JP6209348B2 - Method for manufacturing electrochemical device - Google Patents

Method for manufacturing electrochemical device Download PDF

Info

Publication number
JP6209348B2
JP6209348B2 JP2013071758A JP2013071758A JP6209348B2 JP 6209348 B2 JP6209348 B2 JP 6209348B2 JP 2013071758 A JP2013071758 A JP 2013071758A JP 2013071758 A JP2013071758 A JP 2013071758A JP 6209348 B2 JP6209348 B2 JP 6209348B2
Authority
JP
Japan
Prior art keywords
electrochemical device
laminate
exterior body
treatment
exterior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013071758A
Other languages
Japanese (ja)
Other versions
JP2014197461A (en
Inventor
司 眞野
司 眞野
晃大 山本
晃大 山本
成瀬 悟
悟 成瀬
将邦 三須
将邦 三須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2013071758A priority Critical patent/JP6209348B2/en
Publication of JP2014197461A publication Critical patent/JP2014197461A/en
Application granted granted Critical
Publication of JP6209348B2 publication Critical patent/JP6209348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

この発明は、電池等の電気化学デバイスに関し、特に電気化学デバイスの製造方法に関する。   The present invention relates to an electrochemical device such as a battery, and more particularly to a method for manufacturing an electrochemical device.

近年、電子ペーパ、ICタグ、ICカード、電子キーなどのさまざまな薄型電子機器が実用化されてきている。これらの薄型電子機器用の電源としては、同様に薄型形状のものが求められ、ラミネートタイプの電池が組み込まれるのが通常である。このラミネートタイプの電池の一例として、例えば特許文献1には、ラミネートタイプのリチウム一次電池が開示されている。特許文献1では、金属ラミネートフィルムとして、絶縁樹脂層、アルミニウム箔及び溶融樹脂層を貼り合わせてなるアルミニウム・ラミネートフィルムが用いられている。そして、2枚のラミネートフィルムを重ね合わせ、その外周縁に沿って熱溶着することで密封封止して矩形袋状の容器が形成されている。完成した電池は、組み込まれる薄型電子機器の外装を構成する2枚の樹脂材料シートの間に挟み込まれ、接着剤によって固定される。   In recent years, various thin electronic devices such as electronic paper, IC tags, IC cards, and electronic keys have been put into practical use. The power source for these thin electronic devices is similarly required to have a thin shape, and a laminate type battery is usually incorporated. As an example of this laminate-type battery, for example, Patent Document 1 discloses a laminate-type lithium primary battery. In Patent Document 1, an aluminum laminate film obtained by bonding an insulating resin layer, an aluminum foil, and a molten resin layer is used as a metal laminate film. Then, the two laminated films are overlapped and thermally sealed along the outer peripheral edge thereof to be hermetically sealed to form a rectangular bag-shaped container. The completed battery is sandwiched between two resin material sheets constituting the exterior of a thin electronic device to be incorporated, and fixed with an adhesive.

特開2012−209125号公報JP 2012-209125 A

このような従来のラミネートタイプの電池が組み込まれる薄型電子機器は、電子マネー機能を有するICカードのように、常時ユーザが身近に携帯しており、無造作にポケットに収納されたりすることもあるため、曲げ等の変形応力に耐える機械的強度を有する必要がある。また、所定の環境条件下での薄型電子機器の動作を保証するために、電池内部の発電要素を外部環境から保護すべく電池外装について所定の密封性を確保する必要もある。   Such a thin electronic device incorporating a conventional laminate-type battery is always carried by the user, like an IC card having an electronic money function, and may be randomly stored in a pocket. It is necessary to have mechanical strength that can resist deformation stress such as bending. In addition, in order to guarantee the operation of the thin electronic device under a predetermined environmental condition, it is necessary to ensure a predetermined hermetic seal on the battery exterior in order to protect the power generation element inside the battery from the external environment.

