JP6205674B2 - Method for producing fine fiber - Google Patents

Method for producing fine fiber Download PDF

Info

Publication number
JP6205674B2
JP6205674B2 JP2014088824A JP2014088824A JP6205674B2 JP 6205674 B2 JP6205674 B2 JP 6205674B2 JP 2014088824 A JP2014088824 A JP 2014088824A JP 2014088824 A JP2014088824 A JP 2014088824A JP 6205674 B2 JP6205674 B2 JP 6205674B2
Authority
JP
Japan
Prior art keywords
porous member
manufacturing
fine fiber
polymer solution
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014088824A
Other languages
Japanese (ja)
Other versions
JP2015206144A (en
Inventor
和孝 吉川
和孝 吉川
麻希子 菊池
麻希子 菊池
達也 針幸
達也 針幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Prefecture
Roki Co Ltd
Original Assignee
Shizuoka Prefecture
Roki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Prefecture, Roki Co Ltd filed Critical Shizuoka Prefecture
Priority to JP2014088824A priority Critical patent/JP6205674B2/en
Publication of JP2015206144A publication Critical patent/JP2015206144A/en
Application granted granted Critical
Publication of JP6205674B2 publication Critical patent/JP6205674B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、微細繊維の製造方法に係り、特に、より安全かつ容易に微細繊維を製造することができ、生産性を向上させた微細繊維の製造方法に関する。   The present invention relates to a method for producing fine fibers, and more particularly, to a method for producing fine fibers that can produce fine fibers more safely and easily and has improved productivity.

従来、不織布等の繊維集合体は、フィルタの濾材として広く用いられており、その繊維径は濾過する対象物に応じて適宜設定されている。具体的には濾過する対象物は、空気中に含まれる塵埃といった比較的大型なものから、0.1μmから1μm程度の微細なものまで様々である。   Conventionally, fiber assemblies such as non-woven fabrics have been widely used as filter media, and the fiber diameter is appropriately set according to the object to be filtered. Specifically, the object to be filtered varies from a relatively large object such as dust contained in the air to a minute object of about 0.1 μm to 1 μm.

このような微細な対象物を濾過するために用いられる微細な繊維径を有する微細繊維は、種々の製造方法によって製造されることが知られており、例えば、高電圧を印加した針状のノズルに高分子溶液を供給することで、この針状のノズルから線状に流出する高分子溶液に電荷が帯電され、高分子溶液の溶媒の蒸発に伴って帯電電荷間の距離が小さくなって作用するクーロン力が大きくなり、そのクーロン力が線状の高分子溶液の表面張力より勝った時点で線状の高分子溶液が爆発的に延伸される現象が生じ、この現象が一次、二次、三次と繰り返されることで微細繊維が製造されるエレクトロスピニング法が知られている。   It is known that fine fibers having a fine fiber diameter used for filtering such fine objects are produced by various production methods, for example, a needle-like nozzle to which a high voltage is applied. When the polymer solution is supplied to the polymer solution, electric charge is charged to the polymer solution that flows out linearly from this needle-shaped nozzle, and the distance between the charged charges decreases as the solvent of the polymer solution evaporates. When the Coulomb force increases and the Coulomb force exceeds the surface tension of the linear polymer solution, a phenomenon occurs in which the linear polymer solution is stretched explosively, and this phenomenon is primary, secondary, An electrospinning method is known in which fine fibers are produced by repeating the third order.

このような、エレクトロスピニング法は、針状のノズルを用いているので、製造される微細繊維を大量に製造することが難しく、また、ノズル先端に高分子溶液が付着してしまうためこれを除去するための定期的なメンテナンスを行う必要があるため、生産性が非常に悪いものであった。   Such an electrospinning method uses a needle-like nozzle, so it is difficult to produce a large amount of fine fibers to be produced, and the polymer solution adheres to the tip of the nozzle, which is removed. Productivity is very poor because it is necessary to carry out regular maintenance.

また、エレクトロスピニング法の生産性を向上させるために種々の製造方法および製造装置が知られている。   Various manufacturing methods and manufacturing apparatuses are known for improving the productivity of the electrospinning method.

特開2007−532790号公報JP 2007-532790 A 特開2008−127726号公報JP 2008-127726 A 特開2012−012755号公報JP 2012-012755 A

特許文献1に記載された微細繊維の製造方法は、長軸を有するスプレーヘッドを備え、該スプレーヘッドの周壁に配置され、先端部を有する少なくとも一つの押出エレメントを有し、押出エレメントは、微細繊維を構成する物質を前記押出エレメントの先端部に提供するための通路を備え、押出エレメントは、長軸からの方向に延在して押出エレメントの先端部から物質を電場によって抽出してエレクトロスピニングすることで微細繊維を製造する。   The manufacturing method of the fine fiber described in patent document 1 is equipped with the spray head which has a long axis, is arrange | positioned on the surrounding wall of this spray head, has at least 1 extrusion element which has a front-end | tip part, A passage for providing the material constituting the fiber to the tip of the extrusion element is provided, and the extrusion element extends in a direction from the long axis and extracts the material from the tip of the extrusion element by an electric field. To produce fine fibers.

