JP6202730B2 - Snow and ice cold heat source system and cooling system using this as a cold heat source - Google Patents

Snow and ice cold heat source system and cooling system using this as a cold heat source Download PDF

Info

Publication number
JP6202730B2
JP6202730B2 JP2013149166A JP2013149166A JP6202730B2 JP 6202730 B2 JP6202730 B2 JP 6202730B2 JP 2013149166 A JP2013149166 A JP 2013149166A JP 2013149166 A JP2013149166 A JP 2013149166A JP 6202730 B2 JP6202730 B2 JP 6202730B2
Authority
JP
Japan
Prior art keywords
circulating water
tank
snow
ice
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013149166A
Other languages
Japanese (ja)
Other versions
JP2015021655A (en
Inventor
直也 品田
直也 品田
尚紀 黒田
尚紀 黒田
白土 剛
剛 白土
泰明 原田
泰明 原田
盛行 知念
盛行 知念
貴司 志村
貴司 志村
秀幸 佐藤
秀幸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Air Technologies Co Ltd
Original Assignee
Shin Nippon Air Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Air Technologies Co Ltd filed Critical Shin Nippon Air Technologies Co Ltd
Priority to JP2013149166A priority Critical patent/JP6202730B2/en
Publication of JP2015021655A publication Critical patent/JP2015021655A/en
Application granted granted Critical
Publication of JP6202730B2 publication Critical patent/JP6202730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Of Streets, Tracks, Or Beaches (AREA)

Description

本発明は、雪氷の冷熱エネルギーを冷房用熱源として利用した雪氷冷熱源システム及びこれを冷熱源とする冷房システムに関する。   The present invention relates to a snow and ice cooling heat source system that uses cold energy of snow and ice as a cooling heat source and a cooling system that uses this as a cooling source.

従来より、降雪地域において除雪によって出た雪が山積みにされ、膨大な冷熱エネルギーが未利用のまま放置されていた。一方、近年では、電力需要のピークを迎える盛夏において、首都圏などで電力需給が逼迫し、冷房の設定温度を上げるなどの各種の節電対策が実施され、一定の効果を上げている。   Conventionally, snow produced by snow removal in a snowfall area has been piled up and a huge amount of cold energy has been left unused. On the other hand, in recent years, in the midsummer when power demand peaks, the power supply and demand in the Tokyo metropolitan area, etc. are tightened, and various power saving measures such as raising the set temperature of cooling are implemented, and a certain effect is achieved.

また近年では、下記特許文献1〜3などに示されるように、冬期に降雪地域に積もった雪を冷房用熱源として利用する技術が種々開発されている。このような技術を首都圏などの比較的温暖な降雪の少ない地域で実現するには、降雪地域に積もった雪を輸送する技術が必要であるが、この点で、首都圏からこれらの地域に物資を運搬した船やトレーラーが帰路は空荷で戻るという片荷輸送の課題があり、その無駄を解消するアイデアとして、空荷で戻る代わりに降雪地域に積もった雪を積んで首都圏に戻る案などが提案され、CO削減等の環境にも優しい技術として注目を浴びつつある。 In recent years, as shown in Patent Documents 1 to 3 below, various techniques for using snow accumulated in a snowfall area in winter as a heat source for cooling have been developed. In order to realize such technology in areas with relatively mild snowfall, such as the Tokyo metropolitan area, technology for transporting snow accumulated in snowfall areas is necessary. Ships and trailers carrying goods have the problem of single cargo transportation where the return route is returned with empty cargo, and as an idea to eliminate the waste, return to the metropolitan area with snow accumulated in the snowfall area instead of returning with empty cargo draft proposed and is becoming attention as friendly technologies in environment such as CO 2 reduction.

下記特許文献1では、蓄氷槽に蓄えられたシャーベット状の氷を、その高さの少なくとも3割以上を冷水の水面上に露出させ、前記水面上に露出したシャーベット状の氷に水を散水し、前記シャーベット状の氷を融解させて冷水を取り出す方法が開示されている。また、下記特許文献2では、氷蓄熱槽の下方に設けられた取水口から取水される冷水の温度を監視し、その温度変化に応じて、バイパス管路または温調手段を用いて、散水ノズルから散水される還水の散水量および散水温度の双方またはいずれか一方を調節することが可能な氷蓄熱システムが開示されている。   In the following Patent Document 1, sherbet-shaped ice stored in an ice storage tank is exposed on the surface of cold water at least 30% of the height, and water is sprinkled on the sherbet-shaped ice exposed on the water surface. And the method of taking out cold water by melting the said sherbet-like ice is disclosed. Moreover, in the following patent document 2, the temperature of the cold water taken in from the water intake provided below the ice heat storage tank is monitored, and according to the temperature change, a water spray nozzle is used using a bypass pipe or a temperature control means. An ice heat storage system is disclosed that can adjust the amount and / or temperature of the return water sprayed from the water.

