JP6204714B2 - Densitometer and concentration measurement method - Google Patents

Densitometer and concentration measurement method Download PDF

Info

Publication number
JP6204714B2
JP6204714B2 JP2013130718A JP2013130718A JP6204714B2 JP 6204714 B2 JP6204714 B2 JP 6204714B2 JP 2013130718 A JP2013130718 A JP 2013130718A JP 2013130718 A JP2013130718 A JP 2013130718A JP 6204714 B2 JP6204714 B2 JP 6204714B2
Authority
JP
Japan
Prior art keywords
temperature
concentration
gas
gas concentration
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013130718A
Other languages
Japanese (ja)
Other versions
JP2014211424A (en
Inventor
松岡 武志
武志 松岡
崇 松木
崇 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP2013130718A priority Critical patent/JP6204714B2/en
Publication of JP2014211424A publication Critical patent/JP2014211424A/en
Application granted granted Critical
Publication of JP6204714B2 publication Critical patent/JP6204714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は濃度計とそれを用いた濃度測定方法に関し、特に、温度補正ができる濃度計と濃度測定方法に関するものである。   The present invention relates to a densitometer and a density measuring method using the densitometer, and more particularly to a densitometer capable of temperature correction and a density measuring method.

揮発性の測定対象物質(例えばアルコール)の試料液中の濃度は、特定の気体を所定温度(測定温度)下でバブリングしたときの当該気体中の測定対象物質のガス濃度、前記測定温度から計算で求めることができる。   The concentration of a volatile measurement target substance (for example, alcohol) in a sample solution is calculated from the gas concentration of the measurement target substance in the gas when the specific gas is bubbled at a predetermined temperature (measurement temperature) and the measurement temperature. Can be obtained.

そこで、従来は厳密に管理された一定温度下でキャリアガス中に所定のガス濃度を得て、当該ガス濃度に基づいて濃度を算出するようにしている。   Therefore, conventionally, a predetermined gas concentration is obtained in the carrier gas at a strictly controlled constant temperature, and the concentration is calculated based on the gas concentration.

すなわち、図6に示すように恒温槽(図示しない)よりの水をガス管110を包む恒温容器100内に循環させ、当該恒温容器100内に配管120を介して試料液を流し、当該試料液の温度を前記水の温度と一致させてから、前記ガス管110に供給するようにしている。   That is, as shown in FIG. 6, water from a thermostat (not shown) is circulated in a thermostatic container 100 that encloses the gas pipe 110, and the sample liquid is allowed to flow through the pipe 120 into the thermostatic container 100. The temperature of the water is made to coincide with the temperature of the water before being supplied to the gas pipe 110.

上記構成において、試料液を前記ガス管110に、図面上、上側から管壁に沿って流下させながら、ガス管110の下側からキャリアガスを流すようにしているので、キャリアガスに、試料液に含まれるアルコールが、現在の温度(測定温度)での平衡状態で含まれることになる、このアルコールのガス濃度をガスセンサ130の電圧として検出する。このように検出された電圧に基づいて試料液中のアルコールの濃度が計算されることになる。   In the above configuration, the sample liquid is allowed to flow from the lower side of the gas pipe 110 while flowing the sample liquid to the gas pipe 110 along the pipe wall from the upper side in the drawing. Is detected as a voltage of the gas sensor 130. The gas concentration of the alcohol that is included in an equilibrium state at the current temperature (measurement temperature) is detected. Based on the voltage thus detected, the alcohol concentration in the sample solution is calculated.

ここで試料液の温度としては、例えばガスセンサが最も感度がよい温度が選択され、このように温度が固定された状態でのキャリアガスのアルコールのガス濃度と試料液中の濃度との関係を予め求めておくと、ガス濃度を求めると試料液中のアルコールの濃度が求められることになる。   Here, as the temperature of the sample liquid, for example, the temperature at which the gas sensor has the highest sensitivity is selected, and the relationship between the concentration of alcohol in the carrier gas and the concentration in the sample liquid in a state where the temperature is fixed in this way is previously determined. In other words, when the gas concentration is determined, the concentration of alcohol in the sample solution is determined.

尚、図6において試料液の他の要素を測定する必要上、配管120は分岐されている。   In FIG. 6, the pipe 120 is branched in order to measure other elements of the sample solution.

