem that construction costs increase.

一方、バックホウを使用した混合方法は、汎用機械を使用して簡易且つ安価に施工ができる半面、大量施工には不向きであった。   On the other hand, the mixing method using a backhoe can be easily and inexpensively constructed using a general-purpose machine, but is not suitable for mass construction.

ベルトコンベアの乗継ぎを利用した混合方法は、主に乾燥した状態又は含水比の低い砂質土とセメント等との混合を対象とするものであって、シルト・粘土分が多い浚渫土等の含水比が高い軟弱土と製鋼スラグとの混合には適さず、軟弱土と製鋼スラグとの混合に適用した場合、浚渫土等の軟弱土と製鋼スラグとが十分に混合されず、その為、ニ軸ミキサ等による強制的な混合を別途行う必要があり、攪拌装置を使用する混合方法と同様に施設が大掛かりなものにならざるを得なかった。   The mixing method using the belt conveyor connection is mainly for mixing dry sand or sandy soil with a low water content and cement, such as dredged soil with a high silt / clay content. It is not suitable for mixing soft soil with a high water content and steelmaking slag, and when applied to mixing soft soil and steelmaking slag, soft soil such as dredged soil and steelmaking slag are not sufficiently mixed. Forcible mixing with a biaxial mixer or the like must be performed separately, and the facility was inevitably large as in the mixing method using a stirring device.

また、落下エネルギを活用して軟弱土と添加物とを混合する方法においては、背の高い不安定な塔型の混練装置を使用するため、当該混練装置を安定した状態に設置する必要があり、設備が大掛かりとなり且つ、設置場所が制限されるという課題があり、また、このような混練装置には、十分な混合状態を得る為に電力で動作するパドル等の攪拌手段を備える場合が多々あり、より簡便な構造で軟弱土と製鋼スラグとの混合が可能な装置の開発が望まれている。   In addition, in the method of mixing soft soil and additives using falling energy, a tall and unstable tower-type kneading device is used, so the kneading device needs to be installed in a stable state. In addition, there is a problem that the equipment becomes large and the installation place is limited, and such a kneading apparatus is often provided with a stirring means such as a paddle that operates with electric power in order to obtain a sufficient mixing state. There is a demand for the development of an apparatus capable of mixing soft soil and steelmaking slag with a simpler structure.

そこで、本発明は、このような従来の問題に鑑み、浚渫土等の軟弱土と製鋼スラグとを簡易且つ安価に混合することができる軟弱土に対する製鋼スラグ混合方法の提供を目的としてなされたものである。 Then, in view of such a conventional problem, the present invention was made for the purpose of providing a steelmaking slag mixing method for soft soil that can easily and inexpensively mix soft soil such as clay and steelmaking slag. It is.

上述の如き従来の問題を解決するための請求項1に記載の発明の特徴は、一定量の軟弱土に対し所定の比率で製鋼スラグを添加し、該製鋼スラグと軟弱土とを混合する軟弱土に対する製鋼スラグ混合方法において、上流側のベルトコンベアの排出側端部が下流側のベルトコンベアの投入側端部より所定の落下高さ分だけ高い位置となるように設置される複数のベルトコンベアを有する移送手段と、該移送手段に投入される軟弱土の含水比を調整する含水比調整手段と、前記移送手段の上流側で一定量の軟弱土に所定の比率で製鋼スラグを添加するスラグ供給手段と、前記各ベルトコンベアの排出側端部下に所定の衝突距離を隔てて配置された一又は複数の混合用反発体からなる混合促進手段とを備えてなる混合装置を使用し、且つ、最下流の前記ベルトコンベアの排出側端部を排出先の地面より前記所定の落下高さ分だけ高い位置となるように設置するとともに、前記排出先の地面部に排出方向に傾斜した法肩面を形成し、該法肩面を混合用反発体の衝突面部とし、前記含水比調整手段により適度な粘性及び流動性を備えるように軟弱土の含水比を調整し、それを前記移送手段に投入した後、前記移送手段の上流側にて前記軟弱土にスラグ供給手段より所定の比率で製鋼スラグを添加し、然る後、前記製鋼スラグが添加された軟弱土を前記各ベルトコンベアにより下流側に向けて移送しつつ、前記製鋼スラグが添加された軟弱土を前記ベルトコンベアの排出側端部より落下させて前記混合用反発体と衝突させ、該衝突を経た前記製鋼スラグが添加された軟弱土が前記下流側のベルトコンベアの投入側端部に投入される落下混合作業を各ベルトコンベア間の乗継ぎ毎に繰り返し、前記製鋼スラグと軟弱土とを混合することにある。 The feature of the invention according to claim 1 for solving the conventional problem as described above is that the steelmaking slag is added at a predetermined ratio to a certain amount of soft soil, and the steelmaking slag and soft soil are mixed. In the steelmaking slag mixing method with respect to the soil, a plurality of belt conveyors installed such that the discharge side end of the upstream belt conveyor is higher than the input side end of the downstream belt conveyor by a predetermined drop height A water content ratio adjusting means for adjusting the water content ratio of the soft soil introduced into the transfer means, and a slag for adding steelmaking slag at a predetermined ratio to a certain amount of soft soil upstream of the transfer means. Using a mixing device comprising a supply means and a mixing promoting means comprising one or a plurality of mixing repellent members disposed at a predetermined collision distance below the discharge side end of each belt conveyor; and Before the most downstream The discharge side end of the belt conveyor is set to be higher than the discharge destination ground by the predetermined drop height, and a shoulder surface inclined in the discharge direction is formed on the discharge destination ground portion. The shoulder surface is a collision surface portion of the mixing repellent, and the moisture content of the soft soil is adjusted by the moisture content adjusting means so as to have an appropriate viscosity and fluidity. Steelmaking slag is added to the soft soil at a predetermined ratio from the slag supply means on the upstream side of the transfer means, and then the soft soil to which the steelmaking slag is added is directed downstream by the belt conveyors. While transferring, the soft soil added with the steelmaking slag is dropped from the discharge side end of the belt conveyor to collide with the repellent for mixing, the soft soil added with the steelmaking slag after the collision is the Downstream belt belt Repeat fall mixing operation to be put into the side end portion of the bare every transfer technique between each belt conveyor is to mixing the steelmaking slag and soft soil.

請求項2に記載の発明の特徴は、請求項1の構成に加え、前記適度な粘性及び流動性を
備えるような含水比は、液性限界の1.2〜1.6倍であることを特徴とする。
The feature of the invention described in claim 2 is that, in addition to the configuration of claim 1, the water content ratio having the appropriate viscosity and fluidity is 1.2 to 1.6 times the liquid limit. Features.