さらに、下記特許文献3では、雪氷から発生した冷水を通過させる浸透性舗装が表面に設けられるとともに、この浸透性舗装の内部に前記冷水と熱交換する冷媒を循環させる熱交換回路配管が敷設されてなる冷水槽と、前記熱交換回路配管内の冷媒を冷熱需要先へ送るとともに、この冷熱需要先で冷熱を奪われた冷媒を前記熱交換回路配管内へ戻して循環させる循環ポンプとを有する雪氷冷房用冷熱回収システムが開示されている。   Furthermore, in Patent Document 3 below, a permeable pavement that allows cold water generated from snow and ice to pass therethrough is provided on the surface, and a heat exchange circuit pipe that circulates a refrigerant that exchanges heat with the cold water is laid inside the permeable pavement. And a circulation pump that sends the refrigerant in the heat exchange circuit pipe to the cold demand destination and circulates the refrigerant deprived of the cold heat at the cold demand destination into the heat exchange circuit pipe. A cold energy recovery system for snow and ice cooling is disclosed.

特開平7−63377号公報JP 7-63377 A 特開平7−91693号公報JP-A-7-91693 特開2011−7029号公報JP 2011-7029 A

しかしながら、上記特許文献1、2記載の散水ノズルから散水して氷を融解させることによって冷水を取り出す方法では、散水ノズルから噴射した水が直接当たる部分だけ氷の融解が進み、その結果、散水された水が氷に接触せずにそのまま流れてしまうバイパス路が形成されるおそれがあり、冷熱回収効率が低下するとともに、安定した冷熱出力が得られないことが懸念される。   However, in the method of taking out the cold water by melting the ice by sprinkling water from the watering nozzle described in Patent Documents 1 and 2, the melting of the ice proceeds only in the portion directly hit by the water sprayed from the watering nozzle, and as a result, the water is sprayed. There is a concern that a bypass path may be formed in which the water flows without contacting the ice, and there is a concern that the cooling energy recovery efficiency is lowered and a stable cooling output cannot be obtained.

また、上記特許文献3では、雪氷から発生した冷水を通過させる浸透性舗装が設けられているが、雪解け水には大量の土砂が混在しているため、浸透性舗装が目詰まりして冷水が通過しにくくなり、冷熱回収効率が低下するおそれがある。   Moreover, in the said patent document 3, although the permeable pavement which allows the cold water generated from snow and ice to pass through is provided, since a large amount of earth and sand are mixed in the melted snow, the permeable pavement is clogged and cold water is generated. It becomes difficult to pass through, and there is a possibility that the efficiency of cold energy recovery will be reduced.

また、雪氷の融解ゾーンに直接熱交換設備を配置した場合には、熱交換設備の周囲に雪氷に混在した土砂が付着して冷水との接触が妨げられ、冷熱回収効率が低下するとともに、安定した冷熱出力が得られないおそれがある。また、雪氷には泥やゴミなどの土砂が含まれているため、雪氷を融解した冷水を直接冷房設備に送水することは困難である。   In addition, when heat exchange equipment is placed directly in the melting zone of snow and ice, earth and sand mixed with snow and ice adheres to the surroundings of the heat exchange equipment, preventing contact with cold water, reducing the heat recovery efficiency and stabilizing There is a risk that the chilled heat output cannot be obtained. In addition, since snow and ice contain earth and sand such as mud and garbage, it is difficult to send cold water obtained by melting snow and ice directly to the cooling equipment.

そこで本発明の主たる課題は、雪氷から冷熱エネルギーを効率良く回収できるとともに安定して冷熱出力が得られる雪氷冷熱源システム及びこれを冷熱源とする冷房システムを提供することにある。   Accordingly, a main object of the present invention is to provide a snow and ice cold heat source system that can efficiently collect cold energy from snow and ice and that can stably obtain a cold output and a cooling system that uses this as a cold source.