また、特開平05-045263号公報にバブリングのよるアルコール濃度測定装置が開示されているが、以下で問題となる試料の現在の温度(測定温度)と恒温槽で設定されている温度との関係については一切触れられていない。   Japanese Patent Laid-Open No. 05-045263 discloses an alcohol concentration measurement device using bubbling. The relationship between the current temperature (measurement temperature) of the sample and the temperature set in the thermostatic chamber is a problem in the following. Is not mentioned at all.

特開平05−045263号公報Japanese Patent Laid-Open No. 05-045263

上記構成によるアルコールの濃度の測定は、恒温槽によって厳格に所定の温度に管理された水および、当該水と同じ温度に保持されたキャリアガスを必要とし、装置が大掛かりになり、コストも大きくならざるを得ない。また、試料液の温度が、恒温槽からの水で所定温度に維持されていること、およびキャリアガスの温度もそれと同じに保たれていることを前提に測定作業をするので、万一なんらかの原因で恒温槽の水温と試料液の温度、あるいはキャリアガスの温度が異なった場合、測定誤差が発生することになる。   The measurement of the alcohol concentration by the above configuration requires water strictly controlled at a predetermined temperature by a thermostat and a carrier gas maintained at the same temperature as the water, and the apparatus becomes large and the cost increases. I must. In addition, since the measurement work is performed on the assumption that the temperature of the sample solution is maintained at a predetermined temperature with water from the thermostatic chamber and that the temperature of the carrier gas is also maintained at the same temperature, there is some cause. If the temperature of the water in the thermostat and the temperature of the sample solution or the temperature of the carrier gas are different, a measurement error will occur.

一方で、キャリアガス中のアルコールのガス濃度は僅かな温度の違いで大きく異なり、結果として測定中の温度管理が厳格に維持されていない場合は、上記の測定誤差は極めて大きいものとなる。   On the other hand, the gas concentration of alcohol in the carrier gas varies greatly depending on a slight temperature difference. As a result, when temperature control during measurement is not strictly maintained, the above measurement error becomes extremely large.

尚、測定温度とガス濃度および濃度の3次元の関係を式あるいはテーブルとして記憶手段に記憶しておき、測定温度から得られるガス濃度から直接濃度を導き出すする構成とすれば、恒温槽での温度管理は不要になり、簡単に目的とする濃度が得られるという理論も机上論としては成立するが、データが膨大になり、コストデメリットが大きく実用に適さないことになる。   If the measurement temperature, gas concentration, and the three-dimensional relationship between the concentration are stored in the storage means as an equation or a table and the concentration is directly derived from the gas concentration obtained from the measurement temperature, the temperature in the thermostatic chamber The theory that management becomes unnecessary and the desired concentration can be easily obtained is established as a desk theory, but the data becomes enormous and the cost demerit is large and not suitable for practical use.

本発明は、上記従来の事情に鑑みて提案されたものであって、試料液の温度およびキャリアガスの温度を厳格に管理しなくても精度よく対象物質のガス濃度を測定することができ、結果として対象物質の試料液中の濃度を測定することができるガス濃度測定装置とガス濃度測定方法を提供することを目的とするものである。   The present invention has been proposed in view of the above-described conventional circumstances, and can accurately measure the gas concentration of the target substance without strictly managing the temperature of the sample liquid and the temperature of the carrier gas, As a result, an object of the present invention is to provide a gas concentration measuring device and a gas concentration measuring method capable of measuring the concentration of a target substance in a sample solution.

上記目的を達成するために、本発明は以下の手段を採用している。   In order to achieve the above object, the present invention employs the following means.

まず、測定対象物質を含む試料液の温度と、当該試料液にバブリングあるいは接触されたキャリアガス中に含まれる測定対象物質のガス濃度を検出する。前記試料液中の測定対象物質の特定の濃度での温度とガス濃度との関係から、前記試料液の温度での測定対象物質のキャリアガス中のガス濃度を目標温度におけるガス濃度に変換する。次いで、前記目標温度におけるガス濃度から試料液中の測定対象物質の濃度を求めるようにする。
First, the temperature of the sample liquid containing the measurement target substance and the gas concentration of the measurement target substance contained in the carrier gas bubbled or contacted with the sample liquid are detected. From the relationship between the temperature at a specific concentration of the measurement target substance in the sample liquid and the gas concentration, the gas concentration in the carrier gas of the measurement target substance at the temperature of the sample liquid is converted to the gas concentration at the target temperature. Next, the concentration of the measurement target substance in the sample solution is obtained from the gas concentration at the target temperature.