このように、特許文献1に記載された微細繊維の製造方法によれば、長軸を有するスプレーヘッドの周壁で押出エレメントの先端部に微細繊維を構成する物質を供給して、スプレーヘッドまたは収集体を長軸中心に回転させて、微細繊維を形成するために押出エレメントの先端部から電場によって物質を抽出してエレクトロスピニングするために、スプレーヘッドの長軸から押出エレメントの先端部への電場を印加して、収集体に微細繊維を集めることが可能となる。   As described above, according to the method for producing fine fibers described in Patent Document 1, the material constituting the fine fibers is supplied to the tip portion of the extrusion element at the peripheral wall of the spray head having the long axis, and the spray head or the collection is performed. The electric field from the long axis of the spray head to the tip of the extrusion element is used to extract and electrospin the substance from the tip of the extrusion element to form a fine fiber by rotating the body around the long axis. Can be applied to collect the fine fibers in the collecting body.

特許文献2に記載された微細繊維の製造装置は、回転自在に支持されるとともに回転軸芯から径方向に距離をあけて複数の小穴を有する導電性の円筒容器と、円筒容器を回転駆動する回転駆動手段と、円筒容器に電荷を帯電させる高電圧発生手段と、円筒容器内に溶媒に高分子物質を溶解した高分子溶液を供給する高分子溶液供給手段と、円筒容器内の小穴の内側に配置された多孔性部材とを備え、円筒容器を所定速度で回転させながら、円筒容器内に高分子溶液を供給し、円筒容器に高電圧を印加するようにした微細繊維の製造装置が記載されている。   The fine fiber manufacturing apparatus described in Patent Document 2 is rotatably supported and has a conductive cylindrical container having a plurality of small holes at a radial distance from the rotation axis, and rotationally drives the cylindrical container. Rotation drive means, high voltage generating means for charging the cylindrical container with charge, polymer solution supply means for supplying a polymer solution in which a polymer substance is dissolved in a solvent in the cylindrical container, and inside a small hole in the cylindrical container And a porous member arranged in the above, a polymer solution is supplied to the cylindrical container while rotating the cylindrical container at a predetermined speed, and a high voltage is applied to the cylindrical container. Has been.

このように、特許文献2に記載された製造装置によれば、円筒容器内で電荷を帯電された高分子溶液が複数の小穴から線状に流出されて遠心力で延伸され、その後延伸されるとともに溶媒が蒸発することで径が細くなって電荷が集中し、数次にわたって静電爆発により爆発的に延伸されることで、サブミクロンの直径を有する微細繊維を効率的に製造することができ、さらに小穴の内側に多孔性部材を配置しているので、小穴の径を大きく設定しても高分子溶液が毛細管現象にて多孔性部材に適切に保持されて垂れる恐れがなく、かつ多孔性部材は円筒容器内でその全体が常に高分子溶液に浸漬している状態となっているので、高分子溶液の溶媒が蒸発して多孔性部材や小穴の周縁に固化した高分子材料が付着する恐れもなく、円筒容器の全ての小穴から均一で品質の安定した微細繊維を長期にわたって安定して製造することができ、簡単な構成にて品質の良い微細繊維を生産性良くかつ安定して製造することができる。   Thus, according to the manufacturing apparatus described in Patent Document 2, the polymer solution charged in the cylindrical container is linearly discharged from the plurality of small holes, stretched by centrifugal force, and then stretched. At the same time, as the solvent evaporates, the diameter becomes thinner and the electric charge concentrates, and the microfibers with submicron diameters can be efficiently produced by being stretched explosively by electrostatic explosion over several orders. In addition, since the porous member is arranged inside the small hole, there is no risk that the polymer solution is appropriately held by the porous member due to capillary action and droops even if the diameter of the small hole is set large. Since the whole member is always immersed in the polymer solution in the cylindrical container, the solvent of the polymer solution evaporates and the solid polymer material adheres to the periphery of the porous member or small hole. Without fear, the entire cylindrical container Stable fine fiber quality uniform from the small holes in the long-term can be stably produced over, it can be produced stably good and the fine fibers with good productivity quality with a simple configuration.

特許文献3に記載された微細繊維の製造装置は、電気紡績溶液を入れるための原料タンクと、前記原料タンク中に回転するかきあげローラとを有する電気紡績溶液浸漬手段と、前記電気紡績溶液が付着するように前記かきあげローラに接触するチェーン形印加電極と、捕集電極と、前記チェーン形印加電極及び前記捕集電極にそれぞれ接続される高圧電発生手段とを備えるローラ式電界紡績装置が記載されている。   The apparatus for producing fine fibers described in Patent Document 3 includes a raw material tank for containing an electrospinning solution, an electrospinning solution immersion means having a scraping roller rotating in the raw material tank, and the electrospinning solution attached thereto. A roller-type electrospinning apparatus comprising a chain-type application electrode that contacts the lifting roller, a collection electrode, and a high-voltage generating means connected to the chain-type application electrode and the collection electrode is described. ing.