本発明に係る軟弱土に対する製鋼スラグ混合方法は、上述したように、一定量の軟弱土に対し所定の比率で製鋼スラグを添加し、該製鋼スラグと軟弱土とを混合することによりカルシア改質土を生成する軟弱土に対する製鋼スラグ混合方法において、上流側のベルトコンベアの排出側端部が下流側のベルトコンベアの投入側端部より所定の落下高さ分だけ高い位置となるように設置される複数のベルトコンベアを有する移送手段と、該移送手段に投入される軟弱土の含水比を調整する含水比調整手段と、前記移送手段の上流側で一定量の軟弱土に所定の比率で製鋼スラグを添加するスラグ供給手段と、前記各ベルトコンベアの排出側端部下に所定の衝突距離を隔てて配置された一又は複数の混合用反発体からなる混合促進手段とを備えてなる混合装置を使用し、前記含水比調整手段により適度な粘性及び流動性を備えるように軟弱土の含水比を調整することにより、混合用反発体に衝突する際の衝撃及び反発を利用した混合効果を得ることができる。   As described above, the steelmaking slag mixing method for the soft soil according to the present invention adds the steelmaking slag at a predetermined ratio to a certain amount of soft soil, and mixes the steelmaking slag with the soft soil to improve the calcia. In the steelmaking slag mixing method for soft soil that produces soil, it is installed so that the discharge side end of the upstream belt conveyor is higher than the input side end of the downstream belt conveyor by a predetermined drop height. Steel making at a predetermined ratio to a certain amount of soft soil upstream of the transfer means, transfer means having a plurality of belt conveyors, water content adjusting means for adjusting the water content ratio of the soft soil put into the transfer means Slag supply means for adding slag, and mixing promoting means comprising one or a plurality of mixing repellent members arranged at a predetermined collision distance below the discharge side end of each belt conveyor. Mixing effect using impact and repulsion when colliding with the repelling material for mixing by adjusting the water content ratio of the soft soil so as to have an appropriate viscosity and fluidity by the water content ratio adjusting means using a combined device Can be obtained.

また、含水比を調整した軟弱土を前記移送手段に投入した後、前記移送手段の上流側にて前記軟弱土にスラグ供給手段より所定の比率で製鋼スラグを添加し、然る後、前記製鋼スラグが添加された軟弱土を前記各ベルトコンベアにより下流側に向けて移送しつつ、前記製鋼スラグが添加された軟弱土を前記ベルトコンベアの排出側端部より落下させて前記混合用反発体と衝突させ、該衝突を経た前記製鋼スラグが添加された軟弱土が前記下流側のベルトコンベアの投入側端部に投入される落下混合作業を各ベルトコンベア間の乗継ぎ毎に繰り返し、前記製鋼スラグと軟弱土とを混合することにより、移送手段による一連の移送作業の過程の中で落下エネルギ及び混合用反発体に衝突した際の衝撃・反発を活用して軟弱土と製鋼スラグとを効率よく混合することができる。   Further, after the soft soil adjusted in water content ratio is introduced into the transfer means, steelmaking slag is added to the soft soil at a predetermined ratio from the slag supply means on the upstream side of the transfer means, and then the steelmaking While the soft soil added with slag is transferred toward the downstream side by each belt conveyor, the soft soil added with steelmaking slag is dropped from the discharge side end of the belt conveyor, The steelmaking slag is repeated for each connection between the belt conveyors, and a drop mixing operation in which the soft soil to which the steelmaking slag that has undergone the collision is added is input to the input end of the downstream belt conveyor is repeated. By mixing the soil and soft soil, the soft soil and steelmaking slag are made efficient by utilizing the falling energy and the impact and repulsion when colliding with the mixing repellent during the series of transfer work by the transfer means. It is possible to Ku mixed.

更に、本発明において、最下流の前記ベルトコンベアの排出側端部を排出先の地面より前記所定の落下高さ分だけ高い位置となるように設置するとともに、前記排出先の地面部に排出方向に傾斜した法肩面を形成し、該法肩面を混合用反発体の衝突面部とすると混合することにより、埋め立て地等の排出先への排出作業を軟弱土と製鋼スラグとの混合に利用することができる。  Furthermore, in the present invention, the discharge side end of the most downstream belt conveyor is installed at a position higher than the discharge destination ground by the predetermined fall height, and the discharge direction to the discharge destination ground portion is set. The sloping shoulder surface is formed and mixed with the shoulder surface as the collision surface of the mixing repellent, so that the discharge work to the discharge destination such as landfill can be used for mixing soft soil and steelmaking slag. can do.

また、本発明において、前記適度な粘性及び流動性を備えるような含水比は、液性限界の1.2〜1.6倍であることにより、本発明方法による製鋼スラグとの混合に適した粘性土を得ることができる。   Further, in the present invention, the water content ratio having the appropriate viscosity and fluidity is 1.2 to 1.6 times the liquid limit, which is suitable for mixing with steelmaking slag by the method of the present invention. Cohesive soil can be obtained.

本発明に係る混合装置の一例を示す概略側面図である。It is a schematic side view which shows an example of the mixing apparatus which concerns on this invention. 図1中の各ベルトコンベア間の乗継部分の概略を示す部分拡大側面図である。It is a partial expanded side view which shows the outline of the transfer part between each belt conveyor in FIG. 同上の他の実施形態を示す部分拡大側面図である。It is a partial expanded side view which shows other embodiment same as the above. 本発明に係る軟弱土に対する製鋼スラグ混合方法における落下混練作業の原理を説明するための混合促進手段の概略正面図である。It is a schematic front view of the mixing promotion means for demonstrating the principle of the drop kneading operation | work in the steel-making slag mixing method with respect to the soft soil which concerns on this invention. 本発明方法における衝突距離がカルシア改質土の品質に及ぼす影響について検証した参考実験の結果を示すグラフである。It is a graph which shows the result of the reference experiment which verified about the influence which the collision distance in this invention method has on the quality of calcia reformed soil.

次に、本発明に係る混合装置の実施の態様を図1〜図4に示した実施例に基づいて説明する。尚、図中符号Aはカルシア改質土の移送先である埋立て地である。   Next, an embodiment of the mixing apparatus according to the present invention will be described based on the embodiment shown in FIGS. In addition, the code | symbol A in a figure is a landfill site which is a transfer destination of calcia reforming soil.

この混合装置1は、複数のベルトコンベア2,2...を有する移送手段3と、移送手段3に投入される軟弱土4の含水比を調整する図示しない含水比調整手段と、移送手段3の上流側で一定量毎に切り出された軟弱土4に対し所定の比率で製鋼スラグ5を添加するスラグ供給手段6とを備え、投入された軟弱土4及び製鋼スラグ5を埋立て地A等の移送先まで移送しつつ、軟弱土4と製鋼スラグ5とを混合するようになっている。   This mixing device 1 includes a transfer means 3 having a plurality of belt conveyors 2, 2..., A moisture content adjusting means (not shown) for adjusting the moisture content of the soft soil 4 put into the transfer means 3, and a transfer means 3 Slag supply means 6 for adding steelmaking slag 5 at a predetermined ratio to the soft soil 4 cut out at a fixed amount on the upstream side of the soil, and the soft soil 4 and the steelmaking slag 5 that have been put into the landfill A or the like The soft soil 4 and the steelmaking slag 5 are mixed while being transferred to the transfer destination.

