JP6210209B2 - Monofilament-like high-strength polyethylene fiber - Google Patents

Monofilament-like high-strength polyethylene fiber Download PDF

Info

Publication number
JP6210209B2
JP6210209B2 JP2013223068A JP2013223068A JP6210209B2 JP 6210209 B2 JP6210209 B2 JP 6210209B2 JP 2013223068 A JP2013223068 A JP 2013223068A JP 2013223068 A JP2013223068 A JP 2013223068A JP 6210209 B2 JP6210209 B2 JP 6210209B2
Authority
JP
Japan
Prior art keywords
melting peak
strength
temperature side
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013223068A
Other languages
Japanese (ja)
Other versions
JP2015086473A (en
Inventor
誠治 石田
誠治 石田
奥山 幸成
幸成 奥山
靖憲 福島
靖憲 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2013223068A priority Critical patent/JP6210209B2/en
Publication of JP2015086473A publication Critical patent/JP2015086473A/en
Application granted granted Critical
Publication of JP6210209B2 publication Critical patent/JP6210209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

本発明は、新規なモノフィラメント様の高強度ポリエチレン繊維に関する。更に詳しくは、本発明は釣り糸やコンクリート補強材等の民生用または産業用に応用可能なモノフィラメント様高強度ポリエチレン繊維に関する。   The present invention relates to a novel monofilament-like high-strength polyethylene fiber. More specifically, the present invention relates to a monofilament-like high-strength polyethylene fiber that can be applied to consumer use or industrial use such as fishing line and concrete reinforcement.

従来から、一般に知られている釣り糸としては、ポリアミド,ポリエステル,ポリオレフィン系等からなる合成繊維糸や、ステンレス,タングステン金属,アモルファス金属等からなる金属繊維糸が知られている。これらの中で高強力及び引張弾性率のポリエチレンマルチフィラメントは一般に組紐機械と言われている組機を用いて組紐に加工されモノフィラメントらしくした釣り糸が知られているが、近年、組紐でない擬似モノフィラメントが登場している。例えば特許文献1では高強力及び引張弾性率のポリエチレンマルチフィラメントへ、クロスヘッドダイ加圧押出の方法により溶融樹脂をワイヤーコーティングする擬似モノフィラメントが製造され高強度で耐摩擦性を要求される種々の成形品に用いられている。前記構造物としては、代表的にはポリエチレンマルチフィラメントにエチレンーアクリル酸コポリマーの下塗り等の前処理をした後にクロスヘッドダイに通して、ダイ内においてこれにコアヤーンの融点以上で高密度ポリエチレンやポリエチレンワックス等の溶融樹脂をコートし、コートしたヤーンを該ポリマー溶融物の融点以下に冷却するという技術が知られていた。しかしながら、コアヤーンに対し3割以上のコートが必要なことから、見かけの強度が十分でなかった。 Conventionally known fishing lines include synthetic fiber threads made of polyamide, polyester, polyolefin, and the like, and metal fiber threads made of stainless steel, tungsten metal, amorphous metal, and the like. Among these, high-strength and tensile elastic polyethylene multifilaments are known as fishing lines that are processed into braids using a braiding machine generally called braid machines, but in recent years pseudo-monofilaments that are not braids have been Has appeared. For example, in Patent Document 1, pseudo monofilaments in which a molten resin is wire-coated by a method of pressure extrusion of a crosshead die are manufactured into polyethylene multifilaments having high strength and tensile modulus, and various moldings that require high strength and friction resistance are produced. It is used for goods. As the structure, typically, a polyethylene multifilament is pretreated, such as undercoating with an ethylene-acrylic acid copolymer, and then passed through a crosshead die. A technique for coating a molten resin such as wax and cooling the coated yarn below the melting point of the polymer melt has been known. However, the apparent strength is not sufficient because a coat of 30% or more is required for the core yarn.

また、ゲル紡糸された超高分子量ポリエチレンマルチフィラメントを編組み若しくは加撚又は諸撚りされた糸を約150℃〜155℃の範囲内に温度に十分な時間暴露して、隣接するフィラメントの接触表面を少なくとも一部融着させ、糸の表面を硬く仕上げた擬似モノフィラメントの製造技術が知られていた。(特許文献2参照)   Also, the surface of the adjacent filaments contacted by exposing the braided or twisted or twisted yarns of gel-spun ultra high molecular weight polyethylene multifilaments to a temperature within a range of about 150 ° C. to 155 ° C. for a sufficient time. There has been known a technique for producing a pseudo monofilament in which at least a part of the yarn is fused and the surface of the yarn is hardened. (See Patent Document 2)

更に超高モル質量ポリエチレンマルチフィラメントヤーンへパラフィンのような非揮発性のポリエチレン用溶剤をディッピングまたはウェッティングにより塗布し、加熱された雰囲気下に配置された複数個の溝付きガイドローラー間を通し機械的な圧縮によって、非多孔質の外部溶融表面層を形成したシース・コア構造の擬似モノフィラメントの製造技術が知られていた。(特許文献3参照)   Furthermore, a non-volatile polyethylene solvent such as paraffin is applied to ultra-high molar mass polyethylene multifilament yarns by dipping or wetting, and the machine passes through a plurality of grooved guide rollers arranged in a heated atmosphere. A technique for producing a pseudo-monofilament having a sheath-core structure in which a non-porous outer melt surface layer is formed by a conventional compression has been known. (See Patent Document 3)

更に多数の連続ポリオレフィンフィラメントの前駆体(超高分量ポリエチレンマルチフィラメント)へ撚りまたはエアー交絡を加え、パラフィンのような非揮発性のポリエチレン用溶剤をディッピングまたはウェッティングにより塗布し、ポリオレフィンの融点範囲内に加熱された雰囲気下に配置された複数個の溝付きガイドローラー間を通し、隣接する繊維を少なくとも部分的に溶融する擬似モノフィラメントの製造技術が知られていた。(特許文献4参照)   Furthermore, twist or air entanglement is applied to a number of precursors of continuous polyolefin filaments (ultra-high-volume polyethylene multifilaments), and a non-volatile polyethylene solvent such as paraffin is applied by dipping or wetting, within the melting point range of polyolefin. There has been known a technique for producing a pseudo monofilament that passes between a plurality of grooved guide rollers arranged in a heated atmosphere and at least partially melts adjacent fibers. (See Patent Document 4)

これらのようなシース・コア構造の擬似モノフィラメントは、耐摩耗性が向上しピリングのような表層剥離作用の傾向が殆どない平滑な表面を示している。しかし、かかる従来技術は、超高分子量ポリエチレンマルチフィラメントの径方向や周方向に溶融樹脂の含浸ムラが生じるなどの問題点があった。この様な溶融樹脂の含浸ムラがあると、未含浸繊維部分の残存により、製造工程中にヤーンを構成する単糸が破断し、毛羽立ちを招き、最終的には製造装置内における糸切れや製品である釣り糸等に毛羽が生じ品質上の欠陥を生じさせる原因となっていた。またこの様なシース・コア構造の擬似モノフィラメントを製造するには専用の機械設備や網組みや撚掛け等の前処理工程と溶融樹脂の含浸を行なう製造工程が増えるという問題点があった。   These sheath-core pseudo monofilaments have a smooth surface with improved wear resistance and almost no tendency to peel off like pilling. However, this conventional technique has problems such as uneven impregnation of the molten resin in the radial direction and circumferential direction of the ultrahigh molecular weight polyethylene multifilament. If there is such an uneven impregnation of the molten resin, the unimpregnated fiber part remains, and the single yarn constituting the yarn breaks during the manufacturing process, leading to fluffing. As a result, fluff was generated on the fishing line, which was a cause of quality defects. Further, in order to manufacture such a pseudo-monofilament having a sheath / core structure, there is a problem that a dedicated mechanical equipment, a pretreatment process such as netting or twisting, and a manufacturing process for impregnation with a molten resin increase.

特表平10−504073号公報Japanese National Patent Publication No. 10-504073 特開平9−98698号公報JP-A-9-98698 特表2008−517167号公報Special table 2008-517167 gazette 特表2008−517168号公報Special table 2008-517168

本発明は、かかる従来技術の様な前処理工程や溶融樹脂の付与による後加工が必要な擬似モノフィラメントの課題を背景になされたものである。すなわち、本発明の目的は、編組や撚り掛け等の前処理工程が不要で、且つ高強度ポリエチレンマルチフィラメントをコアとした周方向から溶融樹脂を含浸付与すること無く、紡糸工程にて隣接する繊維同士を融着させたモノフィラメント様高強度ポリエチレン繊維を提供することにある。   The present invention is based on the problem of a pseudo monofilament that requires a pre-processing step and post-processing by applying a molten resin as in the prior art. That is, the object of the present invention is that a pretreatment process such as braiding and twisting is unnecessary, and fibers adjacent to each other in the spinning process without impregnating the molten resin from the circumferential direction with a high-strength polyethylene multifilament as a core. The object is to provide a monofilament-like high-strength polyethylene fiber that is fused together.