このように特許文献3に記載された微細繊維の製造装置は、チェーン形印加電極は突起の立体構造を有するビーズを備え、該ビーズの突起によって、電界紡績溶液が電界に作用されて吐出されやすくなり、微細繊維の形成に必要とする電圧の閾値を有効に低減することができるほか、チェーン形印加電極の幅方向の範囲内でビーズが均等に配置されるので、チェーン形印加電極の各ビーズから微細繊維が安定に吐出され、全体に大幅で均一な電界紡績の効果を達成することができる。   Thus, in the apparatus for producing fine fibers described in Patent Document 3, the chain-shaped application electrode includes beads having a three-dimensional structure of protrusions, and the electrospinning solution is easily applied to the electric field by the protrusions of the beads and is easily discharged. In addition to effectively reducing the threshold voltage required for the formation of fine fibers, the beads are evenly arranged within the range of the width of the chain-type application electrode. Thus, fine fibers can be stably discharged, and a large and uniform electrospinning effect can be achieved.

しかしながら、上述した従来の微細繊維の製造方法又は製造装置は、特許文献1に記載された微細繊維の製造方法では、スプレーヘッドの回転数が1000〜10000rpmと高速に回転する必要があり、紡糸した微細繊維のうち収集体で回収されない微細繊維がスプレーヘッドに巻きついてしまい、紡糸に悪影響を与える恐れがあり、また、押出エレメントにポリマー溶液が詰まることを防止するために依然として定期的なメンテナンスが必要であるという問題を有していた。   However, the above-described conventional fine fiber production method or production apparatus is spun by the fine fiber production method described in Patent Document 1 because the spray head needs to rotate at a high speed of 1000 to 10,000 rpm. Fine fibers that are not collected by the collecting body of the fine fibers may wind around the spray head and adversely affect spinning, and regular maintenance is still required to prevent the extrusion element from becoming clogged with the polymer solution. Had the problem of being.

また、特許文献2に記載された微細繊維の製造装置は、円筒容器を遠心力が発生するだけの回転数(2000〜3000rpm)で回転させる必要があり、収集体で回収されない微細繊維が円筒容器に巻きついてしまい、紡糸に悪影響を与える恐れがあり、多孔性部材に目詰まりが発生した場合にはこれを交換する必要があるなど依然として定期的なメンテナンスが必要であるという問題を有していた。   In addition, the fine fiber manufacturing apparatus described in Patent Document 2 requires that the cylindrical container be rotated at a rotational speed (2000 to 3000 rpm) sufficient to generate centrifugal force, and the fine fiber that is not collected by the collector is a cylindrical container. There is a possibility that the spinning may be adversely affected, and if the porous member is clogged, it needs to be replaced, so that periodic maintenance is still necessary. .

さらに、特許文献3に記載された微細繊維の製造装置は、かきあげローラに接触するチェーン形印加電極にポリマー溶液を付着させて微細繊維を紡糸しているが、チェーン形印加電極に付着するポリマー溶液がかきあげローラとの接触によって付着しているので、各ビーズごとに均一にポリマー溶液を付着させることが難しく、全体に均一な紡糸を行うことができないという問題を有していた。   Furthermore, the fine fiber manufacturing apparatus described in Patent Document 3 spins fine fibers by attaching a polymer solution to a chain-type application electrode that is in contact with a lifting roller, but the polymer solution is attached to the chain-type application electrode. Since it is attached by contact with the scraping roller, it is difficult to uniformly attach the polymer solution to each bead, and there is a problem that uniform spinning cannot be performed as a whole.

またさらに、従来の製造方法および製造装置によれば、高電圧が印加された電極が露出して構成されているため、微細繊維の製造中に電極に接触して怪我をするという危険性があった。   Furthermore, according to the conventional manufacturing method and manufacturing apparatus, since the electrode to which a high voltage is applied is exposed and configured, there is a risk of being injured by contacting the electrode during the manufacture of the fine fiber. It was.

そこで、本発明は上記問題に鑑みてなされたものであり、安全かつ容易に全体的に均一な微細繊維を製造することができ、生産性を向上させた微細繊維の製造方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and can provide a method for producing fine fibers that can produce fine fibers that are uniformly uniform safely and easily, and that has improved productivity. Objective.

