JP6206381B2 - Stainless steel foil - Google Patents

Stainless steel foil Download PDF

Info

Publication number
JP6206381B2
JP6206381B2 JP2014240343A JP2014240343A JP6206381B2 JP 6206381 B2 JP6206381 B2 JP 6206381B2 JP 2014240343 A JP2014240343 A JP 2014240343A JP 2014240343 A JP2014240343 A JP 2014240343A JP 6206381 B2 JP6206381 B2 JP 6206381B2
Authority
JP
Japan
Prior art keywords
stainless steel
steel foil
less
content
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014240343A
Other languages
Japanese (ja)
Other versions
JP2016102231A (en
Inventor
映斗 水谷
映斗 水谷
光幸 藤澤
光幸 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014240343A priority Critical patent/JP6206381B2/en
Publication of JP2016102231A publication Critical patent/JP2016102231A/en
Application granted granted Critical
Publication of JP6206381B2 publication Critical patent/JP6206381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、ステンレス箔に関し、特には1000℃以上の高温での耐酸化性と形状安定性に優れたフェライト系ステンレス箔に関する。   The present invention relates to a stainless steel foil, and particularly to a ferritic stainless steel foil excellent in oxidation resistance and shape stability at a high temperature of 1000 ° C. or higher.

5mass%程度のAlを含有するフェライト系ステンレス鋼は、高温での耐酸化性に優れるため、ステンレス箔に加工され、自動車、オートバイ、マリンバイク、モーターボート、大型芝刈り機、小型発電機などの排ガス浄化装置用触媒担体(メタルハニカム)に使用されている。   Ferritic stainless steel containing about 5 mass% Al is excellent in oxidation resistance at high temperatures, so it is processed into stainless steel foil and exhaust gas from automobiles, motorcycles, marine bikes, motor boats, large lawn mowers, small generators, etc. It is used as a catalyst carrier (metal honeycomb) for purification devices.

このメタルハニカムは、例えば、板厚50μm〜200μm程度の平坦なステンレス箔(平箔)と波状に加工されたステンレス箔(波箔)とを交互に積み重ねてなるハニカム構造を有し、箔同士はロウ付け等によって固定されている。そして、このステンレス箔の表面に触媒物質を塗布したものが、排ガス浄化装置に用いられる。メタルハニカム用のステンレス箔には、高温での耐酸化性に優れることのほか、ハニカム成型時のろう付け性に優れることや、高温で使用されても形状が変化しないこと(変形すると触媒層が剥がれたりハニカムの孔が潰れて排ガスが通りにくくなったりする)などが求められる。また、これらの特性に優れる5mass%程度のAlを含有するフェライト系ステンレス鋼は、メタルハニカムに加え、薄板の形状でストーブや加熱炉の部材、ヒーターの発熱体など幅広い分野に適用が進んでいる。   This metal honeycomb has, for example, a honeycomb structure in which flat stainless steel foils (flat foils) having a plate thickness of about 50 μm to 200 μm and corrugated stainless steel foils (wave foils) are alternately stacked. It is fixed by brazing. And what applied the catalyst substance to the surface of this stainless steel foil is used for an exhaust gas purification apparatus. Stainless steel foil for metal honeycombs has excellent oxidation resistance at high temperatures, excellent brazeability during honeycomb molding, and does not change shape even when used at high temperatures. And the honeycomb holes are crushed and it becomes difficult for the exhaust gas to pass through). Moreover, ferritic stainless steel containing about 5 mass% Al, which is excellent in these properties, is being applied to a wide range of fields such as heaters and heaters in the form of thin plates in addition to metal honeycombs. .

近年、排ガス浄化装置における排ガス排出抵抗の低減や表面積の増加、部材軽量化などの観点から、メタルハニカム用ステンレス箔には更なる薄肉化が求められている。しかし、板厚が薄くなると、表面積あたりの鋼中Al量が低下するため、高温でAlが枯渇しやすくなる。Alが枯渇すると異常酸化が生じたり箔の形状が変化して、箔の耐熱寿命が尽きる。そのため、板厚が薄くなると、箔材の耐熱寿命が低下する。一方、燃費向上の観点から自動車や二輪車の排ガス温度は高温化する傾向にあり、要求される耐熱温度は1000℃を超え始めている。
そのため、このような高温環境下において、板厚が30μm以下でも優れた耐酸化性と形状安定性を有するステンレス箔の開発が望まれている。
In recent years, the stainless steel foil for metal honeycombs is required to be further thinned from the viewpoints of reducing exhaust gas emission resistance, increasing the surface area, and reducing the weight of members in an exhaust gas purification device. However, when the plate thickness is reduced, the amount of Al in the steel per surface area decreases, so that Al tends to be depleted at high temperatures. When Al is depleted, abnormal oxidation occurs or the shape of the foil changes, and the heat-resistant life of the foil is exhausted. Therefore, when the plate thickness is reduced, the heat-resistant life of the foil material is reduced. On the other hand, the exhaust gas temperature of automobiles and motorcycles tends to increase from the viewpoint of improving fuel efficiency, and the required heat-resistant temperature is starting to exceed 1000 ° C.
Therefore, it is desired to develop a stainless steel foil having excellent oxidation resistance and shape stability even under a plate thickness of 30 μm or less under such a high temperature environment.

しかし、鋼中のAl含有量を増やせば耐酸化性や形状安定性は向上するが、熱間加工性と靭性の低下により、箔の素材である熱延鋼板や冷延鋼板の製造が困難になるという問題がある。   However, if the Al content in the steel is increased, the oxidation resistance and shape stability will be improved, but the hot workability and toughness will decrease, making it difficult to manufacture hot rolled steel sheets and cold rolled steel sheets as foil materials. There is a problem of becoming.

一方、ステンレス箔の耐酸化性を向上させる手段として、蒸着などによる表面コーティング技術が知られている。
例えば、特許文献1には、「ステンレス鋼フォイルの少なくとも片面に触媒を担持するためのアルミナ被覆が設けられている基体であって、該ステンレス鋼表面に蒸着めっき又は電気めっきによりAlめっきを施し、該蒸着めっきと同時またはめっき後の加熱処理によりAlめっき層にα−Al23ウイスカーを生成させた後に、該ウイスカー上にγ−Al23を被覆して上記アルミナ被覆を形成したことを特徴とする触媒担体用基体」が開示されている。
On the other hand, as a means for improving the oxidation resistance of a stainless steel foil, a surface coating technique by vapor deposition or the like is known.
For example, Patent Document 1 states that “a substrate on which at least one surface of a stainless steel foil is provided with an alumina coating for supporting a catalyst, and the stainless steel surface is subjected to Al plating by vapor deposition plating or electroplating, After the α-Al 2 O 3 whisker was formed on the Al plating layer by heat treatment simultaneously with or after the vapor deposition plating, the alumina coating was formed by coating the whisker with γ-Al 2 O 3. A catalyst carrier substrate characterized by the above is disclosed.