本発明者らは鋭意検討した結果、以下に代表される発明に到達した。すなわち、本発明は以下の構成からなる。   As a result of intensive studies, the present inventors have reached the invention represented by the following. That is, the present invention has the following configuration.

(1)繰返し単位が実質的にエチレンである超高分子量ポリエチレンからなり、平均強度が20cN/dtex以上であり、示差走査型熱量測定(DSC)における昇温速度10℃/分でのDSC曲線が125〜135℃の温度領域(低温側)に少なくとも1本の融解ピークを示し、かつ140℃〜148℃の温度領域(高温側)に少なくとも1本の融解ピークを示すことを特徴とする高強度ポリエチレン繊維。
(2)示差走査型熱量測定(DSC)における昇温速度10℃/分でのDSC曲線における低温側の最大融解ピークと高温側の最大融解ピークとの高さの比が1:10〜1:20である、(1)に記載の高強度ポリエチレン繊維。
(3)示差走査型熱量測定(DSC)における昇温速度10℃/分でのDSC曲線における低温側の最大融解ピークと高温側の最大融解ピークとの面積の比が1:2〜1:8である、(1)又は(2)に記載の高強度ポリエチレン繊維。
(4)前記超高分子量ポリエチレンの極限粘度数が5以上30以下である、請求項(1)〜(3)のいずれかに記載の高強度ポリエチレン繊維。
(5)一般紡績糸試験方法(JIS L 1095)のうち摩耗強さを測定するB法に準拠した摩擦試験において、摩擦回数100後に繊維同士の融着が保持されていることを特徴とする、(1)〜(4)のいずれかに記載の高強度ポリエチレン繊維。
(1) It consists of ultra high molecular weight polyethylene whose repeating unit is substantially ethylene, has an average strength of 20 cN / dtex or more, and has a DSC curve at a heating rate of 10 ° C./min in differential scanning calorimetry (DSC). High strength characterized by showing at least one melting peak in the temperature region (low temperature side) of 125 to 135 ° C and at least one melting peak in the temperature region (high temperature side) of 140 ° C to 148 ° C Polyethylene fiber.
(2) The ratio of the height of the maximum melting peak on the low temperature side to the maximum melting peak on the high temperature side in the DSC curve at a heating rate of 10 ° C./min in differential scanning calorimetry (DSC) is 1:10 to 1: The high-strength polyethylene fiber according to (1), which is 20.
(3) The ratio of the area of the maximum melting peak on the low temperature side to the maximum melting peak on the high temperature side in the DSC curve at a heating rate of 10 ° C./min in differential scanning calorimetry (DSC) is 1: 2 to 1: 8. The high-strength polyethylene fiber according to (1) or (2).
(4) The high-strength polyethylene fiber according to any one of claims (1) to (3), wherein the ultra high molecular weight polyethylene has an intrinsic viscosity of 5 or more and 30 or less.
(5) Friction test based on the B method for measuring the wear strength in the general spun yarn test method (JIS L 1095) is characterized in that the fusion between fibers is maintained after 100 times of friction. The high-strength polyethylene fiber according to any one of (1) to (4).

本発明により、従来の高強度ポリエチレン繊維と同程度の強度および弾性率を有する高強度ポリエチレン繊維であって、隣接する複数本の繊維同士が融着しており、摩擦に対する高い耐摩擦性を有するモノフィラメント様高強度ポリエチレン繊維を提供することができる。   According to the present invention, a high-strength polyethylene fiber having the same strength and elastic modulus as a conventional high-strength polyethylene fiber, and a plurality of adjacent fibers are fused to each other, and has high friction resistance against friction. A monofilament-like high-strength polyethylene fiber can be provided.

は、モノフィラメント様高強度ポリエチレン繊維の示差走査熱量測定(DSC)により得られた昇温、冷却、最昇温のDSC曲線を示す。These show the DSC curve of the temperature rise, cooling, and maximum temperature rise obtained by differential scanning calorimetry (DSC) of the monofilament-like high-strength polyethylene fiber. は、実施例1のモノフィラメント様高強度ポリエチレン繊維の摩擦試験後の状態を示す。These show the state after the friction test of the monofilament-like high-strength polyethylene fiber of Example 1. は、実施例2のモノフィラメント様高強度ポリエチレン繊維の摩擦試験後の状態を示す。These show the state after the friction test of the monofilament-like high-strength polyethylene fiber of Example 2. は、実施例3のモノフィラメント様高強度ポリエチレン繊維の摩擦試験後の状態を示す。These show the state after the friction test of the monofilament-like high-strength polyethylene fiber of Example 3. は、実施例4のモノフィラメント様高強度ポリエチレン繊維の摩擦試験後の状態を示す。These show the state after the friction test of the monofilament-like high-strength polyethylene fiber of Example 4. は、比較例1のポリエチレン繊維の摩擦試験後の状態を示す。These show the state after the friction test of the polyethylene fiber of Comparative Example 1. は、比較例2のポリエチレン繊維の摩擦試験後の状態を示す。These show the state after the friction test of the polyethylene fiber of Comparative Example 2. は、比較例3のポリエチレン繊維の摩擦試験後の状態を示す。These show the state after the friction test of the polyethylene fiber of Comparative Example 3. は、モノフィラメント様高強度ポリエチレン繊維の表面形態を示す。Shows the surface morphology of monofilament-like high-strength polyethylene fibers. は、モノフィラメント様高強度ポリエチレン繊維の断面形態を示す。These show the cross-sectional form of a monofilament-like high-strength polyethylene fiber. は、モノフィラメント様高強度ポリエチレン繊維の断面を拡大した状態を示す。These show the state which expanded the cross section of the monofilament-like high-strength polyethylene fiber.

以下、本発明を詳述する。
本発明のモノフィラメント様高強度ポリエチレン繊維は、繰返し単位が実質的にエチレンである超高分子量ポリエチレンからなる。ここで、繰返し単位が実質的にエチレンである超高分子量ポリエチレンとは、繰返し単位の99.5mol%以上、好ましくは99.8mol%以上がエチレンからなる実質的なエチレンホモポリマーであり、極限粘度数が5以上、好ましくは8以上、さらに好ましくは10以上であるポリエチレンを意味する。なお、重合の副反応や重合速度を向上させたり、最終的に得られる繊維のクリープ特性などを改善する目的で、ごく少量のα−オレフィンなどの共重合成分を加えて分岐を導入することは推奨されるが、共重合成分が多くなると、繊維の耐久性を向上させるには好ましくない。例えば、α−オレフィンを共重合すると、結晶内での分子鎖間の滑りが抑制され、連続的な繰返し変形に対して応力を緩和できなくなると考えられるからである。また、原料ポリマーの極限粘度数が5未満であると、繊維の力学的特性、特に引張強度を発現することが困難である。他方、極限粘度数に上限はないが、製糸上の安定性や生産速度、繊維の耐久性などを考慮すると、極限粘度数は30以下であることが好ましい。極限粘度数が30を越えると、例えば、紡出糸の延伸条件によっては耐久性が低下する場合がある。
The present invention is described in detail below.
The monofilament-like high-strength polyethylene fiber of the present invention is made of ultrahigh molecular weight polyethylene whose repeating unit is substantially ethylene. Here, the ultrahigh molecular weight polyethylene in which the repeating unit is substantially ethylene is a substantial ethylene homopolymer in which 99.5 mol% or more, preferably 99.8 mol% or more of the repeating unit is composed of ethylene, and has an intrinsic viscosity. It means polyethylene having a number of 5 or more, preferably 8 or more, more preferably 10 or more. In order to improve the polymerization side reaction and polymerization rate, or to improve the creep properties of the fiber finally obtained, it is not possible to introduce a branch by adding a very small amount of a copolymer component such as α-olefin. Although recommended, an increase in the copolymerization component is not preferable for improving the durability of the fiber. For example, it is considered that when α-olefin is copolymerized, slippage between molecular chains in the crystal is suppressed, and stress cannot be relaxed against continuous repeated deformation. Further, if the intrinsic viscosity of the raw material polymer is less than 5, it is difficult to express the mechanical properties of the fiber, particularly the tensile strength. On the other hand, although there is no upper limit to the intrinsic viscosity, it is preferable that the intrinsic viscosity is 30 or less in consideration of the stability on yarn production, the production speed, the durability of the fiber, and the like. When the intrinsic viscosity exceeds 30, for example, the durability may be lowered depending on the drawing condition of the spun yarn.

かくして、繰返し単位が実質的にエチレンである超高分子量ポリエチレンからなる本発明のモノフィラメント様高強度ポリエチレン繊維は、極限粘度数が5以上となる。ここで、繊維の極限粘度数は、135℃のデカリン中で粘度測定し、ηsp/c(ηspは比粘度、cは濃度)を濃度0に補外した値である。実際には、いくつかの濃度で粘度測定を行い、比粘度ηspの濃度cに対するプロットの最小二乗近似で得られる直線の原点への内挿点から極限粘度数を決定する。 Thus, the monofilament-like high-strength polyethylene fiber of the present invention made of ultrahigh molecular weight polyethylene whose repeating unit is substantially ethylene has an intrinsic viscosity of 5 or more. Here, the intrinsic viscosity number of the fiber is a value obtained by measuring the viscosity in decalin at 135 ° C. and extrapolating η sp / c (η sp is the specific viscosity and c is the concentration) to the concentration 0. Actually, the viscosity is measured at several concentrations, and the limiting viscosity number is determined from the interpolation point to the origin of the straight line obtained by the least square approximation of the plot with respect to the concentration c of the specific viscosity η sp .