この点、従来のラミネートタイプ電池では、高湿条件下で保管、又は使用した場合、熱溶着で封止した容器内に外部から水分が浸入することがあり、それによって電池特性が劣化することがあるという問題があった。   In this regard, when a conventional laminate type battery is stored or used under high humidity conditions, moisture may enter from the outside into a container sealed by heat welding, which may deteriorate battery characteristics. There was a problem that there was.

また、使用されているラミネートシートの表面エネルギーが低いため、電池外装材を構成する樹脂材料と接着する際の二次加工性に問題があった。言い換えれば、外装材表面とラミネートシートの接着性が十分に得られないことがあり、その場合には組み込まれる薄型電子部品について所定の機械的強度を得ることができないという問題があった。   In addition, since the surface energy of the laminate sheet used is low, there is a problem in secondary workability when adhering to the resin material constituting the battery exterior material. In other words, sufficient adhesion between the exterior material surface and the laminate sheet may not be obtained. In that case, there is a problem that a predetermined mechanical strength cannot be obtained for the thin electronic component to be incorporated.

本発明は、上記のような問題点を解決し、品質保持性能がより高く、二次加工性により優れた電気化学デバイスの製造方法を提供することを一つの目的としている。   One object of the present invention is to provide an electrochemical device manufacturing method that solves the above-described problems, has higher quality retention performance, and is superior in secondary workability.

上記目的を達成するための本発明の一態様は、
略矩形のシート状に成形された正極と負極とをセパレータを介して対向配置してなる積層体と電解液とがフィルム状の外装体内に密封されており、当該外装体の表面が、組み込まれる機器の外装材の内面に接着される電気化学デバイスの製造方法であって、
前記正極及び負極の反対側の面にコロナ放電を照射する処理と、
前記積層体および前記電解液を前記外装体によって密封した後に、前記外装体の外側全面にプラズマ放電を照射する処理と、
を有している。
In order to achieve the above object, one embodiment of the present invention provides:
A laminate formed by arranging a positive electrode and a negative electrode formed in a substantially rectangular sheet shape to face each other with a separator interposed therebetween and an electrolyte solution are sealed in a film-shaped exterior body, and the surface of the exterior body is incorporated. A method for manufacturing an electrochemical device to be bonded to the inner surface of an exterior material of an apparatus ,
Treatment of irradiating corona discharge on the opposite surface of the positive and negative electrodes;
A process of irradiating plasma discharge to the entire outer surface of the exterior body after sealing the laminate and the electrolyte solution with the exterior body;
have.

上記本発明の一態様によれば、品質保持性能がより高く、二次加工性により優れた電気化学デバイスを提供することができる。   According to one embodiment of the present invention, it is possible to provide an electrochemical device having higher quality retention performance and superior secondary workability.

図1は、一般的なラミネートタイプ電気化学デバイス1の外観例を示す斜視図である。FIG. 1 is a perspective view showing an example of the appearance of a general laminate type electrochemical device 1. 図2は、図1の電気化学デバイス1の横断面図である。FIG. 2 is a cross-sectional view of the electrochemical device 1 of FIG. 図3は、本実施形態の電気化学デバイス1の製造工程を示す模式図である。FIG. 3 is a schematic diagram showing a manufacturing process of the electrochemical device 1 of the present embodiment. 図4は、本実施形態の電気化学デバイス1の製造工程を示す模式図である。FIG. 4 is a schematic diagram showing a manufacturing process of the electrochemical device 1 of the present embodiment. 図5は、本発明の実施形態に係る電気化学デバイス1と、比較例とにおいて、強度の経時的変化を示す図である。FIG. 5 is a diagram illustrating a change in strength over time in the electrochemical device 1 according to the embodiment of the present invention and a comparative example. 図6は、本発明の実施形態に係る電気化学デバイス1と、比較例とにおいて、内部抵抗の経時的変化を示す図である。FIG. 6 is a diagram showing a temporal change in internal resistance in the electrochemical device 1 according to the embodiment of the present invention and the comparative example.