移送手段3は、例えば図1に示すように、水上に浮かべた揚土船(リクレーマ船)10と、水上に浮かべた複数のフローティングコンベア11,11とで構成され、バックホウ12等により土運船13より浚渫土等の軟弱土4を揚土し、それを一定量毎に切り出して最上流のベルトコンベア2に順次供給するようになっている。   For example, as shown in FIG. 1, the transfer means 3 is composed of an unloading ship (reclaimer ship) 10 floating on the water and a plurality of floating conveyors 11, 11 floating on the water. The soft soil 4 such as dredged soil is unloaded from 13, cut into fixed amounts, and sequentially supplied to the uppermost belt conveyor 2.

尚、図中符号14は、吐出量を調節可能なフィーダを備えた軟弱土供給用ホッパ14であって、バックホウ12等により土運船13より揚土した浚渫土等の軟弱土4を軟弱土供給用ホッパ14に投入し、それを一定量毎に切り出して最上流のベルトコンベア2に順次供給するようになっている。   Reference numeral 14 in the figure denotes a soft soil supply hopper 14 equipped with a feeder capable of adjusting the discharge amount, and soft soil 4 such as dredged soil pumped from the ship carrier 13 by the backhoe 12 or the like is used as soft soil. It is inserted into the supply hopper 14, cut into fixed amounts, and sequentially supplied to the most upstream belt conveyor 2.

含水比調整手段は、土運船13に搭載された軟弱土4に加水する加水装置等のように移送手段3の上流に配置され、軟弱土4を製鋼スラグ5との混合に最適な含水比に調整するようになっている。   The water content ratio adjusting means is arranged upstream of the transfer means 3 such as a hydrating device for adding water to the soft soil 4 mounted on the earth vessel 13 and is suitable for mixing the soft soil 4 with the steelmaking slag 5. It is supposed to adjust to.

軟弱土4の含水比は、液性限界(wL)の1.2〜1.6倍とし、軟弱土4が適度な粘性及び流動性を有する状態、詳しくは、シリンダフロー試験(JHS A 313)によるフロー値が85〜250mmとなるように調整されるようになっている。   The moisture content of the soft soil 4 is 1.2 to 1.6 times the liquid limit (wL), and the soft soil 4 has an appropriate viscosity and fluidity. Specifically, the cylinder flow test (JHS A 313) The flow value is adjusted so as to be 85 to 250 mm.

スラグ供給手段6は、例えば、吐出量を調節可能なフィーダを備えたホッパ15と、最上流のベルトコンベア2上に配置されたスラグ供給用ベルトコンベア16とを備え、フィーダにより一定量毎に切り出した製鋼スラグ5をスラグ供給用ベルトコンベア16によりベルトコンベア2上の軟弱土4に順次添加し、軟弱土4上に所定の比率(10〜40vol%)で製鋼スラグ5を層状に添加するようになっている。   The slag supply means 6 includes, for example, a hopper 15 having a feeder capable of adjusting the discharge amount, and a slag supply belt conveyor 16 disposed on the most upstream belt conveyor 2, and is cut out by a feeder at regular intervals. The steelmaking slag 5 is sequentially added to the soft soil 4 on the belt conveyor 2 by the belt conveyor 16 for supplying slag, and the steelmaking slag 5 is added to the soft soil 4 at a predetermined ratio (10 to 40 vol%) in layers. It has become.

尚、供給される製鋼スラグ5は、ある程度粒径が大きく重量のあるものであると軟弱土中での攪乱効果が高く、粒径10mm〜25mmのものが製鋼スラグ全体の20%以上含まれることが好ましい。   It should be noted that the steelmaking slag 5 to be supplied has a large disturbing effect in soft soil if it has a certain size and a large weight, and the steelmaking slag having a particle size of 10 mm to 25 mm contains 20% or more of the entire steelmaking slag. Is preferred.

各ベルトコンベア2,2...は、図1に示すように、投入側端部2aを低く、排出側端部2bが高くなるように傾けた配置に設置され、上流側のベルトコンベア2の排出側端部2bが下流側のベルトコンベア2の投入側端部2aより鉛直方向で所定の落下高さH分だけ高い位置となるように配置され、製鋼スラグ5が添加された軟弱土4が各ベルトコンベア2,2...間を乗継ぐ毎に上流側のベルトコンベア2の排出側端部2bより排出されて落下し、その際の落下エネルギを利用して軟弱土4と製鋼スラグ5とを混合するようになっている。   As shown in FIG. 1, each belt conveyor 2, 2... Is installed in an inclined arrangement so that the input side end 2 a is low and the discharge side end 2 b is high. The soft soil 4 to which the discharge side end portion 2b is positioned so as to be higher than the input side end portion 2a of the downstream belt conveyor 2 by a predetermined drop height H in the vertical direction and to which the steelmaking slag 5 is added is provided. Each time the belt conveyors 2, 2... Are connected, they are discharged and dropped from the discharge side end 2 b of the upstream belt conveyor 2, and the soft soil 4 and the steelmaking slag 5 are utilized by using the falling energy at that time. And mix.

落下高さHは、軟弱土4と製鋼スラグ5との混合に際し、落下エネルギを利用した混合効果が期待できる程度の高さとする。   The drop height H is set to such a height that a mixing effect using the drop energy can be expected when the soft soil 4 and the steelmaking slag 5 are mixed.

また、この混合装置1は、各ベルトコンベア2,2...の排出側端部2bより鉛直方向下側に所定の衝突距離Dを隔てて配置された一又は複数の混合用反発体20,20からなる混合促進手段22を備え、上流側のベルトコンベア2,2...より排出された製鋼スラグ5が添加された軟弱土4が混合用反発体20との衝突を経て下流側のベルトコンベア2に投入されることにより各ベルトコンベア2,2間の乗継ぎ毎に軟弱土4と製鋼スラグ5との混合が促進されるようになっている。   In addition, the mixing device 1 includes one or a plurality of mixing repellent bodies 20 disposed at a predetermined collision distance D below the discharge side end 2b of each belt conveyor 2, 2. The soft soil 4 to which the steelmaking slag 5 discharged from the upstream belt conveyors 2, 2... Is added and collides with the mixing repelling body 20 through the downstream belt. By being put into the conveyor 2, the mixing of the soft soil 4 and the steelmaking slag 5 is promoted for each transfer between the belt conveyors 2 and 2.

混合用反発体20には、例えば、一定の硬度を有する平板状の鋼板等を使用し、この鋼板に軟弱土4及び製鋼スラグ5が衝突した際の衝撃と反発を利用して、軟弱土4と製鋼スラグ5とを混練するようになっている。   As the mixing repellent 20, for example, a flat steel plate having a certain hardness is used, and the soft soil 4 is utilized by utilizing the impact and repulsion when the soft soil 4 and the steelmaking slag 5 collide with the steel plate. And the steelmaking slag 5 are kneaded.

また、混合用反発体20は、衝突面部21が水平面に対し角度θを成すように配置され、軟弱土4及び製鋼スラグ5に反発力を生じさせるとともに、衝突面部21が傾けて配置されたことにより衝突を経た製鋼スラグ5が添加された軟弱土4が下方の混合用反発体20又はベルトコンベア2の投入側端部2aに向けた落下軌跡を描くようになっている。尚、角度θは、落下軌跡に合わせて0〜60度とすることが好ましい。   In addition, the mixing repelling body 20 is arranged so that the collision surface portion 21 forms an angle θ with respect to the horizontal plane, and generates a repulsive force on the soft soil 4 and the steelmaking slag 5 and the collision surface portion 21 is disposed at an inclination. Thus, the soft soil 4 to which the steelmaking slag 5 that has undergone the collision is added draws a falling trajectory toward the mixing repellent 20 below or the input side end 2a of the belt conveyor 2. In addition, it is preferable that angle (theta) shall be 0-60 degree | times according to a fall locus | trajectory.