本発明に係る微細繊維の製造方法は、周方向に連続すると共に、表面に多数の孔が形成された多孔部材と、前記多孔部材の一部にポリマー溶液を付着させる供給部と、前記多孔部材を周方向に移動せしめる駆動部と、前記多孔部材の外周側に配置される捕集部と、前記多孔部材の内部に、前記多孔部材を介して前記捕集部に向けて空気を噴出する噴出口と、高電圧電源によって電圧が印加された電極とが収納され、前記電極と、前記噴出口から噴出される空気の電荷供給によって前記多孔部材に付着させたポリマー溶液を帯電すると共に、該帯電されたポリマー溶液を前記捕集部に向けて噴射することで微細繊維を製造することを特徴とする。   The method for producing fine fibers according to the present invention includes a porous member that is continuous in the circumferential direction and has a large number of holes formed on the surface thereof, a supply unit that attaches a polymer solution to a part of the porous member, and the porous member A drive unit for moving the gas in the circumferential direction, a collection unit arranged on the outer circumferential side of the porous member, and a jet that ejects air toward the collection unit via the porous member inside the porous member An outlet and an electrode to which a voltage is applied by a high-voltage power supply are housed. The electrode and the polymer solution attached to the porous member by supplying electric charge from the jet outlet are charged, and the charging is performed. Fine fibers are produced by spraying the polymer solution directed toward the collection part.

また、本発明に係る微細繊維の製造方法において、前記多孔部材は円筒状に形成されると好適である。   In the method for producing fine fibers according to the present invention, it is preferable that the porous member is formed in a cylindrical shape.

また、本発明に係る微細繊維の製造方法において、前記多孔部材は楕円筒状に形成されると好適である。   In the method for producing fine fibers according to the present invention, it is preferable that the porous member is formed in an elliptic cylinder shape.

また、本発明に係る微細繊維の製造方法において、前記噴出口は、前記多孔部材の軸方向に沿って複数の噴出口が配列されると好適である。   Moreover, in the method for producing fine fibers according to the present invention, it is preferable that the ejection port is arranged with a plurality of ejection ports along the axial direction of the porous member.

また、本発明に係る微細繊維の製造方法において、前記電極は、前記噴出口の外縁部に沿って形成されると好適である。   In the method for producing fine fibers according to the present invention, it is preferable that the electrode is formed along an outer edge portion of the jet port.

また、本発明に係る微細繊維の製造方法において、前記電極は、前記噴出口の開口の幅方向に沿って延設されると好適である。   In the method for producing fine fibers according to the present invention, it is preferable that the electrode is extended along the width direction of the opening of the jet port.

上記発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションもまた発明となり得る。   The above summary of the invention does not enumerate all the necessary features of the present invention, and sub-combinations of these features can also be the invention.

本発明に係る微細繊維の製造方法は、電極が周方向に連続した多孔部材の内部に収納されているので、微細繊維の製造中に誤って電極に触れてしまうことがなく、また、電極と噴出口から噴出される空気の電荷供給によって多孔部材に付着させたポリマー溶液を帯電させて捕集部に向けて噴射して微細繊維を製造するので、多孔部材にポリマー溶液が固化して残ることがなく、全体的に均一な微細繊維を製造することができる。   In the method for producing fine fibers according to the present invention, since the electrodes are housed in a porous member that is continuous in the circumferential direction, the electrodes are not accidentally touched during the production of the fine fibers. Since the polymer solution attached to the porous member is charged by supplying the charge of the air ejected from the jet outlet and sprayed toward the collecting portion to produce fine fibers, the polymer solution remains solidified in the porous member. And fine fibers that are uniform throughout can be produced.

本実施形態に係る微細繊維の製造方法の概要を説明するための構成図。The block diagram for demonstrating the outline | summary of the manufacturing method of the fine fiber which concerns on this embodiment. 本実施形態に係る微細繊維の製造方法に用いられる多孔部材の斜視図。The perspective view of the porous member used for the manufacturing method of the fine fiber concerning this embodiment. (a)は、本実施形態に係る微細繊維の製造方法に用いられる電極及び噴出口の斜視図であり、(b)は、電極の変形例を示す斜視図。(A) is a perspective view of the electrode used for the manufacturing method of the fine fiber which concerns on this embodiment, and a jet nozzle, (b) is a perspective view which shows the modification of an electrode. 本実施形態に係る微細繊維の製造方法に用いられる多孔部材の変形例を示す斜視図。The perspective view which shows the modification of the porous member used for the manufacturing method of the fine fiber which concerns on this embodiment. 本実施形態に係る微細繊維の製造方法に用いられる電極及び噴出口の変形例を示す斜視図。The perspective view which shows the modified example of the electrode used for the manufacturing method of the fine fiber which concerns on this embodiment, and a jet nozzle.

以下、本発明を実施するための好適な実施形態について、図面を用いて説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. The following embodiments do not limit the invention according to each claim, and all combinations of features described in the embodiments are not necessarily essential to the solution means of the invention. .