上記の方法は以下の装置によって実現される。   The above method is realized by the following apparatus.

測定対象物質を含む試料液を充填する容器と、該容器上端の開口部を封止する蓋体とを備え、恒温ブロックを前記蓋体から前記容器内に突出させておく。通気孔が前記蓋体と恒温ブロックを貫通して設けられ、前記試料液にキャリアガスを前記通気孔を解してバブリングされるようにする。測定孔を前記蓋体を貫通して容器内部と外部を連通し、前記バブリングされたキャリアガスを外部に排出する。ガスセンサが、前記蓋体を貫通して前記容器内部と外部を連通した測定孔に設けられ、前記バブリングされた前記キャリアガス中に含まれる測定対象物質のガス濃度を検出する。また、温度センサによって、前記容器に充填された試料液の温度が測定される。温度補正手段では、前記試料液中の測定対象物質の特定の濃度における温度とガス濃度との関係から、前記温度センサにより得られる試料液の温度での前記ガスセンサより得られるガス濃度を目標温度におけるガス濃度に変換(補正)し、更に、演算手段で、前記目標温度におけるガス濃度より、測定対象物質の試料液中の濃度を算出するようになっている。
A container filled with a sample solution containing a substance to be measured and a lid that seals the opening at the upper end of the container are provided, and a thermostatic block protrudes from the lid into the container. A vent hole is provided through the lid and the thermostatic block so that a carrier gas is bubbled through the vent hole in the sample solution. The measurement hole passes through the lid, communicates the inside and outside of the container, and discharges the bubbled carrier gas to the outside. A gas sensor is provided in a measurement hole that penetrates the lid and communicates the inside and outside of the container, and detects a gas concentration of a measurement target substance contained in the bubbled carrier gas . Further, the temperature of the sample liquid filled in the container is measured by the temperature sensor. In the temperature correction means, the gas concentration obtained from the gas sensor at the temperature of the sample solution obtained by the temperature sensor is determined at the target temperature from the relationship between the temperature and the gas concentration at a specific concentration of the measurement target substance in the sample solution . The gas concentration is converted (corrected), and the calculation means calculates the concentration of the substance to be measured in the sample liquid from the gas concentration at the target temperature.

ここで、前記恒温ブロックには温度制御手段を設け、試料液は前記恒温ブロックによって恒温され、また恒温ブロック貫通された前記通気孔を介してキャリアガスが試料液にバブリングされるので、試料液とキャリアガスは目標温度に近い同じ温度に保持されることになる。   Here, temperature control means is provided in the thermostatic block, the sample liquid is thermostatically controlled by the thermostatic block, and the carrier gas is bubbled into the sample liquid through the vent hole penetrating the thermostatic block. The carrier gas is held at the same temperature close to the target temperature.

前記温度センサで得られた試料液の温度でのガス濃度を、目標温度におけるガス濃度に補正し、当該目標温度でのガス濃度から対応濃度を求めるようになっている。目標温度でのガス濃度から対応濃度への変換は、既に知られている関係式あるいはテーブルを使用するか、専用の式を作成しそれ用いる。したがって、試料液の温度が目標温度と異なっても、常に目標温度に補正されたガス濃度に基づいた濃度を算出することになるので、比較的精度よく、しかも迅速な計測が可能となる。 The gas concentration at the temperature of the sample solution obtained by the temperature sensor is corrected to the gas concentration at the target temperature, and the corresponding concentration is obtained from the gas concentration at the target temperature. For the conversion from the gas concentration at the target temperature to the corresponding concentration, a known relational expression or table is used, or a dedicated expression is created and used. Therefore, even if the temperature of the sample solution is different from the target temperature, the concentration based on the gas concentration corrected to the target temperature is always calculated, so that relatively accurate and quick measurement can be performed.