以下、本発明の一実施形態につき、添付図面を参照して説明する。図1は、本発明の一実施形態に係るラミネートタイプ電気化学デバイス1の外観を例示している図である。図1に示すように、電気化学デバイス1は、外装体100内に電解液を含む発電要素が収納されて構成されている。発電要素における正極と負極の各電極端子に接続されて、外部機器と接続するための電極板(タブ)40が外装体100の外に露出している。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a diagram illustrating the appearance of a laminate type electrochemical device 1 according to an embodiment of the present invention. As shown in FIG. 1, the electrochemical device 1 is configured such that a power generation element including an electrolytic solution is housed in an exterior body 100. An electrode plate (tab) 40 connected to the positive electrode and negative electrode terminals of the power generation element and connected to an external device is exposed to the outside of the outer package 100.

外装体100は、略矩形状の2枚のラミネートフィルムの四辺の縁を貼り合わせることにより構成されている。一般に、ラミネートフィルムは、アルミニウムなどからなる金属薄膜を基材として、電気化学デバイス1の外側、すなわち外装体100のおもて面にポリエステル、ナイロンなどの樹脂からなる保護層を設け、外装体100の裏側、すなわち電気化学デバイス1の内側となる面に、熱融着性樹脂による熱融着層を設けたものである。   The exterior body 100 is configured by bonding edges of four sides of two substantially rectangular laminate films. In general, a laminate film has a metal thin film made of aluminum or the like as a base material, and a protective layer made of a resin such as polyester or nylon is provided on the outer side of the electrochemical device 1, that is, the front surface of the outer package 100. On the other side, that is, the inner surface of the electrochemical device 1 is provided with a heat-sealing layer made of a heat-fusible resin.

図2に、図1の電気化学デバイス1の横断面図の例を示している。図2において、電気化学デバイス1の発電要素20は、集電体となるシート状導電体11の表面に、正極活物質11p、および負極活物質11nを略矩形状に塗布してなる正極10p、負極10nと、セパレータ30とを備えている。   In FIG. 2, the example of the cross-sectional view of the electrochemical device 1 of FIG. 1 is shown. In FIG. 2, the power generation element 20 of the electrochemical device 1 includes a positive electrode active material 11 p and a negative electrode active material 11 n coated on the surface of a sheet-like conductor 11 serving as a current collector in a substantially rectangular shape, A negative electrode 10n and a separator 30 are provided.

シート状導電体11は、略矩形の一辺に電力の取り出し口となる電極端子を突設させた平面形状である。正極10pと負極10nとが、正極活物質11p、および負極活物質11nが互いに対向するようにセパレータ30を介して対面配置されて、発電要素20が構成されている。この発電要素20が、電解液とともに外装体100内に密閉状態で収納されている。シート状導電体11に形成されている電極端子には、外部回路と接続するためのタブ40が超音波溶接などの方法によって溶着されている。   The sheet-like conductor 11 has a planar shape in which an electrode terminal serving as a power outlet is provided on one side of a substantially rectangular shape. The power generation element 20 is configured such that the positive electrode 10p and the negative electrode 10n are disposed to face each other through the separator 30 so that the positive electrode active material 11p and the negative electrode active material 11n face each other. The power generation element 20 is housed in a sealed state in the exterior body 100 together with the electrolytic solution. A tab 40 for connecting to an external circuit is welded to the electrode terminal formed on the sheet-like conductor 11 by a method such as ultrasonic welding.