上記課題を解決するために請求項1に係る本発明として、循環水が貯留され、この貯留された循環水中に雪氷が投入されるとともに前記雪氷が融解することによって前記循環水が冷却される融解槽と、前記融解槽の後段に設置され、前記循環水と冷房設備の冷媒との間で熱交換を行う熱交換器が配設された熱交換槽とを含み、
前記融解槽と熱交換槽との間に、所定の水位に達した前記融解槽の循環水が前記熱交換槽側に流れ出るように構成された溢流堰が設けられ
前記融解槽に流れ込んだ循環水が、前記融解槽の表層を水平方向に流れ、前記雪氷を融解して冷水を得ながら下流側に進み、一部が前記溢流堰から溢流して前記熱交換槽に流れ出る前記融解槽内の水流が形成されていることを特徴とする雪氷冷熱源システムが提供される。
In order to solve the above-mentioned problem, as the present invention according to claim 1, the circulating water is stored, and the circulating water is cooled by melting the snow and ice while the snow and ice are poured into the stored circulating water. A heat exchange tank provided with a heat exchanger that is installed in a stage subsequent to the melting tank and performs heat exchange between the circulating water and the refrigerant of the cooling facility,
Between the melting tank and the heat exchange tank is provided an overflow weir configured so that the circulating water of the melting tank that has reached a predetermined water level flows out to the heat exchange tank side ,
Circulating water that has flowed into the melting tank flows in the horizontal direction on the surface layer of the melting tank, proceeds to the downstream side while melting the snow and ice to obtain cold water, and partly overflows from the overflow weir and the heat exchange A snow and ice cooling heat source system is provided, wherein a water flow in the melting tank flowing out into the tank is formed .

上記請求項1記載の発明では、雪氷冷熱源システムとして、循環水の上流側から順に、投入された雪氷が融解する融解槽と、冷房設備の熱交換器が配設された熱交換槽とを分けて設置している。このため、融解槽で融解した冷水のみが循環水として熱交換槽に流入し、熱交換器によって効率良く冷熱エネルギーが回収できるとともに、安定して冷熱出力が得られるようになる。また、雪氷に混在した土砂は融解槽に沈殿し、冷水と土砂との分離が効率良くできるので、熱交換器に付着する土砂の量が大幅に低減し冷熱エネルギーの回収効率が向上する。   In the first aspect of the invention, as the snow and ice cooling heat source system, a melting tank in which the introduced snow and ice are melted in order from the upstream side of the circulating water, and a heat exchange tank in which a heat exchanger of the cooling equipment is disposed. Separately installed. For this reason, only the cold water melted in the melting tank flows into the heat exchange tank as circulating water, and the heat exchanger can efficiently recover the cold energy and obtain a stable cold output. Moreover, since the earth and sand mixed in snow and ice settle in the melting tank, and the separation of the cold water and the earth and sand can be performed efficiently, the amount of earth and sand adhering to the heat exchanger is greatly reduced, and the recovery efficiency of the cold energy is improved.

さらに、本雪氷冷熱源システムにおいては、前記融解槽と熱交換槽との間に溢流堰が設けられ、所定の水位に達した前記融解槽の循環水が前記熱交換槽側に流れ出るように構成されているため、後段で詳細に説明するように、融解槽から熱交換槽に流入する際に、冷水が集中せず広い範囲に分散して流れるようになるので熱交換槽での熱交換効率が向上できる。   Further, in the snow and ice cold heat source system, an overflow weir is provided between the melting tank and the heat exchange tank so that the circulating water of the melting tank that has reached a predetermined water level flows out to the heat exchange tank side. Because it is configured, as will be described in detail later, when flowing from the melting tank to the heat exchange tank, cold water does not concentrate and flows in a wide range, so heat exchange in the heat exchange tank Efficiency can be improved.

請求項2に係る本発明として、前記融解槽の前段に、前記循環水が注水される循環水注水槽が設けられ、
前記循環水注水槽と融解槽との間に、所定の水位に達した前記循環水注水槽の循環水が前記融解槽側に流れ出るように構成された溢流堰が設けられている請求項1記載の雪氷冷熱源システムが提供される。
As this invention which concerns on Claim 2, the circulating water injection tank in which the said circulating water is injected in the front | former stage of the said melting tank is provided,
2. An overflow weir is provided between the circulating water injection tank and the melting tank so that the circulating water of the circulating water injection tank reaching a predetermined water level flows out to the melting tank side. A snow and ice cold heat source system as described is provided.