さらに、原料ポリマーの超高分子量ポリエチレンは、最終的に得られる繊維が上記の極限粘度数を満足するものであれば、特に限定されないが、繊維の耐久性を極限まで高めるには、分子量分布がより狭い原料ポリマーを用いることが好ましく、メタロセン系触媒などの重合触媒を用いて得られる分子量分布指数Mw/Mnが5以下の原料ポリマーを用いることがさらに好ましい。   Furthermore, the ultra high molecular weight polyethylene of the raw material polymer is not particularly limited as long as the finally obtained fiber satisfies the above-mentioned intrinsic viscosity, but in order to increase the durability of the fiber, the molecular weight distribution is It is preferable to use a narrower raw material polymer, and it is more preferable to use a raw material polymer having a molecular weight distribution index Mw / Mn of 5 or less obtained using a polymerization catalyst such as a metallocene catalyst.

本発明のモノフィラメント様の高強度ポリエチレン繊維は、平均強度が20cN/dtex以上である。ここで、平均強度は、引張試験機を用いて、試料長200mm(チャック間長さ)、伸長速度100%/分、雰囲気温度20℃、相対湿度65%の条件下で、歪−応力曲線を求め、得られた曲線の破断点での応力から算出した強度(cN/dtex)の平均値である(測定回数は10回)。 The monofilament-like high-strength polyethylene fiber of the present invention has an average strength of 20 cN / dtex or more. Here, the average strength is a strain-stress curve using a tensile tester under the conditions of a sample length of 200 mm (length between chucks), an elongation rate of 100% / min, an ambient temperature of 20 ° C., and a relative humidity of 65%. The average value of the strength (cN / dtex) calculated from the stress at the breaking point of the obtained curve was obtained (the number of measurements was 10 times).

本発明のモノフィラメント様高強度ポリエチレン繊維は隣接する繊維同士が融着していることが特長であり、融着とは繊維同士の境目が分り難いほど接していることをいう。代表的なモノフィラメント様高強度ポリエチレン繊維の表面形態の拡大写真を図9に、断面形態の拡大写真を図10及び図11に示す。融着の保持とは試料に摩擦を加えても隣接する繊維同士の融着が外れない、もしくは繊維浮きが1本〜3本以下の状態をいう。一般紡績糸試験方法(JIS L 1095)のうち摩擦に対する強さを測定するB法に準拠した摩擦試験において、一般的に摩擦試験は試料が破断するまでの回数を評価しているが、ここでは破断に至るまでの回数ではなく、試料に100回の摩擦を加えた後の試料の状態を示す。 The monofilament-like high-strength polyethylene fiber of the present invention is characterized in that adjacent fibers are fused, and the term “fusion” means that the boundary between the fibers is indistinguishable. An enlarged photograph of the surface form of a typical monofilament-like high-strength polyethylene fiber is shown in FIG. 9, and enlarged photographs of the cross-sectional form are shown in FIGS. The holding of the fusion means a state in which the fusion between adjacent fibers does not come off even when friction is applied to the sample, or the fiber float is 1 to 3 or less. In the friction test based on the B method for measuring the strength against friction among the general spun yarn test method (JIS L 1095), the friction test generally evaluates the number of times until the sample breaks. It shows the state of the sample after 100 times of friction is applied to the sample, not the number of times to break.

本発明のモノフィラメント様高強度ポリエチレン繊維は、示差走査熱量測定(DSC)における昇温DSC曲線が125℃〜135℃の温度領域(低温側)に少なくとも1本の融解ピークを示し、かつ140〜148℃の温度領域(高温側)に少なくとも1本の融解ピークを示す。ここで、昇温DSC曲線は、試料を5mm以下に切断し、完全に無拘束の状態で、不活性ガス下、10℃/分の昇温速度で室温から200℃まで温度を上昇させて得るものとする。なお、融解ピークは、ピーク温度が正確に読み取れるものだけを採用し、得られた昇温DSC曲線のベースラインを補正した後で、ピーク温度およびピーク高さを読み取る。ここで、ベースラインとは、プラスティックの転移温度測定方法(JIS K 7121)に示されているように、試験試料に転移および反応を生じない領域でのDSC曲線である。また、ピーク高さは、内挿されたベースラインとピークの頂点の間の横軸に垂直な距離を表す。このプラスティックの転移温度測定方法(JIS K 7121)では、ピークとは、DSC曲線において、曲線がベースラインから離れてから再度ベースラインに戻るまでの部分と定義されているが、本発明では、得られた昇温DSC曲線を微分して微分値が正から負に変化する場合のみをピークとした。微分値が正または負のままで単調増加から単調減少に変化する点をショルダーとした。 The monofilament-like high-strength polyethylene fiber of the present invention has at least one melting peak in the temperature range (low temperature side) of 125 ° C. to 135 ° C. in the temperature rising DSC curve in differential scanning calorimetry (DSC), and 140 to 148. At least one melting peak is shown in the temperature region (high temperature side) of ° C. Here, the temperature rising DSC curve is obtained by cutting the sample to 5 mm or less and raising the temperature from room temperature to 200 ° C. at a temperature rising rate of 10 ° C./min under an inert gas in a completely unconstrained state. Shall. In addition, only the thing which can read peak temperature correctly is employ | adopted for a melting peak, and after correcting the baseline of the temperature rising DSC curve obtained, peak temperature and peak height are read. Here, the baseline is a DSC curve in a region where no transition or reaction occurs in the test sample as shown in the plastic transition temperature measurement method (JIS K 7121). The peak height represents a distance perpendicular to the horizontal axis between the interpolated baseline and the peak vertex. In this plastic transition temperature measurement method (JIS K 7121), the peak is defined as the part of the DSC curve from when the curve leaves the baseline until it returns to the baseline again. The obtained temperature rising DSC curve was differentiated and the peak was determined only when the differential value changed from positive to negative. The point at which the differential value changed from monotonically increasing to monotonically decreasing while remaining positive or negative was taken as the shoulder.

本発明において融解ピークが2つに分離するのは、モノフィラメント様高強度ポリエチレン繊維の製造プロセスによって生じ、特に125℃〜135℃の温度領域(低温側)は、超高分子量ポリエチレン繊維の一部が融解した未配向(非結晶構造)部分の融解に由来していると考えられる。例えば示差走査型熱量測定(DSC)において図1の様な昇温→冷却→再昇温の繰り返しのDSC曲線の場合、最初の昇温によって、125℃〜135℃の温度領域(低温側)の超高分子量ポリエチレン繊維の一部が融解した未配向(非結晶構造)部分が融解し、更なる昇温によって140℃〜148℃の温度領域(高温側)にて公知の通り高配向(結晶構造)の超高分子量ポリエチレン繊維が融解する、冷却後、再昇温よって、125℃〜135℃の温度領域(低温側)に融解ピークが生じる。この融解ピークは、丁度、最初に昇温した超高分子量ポリエチレン繊維の一部が融解した未配向(非結晶構造)部分が融解した融解温度域と一致することから、モノフィラメント様高強度ポリエチレン繊維の製造時に繊維同士の融着に寄与する融解がすでに生じていたと考えられる。   In the present invention, the melting peak is separated into two by the production process of the monofilament-like high-strength polyethylene fiber, and in particular, in the temperature region (low temperature side) of 125 ° C. to 135 ° C., a part of the ultrahigh molecular weight polyethylene fiber is It is thought to be derived from melting of the melted non-oriented (non-crystalline structure) portion. For example, in the differential scanning calorimetry (DSC), in the case of a DSC curve in which temperature rise → cooling → reheating is repeated as shown in FIG. 1, the temperature range of 125 ° C. to 135 ° C. (low temperature side) is obtained by the first temperature rise. The unoriented (non-crystalline structure) part in which a part of the ultra-high molecular weight polyethylene fiber is melted, and is further highly oriented (crystalline structure) in a temperature region (high temperature side) of 140 ° C. to 148 ° C. by further heating. ) Melts the ultrahigh molecular weight polyethylene fiber, and after cooling, a reheating temperature causes a melting peak in the temperature range (low temperature side) of 125 ° C. to 135 ° C. This melting peak is exactly the same as the melting temperature range where the unoriented (non-crystalline structure) part where the part of the ultra-high molecular weight polyethylene fiber first heated was melted is melted. It is considered that the melting that contributed to the fusion between the fibers had already occurred during the production.