なお、図2に示した例では、発電要素20を、1対の正極10pと負極10nとをセパレータ30を介して対向配置させた単層構造として示している。このような単層構造だけでなく、周知のように、複数の正極10pと負極10nとの組合せを有する多層構造として電気化学デバイス1を構成することもできる。また、図2に図示されている各要素の形状、および相対的なサイズの関係は説明のための一例であって、設計上の要請等に応じて適宜変更可能であることは言うまでもない。   In the example shown in FIG. 2, the power generation element 20 is shown as a single layer structure in which a pair of positive electrode 10 p and negative electrode 10 n are arranged to face each other with a separator 30 interposed therebetween. In addition to such a single layer structure, as is well known, the electrochemical device 1 can also be configured as a multilayer structure having a combination of a plurality of positive electrodes 10p and negative electrodes 10n. Further, the relationship between the shape and relative size of each element shown in FIG. 2 is an example for explanation, and it is needless to say that it can be appropriately changed according to a design requirement or the like.

次に、本実施形態に係る電気化学デバイス1の製造方法について説明する。図3、図4に、本発明に係る電気化学デバイス1の製造工程を、模式的に示している。まず、図3に示すように、正極活物質11pが塗布されたシート状導電体11として構成されている正極10pと、負極活物質11nが塗布されたシート状導電体11として構成されている負極10nとを、正極活物質11p、負極活物質11nが互いに向き合うようにセパレータ30を介して密接させて発電要素20を形成し、その厚み方向の両面、すなわち発電要素20の外側に向いているシート状導電体11の面について、その全面にわたってコロナ放電を照射する。符号200は、コロナ放電を発生させるコロナ電極を模式的に示している。   Next, a method for manufacturing the electrochemical device 1 according to this embodiment will be described. 3 and 4 schematically show the production process of the electrochemical device 1 according to the present invention. First, as shown in FIG. 3, a positive electrode 10p configured as a sheet-like conductor 11 coated with a positive electrode active material 11p, and a negative electrode configured as a sheet-shaped conductor 11 coated with a negative electrode active material 11n. 10n is closely contacted via the separator 30 so that the positive electrode active material 11p and the negative electrode active material 11n face each other to form the power generation element 20, and the sheet faces the both sides in the thickness direction, that is, the outside of the power generation element 20 Corona discharge is applied to the entire surface of the conductor 11. Reference numeral 200 schematically indicates a corona electrode that generates corona discharge.

図3では、組み立てた発電要素20のシート状導電体11表面に対してコロナ電極200を相対的に移動させる形態を例示したが、これは本発明の理解を容易にするためであり、前記のように、シート状導電体11の一方の表面にあらかじめコロナ放電処理を施しておいてもよい。また、コロナ放電の放電量は、シート状導電体11の材質、厚さなどの条件に応じて、投入電力量とコロナ放電照射時間を調整することにより適宜決定することができる。   FIG. 3 illustrates a mode in which the corona electrode 200 is moved relative to the surface of the sheet-like conductor 11 of the assembled power generation element 20, but this is for facilitating the understanding of the present invention. As described above, one surface of the sheet-like conductor 11 may be subjected to a corona discharge treatment in advance. Further, the discharge amount of the corona discharge can be appropriately determined by adjusting the input power amount and the corona discharge irradiation time according to conditions such as the material and thickness of the sheet-like conductor 11.