図1は本発明の濃度計を示す概念図である。FIG. 1 is a conceptual diagram showing a densitometer of the present invention. 図2は特定の濃度における温度とガス濃度の関係を示すグラフ。FIG. 2 is a graph showing the relationship between temperature and gas concentration at a specific concentration. 図3は本発明の濃度計を用いてアルコール濃度を測定した例。FIG. 3 shows an example in which the alcohol concentration is measured using the densitometer of the present invention. 図4は本発明の濃度計を用いてアルコール濃度を測定した例。FIG. 4 shows an example of measuring the alcohol concentration using the densitometer of the present invention. 図5は本発明の濃度計を用いてアルコール濃度を測定した例。FIG. 5 shows an example in which the alcohol concentration is measured using the densitometer of the present invention. 図6は従来技術を示す概念図である。FIG. 6 is a conceptual diagram showing the prior art.

図1は本発明の実施の形態を示す図である。試料液中の濃度測定の対象物質がアルコールである場合を例に説明する
試料液(例えばビール)をいれる容器10の上端の開口部が蓋体11によって封止されるようになっている。前記蓋体11の下面から前記容器10内に金属等熱伝導率の高い物質の恒温ブロック12を突出させ、前記蓋体11と当該恒温ブロック12とにキャリアガスを導入するための通気孔13が貫通され、容器内部と外部が連通される。
FIG. 1 is a diagram showing an embodiment of the present invention. The case where the target substance for concentration measurement in the sample solution is alcohol will be described as an example. The opening at the upper end of the container 10 containing the sample solution (for example, beer) is sealed by the lid 11. A thermostatic block 12 made of a material having a high thermal conductivity such as metal protrudes from the lower surface of the lid 11 into the container 10, and a vent hole 13 for introducing a carrier gas into the lid 11 and the thermostatic block 12 is provided. It penetrates and the inside and outside of the container communicate with each other.

また、容器10に導入されたキャリアガスは前記蓋体11を介して容器10の内部と外部を貫通する測定孔15から外部に排出されるようになっており、当該測定孔15の途中にガスセンサ16が設けられ、試料液に含まれるアルコールのガス濃度が電圧として検出される。   Further, the carrier gas introduced into the container 10 is discharged to the outside from the measurement hole 15 penetrating the inside and the outside of the container 10 through the lid body 11. 16 is provided, and the gas concentration of alcohol contained in the sample solution is detected as a voltage.

容器10に測定対象物質(アルコール)を含む試料液が入れられたときに、その温度を検出するための温度センサ21が備えられる。更に、前記恒温ブロック12にも温度センサ22が備えられ、当該恒温ブロック12の温度は、恒温ブロックに埋め込まれた熱素子(加熱あるいは冷却手段、例えばヒータ)23を介して、目標温度(後述)あるいはそれに近い温度に温度制御手段20で制御される。これとともに、恒温ブロック12に漬かっている試料液の温度と前記通気孔13から導入されたキャリアガスも目標温度(後述)あるいはそれに近い温度に保たれる構成になっている。   A temperature sensor 21 is provided for detecting the temperature of a sample solution containing a substance to be measured (alcohol) in the container 10. Furthermore, the temperature block 12 is also provided with a temperature sensor 22, and the temperature of the temperature block 12 is set to a target temperature (described later) via a thermal element (heating or cooling means, for example, a heater) 23 embedded in the temperature block. Alternatively, the temperature control means 20 controls the temperature close to that. At the same time, the temperature of the sample solution immersed in the constant temperature block 12 and the carrier gas introduced from the vent hole 13 are also maintained at a target temperature (described later) or a temperature close thereto.

更に、上記ガスセンサ16の出力を用いて試料のアルコール濃度を算出する演算装置30が備えられ、前記試料液温度センサ21と、ガスセンサ16の出力を受けて作動するが、その動作については、以下の測定手順とともに説明する。   Further, an arithmetic unit 30 that calculates the alcohol concentration of the sample using the output of the gas sensor 16 is provided and operates in response to the output of the sample liquid temperature sensor 21 and the gas sensor 16. The operation is as follows. It will be described together with the measurement procedure.

まず、測定対象のビール等の試料液を容器10に充填し、通気孔13からキャリアガスである空気を所定の速度で注入する。これによってキャリアガスは試料液中にバブリングされて測定孔15から外部に放出されることになる。キャリアガスは試料液中を通過するときに試料液の濃度と温度に応じたアルコールガスの濃度に平衡し、当該ガス濃度は測定孔15に設けたガスセンサ16で測定され、電圧として検出される。   First, a sample liquid such as beer to be measured is filled in the container 10, and air as a carrier gas is injected from the vent hole 13 at a predetermined speed. As a result, the carrier gas is bubbled into the sample solution and released from the measurement hole 15 to the outside. When the carrier gas passes through the sample liquid, it is balanced with the concentration of the sample liquid and the concentration of the alcohol gas corresponding to the temperature, and the gas concentration is measured by the gas sensor 16 provided in the measurement hole 15 and detected as a voltage.