上記請求項2記載の発明では、前記融解槽の前段に循環水注水槽を設けるとともに、前記循環水注水槽と融解槽との間にも溢流堰を設け、所定の水位に達した前記循環水注水槽の循環水が前記融解槽側に流れ出るようにしている。このため、後段で詳述するように、循環水注水槽から融解槽に流入した循環水の流れが全体の流量に対して緩やかとなり、溢流堰を越えて融解槽に流れ込んだ循環水が融解槽の表層を水平方向に流れるようになる。従って、この表層を流れる循環水が雪氷と接触して雪氷を融解させ、融解した直後の冷水が下流側の溢流堰から熱交換槽側に流れ込みやすくなる。このため、雪氷から冷熱エネルギーを効率良く回収できるようになる。   In the invention according to the second aspect, a circulating water injection tank is provided in front of the melting tank, an overflow weir is provided between the circulating water injection tank and the melting tank, and the circulation reaches a predetermined water level. Circulating water in the water injection tank flows out to the melting tank side. For this reason, as will be described in detail later, the flow of the circulating water flowing into the melting tank from the circulating water injection tank is gentle with respect to the entire flow rate, and the circulating water flowing into the melting tank over the overflow weir is melted. It flows in the horizontal direction on the surface of the tank. Therefore, the circulating water flowing through the surface layer contacts the snow ice to melt the snow ice, and the cold water just after melting easily flows from the downstream overflow weir to the heat exchange tank side. For this reason, cold energy can be efficiently recovered from snow and ice.

請求項3に係る本発明として、前記溢流堰はそれぞれ、前記循環水注水槽、融解槽及び熱交換槽のほぼ全幅に亘って設けられている請求項2記載の雪氷冷熱源システムが提供される。   According to a third aspect of the present invention, there is provided the snow and ice cold heat source system according to the second aspect, wherein each of the overflow weirs is provided over substantially the entire width of the circulating water injection tank, the melting tank, and the heat exchange tank. The

上記請求項3記載の発明では、前記溢流堰を前記循環水注水槽、融解槽及び熱交換槽のほぼ全幅に亘って設けてあるため、前記融解槽においては雪氷と循環水との接触機会が増加して雪氷が融解しやすく、冷水が得やすくなるとともに、前記熱交換槽においては融解槽で冷却された循環水が熱交換器と接触しやすくなり、熱交換効率が向上する。   In the invention according to the third aspect, since the overflow weir is provided over almost the entire width of the circulating water injection tank, the melting tank, and the heat exchange tank, the contact opportunity between the snow ice and the circulating water in the melting tank. Thus, snow and ice can be easily melted and cold water can be easily obtained, and in the heat exchange tank, the circulating water cooled in the melting tank can easily come into contact with the heat exchanger, thereby improving the heat exchange efficiency.

請求項4に係る本発明として、循環水が貯留され、この貯留された循環水中に雪氷が投入されるとともに前記雪氷が融解することによって前記循環水が冷却される融解槽と、前記融解槽の後段に設置され、前記循環水と冷房設備の冷媒との間で熱交換を行う熱交換器が配設された熱交換槽と、前記融解槽の前段に設けられた、前記循環水が注水される循環水注水槽とを含み、
前記融解槽と熱交換槽との間に、所定の水位に達した前記融解槽の循環水が前記熱交換槽側に流れ出るように構成された溢流堰が設けられるとともに、前記循環水注水槽と融解槽との間に、所定の水位に達した前記循環水注水槽の循環水が前記融解槽側に流れ出るように構成された溢流堰が設けられ、
前記融解槽と熱交換槽との間の前記溢流堰を溢流した前記循環水の落差は、前記循環水注水槽と融解槽との間の前記溢流堰を溢流した前記循環水の落差より大きく設定されていることを特徴とする雪氷冷熱源システムが提供される。
According to a fourth aspect of the present invention, there is provided a melting tank in which circulating water is stored, snow and ice are poured into the stored circulating water and the circulating water is cooled by melting the snow and ice, and the melting tank A heat exchange tank installed in a rear stage and provided with a heat exchanger for exchanging heat between the circulating water and the refrigerant of the cooling facility, and the circulating water provided in the front stage of the melting tank are poured. And a circulating water injection tank
An overflow weir is provided between the melting tank and the heat exchange tank so that the circulating water of the melting tank that has reached a predetermined water level flows out to the heat exchange tank side, and the circulating water injection tank And an overflow weir configured so that the circulating water of the circulating water injection tank that has reached a predetermined water level flows out to the melting tank side,
The head of the circulating water overflowing the overflow weir between the melting tank and the heat exchange tank is the circulating water overflowing the overflow weir between the circulating water injection tank and the melting tank. There is provided a snow and ice cooling heat source system characterized by being set to be larger than a head.