次に、図4に例示する工程について説明する。図4では、図3の処理を行って得られた発電要素20を外装材100に密封して完成した電気化学デバイス1の全表面に対して、プラズマ電極300によりプラズマ放電を照射する処理を示している。樹脂材料の外装材100の表面に、プラズマ放電によって極性基を生成して化学的改質を行い、接着剤、熱溶融した接合対象物表面との親和性を高めることにより、接着強度が向上する。プラズマ放電によって外装材100の表面に微細な凹凸が生成される、いわゆる表面粗し効果も、前記接着強度の向上に寄与する。本実施形態の電気化学デバイス1では、組み込み対象となる薄型電子機器の外装材内面との接着性が向上することにより、薄型電子機器の機械的強度向上が図られる。また、接合対象物表面との間の界面に形成される接着層により、外部から外装材100表面を通じて電気化学デバイス1内部への水分侵入を防ぐことができる。   Next, the process illustrated in FIG. 4 will be described. In FIG. 4, the process which irradiates plasma discharge with the plasma electrode 300 with respect to the whole surface of the electrochemical device 1 which sealed the electric power generation element 20 obtained by performing the process of FIG. ing. The adhesive strength is improved by generating a polar group by plasma discharge on the surface of the exterior material 100 of the resin material and performing chemical modification to increase the affinity with the adhesive and the surface of the object to be melted. . The so-called surface roughening effect in which fine irregularities are generated on the surface of the exterior material 100 by plasma discharge also contributes to the improvement of the adhesive strength. In the electrochemical device 1 of the present embodiment, the mechanical strength of the thin electronic device can be improved by improving the adhesion to the inner surface of the exterior material of the thin electronic device to be incorporated. Moreover, the adhesion layer formed at the interface with the surface of the bonding target object can prevent moisture from entering the electrochemical device 1 from the outside through the surface of the exterior material 100.

以上のように、コロナ放電処理及びプラズマ処理された発電要素20のシート状導電材11表面と外装材100との界面、および外装材100の表面の接着層の2つの水分透過抑止層が形成されているため、従来のラミネートタイプ電気化学デバイスと比較して、外部からの水分浸入を防止する効果が向上する。また、外装材100表面の化学的な改質と適度な表面粗し効果とにより組み込み対象との接着強度が向上し、ひいては組み込まれる薄型電気機器の機械的強度向上に資することができる。   As described above, two moisture permeation suppression layers are formed, that is, the interface between the surface of the sheet-like conductive material 11 of the power generation element 20 subjected to the corona discharge treatment and the plasma treatment and the exterior material 100, and the adhesive layer on the surface of the exterior material 100. Therefore, the effect of preventing moisture from entering from the outside is improved as compared with the conventional laminate type electrochemical device. In addition, the chemical modification of the surface of the exterior material 100 and the appropriate surface roughening effect can improve the adhesive strength with the object to be incorporated, which in turn contributes to the improvement of the mechanical strength of the thin electric device to be incorporated.

以上説明した実施形態の効果を、より具体的に説明する。図5に、本実施形態の製造方法により製造した電気化学デバイス1と、コロナ処理のみ、プラズマ処理のみ、いずれの処理もなしの3つの条件で製造した電気化学デバイスとについて、ピール強度試験を実施した結果を示している。図5のグラフで、横軸は各電気化学デバイスの常温常湿における保存日数を、縦軸は保存日数経過後に実施したピール試験によるピール強度測定値を示している。保存条件は、60℃、相対湿度90%とした。図5に示すように、本実施形態におけるコロナ処理のみ、プラズマ処理のみ実施して製造した電気化学デバイスでは、なにも処理をしていない場合と比較して一定のピール強度向上は見られるものの、保存日数経過とともにピール強度は急速に低下している。一方、本実施形態によりプラズマ処理、およびコロナ処理を両方実施した電気化学デバイス1の場合には、当初のピール強度が処理なしの場合の約8倍に向上しているだけでなく、保存日数経過時のピール強度低下も、他の条件と異なって極めて緩やかであることが判明した。この結果は、コロナ処理、プラズマ処理の併用による接着強度の向上とともに、時間経過しても外部からの水分浸入等による接着強度低下が起こりにくいことを裏付けている。   The effect of the embodiment described above will be described more specifically. FIG. 5 shows a peel strength test for the electrochemical device 1 manufactured by the manufacturing method of the present embodiment and the electrochemical device manufactured under the three conditions of corona treatment only, plasma treatment only, and no treatment. Shows the results. In the graph of FIG. 5, the horizontal axis represents the number of days of storage of each electrochemical device at room temperature and humidity, and the vertical axis represents the peel strength measurement value by a peel test performed after the storage days have elapsed. The storage conditions were 60 ° C. and 90% relative humidity. As shown in FIG. 5, in the electrochemical device manufactured by performing only the corona treatment and only the plasma treatment in the present embodiment, although a certain peel strength improvement is seen compared to the case where no treatment is performed. The peel strength decreases rapidly with the passage of storage days. On the other hand, in the case of the electrochemical device 1 in which both the plasma treatment and the corona treatment are performed according to the present embodiment, not only the initial peel strength is improved by about 8 times that in the case of no treatment, but also the storage days have elapsed. It was found that the peel strength reduction at that time was very gradual, unlike other conditions. This result confirms that the adhesive strength is improved by the combined use of the corona treatment and the plasma treatment, and that the adhesive strength is not easily lowered due to the intrusion of moisture from the outside even after a lapse of time.