また、特許文献2には、「クロム16重量%以上25重量%以下とアルミニウム2.5重量%以上5.5重量%以下とを含有する厚さ25μm以上45μm以下のFe−Cr−Al系合金箔の両面に、それぞれ厚さ0.2μm以上2.5μm以下のアルミニウム層を設けたことを特徴とするFe−Cr−Al系合金箔」が開示されている。   Patent Document 2 states that “Fe—Cr—Al alloy having a thickness of 25 μm or more and 45 μm or less and containing 16% by weight to 25% by weight of chromium and 2.5% by weight or more and 5.5% by weight or less of aluminum An “Fe—Cr—Al alloy foil” is disclosed in which an aluminum layer having a thickness of 0.2 μm or more and 2.5 μm or less is provided on both surfaces of the foil.

特開昭64−15144号公報Japanese Unexamined Patent Publication No. 64-15144 特開平1−159384号公報JP-A-1-159384

ここで、特許文献1には、種々の厚みのAl蒸着めっき層を設けたステンレス鋼フォイルが開示されているが、1000℃以上の高温環境下において十分な耐酸化性を得るには、鋼中のAl含有量を5mass%程度としても、Al蒸着めっき層の厚さを0.4μm以上とする必要がある。しかし、Al蒸着めっき層の厚さが大きくなると、蒸着時間が長時間化し、生産効率が低下するという問題があった。また、1000℃以上の高温環境下における形状安定性については、何ら考慮されていなかった。   Here, Patent Document 1 discloses a stainless steel foil provided with an Al deposited plating layer having various thicknesses. In order to obtain sufficient oxidation resistance in a high temperature environment of 1000 ° C. or higher, the steel Even if the Al content is about 5 mass%, the thickness of the Al vapor-deposited plating layer needs to be 0.4 μm or more. However, when the thickness of the Al vapor deposition plating layer is increased, there is a problem that the vapor deposition time is prolonged and the production efficiency is lowered. In addition, no consideration was given to shape stability in a high temperature environment of 1000 ° C. or higher.

この点、特許文献2に記載の合金箔では、必要とされるアルミニウム層の厚さが0.2μm以上であり、生産効率の点で一定の改善が図られているが、蒸着時間のさらなる短時間化による生産効率の一層の向上が求められているのが現状である。また、特許文献2においても、1000℃以上の高温環境下における形状安定性についてはやはり考慮が払われていなかった。   In this regard, in the alloy foil described in Patent Document 2, the required thickness of the aluminum layer is 0.2 μm or more, and a certain improvement is achieved in terms of production efficiency, but the deposition time is further shortened. At present, there is a demand for further improvement in production efficiency through time. Also in Patent Document 2, no consideration has been given to shape stability in a high temperature environment of 1000 ° C. or higher.

本発明は、上記の現状に鑑み開発されたものであって、1000℃以上の高温でも極めて優れた耐酸化性と形状安定性を有し、さらには高い生産効率の基に製造することが可能なステンレス箔を提供することを目的とする。   The present invention has been developed in view of the above-mentioned present situation, and has excellent oxidation resistance and shape stability even at a high temperature of 1000 ° C. or higher, and can be manufactured based on high production efficiency. An object is to provide a stainless steel foil.

発明者らは、上記の目的を達成すべく鋭意検討したところ、高Al含有フェライト系ステンレス箔において、成分組成を適正に調整することで、ステンレス箔の表面におけるAlコーティング層の厚みを極めて薄くする場合であっても、優れた高温での耐酸化性が得られ、同時に十分な形状安定性も確保できることを見出した。
本発明は、上記の知見に基づき、さらに検討を加えた末に完成されたものである。
The inventors have intensively studied to achieve the above object, and in the high Al content ferritic stainless steel foil, the thickness of the Al coating layer on the surface of the stainless steel foil is extremely reduced by appropriately adjusting the component composition. Even in this case, it was found that excellent oxidation resistance at high temperatures was obtained, and at the same time sufficient shape stability could be secured.
The present invention was completed after further studies based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、C:0.025%以下、Si:1.0%以下、Mn:1.0%以下、P:0.050%以下、S:0.01%以下、Cr:15.0〜30.0%、Al:2.5〜6.5%、Ni:0.05〜0.50%、N:0.025%以下およびREM:0.01〜0.15%を含有し、残部がFeおよび不可避的不純物からなり、
両面にそれぞれ30nm〜150nm厚のAlコーティング層を有することを特徴とするステンレス箔。
That is, the gist configuration of the present invention is as follows.
1. In mass%, C: 0.025% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.050% or less, S: 0.01% or less, Cr: 15.0 to 30.0%, Al: 2.5-6.5%, Ni: 0.05-0.50%, N: 0.025% or less and REM: 0.01-0.15%, the balance Consists of Fe and inevitable impurities,
A stainless steel foil having an Al coating layer having a thickness of 30 nm to 150 nm on both surfaces.

2.前記ステンレス箔が、さらに、質量%で、Cu:0.01〜0.10%、Ti:0.01〜0.20%、Nb:0.01〜0.20%、V:0.01〜0.20%、Zr:0.01〜0.10%、Hf:0.01〜0.10%、B:0.0002〜0.0050%、Ca:0.0002〜0.0100%およびMg:0.0002〜0.0100%のうちから選んだ少なくとも1種を含有することを特徴とする前記1に記載のステンレス箔。 2. The stainless steel foil is further, in mass%, Cu: 0.01 to 0.10%, Ti: 0.01 to 0.20%, Nb: 0.01 to 0.20%, V: 0.01 to 0.20%, Zr: 0.01-0.10%, Hf: 0.01-0.10%, B: 0.0002-0.0050%, Ca: 0.0002-0.0100% and Mg The stainless steel foil according to 1 above, which contains at least one selected from 0.0002 to 0.0100%.

3.前記ステンレス箔が、さらに、質量%で、Mo:0.1〜6.0%およびW:0.1〜6.0%のうちから選んだ少なくとも1種を含有し、その合計量が6.0%以下であることを特徴とする前記1または2に記載のステンレス箔。 3. The stainless steel foil further contains at least one selected from Mo: 0.1 to 6.0% and W: 0.1 to 6.0% by mass%, and the total amount is 6. 3. The stainless steel foil according to 1 or 2 above, which is 0% or less.

本発明によれば、高温での耐酸化性や形状安定性に優れたフェライト系ステンレス箔を、高い生産効率の基に製造することが可能となる。
また、本発明のステンレス箔は、自動車、オートバイ、マリンバイク、スノーモービル、船舶などの排ガス浄化装置用触媒担体のみならず、その他の燃焼ガス排気系部材に用いても好適である。
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to manufacture the ferritic stainless steel foil excellent in the oxidation resistance in high temperature and shape stability on the basis of high production efficiency.
Moreover, the stainless steel foil of the present invention is suitable not only for the catalyst carrier for exhaust gas purifying apparatuses such as automobiles, motorcycles, marine bikes, snowmobiles, and ships, but also for other combustion gas exhaust system members.