図1は、本実施形態に係る微細繊維の製造方法の概要を説明するための構成図であり、図2は、本実施形態に係る微細繊維の製造方法に用いられる多孔部材の斜視図であり、図3は、(a)は、本実施形態に係る微細繊維の製造方法に用いられる電極及び噴出口の斜視図であり、(b)は、電極の変形例を示す斜視図であり、図4は、本実施形態に係る微細繊維の製造方法に用いられる多孔部材の変形例を示す斜視図であり、図5は、本実施形態に係る微細繊維の製造方法に用いられる電極及び噴出口の変形例を示す斜視図である。   FIG. 1 is a configuration diagram for explaining an outline of a method for producing fine fibers according to the present embodiment, and FIG. 2 is a perspective view of a porous member used in the method for producing fine fibers according to the present embodiment. FIG. 3A is a perspective view of an electrode and an ejection port used in the method for producing fine fibers according to the present embodiment, and FIG. 3B is a perspective view showing a modification of the electrode. 4 is a perspective view showing a modified example of the porous member used in the method for producing fine fibers according to the present embodiment, and FIG. 5 shows the electrodes and jet nozzles used in the method for producing fine fibers according to the present embodiment. It is a perspective view which shows a modification.

図1に示すように、本実施形態に係る微細繊維の製造方法に用いられる微細繊維の製造装置1は、周方向に連続して概略中空円筒状に形成された多孔部材2と、高分子物質を溶解したポリマー溶液Pが入れられる供給部3と、多孔部材2の内部に収納された噴出口5及び電極7と、電極7に電圧を印加する高電圧電源6と、微細繊維Fを捕集する捕集部4とを備えている。   As shown in FIG. 1, a fine fiber production apparatus 1 used in the fine fiber production method according to the present embodiment includes a porous member 2 formed in a substantially hollow cylindrical shape continuously in the circumferential direction, and a polymer material. A supply unit 3 in which a polymer solution P in which a solution is dissolved is placed; a jet port 5 and an electrode 7 housed inside the porous member 2; a high-voltage power source 6 that applies a voltage to the electrode 7; And a collecting unit 4 to be used.

図2に示すように、多孔部材2は表面に多数の孔が形成された網状シートを周方向に連続させて略円筒状に形成した部材であり、図示しない駆動部によって周方向に回転可能に保持されている。駆動部は、円筒状の多孔部材2を周方向に回転可能に駆動することができれば如何なる構成でも構わないが、例えば多孔部材2の軸端部に回転モータの回転軸を取り付けて構成すると好適である。なお、回転軸は多孔部材2と直結しても構わないし、変速機構を介して接続しても構わない。   As shown in FIG. 2, the porous member 2 is a member that is formed in a substantially cylindrical shape by continuously forming a net-like sheet having a large number of holes formed on its surface in the circumferential direction, and can be rotated in the circumferential direction by a driving unit (not shown). Is retained. The drive unit may have any configuration as long as the cylindrical porous member 2 can be driven to rotate in the circumferential direction. For example, the drive unit is preferably configured by attaching the rotary shaft of the rotary motor to the shaft end of the porous member 2. is there. The rotating shaft may be directly connected to the porous member 2 or may be connected via a speed change mechanism.

多孔部材2は、図1に示すようにポリマー溶液Pに下方が浸漬することで、表面にポリマー溶液Pを付着させることができるように配置されている。また、供給部3には多孔部材2の表面に向けてスリット8が延設しているので、多孔部材2の表面に付着した余分なポリマー溶液Pをスリット8によって削ぎ落とすことで多孔部材2に付着するポリマー溶液Pの量を一定に保つことができる。   As shown in FIG. 1, the porous member 2 is arranged so that the lower part is immersed in the polymer solution P so that the polymer solution P can be attached to the surface. Moreover, since the slit 8 extends toward the surface of the porous member 2 in the supply unit 3, the excess polymer solution P adhering to the surface of the porous member 2 is scraped off by the slit 8 to the porous member 2. The amount of the polymer solution P that adheres can be kept constant.

また、図3(a)に示すように噴出口5は外部から圧縮空気を供給する供給管5bと、供給管5bと連続するとともに多孔部材2に向けて上方に空気を噴出する噴出部5aとを備えている。また、噴出部5aの外縁近傍には、円環状の電極7が配置されている。   Further, as shown in FIG. 3A, the jet nozzle 5 includes a supply pipe 5 b that supplies compressed air from the outside, a jet section 5 a that is continuous with the supply pipe 5 b and jets air upward toward the porous member 2. It has. An annular electrode 7 is disposed in the vicinity of the outer edge of the ejection portion 5a.

このように電極7を配置することで、電極7と噴出部5aから噴出される空気の電荷供給によって多孔部材2に付着したポリマー溶液Pを帯電させることができる。   By disposing the electrode 7 in this manner, the polymer solution P attached to the porous member 2 can be charged by supplying electric charges of air ejected from the electrode 7 and the ejection portion 5a.