上記のように、本発明のモノフィラメント様高強度ポリエチレン繊維は、示差走査熱量測定(DSC)における昇温DSC曲線が100℃〜180℃の温度域に少なくとも2本の融解ピークを示し、140℃〜148℃の温度領域(高温側)は超高分子量ポリエチレン繊維の融解ピークであって、この140℃〜148℃の温度領域(高温側)より約10℃低い125℃〜135℃の温度領域(低温側)には超高分子量ポリエチレン繊維の一部が融解した未配向(非結晶構造)部分の融解ピークが生じる。本発明者らは125℃〜135℃の温度領域(低温側)に融解ピークが生じない場合は繊維同士の融着が不完全であるのに対し、125℃〜135℃の温度領域(低温側)に融解ピークが生じると繊維同士が融着したモノフィラメント様高強度ポリエチレン繊維が得られることを見出した。繊維同士の融着に由来する低温側の融解ピークの温度領域は125℃〜135℃、好ましくは128℃〜135℃、さらに好ましくは130℃〜135℃である。この低温側の温度領域が125℃を下回ると超高分子量ポリエチレン繊維の一部が融解した未配向(非結晶構造)部分の融解でなく、固体パラフィンのような不揮発性の溶剤などが含まれているとみられる。逆に、この低温側の温度領域が135℃を超えると140℃〜148℃の温度領域(高温側)にある超高分子量ポリエチレン繊維の融解ピークと混在することになり、繊維同士が融着していても十分な延伸ができておらず、高強度ポリエチレン繊維にふさわしい引張強度や弾性率が得られない。 As described above, the monofilament-like high-strength polyethylene fiber of the present invention has at least two melting peaks in the temperature range of 100 ° C. to 180 ° C. in the temperature rising DSC curve in differential scanning calorimetry (DSC), and 140 ° C. to The temperature range of 148 ° C. (high temperature side) is a melting peak of ultrahigh molecular weight polyethylene fiber, and the temperature range of 125 ° C. to 135 ° C. (low temperature) is about 10 ° C. lower than the temperature range of 140 ° C. to 148 ° C. (high temperature side). On the side), a melting peak of an unoriented (non-crystalline structure) portion in which a part of the ultrahigh molecular weight polyethylene fiber is melted occurs. In the case where the melting peak does not occur in the temperature range of 125 ° C. to 135 ° C. (low temperature side), the present inventors have incomplete fusion of the fibers, whereas in the temperature range of 125 ° C. to 135 ° C. (low temperature side). It was found that a monofilament-like high-strength polyethylene fiber in which the fibers were fused together was obtained when a melting peak was generated in (). The temperature range of the melting peak on the low temperature side derived from the fusion between the fibers is 125 ° C to 135 ° C, preferably 128 ° C to 135 ° C, more preferably 130 ° C to 135 ° C. If the temperature range on the low temperature side is lower than 125 ° C., not a non-oriented (non-crystalline structure) part in which a part of the ultrahigh molecular weight polyethylene fiber is melted, but a non-volatile solvent such as solid paraffin is included. It seems to be. Conversely, if the temperature range on the low temperature side exceeds 135 ° C., it will be mixed with the melting peak of ultrahigh molecular weight polyethylene fibers in the temperature range of 140 ° C. to 148 ° C. (high temperature side), and the fibers will be fused. However, sufficient stretching cannot be achieved, and tensile strength and elastic modulus suitable for high-strength polyethylene fibers cannot be obtained.

本発明モノフィラメント様高強度ポリエチレン繊維は、長手方向全般に融着しているため、任意の1箇所のDSC曲線に少なくとも2本の融解ピークが見られる。しかしながら、製造工程中や製織製編工程中の金属摩擦等によって、繊維同士の融着が外れ、部分的に繊維浮きが生じることもある。そこで、繊維の長手方向にランダムに5箇所から試料を取得してDSCを測定し、そのうち3箇所以上のDSC曲線において少なくとも2本の融解ピークを示した場合も、モノフィラメント様高強度ポリエチレン繊維であると判断でき、本発明の範囲内である。   Since the monofilament-like high-strength polyethylene fiber of the present invention is fused in the longitudinal direction in general, at least two melting peaks can be seen in any one DSC curve. However, due to metal friction or the like during the manufacturing process or the weaving / knitting process, the fibers are not fused, and the fibers may partially float. Therefore, when a sample is obtained at random from 5 locations in the longitudinal direction of the fiber and DSC is measured, and at least 2 melting peaks are shown in the DSC curve at 3 or more locations, it is a monofilament-like high-strength polyethylene fiber. This is within the scope of the present invention.

低温側の融解ピークと高温側の融解ピークの各温度領域における最大融解ピークの高さの比は、低温側を1とした場合1:10〜1:20であり、好ましくは1:12〜1:20、さらに好ましくは1:14〜1:18である。この比が1:10より小さくなる、すなわち低温側の融解ピークが相対的に高くなると、繊維同士の融着が進み過ぎ、強度低下を招くばかりかモノフィラメント様高強度ポリエチレン繊維を製造中に糸切れ等のトラブルが生じ易くなる。逆に、この比が1:20よりも大きくなると、すなわち低温側の融解ピークが相対的に低くなると、これは繊維同士の融着が弱く、マルチフィラメントの様な形態になる。 The ratio of the height of the maximum melting peak in each temperature region of the melting peak on the low temperature side and the melting peak on the high temperature side is 1:10 to 1:20, preferably 1:12 to 1 when the low temperature side is 1. : 20, more preferably 1:14 to 1:18. When this ratio is smaller than 1:10, that is, when the melting peak on the low temperature side is relatively high, the fusion between the fibers proceeds excessively, leading to a decrease in strength as well as breakage of monofilament-like high-strength polyethylene fibers during production. Such troubles are likely to occur. On the contrary, when this ratio is larger than 1:20, that is, when the melting peak on the low temperature side is relatively low, the fusion between the fibers is weak, and a multifilament-like form is obtained.

低温側の融解ピークと高温側の融解ピークの各温度領域における融解ピーク面積の比は低温側を1とした場合、1:2〜1:8であり、好ましくは1:4〜1:8、さらに好ましくは1:4〜1:6である。この比が1:2より小さくなると、すなわち低温側の融解ピーク面積が相対的に大きくなると、繊維同士の融着が進み過ぎ、強度低下を招くばかりかモノフィラメント様高強度ポリエチレン繊維を製造中に糸切れ等のトラブルが生じ易くなる。逆に、融解ピーク面積の比が1:6よりも大きくなると、すなわち低温側の融解ピーク面積が相対的に小さくなると、これは繊維同士の融着が弱く、マルチフィラメントの様な形態になるためである。融解ピーク面積の面積比の解析は、融点ピーク面積をプロットした用紙を切り抜き、重量を量り、重量比から面積比を算出する簡易的な方法や市販の解析ソフトなどを用いて算出することができる。本発明においては、後述のとおり用紙を用いた重量比から算出する方法を採用した。 The ratio of the melting peak area in each temperature region of the melting peak on the low temperature side to the melting peak on the high temperature side is 1: 2 to 1: 8, preferably 1: 4 to 1: 8, assuming that the low temperature side is 1. More preferably, it is 1: 4 to 1: 6. When this ratio is smaller than 1: 2, that is, when the melting peak area on the low temperature side is relatively large, the fusion between the fibers proceeds excessively, causing not only a reduction in strength, but also during production of monofilament-like high-strength polyethylene fibers. Troubles such as cutting are likely to occur. On the contrary, when the ratio of the melting peak area is larger than 1: 6, that is, when the melting peak area on the low temperature side becomes relatively small, this is because the fusion between the fibers is weak and a multifilament-like form is obtained. It is. The analysis of the area ratio of the melting peak area can be calculated using a simple method for cutting out the paper on which the melting point peak area is plotted, weighing it, and calculating the area ratio from the weight ratio, commercially available analysis software, etc. . In the present invention, a method of calculating from a weight ratio using paper as described later is adopted.

本発明のモノフィラメント様高強度ポリエチレン繊維を製造する方法は、慎重でかつ新規な製造法を採用する必要があり、以下に説明する方法を推奨するが、もちろんそれに限定されるものではない。 The method for producing the monofilament-like high-strength polyethylene fiber of the present invention requires careful and novel production methods, and the method described below is recommended, but of course is not limited thereto.