尚、角度θが小さい場合、混合用反発体20上に製鋼スラグが添加された軟弱土が残存する場合があり、その場合には、衝突面部上を摺動して混合用反発体20上に残存した製鋼スラグが添加された軟弱土を強制的にベルトコンベア2の投入側端部2aに向けて排出するような排出手段を備えてもよい。   When the angle θ is small, soft soil to which steelmaking slag is added may remain on the mixing repellent body 20, and in that case, sliding on the collision surface portion on the mixing repellent body 20. Discharge means for forcibly discharging the soft soil to which the remaining steelmaking slag is added toward the input side end 2a of the belt conveyor 2 may be provided.

所定の衝突距離Dは、少なくとも1m以上であって、望ましくは2m以上である。また、混合用反発体20を複数備える場合には、各混合用反発体20,20は、互いに鉛直方向で衝突距離Dを隔てるように配置する。   The predetermined collision distance D is at least 1 m, preferably 2 m or more. When a plurality of mixing repellent bodies 20 are provided, the mixing repellent bodies 20 and 20 are arranged so as to be separated from each other by a collision distance D in the vertical direction.

尚、混合用反発体20には、筒状の投入部下に下側に向けて縮小するテーパ筒状の漏斗部20aを有するホッパを使用し、漏斗部20aの内面を製鋼スラグ5が添加された軟弱土4を衝突させる衝突面部21としてもよい。   The mixing repellent 20 was a hopper having a tapered cylindrical funnel portion 20a that shrinks downward under the cylindrical charging portion, and the steelmaking slag 5 was added to the inner surface of the funnel portion 20a. It is good also as the collision surface part 21 which makes the soft soil 4 collide.

また、混合促進手段22に混合用反発体20を複数備える場合、各混合用反発体20,20は、それぞれ軟弱土4の落下軌道に合わせて設置され、図2に示すように、衝突面部21,21を共に排出側に向けて階段状に設けてもよく、図3に示すように、衝突面部21,21を上下で向きを変え互い違い配置に設けてもよい。   Further, when the mixing promoting means 22 includes a plurality of mixing repellent bodies 20, each mixing repellent body 20, 20 is installed in accordance with the dropping trajectory of the soft soil 4, and as shown in FIG. , 21 may be provided stepwise toward the discharge side, and as shown in FIG. 3, the collision surface portions 21, 21 may be provided in a staggered arrangement with their orientations changed vertically.

尚、各混合用反発体20は、台船上に設置された固定フレーム23を介して設置され、固定フレーム23に対する高さを調節することにより衝突距離Dが設定できるようになっている。   Each mixing repellent body 20 is installed via a fixed frame 23 installed on a carriage, and the collision distance D can be set by adjusting the height relative to the fixed frame 23.

次に、このような混合装置1を使用した軟弱土に対する製鋼スラグ混合方法について説明する。尚、上述の実施例と同様の構成には同一の符号を付して説明する。   Next, a steelmaking slag mixing method for soft soil using such a mixing apparatus 1 will be described. In addition, the same code | symbol is attached | subjected and demonstrated to the structure similar to the above-mentioned Example.

まず、土運船13にて運搬された浚渫土等の軟弱土4の含水比を事前に計測した上で、含水比調節手段により加水する等して、軟弱土4を製鋼スラグ5との混合に適した状態、即ち、適度な粘性及び流動性を有する状態(軟弱土4の含水比が液性限界の1.2〜1.6倍、シリンダフロー試験(JHS A 313)のフロー値が85〜250mm)となるように調整する。   First, the water content ratio of the soft soil 4 such as dredged material carried by the soil carrier 13 is measured in advance, and then the soft soil 4 is mixed with the steelmaking slag 5 by adding water using a water content ratio adjusting means. Suitable for use, ie, having a suitable viscosity and fluidity (the moisture content of the soft soil 4 is 1.2 to 1.6 times the liquid limit, and the flow value of the cylinder flow test (JHS A 313) is 85. To 250 mm).

次に、含水比が調整された軟弱土4をバックホウ12等により揚土し、それを軟弱土供給用ホッパ14に投入する。   Next, the soft soil 4 whose water content ratio is adjusted is pumped up by the backhoe 12 or the like, and is put into the soft soil supply hopper 14.

軟弱土供給用ホッパ14に投入された軟弱土4は、一定量毎に切り出されて最上流のベルトコンベア2に投入され、ベルトコンベア2上を均された状態で移送される。   The soft soil 4 introduced into the soft soil supply hopper 14 is cut out by a predetermined amount, is introduced into the uppermost belt conveyor 2, and is transported on the belt conveyor 2 in a leveled state.

そして、この移送される一定量の軟弱土4にスラグ供給手段6より所定の比率で製鋼スラグ5を添加する。即ち、製鋼スラグ5をフィーダにより一定量毎に切り出し、それをスラグ供給用ベルトコンベア16でベルトコンベア2上に順次移送し、軟弱土4上に所定の比率で層状を成すように添加する。   Then, the steelmaking slag 5 is added from the slag supply means 6 at a predetermined ratio to the fixed amount of soft soil 4 to be transferred. That is, the steelmaking slag 5 is cut into a certain amount by a feeder, and is sequentially transferred onto the belt conveyor 2 by the slag supply belt conveyor 16 and added to the soft soil 4 so as to form a layer at a predetermined ratio.

そして、この製鋼スラグ5が添加された軟弱土4を各ベルトコンベア2,2...により移送しつつ、各ベルトコンベア2,2...間の乗継ぎ毎に、落下混合作業を繰り返し製鋼スラグ5と軟弱土4とを混合する。   Then, while the soft soil 4 to which the steelmaking slag 5 is added is transferred by the belt conveyors 2, 2..., The drop mixing operation is repeated for each connection between the belt conveyors 2, 2. Slag 5 and soft soil 4 are mixed.

落下混合作業は、図2、図3に示すように、製鋼スラグ5が添加された軟弱土4をベルトコンベア2,2...の排出側端部2bより落下させ、それを落下軌道に合わせて配置された混合用反発体20,20に衝突させつつ、衝突を経た製鋼スラグ5が添加された軟弱土4を下流側のベルトコンベア2,2...の投入側端部2aに投入することにより行う。   As shown in FIGS. 2 and 3, the drop mixing work is performed by dropping the soft soil 4 to which the steelmaking slag 5 is added from the discharge side end 2 b of the belt conveyors 2, 2. The soft soil 4 to which the steelmaking slag 5 that has undergone the collision is added while being collided with the mixing repellents 20, 20 placed in this manner, is introduced into the input side end 2 a of the downstream belt conveyors 2, 2. By doing.