以下、本発明を具体的に説明する。
まず、本発明のステンレス箔が、1000℃以上の高温環境下でも優れた耐酸化性と形状安定性を有する理由について説明する。
本発明のステンレス箔は、従来開示されているような表面のAlコーティング層自体が、Al23皮膜を生成するためのAl供給源となって、耐酸化性を高める機構とは大きく異なるものである。
すなわち、Alを含めてステンレス箔の成分組成を最適化するとともに、ステンレス箔の表面に極薄く蒸着されたAlコーティング層を設けることで、ステンレス箔中に含有されるAlが酸化して生成されるAl23酸化皮膜を改質するものである。
より具体的には、後述する成分組成に調整したステンレス箔の両面に、厚さ30nm〜150nmのAlコーティング層を蒸着することで、300℃以上で酸化された際に生成するAl23酸化皮膜の構造に影響を与え、Al23酸化皮膜中の酸素の拡散速度が低減する。その結果、Al23酸化皮膜の成長速度を大幅に低減して鋼中Alが枯渇するまでの寿命を格段に延長させ、これにより、高温での耐酸化性が大幅に向上するのである。また、Al23酸化皮膜中の酸素の拡散速度が低減される結果、鋼中Alが枯渇後に生じる形状変化も抑制できるのである。
Hereinafter, the present invention will be specifically described.
First, the reason why the stainless steel foil of the present invention has excellent oxidation resistance and shape stability even in a high temperature environment of 1000 ° C. or higher will be described.
The stainless steel foil of the present invention is significantly different from the mechanism for improving the oxidation resistance because the Al coating layer itself on the surface as disclosed above becomes an Al supply source for generating an Al 2 O 3 film. It is.
That is, by optimizing the component composition of the stainless steel foil including Al and providing an Al coating layer deposited on the surface of the stainless steel foil, Al contained in the stainless steel foil is oxidized and generated. It modifies the Al 2 O 3 oxide film.
More specifically, Al 2 O 3 oxidation generated when oxidized at 300 ° C. or higher by vapor-depositing an Al coating layer having a thickness of 30 nm to 150 nm on both surfaces of a stainless steel foil adjusted to the component composition described later. The film structure is affected, and the oxygen diffusion rate in the Al 2 O 3 oxide film is reduced. As a result, the growth rate of the Al 2 O 3 oxide film is greatly reduced, and the life until the Al in the steel is depleted is significantly extended, thereby greatly improving the oxidation resistance at high temperatures. Further, as a result of the reduction of the oxygen diffusion rate in the Al 2 O 3 oxide film, the shape change that occurs after the Al in the steel is depleted can also be suppressed.

ここで、発明者らの検討の結果、ステンレス箔の成分を最適化することにより、厚さ30nm以上のAlコーティング層をステンレス箔の両面に設けることで優れた耐酸化性と形状安定性が得られることが判明した。一方、Alコーティング層の厚さが150nmを超えると、効果が飽和するばかりか、蒸着時間の増加による生産性の低下やコストの上昇を招く。従って、Alコーティング層の厚さは30nm〜150nmとする。好ましくは40nm〜100nmである。   Here, as a result of investigations by the inventors, by optimizing the components of the stainless steel foil, excellent oxidation resistance and shape stability can be obtained by providing an Al coating layer having a thickness of 30 nm or more on both surfaces of the stainless steel foil. Turned out to be. On the other hand, when the thickness of the Al coating layer exceeds 150 nm, not only the effect is saturated, but also the productivity is lowered and the cost is increased due to an increase in the deposition time. Therefore, the thickness of the Al coating layer is 30 nm to 150 nm. Preferably, it is 40 nm to 100 nm.

次に、本発明のステンレス箔における成分組成の限定理由について説明する。なお、成分組成における元素の含有量の単位はいずれも「質量%」であるが、以下、特に断らない限り単に「%」で示す。
C:0.025%以下
C含有量が0.025%を超えると、ステンレス箔の素材となる熱延鋼板や冷延鋼板の靭性が低下して、ステンレス箔の製造が困難になる。このため、C含有量は0.025%以下、好ましくは0.015%以下とする。さらに好ましくは0.010%以下である。
Next, the reason for limiting the component composition in the stainless steel foil of the present invention will be described. The unit of element content in the component composition is “mass%”, but hereinafter, it is simply indicated by “%” unless otherwise specified.
C: 0.025% or less When the C content exceeds 0.025%, the toughness of a hot-rolled steel sheet or a cold-rolled steel sheet, which is a material for the stainless steel foil, is lowered, making it difficult to manufacture the stainless steel foil. Therefore, the C content is 0.025% or less, preferably 0.015% or less. More preferably, it is 0.010% or less.

Si:1.0%以下
Si含有量が1.0%を超えると、ステンレス箔の素材となる熱延鋼板や冷延鋼板の靭性が低下して、ステンレス箔の製造が困難になる。このため、Si含有量は1.0%以下、好ましくは0.50%以下とする。さらに好ましくは0.20%以下である。ただし、Si含有量を0.01%未満にしようとすると精錬が困難になるので、0.01%以上とすることが好ましい。
Si: 1.0% or less When the Si content exceeds 1.0%, the toughness of a hot-rolled steel sheet or a cold-rolled steel sheet, which is a material for the stainless steel foil, decreases, making it difficult to manufacture the stainless steel foil. Therefore, the Si content is 1.0% or less, preferably 0.50% or less. More preferably, it is 0.20% or less. However, since refining becomes difficult if the Si content is less than 0.01%, it is preferable that the Si content be 0.01% or more.

Mn:1.0%以下
Mn含有量が1.0%を超えると、鋼の耐酸化性が失われる。このため、Mn含有量は1.0%以下、好ましくは0.5%以下とする。さらに好ましくは0.15%以下である。ただし、Mn含有量を0.01%未満にすると精錬が困難になるので、0.01%以上とすることが好ましい。
Mn: 1.0% or less If the Mn content exceeds 1.0%, the oxidation resistance of the steel is lost. Therefore, the Mn content is 1.0% or less, preferably 0.5% or less. More preferably, it is 0.15% or less. However, if the Mn content is less than 0.01%, refining becomes difficult.

P:0.050%以下
P含有量が0.050%を超えると、鋼の靭性および延性が低下してステンレス箔の製造が困難になる。このため、P含有量は0.050%以下、好ましくは0.030%以下とする。なお、Pは極力低減することがより好ましい。
P: 0.050% or less When the P content exceeds 0.050%, the toughness and ductility of the steel are lowered, making it difficult to produce a stainless steel foil. Therefore, the P content is 0.050% or less, preferably 0.030% or less. It is more preferable to reduce P as much as possible.

S:0.01%以下
S含有量が0.01%を超えると、熱間加工性が低下してステンレス箔の素材となる熱延鋼板の製造が困難になる。このため、S含有量は0.01%以下、好ましくは0.005%以下とする。より好ましくは0.002%以下である。
S: 0.01% or less When the S content exceeds 0.01%, the hot workability is lowered and it becomes difficult to manufacture a hot-rolled steel sheet that is a material for the stainless steel foil. For this reason, the S content is 0.01% or less, preferably 0.005% or less. More preferably, it is 0.002% or less.