この時点で、恒温ブロック12の温度が温度計22で検出され、上記したように、当該温度が目標温度あるいは目標温度に近い値になるように熱素子23が温度制御手段20で制御される。これによって、試料液の温度と、前記通気孔13を通過するキャリアガスの温度も目標温度あるいは目標温度に近い値に制御されることになる。   At this time, the temperature of the constant temperature block 12 is detected by the thermometer 22, and as described above, the thermal element 23 is controlled by the temperature control means 20 so that the temperature becomes the target temperature or a value close to the target temperature. As a result, the temperature of the sample solution and the temperature of the carrier gas passing through the vent hole 13 are also controlled to the target temperature or a value close to the target temperature.

上記の構成で、現在の温度(測定温度)におけるアルコール蒸気の平衡したキャリアガスが得られ、測定孔15を通過するので、ガスセンサ16からは、当該ガス濃度Ptsに対応する電圧が得られることになる。この値は、演算装置30の温度補正手段31に入力される。また、前記試料液温度を測定する温度センサ21の出力(測定温度Ts)も温度補正手段31に入力される。   With the above configuration, a carrier gas in which alcohol vapor is balanced at the current temperature (measurement temperature) is obtained and passes through the measurement hole 15, so that a voltage corresponding to the gas concentration Pts can be obtained from the gas sensor 16. Become. This value is input to the temperature correction means 31 of the arithmetic unit 30. The output of the temperature sensor 21 for measuring the sample liquid temperature (measurement temperature Ts) is also input to the temperature correction means 31.

温度補正手段31に内蔵する記憶手段には、図2に示すような、特定濃度のアルコール液の温度とガス濃度の関係が、式あるいはテーブルとして記憶されている。ここで、特定濃度として、求めるべきアルコール濃度に近い濃度(例えばビールであれば5vol%)が選択される。   The storage means built in the temperature correction means 31 stores the relationship between the temperature of the alcohol solution having a specific concentration and the gas concentration as shown in FIG. 2 as an equation or a table. Here, a concentration close to the alcohol concentration to be obtained (for example, 5 vol% for beer) is selected as the specific concentration.

演算装置30の温度補正手段31は上記のように入力された測定温度Tsにおけるガス濃度Ptsと、目標温度Toにおけるガス濃度Ptoの比Pts/Pto=Rsを前記式あるいはテーブルから求める。ここで、目標温度Toとしてガスセンサ16の感度が最もよい温度(例えば35℃付近)が選択される。   The temperature correction means 31 of the arithmetic unit 30 obtains the ratio Pts / Pto = Rs between the gas concentration Pts at the measured temperature Ts and the gas concentration Pto at the target temperature To input as described above from the above equation or table. Here, the temperature (for example, around 35 ° C.) with the highest sensitivity of the gas sensor 16 is selected as the target temperature To.

この比は「求めるべきアルコール濃度における測定温度Tsでのガス濃度と目標温度Toでのガス濃度の比」とほとんど変わらないと考えてよいので、前記測定温度Tsでのガスセンサ16の出力Vsは目標温度Toでの出力Voに下記式で変換される。   Since this ratio may be considered to be almost the same as the “ratio of the gas concentration at the measurement temperature Ts to the target temperature To at the alcohol concentration to be determined”, the output Vs of the gas sensor 16 at the measurement temperature Ts is the target. It is converted into the output Vo at the temperature To by the following formula.

(数1)
Vo=Vs/Rs=Vs/(Pts/Pto)・・・・(1)
上記(1)式の演算によって、試料液が目標温度にならなくても、目標温度での試料液のアルコールガス濃度に対応する電圧Voを得ることができることになる。
(Equation 1)
Vo = Vs / Rs = Vs / (Pts / Pto) (1)
According to the calculation of the above equation (1), the voltage Vo corresponding to the alcohol gas concentration of the sample liquid at the target temperature can be obtained even if the sample liquid does not reach the target temperature.