図6は、本実施形態のコロナ処理およびプラズマ処理を実施した電気化学デバイス1と、なにも処理をしていない従来の電気化学デバイスとについて、保存日数と内部抵抗値との関係を測定したグラフである。図6に示されているように、いずれの電気化学デバイスについても保存日数30日程度までは内部抵抗の測定値にそれ程の差異は見られないが、保存日数が30日を超えると、従来の電気化学デバイスでは内部抵抗が急速に増大していることがわかる。これは、従来の電気化学デバイスでは、本実施形態のコロナ処理およびプラズマ処理による水分透過抑止層が存在しないため、外装材100を通じて外部の水分が浸透し、電池特性の劣化をもたらしたものと推察される。   FIG. 6 shows the relationship between the storage days and the internal resistance values of the electrochemical device 1 subjected to the corona treatment and the plasma treatment of the present embodiment and the conventional electrochemical device not subjected to any treatment. It is a graph. As shown in FIG. 6, for any electrochemical device, there is no significant difference in the measured values of the internal resistance until about 30 days of storage, but when the number of storage days exceeds 30 days, It can be seen that the internal resistance increases rapidly in electrochemical devices. This is presumed that in the conventional electrochemical device, the moisture permeation suppression layer by the corona treatment and the plasma treatment of the present embodiment does not exist, so that external moisture penetrates through the exterior material 100 and the battery characteristics are deteriorated. Is done.

以上、本発明の実施形態によって説明したように、本発明の実施形態に係る製造方法により製造した電気化学デバイス1によれば、外部からの水分の侵入が効果的に抑止されるため、電池特性を保持する品質保持性能を向上させることができる。また、外装材100の表面が化学的に改質されるとともに適度に表面粗しがなされているため、電源として薄型電子機器に組み込む際の二次加工性が向上し、ひいては当該電子機器の機械的強度向上に資することができるといった効果を奏する。   As described above, according to the electrochemical device 1 manufactured by the manufacturing method according to the embodiment of the present invention as described in the embodiment of the present invention, since the intrusion of moisture from the outside is effectively suppressed, the battery characteristics It is possible to improve the quality retention performance for retaining Further, since the surface of the exterior material 100 is chemically modified and the surface is appropriately roughened, the secondary workability when incorporated into a thin electronic device as a power source is improved, and consequently the machine of the electronic device There is an effect that it can contribute to improvement of the mechanical strength.

1 電気化学デバイス 10p 正極 10n 負極
11 シート状導電材 11p 正極活物質 11n 負極活物質
20 発電要素 30 セパレータ 40 タブ
100 外装材
DESCRIPTION OF SYMBOLS 1 Electrochemical device 10p Positive electrode 10n Negative electrode 11 Sheet-like electroconductive material 11p Positive electrode active material 11n Negative electrode active material 20 Electric power generation element 30 Separator 40 Tab 100 Exterior material

Claims (1)