Cr:15.0〜30.0%
Crは、高温での耐酸化性と形状安定性を確保する上で必要不可欠な元素である。Cr含有量が15.0%未満では、高温での十分な耐酸化性と形状安定性、特に形状安定性を確保できない。一方、Cr含有量が30.0%を超えると、ステンレス箔製造における中間素材のスラブや熱延鋼板の靭性が低下して、その製造が困難になる。このため、Cr含有量は15.0〜30.0%、好ましくは16.0〜26.0%、さらに好ましくは17.0〜22.0%とする。
Cr: 15.0-30.0%
Cr is an indispensable element for ensuring oxidation resistance and shape stability at high temperatures. When the Cr content is less than 15.0%, sufficient oxidation resistance and shape stability at high temperatures, particularly shape stability, cannot be ensured. On the other hand, if the Cr content exceeds 30.0%, the toughness of the intermediate material slab and the hot-rolled steel sheet in the production of the stainless steel foil is lowered, and its production becomes difficult. For this reason, the Cr content is 15.0 to 30.0%, preferably 16.0 to 26.0%, and more preferably 17.0 to 22.0%.

Al:2.5〜6.5%
Alは、高温での酸化時にAl23を主成分とする酸化皮膜を生成させて耐酸化性と形状安定性を大きく向上させる元素である。Al含有量が2.5%以上でその効果が得られる。一方、Al含有量が6.5%を超えると、冷間加工性が低下してステンレス箔の素材となる冷延鋼板の製造が困難になる。このため、Al含有量は2.5〜6.5%、好ましくは3.0〜6.0%とする。
Al: 2.5-6.5%
Al is an element that greatly improves oxidation resistance and shape stability by generating an oxide film composed mainly of Al 2 O 3 during oxidation at a high temperature. The effect is obtained when the Al content is 2.5% or more. On the other hand, if the Al content exceeds 6.5%, the cold workability is lowered and it becomes difficult to manufacture a cold-rolled steel sheet as a material for the stainless steel foil. For this reason, the Al content is set to 2.5 to 6.5%, preferably 3.0 to 6.0%.

Ni:0.05〜0.50%
Niは触媒担体成形時のロウ付け性を向上する効果があるため、その含有量は0.05%以上とする。しかし、Niは、オーステナイト組織安定化元素であるため、その含有量が0.50%を超える場合、高温での酸化進行時にAlが枯渇してCrが酸化され始めると、オーステナイト組織を生成させて箔の熱膨張係数を変化させ、これにより、箔の括れや破断などの不具合が発生することになる。このため、Ni含有量は0.05〜0.50%、好ましくは0.10〜0.20%とする。
Ni: 0.05 to 0.50%
Since Ni has an effect of improving the brazing property at the time of molding the catalyst carrier, its content is set to 0.05% or more. However, since Ni is an austenite structure stabilizing element, if its content exceeds 0.50%, when Al is depleted during the progress of oxidation at high temperature and Cr begins to be oxidized, an austenite structure is formed. The coefficient of thermal expansion of the foil is changed, which causes problems such as foil constriction and breakage. For this reason, the Ni content is 0.05 to 0.50%, preferably 0.10 to 0.20%.

N:0.025%以下
N含有量が0.025%を超えると、鋼の靱性が低下してステンレス箔の製造が困難になる。このため、N含有量は0.025%以下、好ましくは0.010%以下とする。
N: 0.025% or less When the N content exceeds 0.025%, the toughness of the steel is lowered, making it difficult to produce a stainless steel foil. Therefore, the N content is 0.025% or less, preferably 0.010% or less.

REM:0.01〜0.15%
REMとは、Sc、Yおよびランタノイド系元素(La、Ce、Pr、Nd、Smなど原子番号57〜71までの元素)をいう。REMは、Al23酸化皮膜の密着性を改善するとともに、酸化速度を低減する効果がある。このような効果を得るには、REM含有量を合計で0.01%以上とする必要がある。一方、REM含有量が0.15%を超えると、熱間加工性が低下して熱延鋼板の製造が困難になる。よって、REM含有量は0.01〜0.15%、好ましくは0.03〜0.10%とする。なお、REMの添加には、コスト低減のため、これらが分離精製されていない金属(ミッシュメタル等)を用いることもできる。
REM: 0.01 to 0.15%
REM refers to Sc, Y, and lanthanoid elements (elements having atomic numbers from 57 to 71 such as La, Ce, Pr, Nd, and Sm). REM has the effect of improving the adhesion of the Al 2 O 3 oxide film and reducing the oxidation rate. In order to obtain such an effect, the REM content needs to be 0.01% or more in total. On the other hand, when the REM content exceeds 0.15%, the hot workability is lowered and it becomes difficult to manufacture a hot-rolled steel sheet. Therefore, the REM content is 0.01 to 0.15%, preferably 0.03 to 0.10%. For the addition of REM, a metal (such as Misch metal) that has not been separated and purified can be used for cost reduction.

以上、基本成分について説明したが、本発明のステンレス箔では、Cu:0.01〜0.10%、Ti:0.01〜0.20%、Nb:0.01〜0.20%、V:0.01〜0.20%、Zr:0.01〜0.10%、Hf:0.01〜0.10%、B:0.0002〜0.0050%、Ca:0.0002〜0.0100%およびMg:0.0002〜0.0100%のうちから選んだ少なくとも1種を適宜含有させることができる。   As mentioned above, although the basic component was demonstrated, in the stainless steel foil of this invention, Cu: 0.01-0.10%, Ti: 0.01-0.20%, Nb: 0.01-0.20%, V : 0.01-0.20%, Zr: 0.01-0.10%, Hf: 0.01-0.10%, B: 0.0002-0.0050%, Ca: 0.0002-0 0.0100% and at least one selected from Mg: 0.0002 to 0.0100% can be appropriately contained.

Cu:0.01〜0.10%、
Cuは、鋼中に析出し高温強度を向上させる効果がある。この効果は、Cu含有量が0.01%以上で得られる。一方、Cu含有量が0.10%を超えると、鋼の靭性が低下する。このため、Cuを含有させる場合、その含有量は0.01〜0.10%、より好ましくは0.02〜0.05%とする。
Cu: 0.01 to 0.10%,
Cu precipitates in the steel and has the effect of improving the high temperature strength. This effect is obtained when the Cu content is 0.01% or more. On the other hand, if the Cu content exceeds 0.10%, the toughness of the steel decreases. For this reason, when Cu is contained, the content is set to 0.01 to 0.10%, more preferably 0.02 to 0.05%.

Ti:0.01〜0.20%
TiはC、Nを固定して、ステンレス箔の素材となる熱延鋼板や冷延鋼板の靭性を向上させる。この効果は、Ti含有量が0.01%以上で得られる。しかし、Ti含有量が0.20%を超えると、Ti酸化物がAl23酸化皮膜中に多量に混入し、高温での耐酸化性および形状安定性が低下する。よって、Tiを含有させる場合、その含有量は0.01〜0.20%、好ましくは0.01%以上0.10%以下とする。
Ti: 0.01-0.20%
Ti fixes C and N, and improves the toughness of a hot-rolled steel sheet and a cold-rolled steel sheet that are materials for the stainless steel foil. This effect is obtained when the Ti content is 0.01% or more. However, if the Ti content exceeds 0.20%, a large amount of Ti oxide is mixed in the Al 2 O 3 oxide film, and the oxidation resistance and shape stability at high temperatures are lowered. Therefore, when Ti is contained, the content is 0.01 to 0.20%, preferably 0.01% or more and 0.10% or less.