まず、上記の超高分子量ポリエチレンを溶剤に均一溶解して紡糸液を得る。紡糸液中における濃度は、通常50%以下、好ましくは30%以下である。溶剤としては、デカリンやテトラリンなどの揮発性の溶剤、流動パラフィンや固体パラフィンなどの不揮発性の溶剤が挙げられるが、揮発性の溶剤を用いることが好ましい。常温で固体または非揮発性の溶剤では、糸条から溶剤を抽出する速度が緩慢であり、揮発性の溶剤では、紡糸の際に、繊維表面の溶剤がより積極的に蒸発し、繊維表面に濃度が高くかつ分子鎖がより配向しかつ分子鎖同士が連結した特異な結晶構造を形成することが可能になるからである。またゲル紡糸、乾式紡糸、湿式紡糸、さらには溶融紡糸においても、つまり紡糸全般において、太繊度のモノフィラメントを製造すると、分子鎖を十分に配向させられずに満足のいく強度が得られない、満足のいく強度を得る為には繊維を細く延伸する必要があり、太繊度でありながら高強度で高弾性率のモノフィラメントの製造は難しい為に、後加工にて高強力ポリエチレン繊維をコアとして外周から溶融樹脂を含浸させた擬似モノフィラメントを製造する方法が公知の常識であった。本発明者らは、従来の後加工による溶融樹脂を含浸させる方法ではなく、紡糸工程において、積極的に複数本の繊維同士を融着させることで、高強度および高弾性率を維持しながら、モノフィラメント様高強度ポリエチレン繊維が得られることを見出した。 First, the ultra high molecular weight polyethylene is uniformly dissolved in a solvent to obtain a spinning solution. The concentration in the spinning solution is usually 50% or less, preferably 30% or less. Examples of the solvent include volatile solvents such as decalin and tetralin, and non-volatile solvents such as liquid paraffin and solid paraffin. It is preferable to use a volatile solvent. Solvents that are solid or non-volatile at room temperature have a slower rate of solvent extraction from the yarn, and with volatile solvents, the fiber surface solvent evaporates more aggressively during spinning, leaving the fiber surface. This is because it is possible to form a unique crystal structure in which the concentration is high, the molecular chains are more oriented, and the molecular chains are connected to each other. Also, in gel spinning, dry spinning, wet spinning, and even melt spinning, that is, in general spinning, if monofilaments with a high fineness are produced, the molecular chains cannot be sufficiently oriented and satisfactory strength cannot be obtained. In order to obtain high strength, it is necessary to stretch the fiber finely, and since it is difficult to produce a monofilament with high fineness and high elasticity even though it is thick, it is difficult to produce a monofilament with high strength polyethylene fiber as the core in post-processing. A method of manufacturing a pseudo monofilament impregnated with a molten resin has been a common sense. The present inventors, rather than the conventional method of impregnating a molten resin by post-processing, in the spinning process, by actively fusing together a plurality of fibers, while maintaining high strength and high elastic modulus, It has been found that monofilament-like high-strength polyethylene fibers can be obtained.

本発明のモノフィラメント様高強度ポリエチレン繊維における繊維同士の融着は、(1)紡糸口金から吐出した紡出糸に含まれる揮発性溶剤の蒸発を抑え、延伸オーブン中を通過する紡出糸に含まれた揮発性溶剤と、(2)ガイドローラー溝形状による繊維の集束と、(3)延伸オーブンの熱のそれぞれを調整することによって形成することができ、こうして5%〜11%程度の揮発性溶剤であるデカリンが残留した未延伸糸が得られる。 Fusion of fibers in the monofilament-like high-strength polyethylene fiber of the present invention includes (1) suppression of evaporation of a volatile solvent contained in a spun yarn discharged from a spinneret and included in a spun yarn passing through a drawing oven. Volatile solvent, (2) fiber bundling due to the guide roller groove shape, and (3) adjusting the heat of the drawing oven, thus forming a volatility of about 5% to 11%. An undrawn yarn in which decalin as a solvent remains is obtained.

こうして得られた未延伸糸は、再度、加熱して揮発性溶剤を蒸発させながら、数倍に延伸する。場合によっては、多段延伸を行ってもよい。紡糸の際に形成された繊維同士の融着形態は、後の延伸工程で消失することはなく、上記のように極めて優れた融着特性を有するモノフィラメント様高強度ポリエチレン繊維を得ることができる。得られたモノフィラメント様高強度ポリエチレン繊維は、切断しても、カット面に毛羽浮きが起こり難い、カットファイバーやステープルを得ることができる。 The undrawn yarn obtained in this manner is drawn several times while being heated again to evaporate the volatile solvent. Depending on the case, you may perform multistage extending | stretching. The fusion form of fibers formed during spinning does not disappear in the subsequent drawing step, and a monofilament-like high-strength polyethylene fiber having extremely excellent fusion characteristics as described above can be obtained. Even if the obtained monofilament-like high-strength polyethylene fiber is cut, fluffing hardly occurs on the cut surface, and cut fibers and staples can be obtained.

本発明のモノフィラメント様高強度ポリエチレン繊維は、従来の高強度ポリエチレン繊維と同程度の強度および弾性率を有しながら、繊維同士が融着したモノフィラメントであることが優れている。それゆえ、本発明のモノフィラメント様高強度ポリエチレン繊維は、産業用または民生用の各種ロープ・ケーブル類、特に係留用ロープ、ホーサーなどの長期的に使用される動策ケーブル、ブラインドケーブル、プリンターケーブルに適しており、釣り糸、テント、スポーツソックスやユニホームなどの各種スポーツ用品および衣料の素材としても有用である。また上記の特長に起因して、コンクリート材との練混ぜ性や施工時の流動性に優れている事からコンクリート用の補強繊維としても有用である。 The monofilament-like high-strength polyethylene fiber of the present invention is excellent in that it is a monofilament in which the fibers are fused while having the same strength and elastic modulus as conventional high-strength polyethylene fibers. Therefore, the monofilament-like high-strength polyethylene fiber of the present invention can be used for various types of industrial or consumer ropes and cables, especially mooring ropes, hawsers and other long-term motion cables, blind cables, and printer cables. It is also suitable as a material for various sports equipment and clothing such as fishing lines, tents, sports socks and uniforms. Further, due to the above features, it is also useful as a reinforcing fiber for concrete because it is excellent in kneading with a concrete material and fluidity during construction.

以下、本発明を実施例によりさらに詳しく説明するが、本発明はこれらの実施例に限定されない。まず、本発明のモノフィラメント様高強度ポリエチレン繊維を実施例1〜4および比較例1〜5を例示する。なお、各実施例および比較例で作製したモノフィラメント様ポリエチレン繊維は、下記の測定法および試験法で物性を測定し、性能を評価した。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. First, Examples 1-4 and Comparative Examples 1-5 are illustrated for the monofilament-like high-strength polyethylene fiber of the present invention. In addition, the monofilament-like polyethylene fiber produced by each Example and the comparative example measured the physical property with the following measuring method and the test method, and evaluated the performance.

繊維の極限粘度数
135℃のデカリン中、ウベローデ型毛細粘度管を用いて、様々な濃度の希薄溶液の粘度を測定し、その比粘度の濃度に対するプロットの最小二乗近似で得られる直線の原点への内挿点から極限粘度数を決定した。なお、粘度測定に際して、試料は長さ約5mmに切断し、試料に対して1wt%の酸化防止剤(商標名「ヨシノックスBHT」、吉富製薬製)を添加し、135℃で4時間攪拌・溶解して、測定溶液を調製した。
Measure the viscosity of dilute solutions at various concentrations in a decalin with an intrinsic viscosity of 135 ° C, using a Ubbelohde capillary viscometer tube, and return to the origin of the straight line obtained by the least square approximation of the plot against the concentration of the specific viscosity The intrinsic viscosity number was determined from the interpolation point. When measuring the viscosity, the sample was cut to a length of about 5 mm, 1 wt% antioxidant (trade name “Yoshinox BHT”, manufactured by Yoshitomi Pharmaceutical) was added to the sample, and the mixture was stirred and dissolved at 135 ° C. for 4 hours. Thus, a measurement solution was prepared.

繊維の強度および弾性率
オリエンティック社製「テンシロン」を用いて、試料長200mm(チャック間長さ)、伸長速度100%/分、雰囲気温度20℃、相対湿度65%の条件下で、歪−応力曲線を求め、得られた曲線の破断点での応力から強度(cN/dtex)を算出し、曲線の原点付近の最大勾配を与える接線から弾性率(cN/dtex)を算出した。なお、測定回数は10回とし、その平均値で表した。
Strength and elastic modulus of fiber Using "Tensilon" manufactured by Orientic Co., Ltd., sample length 200mm (length between chucks), elongation rate 100% / min, ambient temperature 20C, relative humidity 65% Then, the strain-stress curve is obtained, the strength (cN / dtex) is calculated from the stress at the breaking point of the obtained curve, and the elastic modulus (cN / dtex) is calculated from the tangent that gives the maximum gradient near the origin of the curve. did. The number of measurements was 10 times, and the average value was used.

繊維の示差走査熱量測定(DSC)
DSCは、テキサス・インスルメンツ社製「DSCQ100」を用いて行った。試料を5mm以下に切断し、アルミパンに約2mg充填・封入し、同様の空のアルミパンをリファレンスにして、窒素ガス下、10℃/分の昇温速度で室温から200℃まで温度を上昇させ、昇温DSC曲線を求めた。得られた昇温DSC曲線のベースラインを補正し、125℃〜135℃の温度領域(低温側)および140℃〜148℃の温度領域(高温側)における最大融解ピーク温度およびピーク高さを求め、低温側の最大融解ピークと高温側の最大融解ピークとの高さの比を算出した。更に低温側の融解ピーク面積と高温側の融解ピーク面積の比は、融解ピークをプロットした用紙をベースラインとピーク曲線に沿って切り抜き、重量比を面積比として算出した。
Differential scanning calorimetry (DSC) of fibers
DSC was performed using “DSCQ100” manufactured by Texas Instruments. Cut the sample to 5mm or less, fill and enclose about 2mg in an aluminum pan, and raise the temperature from room temperature to 200 ° C at a heating rate of 10 ° C / min under nitrogen gas using the same empty aluminum pan as a reference. The temperature rising DSC curve was obtained. The baseline of the obtained temperature rising DSC curve is corrected, and the maximum melting peak temperature and peak height in the temperature range of 125 ° C. to 135 ° C. (low temperature side) and the temperature range of 140 ° C. to 148 ° C. (high temperature side) are obtained. The ratio of the height between the maximum melting peak on the low temperature side and the maximum melting peak on the high temperature side was calculated. Further, the ratio of the melting peak area on the low temperature side to the melting peak area on the high temperature side was calculated by cutting out the paper on which the melting peak was plotted along the baseline and the peak curve, and the weight ratio as the area ratio.