上記のように求められた電圧Voは濃度演算手段32に入力される。濃度演算手段32に内蔵する記憶手段いは目標温度Toでのガス濃度と試料液中のアルコール濃度との関係を式あるいはテーブルとして記憶しており、前記電圧Voが入力されると対応する濃度が得られるようになっている。   The voltage Vo obtained as described above is input to the concentration calculating means 32. The storage means built in the concentration calculation means 32 stores the relationship between the gas concentration at the target temperature To and the alcohol concentration in the sample solution as an equation or a table. When the voltage Vo is input, the corresponding concentration is stored. It has come to be obtained.

図3〜図5は本発明の濃度測定装置を用いて6vol%のアルコール濃度の試料液を測定した結果である。図中(a)が試料液温度のカーブ(右目盛り)、(b)が温度補正をしないで得られた濃度、(c) が本発明により得られた濃度である。   3 to 5 show the results of measuring a sample solution having an alcohol concentration of 6 vol% using the concentration measuring apparatus of the present invention. In the figure, (a) is a sample temperature curve (right scale), (b) is a concentration obtained without temperature correction, and (c) is a concentration obtained by the present invention.

上記図3に示すように、試料液温度を大きく変化させた場合であって温度補正をしない場合(曲線(b))は、温度変化に伴って得られる濃度も大きく変化しているが、本発明での測定結果(曲線(c))は、温度の変化の影響を反映しないで、しかも試料液温度と目標温度(35℃)の差が比較的大きい段階でも本来の濃度に近い値を示している。   As shown in FIG. 3 above, when the temperature of the sample solution is greatly changed and the temperature correction is not performed (curve (b)), the concentration obtained with the temperature change also changes greatly. The measurement result in the invention (curve (c)) does not reflect the effect of temperature change, and shows a value close to the original concentration even when the difference between the sample liquid temperature and the target temperature (35 ° C) is relatively large. ing.

上記図3での現象は、図4、に示すように、試料液温度をゆっくり変化させながら目標温度に近づけた場合、あるいは図5に示すように、試料液温度を強制的に目標温度に近づけた場合でも同様である。すなわち、本発明(曲線(c))では測定温度が目標温度との差があっても、本来の濃度が得られているが、温度補正をしない場合(曲線(b))は、目標温度との差が濃度の誤差として顕著に現れることになる。   The phenomenon shown in FIG. 3 is caused when the sample liquid temperature is brought close to the target temperature while slowly changing as shown in FIG. 4, or the sample liquid temperature is forcibly brought close to the target temperature as shown in FIG. The same applies to the case. That is, in the present invention (curve (c)), the original concentration is obtained even if the measured temperature is different from the target temperature, but when temperature correction is not performed (curve (b)), the target temperature and The difference between the two becomes prominent as a density error.

以上、図1に示す濃度計についてのみ説明したが、本発明は、図6に示す従来のアルコール濃度計についても適用できる。すなわち、図1のガスセンサ16の出力が、図6に示すガスセンサ130の出力と等価であり、当該ガスセンサ130の出力を図1の演算装置30の温度補正手段31に入力することによって、恒温槽の温度が目標温度に厳密に一致していなくても、温度補正ができ、濃度演算手段32で精度の高い濃度が得られることになる。   Although only the concentration meter shown in FIG. 1 has been described above, the present invention can also be applied to the conventional alcohol concentration meter shown in FIG. That is, the output of the gas sensor 16 of FIG. 1 is equivalent to the output of the gas sensor 130 shown in FIG. 6, and the output of the gas sensor 130 is input to the temperature correction means 31 of the arithmetic unit 30 of FIG. Even if the temperature does not exactly match the target temperature, the temperature can be corrected and the concentration calculation means 32 can obtain a highly accurate concentration.

上記はアルコールを例に説明したが、対象物質としては揮発性物質であれば種類を問わず適用することができることはもちろんである。   In the above description, alcohol is used as an example, but it goes without saying that any volatile substance can be used as the target substance.

本発明は上記のように測定温度が正確に目標温度になっていなくても、精度よく揮発性物質の濃度を測定することができ、しかも構成が極めて簡単であるので産業上の利用可能性が極めて高い。   As described above, the present invention can accurately measure the concentration of a volatile substance even if the measurement temperature is not exactly the target temperature, and has a very simple configuration, so that it can be used industrially. Extremely expensive.