これにより、落下の際のエネルギを活用した混合効果とともに、混合用反発体20に衝突した際の衝撃による製鋼スラグ5の軟弱土4へののめり込みによる混合作用及び軟弱土4と製鋼スラグ5が混合用反発体20より受ける反発力による混合作用によって軟弱土4と製鋼スラグ5とが混合される。   As a result, the mixing effect utilizing the energy at the time of dropping, the mixing action by the intrusion of the steelmaking slag 5 into the soft earth 4 due to the impact when colliding with the mixing repellent body 20, and the soft earth 4 and the steelmaking slag 5 are mixed. The soft soil 4 and the steelmaking slag 5 are mixed by the mixing action by the repulsive force received from the repelling body 20.

そして、各ベルトコンベア2,2...間の乗継ぎ毎に混合が促進され、軟弱土4に所定の比率で製鋼スラグ5が混合されたカルシア改質土7が生成され、該生成されたカルシア改質土7が移送手段3より埋立て地Aに排出される。   Then, mixing is promoted for each connection between the belt conveyors 2, 2..., And calcia-modified soil 7 in which steelmaking slag 5 is mixed with soft soil 4 at a predetermined ratio is generated. The calcia-modified soil 7 is discharged from the transfer means 3 to the landfill A.

尚、埋立て地Aにおけるカルシア改質土7の打設方法として、所謂法肩流下方式を採用した場合には、図2に示すように、排出先の地面部に排出方向に傾斜した法肩面(斜面)30を形成し、最下流のベルトコンベア2,2...の排出側端部2bを排出先の地面より所定の落下高さH(衝突距離D)分だけ高い位置となるように設置する。そして、法肩面30を混合用反発体の衝突面部21として最後の落下混合作業を行いつつ、カルシア改質土7を埋立て地Aに打設する。   As shown in FIG. 2, when the so-called shoulder flow method is used as the method for placing the calcia modified soil 7 in the landfill A, the shoulder shoulder inclined in the discharge direction on the ground portion of the discharge destination as shown in FIG. A surface (slope) 30 is formed so that the discharge side end 2b of the most downstream belt conveyors 2, 2... Is higher than the discharge destination ground by a predetermined drop height H (collision distance D). Install in. Then, the calcia-modified soil 7 is placed in the landfill A while performing the final drop mixing operation with the shoulder surface 30 as the collision surface portion 21 of the mixing repellent body.

このように構成された軟弱土に対する製鋼スラグ混合方法では、軟弱土4が混合に適した含水比(液性限界wLの1.2〜1.6倍)に調整され、軟弱土4が適度な粘性及び流動性を備えることにより、図4(b)に示すように、混合用反発体20に衝突した際に、その衝撃により製鋼スラグ5が軟弱土4中にのめり込むと共に軟弱土4及び製鋼スラグ5が混合用反発体20に対して反発し、且つ、のめり込み及び反発した製鋼スラグ5が軟弱土4の粘性によって飛散することなく軟弱土4内に留まり、軟弱土4と製鋼スラグ5とが好適に混合される。   In the steelmaking slag mixing method for soft soil configured in this way, the soft soil 4 is adjusted to a moisture content suitable for mixing (1.2 to 1.6 times the liquid limit wL), and the soft soil 4 is moderate. By providing the viscosity and fluidity, as shown in FIG. 4 (b), when the steelmaking slag 5 collides with the repelling body 20 for mixing, the steelmaking slag 5 sinks into the soft earth 4 due to the impact, and the soft earth 4 and the steelmaking slag. The steelmaking slag 5 that repels the repellent 20 for mixing and stays and repels stays in the soft soil 4 without scattering due to the viscosity of the soft soil 4, and the soft soil 4 and the steelmaking slag 5 are preferable. To be mixed.

また、混合用反発体20に衝突する際ののめり込み及び反発による混練効果には、衝突回数が大きく影響し、衝突回数、即ち、ベルトコンベア2,2...間の乗継ぎ毎に混合状態が向上し、埋立て地A等の移送先に排出される際には品質の優れたカルシア改質土7が生成される。   Further, the number of collisions greatly affects the kneading effect due to the sinking and repulsion when colliding with the mixing repelling body 20, and the number of collisions, that is, the state of mixing for each connection between the belt conveyors 2, 2,. When improved and discharged to a transfer destination such as landfill A, calcia-modified soil 7 having excellent quality is generated.

一方、軟弱土4の含水比が低い(含水比が液性限界の1.2倍未満)場合には、軟弱土4が一定の硬さを有し、且つ、流動性が低いため、図4(a)に示すように、混合用反発体20に衝突した際に、製鋼スラグ5が軟弱土4中にのめり込み難く、また、衝突時の衝撃が軟弱土4を介して製鋼スラグ5に伝わり、その衝撃で製鋼スラグ5の一部が弾かれて飛散してしまい好適な混合状態が得られない。   On the other hand, when the moisture content of the soft soil 4 is low (the water content ratio is less than 1.2 times the liquid limit), the soft soil 4 has a certain hardness and low fluidity. As shown in (a), the steelmaking slag 5 is difficult to sink into the soft soil 4 when colliding with the mixing repellent body 20, and the impact at the time of collision is transmitted to the steelmaking slag 5 through the soft soil 4, Due to the impact, part of the steelmaking slag 5 is bounced and scattered, and a suitable mixed state cannot be obtained.

また、軟弱土4の含水比が高い(含水比が液性限界の1.6倍以上)場合には、図4(c)に示すように、軟弱土4自体の強度が不足している上、粘性が低く且つ流動性が高いため、更には、製鋼スラグ5の混合用反発体20に対する反発係数が軟弱土4の混合用反発体20に対する反発係数よりも高いため、混合用反発体20に衝突した際に、その衝撃及び反発により軟弱土4中に製鋼スラグ5が留まれずに軟弱土4と製鋼スラグ5とが分離され、そのため好適な混合状態が得られない。   Further, when the moisture content of the soft soil 4 is high (the water content ratio is 1.6 times or more of the liquid limit), the strength of the soft soil 4 itself is insufficient as shown in FIG. Furthermore, since the viscosity is low and the fluidity is high, the rebound coefficient of the steelmaking slag 5 with respect to the mixing repellent body 20 is higher than the restitution coefficient of the soft soil 4 with respect to the mixing repellent body 20, so At the time of collision, the steelmaking slag 5 does not stay in the soft soil 4 due to the impact and repulsion, and the soft soil 4 and the steelmaking slag 5 are separated, so that a suitable mixed state cannot be obtained.

また、このように構成された軟弱土に対する製鋼スラグ混合方法では、移送手段を構成する各ベルトコンベア2,2...間を乗継ぐ毎に混合用反発体20に衝突させて落下混合作業を行うことにより、軟弱土4と製鋼スラグ5とが十分に混合され、一連の移送作業の中でカルシア改質土を大量且つ安価に生成できる。   Further, in the steelmaking slag mixing method for the soft soil configured as described above, every time the belt conveyors 2, 2. By performing, the soft soil 4 and the steelmaking slag 5 are sufficiently mixed, and calcia-modified soil can be produced in a large amount and at low cost in a series of transfer operations.