Nb:0.01〜0.20%
NbはC、Nを固定して、ステンレス箔の素材となる熱延鋼板や冷延鋼板の靭性を向上させる。この効果は、Nb含有量が0.01%以上で得られる。一方、Nb含有量が0.20%を超えると(Fe,Al)NbO4酸化皮膜が生成し、高温での耐酸化性が著しく低下する。また、(Fe,Al)NbO4は熱膨張率が大きいため、箔の変形を助長し、触媒の剥離を引き起こす。よって、Nbを含有させる場合、その含有量は0.01〜0.20%とする。
Nb: 0.01-0.20%
Nb fixes C and N and improves the toughness of a hot-rolled steel sheet or a cold-rolled steel sheet that is a material for the stainless steel foil. This effect is obtained when the Nb content is 0.01% or more. On the other hand, if the Nb content exceeds 0.20%, a (Fe, Al) NbO 4 oxide film is formed, and the oxidation resistance at high temperatures is significantly reduced. In addition, (Fe, Al) NbO 4 has a high coefficient of thermal expansion, which promotes deformation of the foil and causes catalyst peeling. Therefore, when Nb is contained, the content is set to 0.01 to 0.20%.

V:0.01〜0.20%
Vは焼鈍時の粒成長抑制効果を発揮し再結晶粒を微細化させるため、ステンレス箔の素材となる熱延焼鈍鋼板や冷延鋼板の靭性を向上させる。この効果はV含有量が0.01%以上で得られる。しかし、V含有量が0.20%を超えると耐酸化性の低下を招く。従って、Vを含有させる場合、その含有量は0.01〜0.20%とする。好ましくは0.01〜0.05%である。
V: 0.01-0.20%
V exhibits the effect of suppressing grain growth during annealing and refines the recrystallized grains, thereby improving the toughness of hot-rolled annealed steel sheets and cold-rolled steel sheets that are the materials of the stainless steel foil. This effect is obtained when the V content is 0.01% or more. However, if the V content exceeds 0.20%, the oxidation resistance is lowered. Therefore, when V is contained, the content is set to 0.01 to 0.20%. Preferably it is 0.01 to 0.05%.

Zr:0.01〜0.10%
Zrは、Al23酸化皮膜の密着性を改善するとともにその成長速度を低減して耐酸化性を顕著に向上させる。また、ZrはC、Nを固定して熱延鋼板や冷延鋼板の靭性を向上させる。これらの効果は、Zr含有量が0.01%以上で得られる。しかし、Zr含有量が0.10%を超えると、Zr酸化物がAl23酸化皮膜中に多量に混入し、酸化皮膜の成長速度が増加して耐酸化性が低下する。また、ZrはFeなどと金属間化合物をつくり、ステンレス鋼の靭性を低下させる。よって、Zrを含有させる場合、その含有量は0.01〜0.10%とする。好ましくは0.02〜0.05%である。
Zr: 0.01-0.10%
Zr not only improves the adhesion of the Al 2 O 3 oxide film, but also reduces its growth rate and significantly improves oxidation resistance. Zr fixes C and N and improves the toughness of hot-rolled steel sheets and cold-rolled steel sheets. These effects are obtained when the Zr content is 0.01% or more. However, when the Zr content exceeds 0.10%, a large amount of Zr oxide is mixed in the Al 2 O 3 oxide film, the growth rate of the oxide film is increased, and the oxidation resistance is lowered. Zr forms an intermetallic compound with Fe and the like, and lowers the toughness of stainless steel. Therefore, when Zr is contained, the content is set to 0.01 to 0.10%. Preferably it is 0.02 to 0.05%.

Hf:0.01〜0.10%
Hfは、Al23酸化皮膜の密着性を改善するとともにその成長速度を低減して耐酸化性を顕著に向上させる。その効果は、Hf含有量が0.01%以上で得られる。しかし、Hf含有量が0.10%を超えると、Hf酸化物がAl23酸化皮膜中に多量に混入し、酸化皮膜の成長速度が増加して耐酸化性が低下する。また、HfはFeなどと金属間化合物をつくり、靭性を低下させる。よって、Hfを含有させる場合、その含有量は0.01〜0.10%とする。好ましくは0.02〜0.05%である。
Hf: 0.01 to 0.10%
Hf significantly improves the oxidation resistance by improving the adhesion of the Al 2 O 3 oxide film and reducing its growth rate. The effect is obtained when the Hf content is 0.01% or more. However, if the Hf content exceeds 0.10%, a large amount of Hf oxide is mixed in the Al 2 O 3 oxide film, the growth rate of the oxide film is increased, and the oxidation resistance is lowered. Further, Hf forms an intermetallic compound with Fe or the like, and reduces toughness. Therefore, when Hf is contained, the content is set to 0.01 to 0.10%. Preferably it is 0.02 to 0.05%.

B:0.0002〜0.0050%
Bは結晶粒界に濃化することで粒界エネルギーを低下させ、ステンレス箔の素材となる熱延鋼板の靭性や冷延焼鈍鋼板の靭性を低下させる一因となる粒界Cr炭窒化物の析出を抑制する。この効果は、B含有量が0.0002%以上で得られる。しかし、B含有量が0.0050%を超えると粒界への濃化が過度に進むと逆にB析出物が生成して靭性を低下させる。従って、Bを含有させる場合、その含有量は0.0002〜0.0050%とする。
B: 0.0002 to 0.0050%
B is a grain boundary Cr carbonitride that contributes to lowering the grain boundary energy by concentrating at the crystal grain boundaries and lowering the toughness of the hot-rolled steel sheet and the cold-rolled annealed steel sheet as the material of the stainless steel foil. Suppresses precipitation. This effect is obtained when the B content is 0.0002% or more. However, if the B content exceeds 0.0050%, if the concentration to the grain boundary proceeds excessively, conversely, B precipitates are generated and the toughness is lowered. Therefore, when it contains B, the content shall be 0.0002 to 0.0050%.

Ca:0.0002〜0.0100%、Mg:0.0002〜0.0100%
適量のCaあるいはMgは、Al23酸化皮膜の鋼に対する密着性向上と成長速度低減により耐酸化性を向上させる。この効果は、Ca含有量が0.0002%以上、Mg含有量が0.0002%以上で得られる。さらに好ましくは、Ca含有量は0.0010%以上、Mg含有量は0.0015%以上である。しかし、これら元素を過剰に添加すると靭性の低下や耐酸化性の低下が起こるため、これらの元素を添加する場合には、Ca、Mgのいずれも0.0100%以下とすることが好ましい。さらに好ましくは0.0050%以下である。
Ca: 0.0002 to 0.0100%, Mg: 0.0002 to 0.0100%
An appropriate amount of Ca or Mg improves the oxidation resistance by improving the adhesion of the Al 2 O 3 oxide film to the steel and reducing the growth rate. This effect is obtained when the Ca content is 0.0002% or more and the Mg content is 0.0002% or more. More preferably, the Ca content is 0.0010% or more, and the Mg content is 0.0015% or more. However, when these elements are added excessively, toughness and oxidation resistance are lowered. Therefore, when these elements are added, it is preferable that both Ca and Mg be 0.0100% or less. More preferably, it is 0.0050% or less.