なお、電極は、図3(b)に示すように、噴出部5aの開口の幅方向に沿って延設される針状の電極7´とすることもできる。針状の電極7´は、噴出部5aの開口の略中心部が針状の電極7´の先端と一致するように配置しても構わないし、該開口を横断するように配置しても構わない。   In addition, as shown in FIG.3 (b), an electrode can also be used as the acicular electrode 7 'extended along the width direction of the opening of the ejection part 5a. The needle-like electrode 7 ′ may be arranged so that the substantially central part of the opening of the ejection part 5 a coincides with the tip of the needle-like electrode 7 ′, or may be arranged so as to cross the opening. Absent.

また、図1に示すように、多孔部材2は、周方向に回転しているので、多孔部材2の下方で付着されたポリマー溶液Pが回転方向に沿って上方に移動され、スリット8によって均一に付着されたポリマー溶液Pに噴出部5aから噴出された空気が捕集部4に向けて噴出される。   Further, as shown in FIG. 1, since the porous member 2 rotates in the circumferential direction, the polymer solution P adhered below the porous member 2 is moved upward along the rotation direction, and is uniformly formed by the slits 8. The air jetted from the jetting part 5 a to the polymer solution P adhering to is jetted toward the collecting part 4.

なお、噴出される空気は、噴出部5aの開口における出口流速で20〜60m/sで噴出されると好適である。また、多孔部材2の回転数は、高速に回転させると表面に付着したポリマー溶液Pを適切に電界紡糸することができないので、3〜20rpmの速度で回転させることが好適である。   In addition, it is suitable if the air to be ejected is ejected at 20 to 60 m / s at the outlet flow velocity at the opening of the ejection portion 5a. Moreover, since the polymer member P adhering to the surface cannot be appropriately electrospun when the porous member 2 is rotated at a high speed, the porous member 2 is preferably rotated at a speed of 3 to 20 rpm.

このように、ポリマー溶液Pに電荷供給せしめる空気が噴出されるので、ポリマー溶液Pの帯電電荷間の距離が小さくなって作用するクーロン力が大きくなり、このクーロン力がポリマー溶液Pの表面張力より勝った時点でポリマー溶液Pが延伸されることで微細繊維を製造することができる。   In this way, since air for supplying electric charge to the polymer solution P is ejected, the distance between the charged charges of the polymer solution P becomes smaller and the acting Coulomb force becomes larger, and this Coulomb force is larger than the surface tension of the polymer solution P. The fine fiber can be produced by stretching the polymer solution P at the time of winning.

このように、本実施形態に係る微細繊維の製造方法によれば、多孔部材2の表面に均一に付着したポリマー溶液Pを噴出口5から噴出した空気によって電荷供給するので、多孔部材2にポリマー溶液Pが付着することがないと共に、多孔部材2がポリマー溶液Pに下方が浸漬するように回転しているので、電界紡糸されなかったポリマー溶液が供給部3に再度浸漬されることで、溶媒の蒸発を防止してポリマー溶液Pが固化することを防止することができる。また、多孔部材2の回転数が低速であるため、捕集部4に捕集されなかった微細繊維Fが多孔部材2に巻きつくことがなく、定期的なメンテナンスを行うことなく、生産性の優れた微細繊維の製造方法を実現することができる。   As described above, according to the method for producing fine fibers according to the present embodiment, the polymer solution P uniformly attached to the surface of the porous member 2 is supplied with electric charges by the air ejected from the ejection port 5. Since the solution P does not adhere and the porous member 2 rotates so that the lower part is immersed in the polymer solution P, the polymer solution that has not been electrospun is immersed again in the supply unit 3, so that the solvent It is possible to prevent the polymer solution P from solidifying. In addition, since the rotational speed of the porous member 2 is low, the fine fibers F that are not collected in the collecting unit 4 do not wrap around the porous member 2, and the productivity can be improved without performing regular maintenance. An excellent method for producing fine fibers can be realized.

また、高電圧が印加される電極7は、多孔部材2の内部に収納されているので、微細繊維の製造中に誤って電極7に触れることによる怪我を防止することができ、多孔部材2の回転数も低速度に設定することができるので、簡便な構成でより安全な微細繊維の製造方法を実現することができる。   Moreover, since the electrode 7 to which a high voltage is applied is housed inside the porous member 2, it is possible to prevent injuries caused by accidentally touching the electrode 7 during the production of the fine fiber. Since the rotational speed can also be set to a low speed, a safer method for producing fine fibers can be realized with a simple configuration.

さらに、多孔部材2の表面に付着した余分なポリマー溶液Pをスリット8によって削ぎ落としており、このポリマー溶液Pに空気を噴出することで微細繊維を製造しているので、全体的に均一な微細繊維を製造することができる。   Furthermore, since the excess polymer solution P adhering to the surface of the porous member 2 is scraped off by the slits 8 and fine fibers are produced by blowing air into the polymer solution P, a uniform fine Fiber can be produced.