従って、軟弱土4と製鋼スラグ5とを強制的に混合させるための機械式ミキサ等の攪拌装置を必要とせず、設備を抑え安価に施工することができる。   Therefore, a stirring device such as a mechanical mixer for forcibly mixing the soft soil 4 and the steelmaking slag 5 is not required, and the installation can be suppressed at a low cost.

また、本発明方法では、移送途中に製鋼スラグ5が添加された軟弱土4に加水されることがないので、空気圧送の過程で軸封水が加水される従来の管中混合方式の混合方法に比べ同じ含水比の軟弱土を使用した場合強度の高い改質土7が生成される。   Further, in the method of the present invention, since the water is not added to the soft soil 4 to which the steelmaking slag 5 is added during the transfer, the shaft mixing water is added in the process of pneumatic feeding. If soft soil having the same water content is used, modified soil 7 having high strength is generated.

更には、落下エネルギを活用するにおいて、ベルトコンベア間の乗継ぎ毎に落下混合作業を繰り返すようにしたことで、本発明方法では、上述の従来技術の如き背の高い塔状の混練装置を使用せずとも軟弱土と製鋼スラグとを混合でき、設置場所を選ばず施工が可能である。   Furthermore, in utilizing the fall energy, the drop mixing operation is repeated for each transfer between the belt conveyors, so that the method of the present invention uses a tall tower-shaped kneading apparatus as described above. Without being able to mix soft soil and steelmaking slag, construction is possible regardless of the installation location.

尚、上述の実施例では、移送手段3として、リクレーマ船10と複数のフローティングコンベア11,11...からなる船団を使用した例について説明したが、移送手段3は、このような構成に限定されず、例えば、地上に設置される複数のベルトコンベア2,2...をもって構成してもよく、リクレーマ船10と複数のフローティングコンベア11,11...からなる船団と、地上に設置されるベルトコンベア2,2...とを組み合わせてもよい。   In the above-described embodiment, an example in which a fleet including a reclaimer ship 10 and a plurality of floating conveyors 11, 11... Is used as the transfer unit 3 is described. For example, it may be configured with a plurality of belt conveyors 2, 2... Installed on the ground, and a fleet composed of a reclaimer ship 10 and a plurality of floating conveyors 11, 11. The belt conveyors 2, 2... May be combined.

また、上述の実施例では、ベルトコンベア2上を流れる軟弱土4にスラグ供給用ベルトコンベア16を用いて製鋼スラグ5を添加するようにした例について説明したが、軟弱土に製鋼スラグを添加する手段は上述の実施例に限定されず、例えば、一定量毎に切り出した製鋼スラグ5をベルトコンベア2上で移送させ、当該ベルトコンベア2上を流れる製鋼スラグ5の上に一定量毎に切り出した軟弱土4を投入していき、それにより軟弱土4に製鋼スラグ5が所定の比率で添加されるようにしてもよい。   Moreover, although the above-mentioned Example demonstrated the example which added the steelmaking slag 5 to the soft soil 4 which flows on the belt conveyor 2 using the belt conveyor 16 for slag supply, steelmaking slag is added to a soft soil. A means is not limited to the above-mentioned Example, For example, the steel-making slag 5 cut out for every fixed amount is transferred on the belt conveyor 2, and it cut out for every fixed amount on the steel-making slag 5 which flows on the said belt conveyor 2 The soft soil 4 may be put in, and the steelmaking slag 5 may be added to the soft soil 4 at a predetermined ratio.

次に、本発明に係る軟弱土に対する製鋼スラグ混合方法において、軟弱土4の含水比及び混合用反発体20に対する衝突回数がカルシア改質土7の品質に及ぼす影響について検証した参考実験について説明する。尚、上述の実施例と同様の構成には同一符号を付して説明する。   Next, in the steelmaking slag mixing method for soft soil according to the present invention, a reference experiment for verifying the influence of the moisture content of the soft soil 4 and the number of collisions with the mixing repellent 20 on the quality of the calcia-modified soil 7 will be described. . In addition, the same code | symbol is attached | subjected and demonstrated to the structure similar to the above-mentioned Example.

本実験は、含水比の異なる軟弱土4に所定の比率(本実験では、25vol%)で製鋼スラグ5を添加してなる試験体を高さ1mの衝突距離Dを隔てて鋼板(混合用反発体20)に落下衝突させて落下混合作業を行い、それにより生成されたカルシア改質土7の材令28日目の一軸圧縮強さを測定し、当該圧縮強さと目視により軟弱土4と製鋼スラグ5との混合状態を評価した。また、混合用反発体20に対する衝突回数を違えた場合についても同様に生成されたカルシア改質土7の材令28日目の一軸圧縮強さを測定し、当該強度と目視により混合状態を評価した。   In this experiment, a test piece formed by adding steelmaking slag 5 to soft soil 4 having a different water content ratio at a predetermined ratio (25 vol% in this experiment) is separated by a steel plate (mixing repulsion) with a collision distance D of 1 m in height. The body 20) is dropped and collided to perform a drop mixing operation, and the uniaxial compressive strength of the material of the calcia-modified soil 7 produced on the 28th day is measured, and the soft soil 4 and the steelmaking are visually observed. The mixed state with the slag 5 was evaluated. In addition, even when the number of collisions with the mixing repellent 20 is changed, the uniaxial compressive strength of the material of the calcia-modified soil 7 produced on the 28th day is measured, and the mixed state is evaluated by the strength and visual observation. did.

尚、本実験において基準強度は、一軸圧縮強度が40kN/平方メートル以上に設定し、評価に際してはこの強度を基準に判断する。
その結果を表1に示す。
In this experiment, the reference strength is set such that the uniaxial compressive strength is 40 kN / square meter or more, and this strength is used as a reference for evaluation.
The results are shown in Table 1.

Figure 0006210400
Figure 0006210400

軟弱土4の含水比が低い(液性限界の1.0倍)場合では、1回の衝突回数では平均強度が基準強度を下回り、また、目視による確認では、図4(a)に示す如く軟弱土4上に製鋼スラグ5が残存し、十分に混合されていないことが確認された。また、衝突回数の増加に伴って平均強度は増したが、目視による確認では、混合が不十分であった。   When the moisture content of the soft soil 4 is low (1.0 times the liquid limit), the average strength is lower than the reference strength at one collision, and the visual confirmation shows that as shown in FIG. It was confirmed that the steelmaking slag 5 remained on the soft soil 4 and was not sufficiently mixed. Moreover, although average intensity | strength increased with the increase in the frequency | count of a collision, mixing was inadequate by visual confirmation.

軟弱土4の含水比が高い場合(液性限界の1.8倍)では、全ての衝突回数において平均強度が基準強度を下回り、また、目視による確認では、衝突時に図4(c)に示す如く製鋼スラグ5が軟弱土4より分離されて飛散したことが確認された。   When the moisture content of the soft soil 4 is high (1.8 times the liquid limit), the average strength is lower than the reference strength at all the number of collisions, and as shown in FIG. Thus, it was confirmed that the steelmaking slag 5 was separated from the soft soil 4 and scattered.