また、本発明のステンレス箔では、上記した成分以外に、さらに、質量%で、MoおよびWのうちから選んだ少なくとも1種を、以下のようにして含有させることができる。
Mo:0.1〜6.0%およびW:0.1〜6.0%のうちから選んだ少なくとも1種を含有し、その合計量が6.0%以下
MoおよびWは高温強度を増大させ、またステンレス箔を触媒担体として用いたとき、触媒担体の寿命を伸ばすので、必要に応じて鋼に含有させることができる。この効果は、Mo、Wの含有量がそれぞれ0.1%以上で得られる。一方、Mo、Wのそれぞれの含有量あるいは合計の含有量が6.0%を超えると、加工性の低下によりステンレス箔の製造が困難になる。よって、MoおよびWのうちから選んだ少なくとも1種を含有させる場合、Mo、Wの含有量はそれぞれ0.1〜6.0%とし、その合計量を6.0%以下とする。なお、Mo、Wの含有量はそれぞれ0.5〜3.0%とすることが好ましく、またこれらの合計量は3.0%以下とすることが好ましい。
Further, in the stainless steel foil of the present invention, in addition to the above-described components, at least one selected from Mo and W can be further contained by mass% as follows.
Contains at least one selected from Mo: 0.1-6.0% and W: 0.1-6.0%, and the total amount is 6.0% or less. Mo and W increase the high-temperature strength. In addition, when a stainless steel foil is used as a catalyst carrier, the life of the catalyst carrier is extended, so that it can be contained in steel as necessary. This effect is obtained when the contents of Mo and W are each 0.1% or more. On the other hand, if the content of Mo or W or the total content exceeds 6.0%, it becomes difficult to produce a stainless steel foil due to a decrease in workability. Accordingly, when at least one selected from Mo and W is contained, the contents of Mo and W are 0.1 to 6.0%, respectively, and the total amount is 6.0% or less. The contents of Mo and W are each preferably 0.5 to 3.0%, and the total amount thereof is preferably 3.0% or less.

なお、上記以外の成分はFeおよび不可避的不純物である。   Components other than the above are Fe and inevitable impurities.

次に、本発明のステンレス箔の素材となるステンレス鋼板について説明する。
本発明のステンレス箔の素材となるステンレス鋼板は、上記成分組成を有する板状の鋼板である。その製造方法は特に限定されず、例えば、上記の成分組成を有する鋼を、転炉や電炉で溶製し、VODやAODなどで精錬後、分塊圧延や連続鋳造によりスラブとし、これを1050〜1250℃に温度に加熱し、熱間圧延する方法で製造された熱延鋼板などが挙げられる。
また、本発明のステンレス箔の素材とするステンレス鋼板は、鋼材表面のスケールや汚染物などを除去するために、サンドブラスト処理、スチールグリッドブラスト処理やアルカリ脱脂、酸洗処理などが施された上記熱延鋼板であってもよい。また、本発明のステンレス箔の素材とするステンレス鋼板は、上記熱延鋼板を冷間圧延してなる冷延鋼板であってもよい。
Next, the stainless steel plate used as the material for the stainless steel foil of the present invention will be described.
The stainless steel plate used as the material for the stainless steel foil of the present invention is a plate-shaped steel plate having the above component composition. The production method is not particularly limited. For example, a steel having the above component composition is melted in a converter or electric furnace, refined by VOD, AOD or the like, and then slabd by split rolling or continuous casting. Examples thereof include hot rolled steel sheets manufactured by a method of heating to ˜1250 ° C. and hot rolling.
Further, the stainless steel sheet used as the material of the stainless steel foil of the present invention is the above-mentioned heat subjected to sand blasting, steel grid blasting, alkali degreasing, pickling treatment, etc. in order to remove scales and contaminants on the surface of the steel material. It may be a rolled steel sheet. The stainless steel plate used as the material for the stainless steel foil of the present invention may be a cold rolled steel plate obtained by cold rolling the hot rolled steel plate.

次に、本発明のステンレス箔の好適な製造方法について説明する。
まず、上記したステンレス鋼板、例えば、表面のスケールや汚染物等が除去された熱延鋼板を、必要に応じて熱延板焼鈍し、冷間圧延し、さらに焼鈍と冷間圧延を繰り返して、所望の厚みのステンレス箔とする。
Next, the suitable manufacturing method of the stainless steel foil of this invention is demonstrated.
First, the above-described stainless steel plate, for example, a hot-rolled steel plate from which surface scales and contaminants have been removed, is subjected to hot-rolled plate annealing as necessary, cold-rolled, and further repeated annealing and cold-rolling, The stainless steel foil has a desired thickness.

ここで、ステンレス箔の厚みは、特に限定されないが、本発明のステンレス箔を排ガス浄化装置用触媒担体として適用する場合は、排気抵抗を低下するため、その厚みは薄いほど有利である。この点、本発明のステンレス箔は極めて優れた耐酸化性を有しているため、厚みを20μm〜50μmと薄くしても問題なく使用することができる。一方、特に耐振動特性や耐久性に優れることが必要な場合には、ステンレス箔の厚みを50〜200μm程度としてもよい。   Here, the thickness of the stainless steel foil is not particularly limited, but when the stainless steel foil of the present invention is applied as a catalyst carrier for an exhaust gas purifying apparatus, the exhaust resistance is lowered, so that the thinner the thickness, the more advantageous. In this respect, since the stainless steel foil of the present invention has extremely excellent oxidation resistance, it can be used without any problem even if the thickness is reduced to 20 μm to 50 μm. On the other hand, when it is particularly necessary to have excellent vibration resistance and durability, the thickness of the stainless steel foil may be about 50 to 200 μm.

そして、所望の厚みとしたステンレス箔に、Alを蒸着させ、このステンレス箔の両面にAlコーティング層を設ける。
ここに、Alコーティング層の蒸着方法としては、真空蒸着法、スパッタリング法など既知のPVD法が使用できるが、真空蒸着法を用いることが好ましい。なお、蒸着条件は常法に従えばよい。また、蒸着は適当な大きさに切断したステンレス箔をバッチ式の炉で処理してもよいが、生産性を考慮すると鋼帯を連続的に処理できる連続式蒸着装置を用いることが好ましい。メタルハニカムなど製品に成型してから蒸着してもよいが、形状が複雑な場合は表面全体に均一なAl層を付与することが困難な場合もあるため、加工前のステンレス箔に蒸着することが好ましい。
And Al is vapor-deposited on the stainless steel foil made into desired thickness, and an Al coating layer is provided on both surfaces of this stainless steel foil.
Here, as a deposition method of the Al coating layer, a known PVD method such as a vacuum deposition method or a sputtering method can be used, but a vacuum deposition method is preferably used. In addition, vapor deposition conditions should just follow a conventional method. Moreover, although vapor deposition may process the stainless steel foil cut | disconnected to the appropriate magnitude | size with a batch type furnace, it is preferable to use the continuous vapor deposition apparatus which can process a steel strip continuously in consideration of productivity. It may be deposited after being molded into a product such as a metal honeycomb, but if the shape is complex, it may be difficult to apply a uniform Al layer to the entire surface, so deposit on the stainless steel foil before processing Is preferred.