繊維の摩擦試験
耐摩擦性は、一般紡績糸試験方法(JIS L 1095)のうち摩擦強さを測定するB法に準拠した摩擦試験により評価した。なお、2.0mmφの硬質鋼を摩擦子として用い、荷重6g/dtex、摩擦速度115回/分、往復距離2.5cm、摩擦角度110°で試験し、試料に100回の摩擦を加えた。試験回数は3回とし拡大鏡を用いて試料の状態を観察した。摩擦後の試料の融着状態を3つの記号で区分けした。○は融着保持または単糸浮き1本以下、△は単糸浮き2本〜3本、×は融着時形状を留めていない状態とした。
Friction test of fiber Friction resistance was evaluated by a friction test in accordance with the B method for measuring the friction strength in a general spun yarn test method (JIS L 1095). A 2.0 mmφ hard steel was used as a friction element, tested at a load of 6 g / dtex, a friction speed of 115 times / minute, a reciprocation distance of 2.5 cm, and a friction angle of 110 °, and 100 times of friction was applied to the sample. The number of tests was three, and the state of the sample was observed using a magnifying glass. The fused state of the sample after friction was classified by three symbols. ◯ indicates one piece or less of fusing retention or single yarn floating, Δ denotes two to three single yarn floating, and × denotes a state in which the shape is not retained at the time of fusing.

紡出糸に含まれる揮発溶剤の含有率
紡糸金口から乾燥オーブンを経て得られた紡出糸を80℃〜90℃の真空条件下に投入し、紡出糸の重量が平衡になるまで揮発性溶剤を蒸発させ、紡出糸の乾燥前重量と紡出糸の乾燥後重量から揮発性溶剤の含有率を式1より求めた。
揮発性溶剤含有率(%)=[(乾燥前重量−乾燥後重量)/乾燥前重量]×100(%) ・・・式1
Content of volatile solvent contained in the spun yarn The spun yarn obtained through the drying oven from the spinneret is put in a vacuum condition of 80 ° C to 90 ° C, and the weight of the spun yarn is balanced. The volatile solvent was evaporated until the weight of the volatile solvent was reached, and the content of the volatile solvent was calculated from the weight of the spun yarn before drying and the weight of the spun yarn after drying according to Formula 1.
Volatile solvent content (%) = [(weight before drying−weight after drying) / weight before drying] × 100 (%) Formula 1

未延伸糸に含まれる揮発性溶剤の含有率
紡糸工程で得られた未延伸糸を80℃〜90℃の真空条件下に投入し、未延伸糸の重量が平衡になるまで揮発性溶剤を蒸発させ、未延伸糸の乾燥前重量と未延伸糸の乾燥後重量から揮発性溶剤の含有率を式2より求めた。
揮発性溶剤含有率(%)=[(乾燥前重量−乾燥後重量)/乾燥前重量]×100(%)・・・式2
Content of volatile solvent contained in undrawn yarn The undrawn yarn obtained in the spinning process is put in a vacuum condition of 80C to 90C and volatilized until the weight of the undrawn yarn reaches equilibrium. The volatile solvent was evaporated, and the content of the volatile solvent was determined from Equation 2 from the weight of the undrawn yarn before drying and the weight of the undrawn yarn after drying.
Volatile solvent content (%) = [(weight before drying−weight after drying) / weight before drying] × 100 (%) Expression 2

(実施例1)
極限粘度数21.0、分子量分布指数Mw/Mn=3.7の超高分子量ポリエチレン10重量%と揮発性溶剤であるデカリン90重量%とのスラリー状混合物を、230℃に設定したスクリュー型混練機に供給し、溶解させて紡糸液とした後、170℃の紡糸口金(穴径0.7mmφ×孔数30)を用いて、単孔吐出量2.5g/分で紡糸した。紡糸口金からの紡出糸に含まれるデカリンを蒸発させない様にネルソン状ローラーにより40m/分で引き取った。直ちにU溝ガイドローラー(溝底部半径=R1.5)6個を設置した148℃の延伸オーブン中で6倍に延伸して未延伸糸を得た。次いで149℃の延伸オーブン中で2.5倍に延伸して延伸糸を得た。得られた繊維の諸物性、すなわち極限粘度、揮発性溶剤含有率、繊度、強度、弾性率、示差走査熱量測定(DSC)による最大融解ピーク温度、ピークの高さ比及びピーク面積の比、並びに摩擦試験の結果を表1に示す。また摩擦試験後の繊維の状態を図2に示す。
Example 1
Screw-type kneading of a slurry-like mixture of 10% by weight of ultrahigh molecular weight polyethylene having an intrinsic viscosity of 21.0 and a molecular weight distribution index Mw / Mn = 3.7 and 90% by weight of volatile solvent, decalin, set at 230 ° C. After being supplied to a machine and dissolved to obtain a spinning solution, spinning was performed at a single hole discharge rate of 2.5 g / min using a spinneret (hole diameter 0.7 mmφ × number of holes 30) at 170 ° C. The decalin contained in the spun yarn from the spinneret was taken up at 40 m / min by a Nelson roller so as not to evaporate. The undrawn yarn was obtained by immediately drawing 6 times in a drawing oven at 148 ° C. in which six U-groove guide rollers (groove bottom radius = R1.5) were installed. Next, the yarn was drawn 2.5 times in a drawing oven at 149 ° C. to obtain a drawn yarn. Various physical properties of the obtained fiber, that is, intrinsic viscosity, volatile solvent content, fineness, strength, elastic modulus, maximum melting peak temperature by differential scanning calorimetry (DSC), peak height ratio and peak area ratio, and The results of the friction test are shown in Table 1. The state of the fiber after the friction test is shown in FIG.

実施例1においては、紡糸等での糸切れもなく優れた可紡性を示し、繊維同士が融着した未延伸糸を得た。更に得られた延伸糸は示差走査熱量測定(DSC)にて低温側に明確な融解ピークが生じた。更に摩擦試験を加えても融着状態は良好であった。 In Example 1, an undrawn yarn in which excellent spinnability was exhibited without yarn breakage during spinning or the like and the fibers were fused together was obtained. Further, the obtained drawn yarn showed a clear melting peak on the low temperature side by differential scanning calorimetry (DSC). Furthermore, even if a friction test was added, the fusion | melting state was favorable.

(実施例2)
U溝ガイドローラーの設置個数を10個に増やした以外実施例1と同様の方法で延伸糸を得た。得られた繊維の諸物性を表1に示す。また摩擦試験後の繊維の状態を図3に示す。
(Example 2)
A drawn yarn was obtained in the same manner as in Example 1 except that the number of U-groove guide rollers was increased to 10. Table 1 shows various physical properties of the obtained fiber. Moreover, the state of the fiber after a friction test is shown in FIG.

実施例2おいては、紡糸等での糸切れもなく優れた可紡性を示し、繊維同士が融着した未延伸糸を得た。更に得られた延伸糸は示差走査熱量測定(DSC)にて低温側に明確な融解ピークが生じた。更に摩擦試験を加えても繊維同士の融着状態は良好であった。 In Example 2, an undrawn yarn in which excellent spinnability was exhibited without yarn breakage during spinning and the fibers were fused together was obtained. Further, the obtained drawn yarn showed a clear melting peak on the low temperature side by differential scanning calorimetry (DSC). Furthermore, even if a friction test was added, the fusion | bonding state of fibers was favorable.

(実施例3)
延伸オーブン温度を145℃にした以外実施例2と同様の方法で延伸糸を得た。得られた繊維の諸物性を表1に示す。また摩擦試験後の繊維の状態を図4に示す。
(Example 3)
A drawn yarn was obtained in the same manner as in Example 2 except that the drawing oven temperature was 145 ° C. Table 1 shows various physical properties of the obtained fiber. Moreover, the state of the fiber after a friction test is shown in FIG.

実施例3おいては、紡糸等での糸切れもなく優れた可紡性を示し、繊維同士が融着した未延伸糸を得た。更に得られた延伸糸は示差走査熱量測定(DSC)にて低温側に緩やかな融解ピークが生じた。摩擦試験後は単糸浮きが一部に認められたものの、融着状態は良好であった。 In Example 3, an undrawn yarn in which excellent spinnability was exhibited without yarn breakage during spinning and the fibers were fused together was obtained. Further, the obtained drawn yarn showed a slow melting peak on the low temperature side by differential scanning calorimetry (DSC). After the friction test, the single yarn was partially lifted, but the fused state was good.