以上説明した本実施形態に係る微細繊維の製造方法において、多孔部材2の形状を概略円筒状に形成した場合について説明を行ったが、多孔部材の形状はこれに限られず、例えば図4に示すように、楕円筒状に形成しても構わない。   In the fine fiber manufacturing method according to the present embodiment described above, the case where the shape of the porous member 2 is formed in a substantially cylindrical shape has been described. However, the shape of the porous member is not limited to this, for example, as shown in FIG. Thus, it may be formed in an elliptical cylindrical shape.

この場合、楕円筒状の多孔部材2aは、二つの駆動輪によって無限軌道のように周方向に移動することで、長辺部分に沿って複数の噴出口を配置することができるので、より効率的に多孔部材2aの表面に付着したポリマー溶液Pを電界紡糸することが可能となる。   In this case, the elliptical cylindrical porous member 2a moves in the circumferential direction like an endless track by two drive wheels, so that a plurality of jet outlets can be arranged along the long side portion. In particular, the polymer solution P attached to the surface of the porous member 2a can be electrospun.

また、本実施形態に係る微細繊維の製造方法において、噴出口5は、単一の噴出部5aを有する場合について説明を行ったが、図5に示すように多孔部材の軸方向に沿って複数の噴出部5´aを配置した噴出口5´を用いても構わない。さらに、電極7,7´は、円環状及び針状に限らず、図5に示すように噴出部5´aの開口を横断するように電極7aを直線状に形成しても構わない。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれうることが、特許請求の範囲の記載から明らかである。   Moreover, in the manufacturing method of the fine fiber which concerns on this embodiment, although the jet nozzle 5 demonstrated the case where it had the single jet part 5a, as shown in FIG. 5, it is plural along the axial direction of a porous member. You may use the jet nozzle 5 'which has arrange | positioned this jet part 5'a. Furthermore, the electrodes 7 and 7 ′ are not limited to an annular shape and a needle shape, and the electrode 7 a may be formed linearly so as to cross the opening of the ejection portion 5 ′ as shown in FIG. 5. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

1 微細繊維製造装置, 2 多孔部材, 3 供給部, 4 捕集部, 5,5´ 噴出口, 6 高電圧電源, 7,7a 電極, 8 スリット, F 微細繊維, P ポリマー溶液。   DESCRIPTION OF SYMBOLS 1 Fine fiber manufacturing apparatus, 2 Porous member, 3 Supply part, 4 Collection part, 5, 5 'spout, 6 High voltage power supply, 7, 7a electrode, 8 slit, F fine fiber, P polymer solution.

Claims (6)

周方向に連続すると共に、表面に多数の孔が形成された多孔部材と、
前記多孔部材の一部にポリマー溶液を付着させる供給部と、
前記多孔部材を周方向に移動せしめる駆動部と、
前記多孔部材の外周側に配置される捕集部と、
前記多孔部材の内部に、前記多孔部材を介して前記捕集部に向けて空気を噴出する噴出口と、高電圧電源によって電圧が印加された電極とが収納され、
前記電極と、前記噴出口から噴出される空気の電荷供給によって前記多孔部材に付着させたポリマー溶液を帯電すると共に、該帯電されたポリマー溶液を前記捕集部に向けて噴射することで微細繊維を製造することを特徴とする微細繊維の製造方法。
A porous member that is continuous in the circumferential direction and has a large number of holes formed on the surface;
A supply section for attaching a polymer solution to a part of the porous member;
A drive unit for moving the porous member in the circumferential direction;
A collecting portion disposed on the outer peripheral side of the porous member;
Inside the porous member, an ejection port for ejecting air toward the collection part through the porous member, and an electrode to which a voltage is applied by a high voltage power supply are housed,
The polymer solution attached to the porous member is charged by supplying electric charge from the electrode and air ejected from the ejection port, and the charged polymer solution is ejected toward the collecting portion to thereby fine fibers. A process for producing fine fibers, characterized in that
請求項1に記載の微細繊維の製造方法において、
前記多孔部材は円筒状に形成されることを特徴とする微細繊維の製造方法。
In the manufacturing method of the fine fiber of Claim 1,
The method for producing fine fibers, wherein the porous member is formed in a cylindrical shape.
請求項1に記載の微細繊維の製造方法において、
前記多孔部材は楕円筒状に形成されることを特徴とする微細繊維の製造方法。
In the manufacturing method of the fine fiber of Claim 1,
The method for producing fine fibers, wherein the porous member is formed in an elliptic cylinder shape.
請求項1から3のいずれか1項に記載の微細繊維の製造方法において、
前記噴出口は、前記多孔部材の軸方向に沿って複数の噴出口が配列されることを特徴とする微細繊維の製造方法。
In the manufacturing method of the fine fiber of any one of Claim 1 to 3,
The said spout is a manufacturing method of the fine fiber characterized by the some spout being arranged along the axial direction of the said porous member.
請求項1から4のいずれか1項に記載の微細繊維の製造方法において、
前記電極は、前記噴出口の外縁部に沿って形成されることを特徴とする微細繊維の製造方法。
In the manufacturing method of the fine fiber of any one of Claim 1 to 4,
The said electrode is formed along the outer edge part of the said jet nozzle, The manufacturing method of the fine fiber characterized by the above-mentioned.
請求項1から4のいずれか1項に記載の微細繊維の製造方法において、
前記電極は、前記噴出口の開口の幅方向に沿って延設されることを特徴とする微細繊維の製造方法。
In the manufacturing method of the fine fiber of any one of Claim 1 to 4,
The said electrode is extended along the width direction of opening of the said jet nozzle, The manufacturing method of the fine fiber characterized by the above-mentioned.
JP2014088824A 2014-04-23 2014-04-23 Method for producing fine fiber Active JP6205674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014088824A JP6205674B2 (en) 2014-04-23 2014-04-23 Method for producing fine fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014088824A JP6205674B2 (en) 2014-04-23 2014-04-23 Method for producing fine fiber