10 容器
11 蓋体
12 恒温ブロック
13 通気孔
15 測定孔
16 ガスセンサ
20 温度制御手段
21 温度センサ
22 温度計
30 演算装置
31 温度補正手段
32 濃度演算手段
DESCRIPTION OF SYMBOLS 10 Container 11 Cover 12 Constant temperature block 13 Ventilation hole 15 Measurement hole 16 Gas sensor 20 Temperature control means 21 Temperature sensor 22 Thermometer 30 Arithmetic device 31 Temperature correction means 32 Concentration calculation means

Claims (4)

測定対象物質を含む試料液を充填する容器と、
前記容器上端の開口部を封止する蓋体と、
前記蓋体から前記容器内に突出した恒温ブロックと、
前記蓋体と恒温ブロックを貫通して設けられ、前記試料液にキャリアガスをバブリングするための通気孔と、
前記蓋体を貫通して前記容器内部と外部を連通した測定孔に設けられ、前記バブリングされた前記キャリアガス中に含まれる測定対象物質のガス濃度を検出するガスセンサと、
前記容器に充填された試料液の温度を測定する温度センサと、
前記試料液中の測定対象物質の特定の濃度における温度とガス濃度との関係から、前記温度センサにより得られる試料液の温度での前記ガスセンサより得られるガス濃度を目標温度におけるガス濃度に変換する温度補正手段と、
前記目標温度におけるガス濃度より、測定対象物質の試料液中の濃度を算出する演算手段と、
を備えたことを特徴とする濃度計。
A container filled with a sample solution containing a substance to be measured;
A lid for sealing the opening of the container top end,
A thermostatic block protruding into the container from the lid;
A ventilation hole provided through the lid and the thermostatic block, for bubbling a carrier gas into the sample liquid;
A gas sensor that is provided in a measurement hole that penetrates the lid and communicates the inside and outside of the container, and that detects a gas concentration of a measurement target substance contained in the bubbled carrier gas ;
A temperature sensor for measuring the temperature of the sample liquid filled in the container;
The gas concentration obtained from the gas sensor at the temperature of the sample solution obtained by the temperature sensor is converted into the gas concentration at the target temperature from the relationship between the temperature and the gas concentration at a specific concentration of the substance to be measured in the sample solution. Temperature correction means;
Calculating means for the gas concentration, it calculates the concentration of the sample solution of target substance in the target temperature,
A densitometer characterized by comprising:
更に、前記試料液の温度とキャリアガスの温度を前記目標温度付近に保持するために前記ブロック温度を前記目標温度付近に制御する温度制御手段を備えた請求項1に記載の濃度計。 The densitometer according to claim 1, further comprising temperature control means for controlling the block temperature near the target temperature in order to keep the temperature of the sample solution and the temperature of the carrier gas near the target temperature . 請求項1に記載の温度計を用いて、
容器に充填された測定対象物質を含む試料液の温度を測定するとともに、当該試料液にバブリングされた前記キャリアガス含まれる測定対象物質のガス濃度を検出するステップと、
前記試料液中の測定対象物質の特定の濃度における温度とガス濃度との関係から、前記試料の温度での検出ガス濃度を目標温度におけるガス濃度に変換するステップと、
前記目標温度におけるガス濃度より、測定対象物質の試料液中の濃度を算出するステップと、
を備えたことを特徴とする濃度測定方法。
Using the thermometer according to claim 1,
With measuring the temperature of a sample solution containing a target substance which is filled in a container, comprising the steps of detecting the gas concentration of the target substance that contains said carrier gas is bubbled into the sample solution,
Converting the detected gas concentration at the temperature of the sample liquid to the gas concentration at the target temperature from the relationship between the temperature and gas concentration at a specific concentration of the substance to be measured in the sample liquid;
Calculating the concentration of the substance to be measured in the sample liquid from the gas concentration at the target temperature;
A concentration measuring method comprising:
測定対象物質を含む試料液の温度と、当該試料液にバブリングあるいは接触されたキャリアガス中に含まれる測定対象物質のガス濃度を検出するステップ
前記試料液中の測定対象物質の特定の濃度での温度とガス濃度との関係から、前記試料液の温度での測定対象物質のキャリアガス中のガス濃度を目標温度におけるガス濃度に変換するステップ
前記目標温度におけるガス濃度から試料液中の測定対象物質の濃度を求めるステップと、
を備えたことを特徴とする濃度測定方法。
Detecting the temperature of the sample solution containing the analyte, the gas concentration of the analyte contained in the carrier gas that is bubbled or contact with the sample solution,
A step of converting the gas concentration in the carrier gas of the measurement target substance at the temperature of the sample liquid into the gas concentration at the target temperature from the relationship between the temperature at the specific concentration of the measurement target substance in the sample liquid and the gas concentration. And
Obtaining the concentration of the substance to be measured in the sample liquid from the gas concentration at the target temperature ;
A concentration measuring method comprising:
JP2013130718A 2013-04-02 2013-06-21 Densitometer and concentration measurement method Active JP6204714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013130718A JP6204714B2 (en) 2013-04-02 2013-06-21 Densitometer and concentration measurement method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013077010 2013-04-02
JP2013077010 2013-04-02
JP2013130718A JP6204714B2 (en) 2013-04-02 2013-06-21 Densitometer and concentration measurement method