(実施例4)
延伸オーブン中のU溝ガイドローラー個数を4個にした以外実施例1と同様の方法で延伸糸を得た。得られた繊維の諸物性を表1に示す。また摩擦試験後の繊維の状態を図5に示す。
Example 4
A drawn yarn was obtained in the same manner as in Example 1 except that the number of U-groove guide rollers in the drawing oven was four. Table 1 shows various physical properties of the obtained fiber. The state of the fiber after the friction test is shown in FIG.

実施例4おいては、紡糸等での糸切れもなく優れた可紡性を示し、繊維同士が融着した未延伸糸を得た。更に得られた延伸糸は示差走査熱量測定(DSC)にて低温側に緩やかな融解ピークが生じた。摩擦試験では繊維同士の融着が数箇所外れた程度であった。 In Example 4, an undrawn yarn in which excellent spinnability was exhibited without yarn breakage during spinning or the like and the fibers were fused together was obtained. Further, the obtained drawn yarn showed a slow melting peak on the low temperature side by differential scanning calorimetry (DSC). In the friction test, the fusion between the fibers was only a few.

(比較例1)
延伸オーブン温度を148℃から意図的に145℃へ下げ、繊維同士の融着の程度を調べた、ガイドローラー溝形状及び設置個数は実施例1と同様にした。得られた繊維の諸物性を表1に示す。また摩擦試験後の繊維の状態を図6に示す。
(Comparative Example 1)
The drawing oven temperature was intentionally lowered from 148 ° C. to 145 ° C., and the degree of fusion between the fibers was examined. The guide roller groove shape and the number of installation were the same as in Example 1. Table 1 shows various physical properties of the obtained fiber. Moreover, the state of the fiber after a friction test is shown in FIG.

比較例1においては、紡糸等での糸切れもなく優れた可紡性を示したものの、未延伸糸の段階で個々に数本の単糸が集束したマルチフィラメント状となっていた。未延伸糸に149℃の延伸を行っても繊維同士は融着しなかった。摩擦試験後の形態も同様の形態であった。示差走査熱量測定(DSC)には低温側の融解ピークが生じ無かった。これは延伸オーブンの温度を下げると、延伸オーブン中のU溝ガイドローラーで集束された揮発溶剤を含んだ繊維であっても、繊維の一部が融解し難い為に、繊維同士の融着が弱くなったと考えられる。 In Comparative Example 1, although excellent spinnability was exhibited with no yarn breakage in spinning or the like, it was in a multifilament shape in which several single yarns were converged individually at the stage of undrawn yarn. Even when the undrawn yarn was drawn at 149 ° C., the fibers were not fused. The form after the friction test was similar. In differential scanning calorimetry (DSC), no melting peak on the low temperature side occurred. This is because when the temperature of the drawing oven is lowered, even if the fiber contains a volatile solvent focused by a U-groove guide roller in the drawing oven, a part of the fiber is difficult to melt. Probably weakened.

(比較例2)
延伸オーブン中のガイドローラーの溝形状を平溝ガイドローラー6個にした以外実施例1と同様にした。得られた繊維の諸物性を表1に示す。また摩擦試験後の繊維の状態を図7に示す。
(Comparative Example 2)
The same procedure as in Example 1 was performed except that the groove shape of the guide roller in the drawing oven was changed to six flat groove guide rollers. Table 1 shows various physical properties of the obtained fiber. The state of the fiber after the friction test is shown in FIG.

比較例2においては、紡糸等での糸切れもなく優れた可紡性を示したものの、比較例1と同様のマルチフィラメント状の未延伸糸となった。未延伸糸に149℃の延伸を行っても繊維同士は融着しなかった。摩擦試験後の形態もマルチフィラメント状の形態であった。示差走査熱量測定(DSC)には低温側の融解ピークが生じ無かった。延伸オーブン中のガイドローラーの溝形状が平溝だと繊維同士の集束が弱い為と考えられる。 In Comparative Example 2, although excellent spinnability was exhibited without yarn breakage during spinning or the like, a multifilament-shaped undrawn yarn similar to Comparative Example 1 was obtained. Even when the undrawn yarn was drawn at 149 ° C., the fibers were not fused. The form after the friction test was also a multifilament form. In differential scanning calorimetry (DSC), no melting peak on the low temperature side occurred. It is considered that when the groove shape of the guide roller in the drawing oven is a flat groove, the fibers are weakly focused.

(比較例3)
紡糸口金から吐出した直後に窒素ガスを当て紡出糸に含まれる揮発性溶剤であるデカリンを積極的に蒸発させた以外実施例1と同様にした。得られた繊維の諸物性を表1に示す。また摩擦試験後の繊維の状態を図8に示す。
(Comparative Example 3)
Immediately after discharging from the spinneret, the same procedure as in Example 1 was performed except that nitrogen gas was applied to positively evaporate decalin, which is a volatile solvent contained in the spun yarn. Table 1 shows various physical properties of the obtained fiber. Moreover, the state of the fiber after a friction test is shown in FIG.

比較例3においては、紡糸等での糸切れもなく優れた可紡性を示したものの、個々に数本の単糸が集束したマルチフィラメント状の未延伸糸となっていた。未延伸糸に149℃の延伸を行っても繊維同士は融着しなかった。摩擦試験後の形態も同様の形態であった。示差走査熱量測定(DSC)には低温側の最大融解ピークが生じ無かった。紡出糸に含まれる揮発性溶剤であるデカリンの含有量が少ないと繊維同士の融着も弱くなると考えられる。 In Comparative Example 3, although excellent spinnability was exhibited with no yarn breakage during spinning or the like, it was a multifilament-shaped undrawn yarn in which several single yarns were individually focused. Even when the undrawn yarn was drawn at 149 ° C., the fibers were not fused. The form after the friction test was similar. In differential scanning calorimetry (DSC), there was no maximum melting peak on the low temperature side. If the content of decalin, which is a volatile solvent contained in the spun yarn, is small, it is considered that the fusion between fibers is weakened.

(比較例4)
延伸オーブン温度を155℃にした以外実施例1と同様にした。得られた繊維の諸物性を表1に示す。
(Comparative Example 4)
The same procedure as in Example 1 was performed except that the stretching oven temperature was 155 ° C. Table 1 shows various physical properties of the obtained fiber.

比較例4においては、紡糸等で糸切れが多発しながらも繊維同士が融着した未延伸糸を得た。未延伸糸に149℃の延伸を行うと糸切れが多発した。ようやく得られた延伸糸は摩擦試験に掛けた直後に糸切れした。示差走査熱量測定(DSC)には最大融解ピークの高さ比と融解ピークの面積比が小さいことから、延伸ゾーン通過中に繊維の一部が過剰に融解し強度に寄与する高配向(結晶)の高密度ポリエチレン繊維が少なくなった為と考えられる。 In Comparative Example 4, an undrawn yarn in which fibers were fused while yarn breakage occurred frequently by spinning or the like was obtained. When undrawn yarn was drawn at 149 ° C., yarn breakage occurred frequently. Finally, the drawn yarn obtained was broken immediately after the friction test. In differential scanning calorimetry (DSC), because the height ratio of the maximum melting peak and the area ratio of the melting peak are small, high orientation (crystal) that contributes to strength by melting part of the fiber excessively while passing through the drawing zone This is thought to be due to a decrease in the number of high-density polyethylene fibers.

(比較例5)
紡糸口金から吐出した紡出糸に含まれる揮発性溶剤であるデカリンができる限り蒸発しないように紡糸口金とネルソン状ローラーと距離を意図的に短くし、延伸オーブンへ紡出糸を通した以外は実施例1と同じ様にした。紡出糸に含まれる揮発性溶剤の含有量を表1に示す。
(Comparative Example 5)
In order to prevent evaporation of decalin, a volatile solvent contained in the spun yarn discharged from the spinneret as much as possible, the distance between the spinneret and the Nelson roller was intentionally shortened, and the spun yarn was passed through a drawing oven. Same as Example 1. Table 1 shows the content of the volatile solvent contained in the spun yarn.

比較例5においては延伸オーブン紡出糸を通すと糸切れが頻発し、未延伸糸が得られなかった。紡出糸に含まれる揮発性溶剤であるデカリン濃度が多すぎると、紡出糸に延伸できる十分に強さが無く溶断したと考えられる。   In Comparative Example 5, yarn breakage occurred frequently when the drawn oven-spun yarn was passed through, and an undrawn yarn could not be obtained. If the concentration of decalin, which is a volatile solvent contained in the spun yarn, is too high, it is considered that the spun yarn was melted without sufficient strength to be drawn.