一方、軟弱土4の含水比をそれぞれ液性限界の1.2、1.6倍とした場合では、衝突回数に関わらず平均強度が基準強度、即ち、40kN/平方メートルを上回り、目視による確認でも、軟弱土4中に製鋼スラグ5が万遍無く混合されているのが確認された。また、衝突回数の増加に伴って平均強度も上昇し、各サンプル間の強度のバラつきも少なくなった。   On the other hand, when the moisture content of the soft soil 4 is 1.2 and 1.6 times the liquid limit, the average strength exceeds the reference strength, that is, 40 kN / square meter, regardless of the number of collisions. It was confirmed that the steelmaking slag 5 was uniformly mixed in the soft soil 4. In addition, the average intensity increased with an increase in the number of collisions, and the intensity variation between samples decreased.

このことから、本発明の軟弱土4と製鋼スラグ5との混合においては、軟弱土4の含水比を調整し、軟弱土4を適度な粘性及び流動性を有する状態とすること、即ち、軟弱土4の含水比を液性限界の1.2〜1.6倍に調整することにより好適な混合状態を得られることが確認できた。   From this, in the mixing of the soft soil 4 and the steelmaking slag 5 of the present invention, the water content ratio of the soft soil 4 is adjusted so that the soft soil 4 has a proper viscosity and fluidity. It was confirmed that a suitable mixed state could be obtained by adjusting the water content ratio of the soil 4 to 1.2 to 1.6 times the liquid limit.

また、本発明の軟弱土4と製鋼スラグ5との混合においては、衝突回数が増えることにより強度が増すとともに強度の安定したカルシア改質土7が生成できる傾向も確認できた。   In addition, in the mixing of the soft soil 4 and the steelmaking slag 5 of the present invention, it was confirmed that the calcia-modified soil 7 having a stable strength as well as the strength was increased by increasing the number of collisions.

次に、本発明に係る軟弱土に対する製鋼スラグ混合方法において、衝突距離Dがカルシア改質土7の品質に及ぼす影響について検証した参考実験について説明する。尚、上述の実施例と同様の構成には同一符号を付して説明する。   Next, reference experiments for verifying the influence of the collision distance D on the quality of the calcia modified soil 7 in the steelmaking slag mixing method for soft soil according to the present invention will be described. In addition, the same code | symbol is attached | subjected and demonstrated to the structure similar to the above-mentioned Example.

本実験は、所定の比率(本実験では、25vol%)で製鋼スラグ5を液性限界の1.4倍に含水比調整された軟弱土4に添加し、それを異なる衝突距離Dで鋼板(混合用反発体20)に落下衝突させる落下混合作業を3回行い、それにより生成されたカルシア改質土7の材令28日目の一軸圧縮強さを測定し、当該圧縮強さと目視により軟弱土4と製鋼スラグ5との混合状態を評価した。   In this experiment, steelmaking slag 5 was added to soft soil 4 whose water content ratio was adjusted to 1.4 times the liquid limit at a predetermined ratio (25 vol% in this experiment), and the steel plate ( The drop mixing work to drop and collide with the mixing repellent 20) is performed three times, and the uniaxial compressive strength of the calcia-modified soil 7 produced thereby is measured on the 28th day of the material age. The mixed state of the soil 4 and the steelmaking slag 5 was evaluated.

尚、本実験においても基準強度は、一軸圧縮強度が40kN/平方メートル以上に設定し、評価に際してはこの強度を基準に判断する。   In this experiment as well, the standard strength is set such that the uniaxial compressive strength is 40 kN / square meter or more, and this strength is used for the evaluation.

その結果を図5に示す。   The result is shown in FIG.

図5(b)に示す衝突距離Dを1mとした場合では、全てのサンプルが基準強度を上回ったものの、各サンプルの強度の分布にバラつきがあった。   When the collision distance D shown in FIG. 5B was 1 m, although all samples exceeded the reference intensity, the intensity distribution of each sample varied.

一方、図5(a)に示す衝突距離Dを2mとした場合では、全てのサンプルが基準強度(40kN/平方メートル)を上回り、且つ、図5(b)に示す衝突距離Dが1mの場合に比べて、その強度のバラつきが少なく、安定した品質のカルシア改質土が生成された。   On the other hand, when the collision distance D shown in FIG. 5A is 2 m, all the samples exceed the reference strength (40 kN / square meter) and the collision distance D shown in FIG. 5B is 1 m. In comparison, the calcia-modified soil of stable quality was produced with less variation in strength.

このことから、衝突距離Dが大きいほど混合効果が高くなる傾向を確認できた。   From this, it was confirmed that the mixing effect tends to increase as the collision distance D increases.

A 埋立て地
1 混合装置
2 ベルトコンベア
3 移送手段
4 軟弱土
5 製鋼スラグ
6 スラグ供給手段
7 カルシア改質土
10 揚土船(リクレーマ船)
11 フローティングコンベア
12 バックホウ
13 土運船
14 軟弱土供給用ホッパ
15 ホッパ
16 スラグ供給用ベルトコンベア
20 混合用反発体
21 衝突面部
22 混合促進手段
23 固定フレーム
A Landfill 1 Mixing device 2 Belt conveyor 3 Transfer means 4 Soft soil 5 Steelmaking slag 6 Slag supply means 7 Calcia modified soil 10 Uplift (reclaimer ship)
DESCRIPTION OF SYMBOLS 11 Floating conveyor 12 Backhoe 13 Soil carrier 14 Soft soil supply hopper 15 Hopper 16 Slag supply belt conveyor 20 Rebound 21 for mixing Colliding surface part 22 Mixing promotion means 23 Fixed frame

Claims (2)