以下、本発明を実施例により具体的に説明する。なお、本発明は以下の実施例に限定されない。
50kg小型真空溶解炉によって溶製した表1に示す成分組成の鋼を、1200℃に加熱後、900〜1200℃の温度域で熱間圧延して板厚3.0mmの熱延鋼板とした。なお、Al含有量が適正範囲を超える表1に記載の鋼記号BDは、熱間圧延時に割れが発生し、健全な熱延鋼板が得られなかった。次いで、鋼記号BDを除く熱延鋼板を大気中、900℃、1分間の条件で焼鈍し、酸洗で表面スケールを除去した後、板厚1.0mmまで冷間圧延し冷延鋼板とした。この鋼板を大気中、900℃、1分間の条件で焼鈍し、酸洗で表面スケールを除去した後、クラスターミルによる冷間圧延と焼鈍を複数回繰り返し、箔厚30μmのステンレス箔を得た。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to the following examples.
A steel having the composition shown in Table 1 melted in a 50 kg small vacuum melting furnace was heated to 1200 ° C. and hot-rolled in a temperature range of 900 to 1200 ° C. to obtain a hot-rolled steel plate having a thickness of 3.0 mm. In addition, the steel symbol BD described in Table 1 whose Al content exceeds the appropriate range was cracked during hot rolling, and a healthy hot-rolled steel sheet could not be obtained. Next, the hot-rolled steel sheet excluding the steel symbol BD was annealed in air at 900 ° C. for 1 minute, and after removing the surface scale by pickling, it was cold-rolled to a thickness of 1.0 mm to obtain a cold-rolled steel sheet. . The steel sheet was annealed in the air at 900 ° C. for 1 minute, and after removing the surface scale by pickling, cold rolling and annealing by a cluster mill were repeated a plurality of times to obtain a stainless steel foil having a foil thickness of 30 μm.

このようにして得られたステンレス箔から100mm×100mmの試験片を採取し、真空蒸着法を用いて両面にAlコーティング層を蒸着した。Alコーティング層の厚みは、基本的に50nmとした。ただし、一部の試験片については、Alコーティング層の厚みの影響を評価するため、20nm〜150nmの間でAlコーティング層の厚みを変化させた。なお、Alコーティング層の厚みは、ステンレス箔の両面で同じとした。かくして得られた試験片を用い、以下の評価を実施した。   A test piece of 100 mm × 100 mm was collected from the stainless steel foil thus obtained, and an Al coating layer was vapor-deposited on both sides using a vacuum vapor deposition method. The thickness of the Al coating layer was basically 50 nm. However, for some test pieces, the thickness of the Al coating layer was changed between 20 nm and 150 nm in order to evaluate the influence of the thickness of the Al coating layer. The thickness of the Al coating layer was the same on both sides of the stainless steel foil. The following evaluations were performed using the test pieces thus obtained.

(1)高温での耐酸化性
Alを蒸着したステンレス箔の試験片から20mm幅×30mm長さの試験片を3枚採取し、拡散接合あるいはロウ付け接合時の熱処理に相当する1200℃で30分間保持する熱処理を5.3×10-3Pa以下の真空中で行った。熱処理後のステンレス箔を、大気雰囲気中、1100℃の条件で酸化させ、25時間ごとに取り出して酸化増量(加熱前後質量変化を初期の表面積で除した量)を測定した。この測定を200時間まで続けた。なお、この際、試料No.18では酸化皮膜の剥離が見られたが、他の試料では酸化皮膜の剥離は見られなかった。
そして、測定した試料の酸化増量に基づき、以下の基準で耐酸化性を評価した。評価結果を表2に併記する。
◎(優れる):200時間酸化した段階の3試料の平均の酸化増量が4g/m2以下
○(良好) :100時間酸化した段階の3試料の平均の酸化増量が4g/m2以下
×(不良) :100時間酸化した段階の3試料の平均の酸化増量が4g/m2
(1) Oxidation resistance at high temperature Three test pieces having a width of 20 mm and a length of 30 mm were taken from a test piece of stainless steel foil on which Al was vapor-deposited. The heat treatment for holding for a minute was performed in a vacuum of 5.3 × 10 −3 Pa or less. The heat-treated stainless steel foil was oxidized at 1100 ° C. in an air atmosphere, taken out every 25 hours, and an increase in oxidation (amount obtained by dividing the mass change before and after heating by the initial surface area) was measured. This measurement was continued up to 200 hours. At this time, Sample No. In Example 18, peeling of the oxide film was observed, but in other samples, peeling of the oxide film was not observed.
And based on the measured oxidation increase of the sample, oxidation resistance was evaluated according to the following criteria. The evaluation results are also shown in Table 2.
◎ (excellent): average oxidation increase of 3 samples after oxidation for 200 hours is 4 g / m 2 or less ○ (good): average oxidation increase of 3 samples after oxidation for 100 hours is 4 g / m 2 or less × ( Poor): The average oxidation increase of the three samples after 100 hours of oxidation exceeded 4 g / m 2

(2)高温での形状安定性
Alを蒸着したステンレス箔の試験片から採取した100mm幅×50mm長さの箔を、長さ方向に直径5mmの円筒状に丸め、端部をスポット溶接により留めたものを3本作製した。これらの円筒状試験片に対し、拡散接合あるいはロウ付け接合時の熱処理に相当する1200℃で30分間保持する熱処理を5.3×10-3Pa以下の真空中で行った。さらに、大気雰囲気中1100℃で200時間酸化させ、円筒状試験片の長さ変化量(加熱前の円筒長さに対する加熱後の円筒長さの増分の割合)を測定し、円筒状試験片の平均の長さ変化量を求めた。
そして、この平均の長さ変化量が±5%以下の場合を○(良好)、±5%超えの場合を×(不良)として、形状安定性を評価した。評価結果を表2に併記する。
(2) Shape stability at high temperature A foil of 100 mm width x 50 mm length taken from a test piece of stainless steel foil vapor-deposited with Al is rounded into a cylindrical shape with a diameter of 5 mm in the length direction, and the ends are fastened by spot welding. Three pieces were prepared. These cylindrical specimens were heat-treated in a vacuum of 5.3 × 10 −3 Pa or less at 1200 ° C. for 30 minutes corresponding to the heat treatment during diffusion bonding or brazing bonding. Further, the sample was oxidized at 1100 ° C. for 200 hours in the air atmosphere, and the amount of change in the length of the cylindrical test piece (the ratio of the increment of the cylinder length after heating to the cylinder length before heating) was measured. The average length variation was determined.
Then, the shape stability was evaluated by setting the case where the average length change amount is ± 5% or less as ◯ (good) and the case where it exceeds ± 5% as x (defective). The evaluation results are also shown in Table 2.