実施例1〜4のモノフィラメント様ポリエチレン繊維に示差走査熱量測定(DSC)にて低温側に融解ピークが生じたのは、延伸オーブン中を通過する紡出糸に含まれた揮発性溶剤と、ガイドローラー溝形状による繊維の集束と、延伸オーブンの熱によって繊維同士が融着したとみられる。繊維同士の融着の程度は例えば図11に示す様に、繊維断面を顕微鏡で観察すると隣接し合う繊維同士の境目が分り難いことが確認できる。 In the monofilament-like polyethylene fibers of Examples 1 to 4, the melting peak occurred on the low temperature side in the differential scanning calorimetry (DSC). The volatile solvent contained in the spun yarn passing through the drawing oven and the guide It seems that the fibers are fused by the bundling of the fibers by the roller groove shape and the heat of the drawing oven. As shown in FIG. 11, for example, the degree of fusion between fibers can be confirmed by observing the fiber cross section with a microscope so that the boundary between adjacent fibers is difficult to understand.

本発明によれば、従来の高強度ポリエチレン繊維と同程度の強度および弾性率を有しながら、繊維同士が融着したモノフィラメント様高強度ポリエチレン繊維が得られる。かかるモノフィラメント様高強度ポリエチレン繊維は、例えば、釣り糸として、あるいはコンクリート補強材用の補強繊維として、産業上、広範囲に応用可能である。 According to the present invention, it is possible to obtain a monofilament-like high-strength polyethylene fiber in which fibers are fused while having the same strength and elastic modulus as those of conventional high-strength polyethylene fibers. Such monofilament-like high-strength polyethylene fibers can be applied to a wide range of industries, for example, as fishing lines or as reinforcing fibers for concrete reinforcing materials.

1:ベースライン
2:超高分子量ポリエチレン繊維の一部が融解した未配向(非結晶構造)部分の融解ピーク
3:超高分子量ポリエチレン繊維の高配向(結晶構造)部分の融解ピーク
4:再昇温による融解ピーク

1: Baseline 2: Melting peak in an unoriented (non-crystalline structure) portion where a part of ultra-high molecular weight polyethylene fiber is melted 3: Melting peak in a highly oriented (crystalline structure) portion of ultra-high molecular weight polyethylene fiber 4: Re-elevation Melting peak due to temperature

Claims (4)

繰返し単位が実質的にエチレンである超高分子量ポリエチレンからなり、平均強度が20cN/dtex以上であり、示差走査型熱量測定(DSC)における昇温速度10℃/分でのDSC曲線が125〜135℃の温度領域(低温側)に少なくとも1本の融解ピークを示し、かつ140℃〜148℃の温度領域(高温側)に少なくとも1本の融解ピークを示し、
示差走査型熱量測定(DSC)における昇温速度10℃/分でのDSC曲線における低温側の最大融解ピークと高温側の最大融解ピークとの高さの比が1:10〜1:20である、ことを特徴とする高強度ポリエチレン繊維。
It consists of ultrahigh molecular weight polyethylene whose repeating unit is substantially ethylene, has an average strength of 20 cN / dtex or more, and has a DSC curve of 125 to 135 at a heating rate of 10 ° C./min in differential scanning calorimetry (DSC). in ° C. temperature range (low temperature side) represents at least one melting peak, and shows at least one melting peak at a temperature region of 140 ° C. to 148 ° C. (high temperature side),
In the differential scanning calorimetry (DSC), the ratio of the height of the maximum melting peak on the low temperature side to the maximum melting peak on the high temperature side in the DSC curve at a heating rate of 10 ° C./min is 1:10 to 1:20. , high strength polyethylene fiber characterized in that.
示差走査型熱量測定(DSC)における昇温速度10℃/分でのDSC曲線における低温側の最大融解ピークと高温側の最大融解ピークとの面積の比が1:2〜1:8である、請求項に記載の高強度ポリエチレン繊維。 The ratio of the area of the maximum melting peak on the low temperature side to the maximum melting peak on the high temperature side in the DSC curve at a heating rate of 10 ° C./min in differential scanning calorimetry (DSC) is 1: 2 to 1: 8. The high-strength polyethylene fiber according to claim 1 . 前記超高分子量ポリエチレンの極限粘度数が5以上30以下である、請求項1または2に記載の高強度ポリエチレン繊維。 The high-strength polyethylene fiber according to claim 1 or 2 , wherein the ultra high molecular weight polyethylene has an intrinsic viscosity of 5 or more and 30 or less. 一般紡績糸試験方法(JIS L 1095)のうち摩耗強さを測定するB法に準拠した摩擦試験において、摩擦回数100後に繊維同士の融着が保持されていることを特徴とする、請求項1〜のいずれか一項に記載の高強度ポリエチレン繊維。 2. The splicing between fibers is maintained after 100 times of friction in a friction test in accordance with Method B for measuring the wear strength of the general spun yarn test method (JIS L 1095). The high-strength polyethylene fiber according to any one of to 3 .
JP2013223068A 2013-10-28 2013-10-28 Monofilament-like high-strength polyethylene fiber Active JP6210209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013223068A JP6210209B2 (en) 2013-10-28 2013-10-28 Monofilament-like high-strength polyethylene fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013223068A JP6210209B2 (en) 2013-10-28 2013-10-28 Monofilament-like high-strength polyethylene fiber

Publications (2)

Publication Number Publication Date
JP2015086473A JP2015086473A (en) 2015-05-07
JP6210209B2 true JP6210209B2 (en) 2017-10-11

Family

ID=53049590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013223068A Active JP6210209B2 (en) 2013-10-28 2013-10-28 Monofilament-like high-strength polyethylene fiber

Country Status (1)

Country Link
JP (1) JP6210209B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3971330A4 (en) * 2019-05-14 2023-07-26 Toyobo Co., Ltd. Polyethylene fibre

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031754A (en) * 2017-08-07 2019-02-28 株式会社ゴーセン Ultrahigh molecular weight polyethylene multifilament fusible yarn and manufacturing method thereof
JP6539329B2 (en) * 2017-11-15 2019-07-03 旭化成株式会社 Ultra-high molecular weight polyethylene fiber
KR102109770B1 (en) * 2018-12-18 2020-05-14 다이텍연구원 Process Of Producing Metallocene Poly-ethylene Composite For Offshore Structure Having Good Shear Strength And Flexural Strength
JP7050970B2 (en) * 2021-01-08 2022-04-08 株式会社ゴーセン Method for manufacturing ultra-high molecular weight polyethylene multifilament fused yarn

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268430A (en) * 1985-01-29 1986-11-27 Toyobo Co Ltd Manufacture of drawn crystalline polymer
JPH01162834A (en) * 1987-12-21 1989-06-27 Toyobo Co Ltd Polyethylene wire material having high elasticity and high modulus 6 elasticity
DE60011308T2 (en) * 1999-08-11 2005-06-23 Toyo Boseki K.K. Rope containing high-strength polyethylene fibers
JP2001303358A (en) * 2000-04-20 2001-10-31 Toyobo Co Ltd High-performance fishline excellent in abrasion resistance
JP4337233B2 (en) * 2000-05-02 2009-09-30 東洋紡績株式会社 High-strength polyethylene fiber and method for producing the same
EP1647616A1 (en) * 2004-10-14 2006-04-19 DSM IP Assets B.V. Process for making a monofilament-like product
JP4463844B2 (en) * 2007-10-26 2010-05-19 有限会社よつあみ Self-bonding yarn

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3971330A4 (en) * 2019-05-14 2023-07-26 Toyobo Co., Ltd. Polyethylene fibre

Also Published As

Publication number Publication date
JP2015086473A (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP4155231B2 (en) Net containing high-strength polyethylene fiber
JP4834859B2 (en) Manufacturing method of monofilament-like products
US10087560B2 (en) Braid
JP6210209B2 (en) Monofilament-like high-strength polyethylene fiber
TWI691625B (en) Braided elongate bodies and a method of making the same
JP5597922B2 (en) braid
JP2015067910A (en) Carbon fiber and manufacturing method thereof
KR102224261B1 (en) Multifilament and braid
JP2003013326A (en) Polyketone fiber, method of producing the same and polyketone twisted yarn
JP2001303358A (en) High-performance fishline excellent in abrasion resistance
KR20170100480A (en) Polyphenylene sulfide monofilament and manufacturing method therefor, and package
CN111788342A (en) Twisted cord made of liquid crystal polyester multifilament, process for producing the same, and product obtained by using the same
JP2014231668A (en) Braid
JP3666635B2 (en) High-strength polyethylene fiber with excellent uniformity
WO2020230809A1 (en) Polyethylene fibre
KR102224257B1 (en) Multifilament and braid
JP6458873B2 (en) Polyolefin fiber and method for producing the same
JP7239410B2 (en) Method for producing liquid crystal polyester fiber
CN112805436B (en) HMPE fibers with improved bending fatigue properties
JP5502680B2 (en) Polyester fiber for marine rope
JP6953741B2 (en) Polyethylene fibers, textile products, and methods for manufacturing polyethylene fibers
JP7176517B2 (en) Multifilament and its constituent monofilaments
JP6693057B2 (en) Polymethylpentene fiber
KR20240034682A (en) Carbon fiber bundle and its manufacturing method
JP2016153542A (en) Multifilament

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170829

R151 Written notification of patent or utility model registration

Ref document number: 6210209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250