略矩形のシート状に成形された正極と負極とをセパレータを介して対向配置してなる積層体と電解液とがフィルム状の外装体内に密封されており、当該外装体の表面が、組み込まれる機器の外装材の内面に接着される電気化学デバイスの製造方法であって、
前記正極及び負極の反対側の面にコロナ放電を照射する処理と、
前記積層体および前記電解液を前記外装体によって密封した後に、前記外装体の外側全面にプラズマ放電を照射する処理と、
を有している電気化学デバイスの製造方法。
A laminate formed by arranging a positive electrode and a negative electrode formed in a substantially rectangular sheet shape to face each other with a separator interposed therebetween and an electrolyte solution are sealed in a film-shaped exterior body, and the surface of the exterior body is incorporated. A method for manufacturing an electrochemical device to be bonded to the inner surface of an exterior material of an apparatus ,
Treatment of irradiating corona discharge on the opposite surface of the positive and negative electrodes;
A process of irradiating plasma discharge to the entire outer surface of the exterior body after sealing the laminate and the electrolyte solution with the exterior body;
The manufacturing method of the electrochemical device which has this.
JP2013071758A 2013-03-29 2013-03-29 Method for manufacturing electrochemical device Active JP6209348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013071758A JP6209348B2 (en) 2013-03-29 2013-03-29 Method for manufacturing electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013071758A JP6209348B2 (en) 2013-03-29 2013-03-29 Method for manufacturing electrochemical device

Publications (2)

Publication Number Publication Date
JP2014197461A JP2014197461A (en) 2014-10-16
JP6209348B2 true JP6209348B2 (en) 2017-10-04

Family

ID=52358113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013071758A Active JP6209348B2 (en) 2013-03-29 2013-03-29 Method for manufacturing electrochemical device

Country Status (1)

Country Link
JP (1) JP6209348B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161652A (en) * 1985-01-10 1986-07-22 Fuji Elelctrochem Co Ltd Thin battery
JP2010092598A (en) * 2008-10-03 2010-04-22 Gs Yuasa Corporation Battery pack
JP2011244024A (en) * 2010-05-13 2011-12-01 Panasonic Corp Electronic apparatus
JP5831924B2 (en) * 2011-03-31 2015-12-09 Necエナジーデバイス株式会社 Battery pack

Also Published As

Publication number Publication date
JP2014197461A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
JP6204598B2 (en) Pouch-type battery cell including a film member for protecting an electrode lead-electrode tab joint
JP6395208B2 (en) Electrochemical cell, electrochemical cell module, portable device, and method of manufacturing electrochemical cell module
WO2016017048A1 (en) Battery pack
TW201611391A (en) Stacked-cell battery with notches to accommodate electrode connections
JP2013097931A (en) Manufacturing method of electrochemical element of thin film type
JP2006269288A (en) Thin battery
WO2015002094A1 (en) Cell
JP6932129B2 (en) Electrochemical device
JP2006164784A (en) Film-armored electric device
JP2014220176A (en) Lead member, nonaqueous electrolyte power storage device
JP7008430B2 (en) Laminated power storage element
JP5332256B2 (en) Thin battery
JPWO2015163025A1 (en) Secondary battery
JP6209348B2 (en) Method for manufacturing electrochemical device
TW201622213A (en) Electrode
JP2013161547A (en) Lead member and manufacturing method therefor
JP2017073238A (en) Laminate type power storage device
JP2011070975A (en) Pressing structure of laminated battery
JP6675147B2 (en) Electrochemical cell
CN114824689A (en) Laminated electric storage device
JP7117188B2 (en) Storage element
JP6148346B2 (en) Electrical device with rounded corners
JP2017134960A (en) Laminate type power storage device, and method for manufacturing laminate type power storage device
JP2021163702A (en) Laminate type power storage device and short-circuit inspection method therefor
JP2020035521A (en) Laminate type power storage element, manufacturing method of laminate type power storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170911

R150 Certificate of patent or registration of utility model

Ref document number: 6209348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250