Figure 0006206381
Figure 0006206381

Figure 0006206381
Figure 0006206381

表2より、発明例であるNo.1〜15ではいずれも、高温での耐酸化性および形状安定性に優れていることがわかる。また、発明例であるNo.1〜15ではいずれも、酸化皮膜の密着性も十分なものであった。
一方、比較例であるNo.16〜20は、高温での耐酸化性および形状安定性のうち、少なくとも1つの特性に劣っていた。
From Table 2, No. which is an invention example. 1 to 15 are all excellent in oxidation resistance and shape stability at high temperatures. Moreover, No. which is an invention example. In all of Nos. 1 to 15, the adhesion of the oxide film was sufficient.
On the other hand, No. which is a comparative example. 16-20 were inferior to at least 1 characteristic among the oxidation resistance and shape stability in high temperature.

Claims (3)

質量%で、C:0.025%以下、Si:1.0%以下、Mn:1.0%以下、P:0.050%以下、S:0.01%以下、Cr:15.0〜30.0%、Al:2.55〜6.5%、Ni:0.05〜0.50%、N:0.025%以下およびREM:0.01〜0.15%を含有し、残部がFeおよび不可避的不純物からなり、
両面にそれぞれ30nm〜150nm厚のAlコーティング層を有することを特徴とするステンレス箔。
In mass%, C: 0.025% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.050% or less, S: 0.01% or less, Cr: 15.0 to 30.0%, Al: 2.55 to 6.5%, Ni: 0.05 to 0.50%, N: 0.025% or less and REM: 0.01 to 0.15%, the balance Consists of Fe and inevitable impurities,
A stainless steel foil having an Al coating layer having a thickness of 30 nm to 150 nm on both surfaces.
前記ステンレス箔が、さらに、質量%で、Cu:0.01〜0.10%、Ti:0.01〜0.20%、Nb:0.01〜0.20%、V:0.01〜0.20%、Zr:0.01〜0.10%、Hf:0.01〜0.10%、B:0.0002〜0.0050%、Ca:0.0002〜0.0100%およびMg:0.0002〜0.0100%のうちから選んだ少なくとも1種を含有することを特徴とする請求項1に記載のステンレス箔。   The stainless steel foil is further, in mass%, Cu: 0.01 to 0.10%, Ti: 0.01 to 0.20%, Nb: 0.01 to 0.20%, V: 0.01 to 0.20%, Zr: 0.01-0.10%, Hf: 0.01-0.10%, B: 0.0002-0.0050%, Ca: 0.0002-0.0100% and Mg The stainless steel foil according to claim 1, comprising at least one selected from 0.0002 to 0.0100%. 前記ステンレス箔が、さらに、質量%で、Mo:0.1〜6.0%およびW:0.1〜6.0%のうちから選んだ少なくとも1種を含有し、その合計量が6.0%以下であることを特徴とする請求項1または2に記載のステンレス箔。   The stainless steel foil further contains at least one selected from Mo: 0.1 to 6.0% and W: 0.1 to 6.0% by mass%, and the total amount is 6. The stainless steel foil according to claim 1 or 2, wherein the stainless steel foil is 0% or less.
JP2014240343A 2014-11-27 2014-11-27 Stainless steel foil Active JP6206381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014240343A JP6206381B2 (en) 2014-11-27 2014-11-27 Stainless steel foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014240343A JP6206381B2 (en) 2014-11-27 2014-11-27 Stainless steel foil

Publications (2)

Publication Number Publication Date
JP2016102231A JP2016102231A (en) 2016-06-02
JP6206381B2 true JP6206381B2 (en) 2017-10-04

Family

ID=56089008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014240343A Active JP6206381B2 (en) 2014-11-27 2014-11-27 Stainless steel foil

Country Status (1)

Country Link
JP (1) JP6206381B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3467131B1 (en) 2016-05-30 2021-08-11 JFE Steel Corporation Ferritic stainless steel sheet
JP6237973B1 (en) * 2016-05-30 2017-11-29 Jfeスチール株式会社 Ferritic stainless steel sheet
US11008636B2 (en) 2016-10-17 2021-05-18 Jfe Steel Corporation Stainless steel sheet and stainless steel foil
US20220118740A1 (en) * 2019-02-19 2022-04-21 Jfe Steel Corporation Ferritic stainless steel sheet and method of producing same, and al vapor deposited layer-equipped stainless steel sheet
EP3988680A4 (en) * 2019-06-19 2022-11-23 JFE Steel Corporation Aluminum-based plated stainless steel sheet, and method for manufacturing ferritic stainless steel sheet
WO2022004100A1 (en) * 2020-07-01 2022-01-06 Jfeスチール株式会社 STAINLESS STEEL SHEET WITH Al COATING LAYER
EP4144886A4 (en) * 2020-07-01 2023-03-29 JFE Steel Corporation Stainless steel sheet with al coating layer
WO2024023625A1 (en) * 2022-07-29 2024-02-01 株式会社半導体エネルギー研究所 Battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068486B2 (en) * 1989-03-27 1994-02-02 新日本製鐵株式会社 Heat- and oxidation-resistant Fe-Cr-A (1) type alloy with excellent manufacturability
JPH06108268A (en) * 1992-09-30 1994-04-19 Sumitomo Metal Ind Ltd Ferritic stainless steel foil and its production
JPH07233451A (en) * 1993-12-28 1995-09-05 Nisshin Steel Co Ltd Al plated stainless steel sheet excellent in high temperature oxidation resistance
JP4941320B2 (en) * 2008-01-17 2012-05-30 Jfeスチール株式会社 Catalyst support for exhaust gas purification device and Fe-Cr-Al alloy foil used therefor
EP2933349B1 (en) * 2012-12-17 2018-09-05 JFE Steel Corporation Stainless steel sheet and stainless steel foil

Also Published As

Publication number Publication date
JP2016102231A (en) 2016-06-02

Similar Documents

Publication Publication Date Title
JP6206381B2 (en) Stainless steel foil
JP5561447B1 (en) Stainless steel plate and stainless steel foil
CN112703264B (en) Ferritic stainless steel sheet, method for producing same, and Al-based plated stainless steel sheet
KR101898564B1 (en) Ferritic stainless steel foil and method for producing the same
JP6601582B2 (en) Fe-Cr alloy and resistance heating element
JP6319537B1 (en) Stainless steel plate and stainless steel foil
KR102177521B1 (en) Ferritic stainless steel sheet
JP5874873B1 (en) Ferritic stainless steel foil and manufacturing method thereof
JP6813142B1 (en) Manufacturing method of Al-plated stainless steel sheet and ferrite-based stainless steel sheet
JP6237973B1 (en) Ferritic stainless steel sheet
CN113383103B (en) Ferritic stainless steel sheet, method for producing same, and stainless steel sheet with Al deposited layer
JPH06108268A (en) Ferritic stainless steel foil and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R150 Certificate of patent or registration of utility model

Ref document number: 6206381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250