Publications (2)

Publication Number Publication Date
JP2014211424A JP2014211424A (en) 2014-11-13
JP6204714B2 true JP6204714B2 (en) 2017-09-27

Family

ID=51931275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013130718A Active JP6204714B2 (en) 2013-04-02 2013-06-21 Densitometer and concentration measurement method

Country Status (1)

Country Link
JP (1) JP6204714B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646854A (en) * 1987-06-30 1989-01-11 Osuto Kk Method for measuring concentration of alcohol solution by gas sensor
JP2874269B2 (en) * 1990-04-11 1999-03-24 根本特殊化学株式会社 Alcohol concentration detector
JP2966544B2 (en) * 1991-02-15 1999-10-25 凸版印刷株式会社 Alcohol concentration measurement device
US5269832A (en) * 1992-06-03 1993-12-14 Winfield Industries Method and apparatus for continuously measuring the concentration of chemicals in solutions
JP2938301B2 (en) * 1993-03-08 1999-08-23 新コスモス電機株式会社 Dissolved gas concentration measuring method and dissolved gas concentration measuring device

Also Published As

Publication number Publication date
JP2014211424A (en) 2014-11-13

Similar Documents

Publication Publication Date Title
US9970828B2 (en) Device for measuring the temperature of a medium through a wall
EP2175246B1 (en) A method for measuring a fluid composition parameter by means of a flow sensor
KR101626619B1 (en) Material gas concentration control system
JPH03115840A (en) Method and apparatus for determining speed at which sample consumes of makes selected component of fluid medium
US11402250B2 (en) Liquid level meter, vaporizer equipped with the same, and liquid level detection method
JPWO2020080404A1 (en) An online analysis system including a temperature control analyzer and the temperature control analyzer.
JP6204714B2 (en) Densitometer and concentration measurement method
CN108624500B (en) Method for operating a humidification module, incubator or climate chamber having a humidification module
US20190025104A1 (en) Thermal flowmeter and flow rate correction method
KR102256904B1 (en) Thermal flowmeter and flow compensating method
Sairanen et al. Validation of a calibration set-up for radiosondes to fulfil GRUAN requirements
JP2019027926A (en) Thermal flowmeter and flow rate correction method
CN109983341A (en) System and method for estimating the temperature of liquid sample
Weidlich et al. Extension of UNIFAC by headspace gas chromatography
JP2005274415A (en) Thermal analysis apparatus and its water vapor generating apparatus
KR20210057743A (en) Analysis of dissolved gases in the insulating medium of high voltage devices
JP2015004611A (en) Concentration measurement device and concentration measurement method
CN203455299U (en) Heat-flux-type differential scanning calorimeter
JP5511108B2 (en) Material gas concentration controller
JP2015530594A (en) Gas equilibration coil for supplying gas calibration fluid in real time
JP2004309243A (en) Liquid leakage detector
Jumabekova et al. An efficient numerical model for liquid water uptake in porous material and its parameter estimation
CN106110913A (en) Standard Gases stream generation apparatus
US20170131250A1 (en) Device and method for detecting a gas component
Venkata Krishnan et al. Development of a semi-adiabatic isoperibol solution calorimeter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170901

R150 Certificate of patent or registration of utility model

Ref document number: 6204714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250