Publications (2)

Publication Number Publication Date
JP2015206144A JP2015206144A (en) 2015-11-19
JP6205674B2 true JP6205674B2 (en) 2017-10-04

Family

ID=54603168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014088824A Active JP6205674B2 (en) 2014-04-23 2014-04-23 Method for producing fine fiber

Country Status (1)

Country Link
JP (1) JP6205674B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4429681Y1 (en) * 1968-06-11 1969-12-08
CZ294274B6 (en) * 2003-09-08 2004-11-10 Technická univerzita v Liberci Process for producing nanofibers from polymeric solution by electrostatic spinning and apparatus for making the same
US7959848B2 (en) * 2005-05-03 2011-06-14 The University Of Akron Method and device for producing electrospun fibers
CZ299537B6 (en) * 2005-06-07 2008-08-27 Elmarco, S. R. O. Method of and apparatus for producing nanofibers from polymeric solution using electrostatic spinning
JP4867612B2 (en) * 2006-11-24 2012-02-01 パナソニック株式会社 Nanofiber manufacturing equipment
JP5422128B2 (en) * 2008-02-01 2014-02-19 公益財団法人神奈川科学技術アカデミー Manufacturing method of fibrous structure
EP2294252B1 (en) * 2008-06-24 2013-08-14 Stellenbosch University Method and apparatus for the production of fine fibres
JP5451837B2 (en) * 2012-09-07 2014-03-26 出光興産株式会社 Fiber cross-linked body and method for producing fiber cross-linked body

Also Published As

Publication number Publication date
JP2015206144A (en) 2015-11-19

Similar Documents

Publication Publication Date Title
JP5627024B2 (en) Electrostatic spinning assembly
JP2008542571A (en) Method and apparatus for producing nanofibers from polymer solution by electrospinning
JP6132820B2 (en) Nanofiber manufacturing method and apparatus
CN109208090B (en) Novel needle-free electrostatic spinning device and spinning method thereof
US11162193B2 (en) Apparatus and process for uniform deposition of polymeric nanofibers on substrate
JP5698508B2 (en) Nanofiber manufacturing equipment
JP2016053230A (en) Electro-spinning nozzle, and method and apparatus for producing nanofiber
CN108811503A (en) Cleaning device and electrospinning device
JP2008038312A (en) Polymer solution feed member, electrostatic spinning apparatus, and method for producing electrospun nonwoven fabric
CN108330550B (en) Non-nozzle type electrostatic spinning device and using method thereof
JP4867612B2 (en) Nanofiber manufacturing equipment
JP4880633B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP2013147786A (en) Conjugated spinning nozzle for producing nanofiber material and micro fiber material
JP6205674B2 (en) Method for producing fine fiber
JP4639324B2 (en) Nano-fiber manufacturing apparatus and nano-fiber manufacturing method using the same
JP2013124426A (en) Spinneret for producing nanofiber
JP2015081391A (en) Electrospinning device
JP2011032593A (en) Nonwoven fabric production apparatus and nonwoven fabric production method
JP4508105B2 (en) Electrostatic spraying equipment
JP2008050719A (en) Polymer solution feeding member, electrostatic spinning apparatus and method for producing nonwoven fabric by electrostatic spinning
Liu et al. Scale-up strategies for electrospun nanofiber production
WO2018105438A1 (en) Spinning nozzle
CN103866404B (en) Mixture nanofiber spinning nozzle device
CN112442742A (en) Rotary needleless spinning device
JP6378229B2 (en) Nozzle head and electrospinning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170818

R150 Certificate of patent or registration of utility model

Ref document number: 6205674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250