一定量の軟弱土に対し所定の比率で製鋼スラグを添加し、該製鋼スラグと軟弱土とを混合する軟弱土に対する製鋼スラグ混合方法において、
上流側のベルトコンベアの排出側端部が下流側のベルトコンベアの投入側端部より所定の落下高さ分だけ高い位置となるように設置される複数のベルトコンベアを有する移送手段と、該移送手段に投入される軟弱土の含水比を調整する含水比調整手段と、前記移送手段の上流側で一定量の軟弱土に所定の比率で製鋼スラグを添加するスラグ供給手段と、前記各ベルトコンベアの排出側端部下に所定の衝突距離を隔てて配置された一又は複数の混合用反発体からなる混合促進手段とを備えてなる混合装置を使用し、
且つ、最下流の前記ベルトコンベアの排出側端部を排出先の地面より前記所定の落下高さ分だけ高い位置となるように設置するとともに、前記排出先の地面部に排出方向に傾斜した法肩面を形成し、該法肩面を混合用反発体の衝突面部とし、
前記含水比調整手段により適度な粘性及び流動性を備えるように軟弱土の含水比を調整し、それを前記移送手段に投入した後、
前記移送手段の上流側にて前記軟弱土にスラグ供給手段より所定の比率で製鋼スラグを添加し、
然る後、前記製鋼スラグが添加された軟弱土を前記各ベルトコンベアにより下流側に向けて移送しつつ、
前記製鋼スラグが添加された軟弱土を前記ベルトコンベアの排出側端部より落下させて前記混合用反発体と衝突させ、該衝突を経た前記製鋼スラグが添加された軟弱土が前記下流側のベルトコンベアの投入側端部に投入される落下混合作業を各ベルトコンベア間の乗継ぎ毎に繰り返し、前記製鋼スラグと軟弱土とを混合することを特徴としてなる軟弱土に対する製鋼スラグ混合方法。
In the steelmaking slag mixing method for soft soil, the steelmaking slag is added at a predetermined ratio to a certain amount of soft soil, and the steelmaking slag and soft soil are mixed.
A transfer means having a plurality of belt conveyors installed so that the discharge side end of the upstream belt conveyor is higher than the input side end of the downstream belt conveyor by a predetermined drop height; and the transfer A moisture content adjusting means for adjusting the moisture content ratio of the soft soil introduced into the means, a slag supply means for adding steelmaking slag at a predetermined ratio to a certain amount of soft soil upstream of the transfer means, and each belt conveyor A mixing device comprising one or a plurality of mixing repelling members disposed at a predetermined collision distance below the discharge side end of the mixing side,
In addition, a method in which the discharge side end portion of the most downstream belt conveyor is set so as to be higher than the discharge destination ground by the predetermined fall height, and is inclined to the discharge destination ground portion in the discharge direction. A shoulder surface is formed, and the shoulder surface is used as a collision surface portion of the mixing repellent,
After adjusting the water content ratio of the soft soil so as to have an appropriate viscosity and fluidity by the water content ratio adjusting means, and throwing it into the transfer means,
Add steelmaking slag at a predetermined ratio from the slag supply means to the soft soil upstream of the transfer means,
After that, while transferring the soft soil added with the steelmaking slag toward the downstream side by each belt conveyor,
The soft soil added with the steelmaking slag is dropped from the discharge side end of the belt conveyor to collide with the repelling member for mixing, and the soft soil added with the steelmaking slag after the collision is the downstream belt. A steelmaking slag mixing method for soft soil, characterized in that the drop mixing work input to the input end of the conveyor is repeated for each connection between the belt conveyors, and the steelmaking slag and soft soil are mixed.
前記適度な粘性及び流動性を備えるような含水比は、液性限界の1.2〜1.6倍である請求項1に記載の軟弱土に対する製鋼スラグ混合方法。   2. The steelmaking slag mixing method for soft soil according to claim 1, wherein the water content ratio having the appropriate viscosity and fluidity is 1.2 to 1.6 times the liquid limit.
JP2013045055A 2013-03-07 2013-03-07 Steelmaking slag mixing method for soft soil Active JP6210400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013045055A JP6210400B2 (en) 2013-03-07 2013-03-07 Steelmaking slag mixing method for soft soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013045055A JP6210400B2 (en) 2013-03-07 2013-03-07 Steelmaking slag mixing method for soft soil

Publications (2)

Publication Number Publication Date
JP2014173285A JP2014173285A (en) 2014-09-22
JP6210400B2 true JP6210400B2 (en) 2017-10-11

Family

ID=51694821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013045055A Active JP6210400B2 (en) 2013-03-07 2013-03-07 Steelmaking slag mixing method for soft soil

Country Status (1)

Country Link
JP (1) JP6210400B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020066916A (en) * 2018-10-24 2020-04-30 五洋建設株式会社 Falling and mixing method of viscous soil and steel slag and system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6504499B2 (en) * 2015-03-27 2019-04-24 五洋建設株式会社 Modifier mixing method for soft soil
JP6468031B2 (en) * 2015-03-31 2019-02-13 新日鐵住金株式会社 Method for producing modified soil
JP6851882B2 (en) * 2017-04-04 2021-03-31 日本製鉄株式会社 Manufacturing method of Calcia modified soil
JP6997424B2 (en) * 2017-11-10 2022-01-17 五洋建設株式会社 Soft soil mixing device
JP6997425B2 (en) * 2017-11-10 2022-01-17 五洋建設株式会社 Soft soil mixing device
WO2023218699A1 (en) * 2022-05-09 2023-11-16 日本国土開発株式会社 Construction device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536303A (en) * 1968-08-07 1970-10-27 United States Steel Corp Material blending apparatus
JPS59165815U (en) * 1983-04-22 1984-11-07 三菱重工業株式会社 shoot
JPH10280471A (en) * 1997-04-10 1998-10-20 Jdc Corp Manufacturing plant for earth mixed with solidifying material
JP3376375B2 (en) * 1999-12-24 2003-02-10 国土交通省東北地方整備局長 Mixing unit for soil material, soil material manufacturing apparatus, soil material manufacturing system, and soil material manufacturing method
JP2005330731A (en) * 2004-05-20 2005-12-02 Penta Ocean Constr Co Ltd Artificial tideland material using dredged cohesive soil, manufacturing device for the same, and artificial tideland construction method
JP5014961B2 (en) * 2007-11-16 2012-08-29 新日本製鐵株式会社 Mud modification material and modification method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020066916A (en) * 2018-10-24 2020-04-30 五洋建設株式会社 Falling and mixing method of viscous soil and steel slag and system
JP7185484B2 (en) 2018-10-24 2022-12-07 五洋建設株式会社 Drop mixing method and system for cohesive soil and steel slag

Also Published As

Publication number Publication date
JP2014173285A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
JP6210400B2 (en) Steelmaking slag mixing method for soft soil
CN102918001B (en) Artificial stone-like material and manufacture method thereof
US20160151933A1 (en) Apparatus and method for manufacturing high performance concrete capable of manufacturing high performance concrete through processes of inserting air into normal concrete and dissipating air
CN103193442A (en) High-titanium dry slag pump concrete and construction method thereof
CN110355197A (en) A kind of pair of pollution soil body carries out the construction method of solidification and stabilization processing
JP2017047334A (en) Soil improving apparatus
JP6997424B2 (en) Soft soil mixing device
JP6997425B2 (en) Soft soil mixing device
CN102153303A (en) Chemical improving method using soft rock weathered material as high-speed railway subgrade filler
KR101614118B1 (en) Injection apparatus and method for mix concrete that have been undergoing process of mixing and dissipating air and mixing materials on common concrete
JP2013144269A (en) Method for treating slag-mixed soil
CN106480810A (en) A kind of mining waste recovery utilizes car
JP6504499B2 (en) Modifier mixing method for soft soil
CN104475215B (en) A kind of integral manufacturing technique of rock-fill dams high standard Transition Materials
CN208050179U (en) A kind of stirring-type flotation cell
JP2017218775A (en) Soil improvement device
CN105408262A (en) Method and facility for treating sludge, in particular harbor sludge
FI125995B (en) Method and apparatus for the treatment of the substance to be classified as waste and use of the product obtained by the method and apparatus
US10207233B2 (en) Apparatus for producing rapid-hardening concrete by intermixing and dissipating air in normal concrete and adding early-strength admixture thereto, and method for producing same
CN113603408A (en) Full-solid waste filling material for green filling mining of mine and proportioning method thereof
CN105712668A (en) High strength pre-stressed concrete pipe pile and preparation method thereof
CN205130128U (en) Concrete transportation car discharge apparatus
CN102942321A (en) Ore muck separation system
JP2013104248A (en) Manufacturing system and manufacturing method of water content adjusting soil
CN203768764U (en) Anti-segregation device of cement stability mixing station

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161102

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170901

R150 Certificate of patent or registration of utility model

Ref document number: 6210400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250