上記請求項4記載の発明では、前記循環水が融解槽から熱交換槽に流れ込むときの落差を、循環水注水槽から融解槽に流れ込むときの落差より大きくなるように設定することによって、熱交換槽内の循環水の対流を促進し熱交換器外側の撹拌効率を向上させ、熱交換器による熱交換効率を高めるようにしている。   In the invention according to claim 4, heat exchange is performed by setting a drop when the circulating water flows from the melting tank to the heat exchange tank to be larger than a drop when flowing from the circulating water injection tank to the melting tank. The convection of the circulating water in the tank is promoted, the stirring efficiency outside the heat exchanger is improved, and the heat exchange efficiency by the heat exchanger is increased.

請求項5に係る本発明として、循環水が貯留され、この貯留された循環水中に雪氷が投入されるとともに前記雪氷が融解することによって前記循環水が冷却される融解槽と、前記融解槽の後段に設置され、前記循環水と冷房設備の冷媒との間で熱交換を行う熱交換器が配設された熱交換槽とを含み、
前記融解槽と熱交換槽との間に、所定の水位に達した前記融解槽の循環水が前記熱交換槽側に流れ出るように構成された溢流堰が設けられ、
前記融解槽に、前記循環水を注水するための配管が配設され、
前記配管は、前記融解槽の水面上部まで立ち下げた垂直管と、前記垂直管の下端から水平方向に延びるとともに、管周面に前記循環水が水平方向に流出可能な多数の開口又はスリットが形成された水平管とからなることを特徴とする雪氷冷熱源システムが提供される。
As the present invention according to claim 5, circulating water is stored, and a melting tank in which snow and ice are poured into the stored circulating water and the circulating water is cooled by melting the snow and ice, and the melting tank A heat exchange tank installed in a subsequent stage and provided with a heat exchanger for exchanging heat between the circulating water and the refrigerant of the cooling facility,
Between the melting tank and the heat exchange tank is provided an overflow weir configured so that the circulating water of the melting tank that has reached a predetermined water level flows out to the heat exchange tank side,
A pipe for pouring the circulating water is disposed in the melting tank,
The pipe includes a vertical pipe lowered to the upper surface of the melting tank, and a plurality of openings or slits extending horizontally from the lower end of the vertical pipe and allowing the circulating water to flow out in the horizontal direction on the pipe peripheral surface. There is provided a snow and ice cold heat source system characterized by comprising a formed horizontal tube.

上記請求項5記載の発明は、他の形態例に係る雪氷冷熱源システムであり、融解槽に循環水を注水するに際して、配管を通じて直接注水するようにしている。この配管としては、前記融解槽の水面上部まで立ち下げた垂直管と、前記垂直管の下端から水平方向に延びるとともに、管周面に前記循環水が水平方向に流出可能な多数の開口又はスリットが形成された水平管とからなるものが用いられている。これによって、前記水平管の開口又はスリットから流出した循環水によって融解槽の表層を水平方向に流れる水流が発生し、循環水と雪氷との接触機会が増加して冷水を取り出しやすくなるとともに、熱交換槽での冷熱回収効率が向上できるようになる。   The invention according to claim 5 is a snow and ice cooling heat source system according to another embodiment, and when water is circulated into a melting tank, water is directly injected through a pipe. The pipe includes a vertical pipe that is lowered to the upper surface of the melting tank, and a plurality of openings or slits that extend in the horizontal direction from the lower end of the vertical pipe and that allows the circulating water to flow out in the horizontal direction on the pipe peripheral surface. What consists of the horizontal pipe | tube in which was formed is used. As a result, the water flowing in the horizontal direction on the surface of the melting tank is generated by the circulating water flowing out from the opening or slit of the horizontal pipe, the contact opportunity between the circulating water and snow and ice is increased, and the cold water can be easily taken out. The efficiency of cold energy recovery in the exchange tank can be improved.

請求項6に係る本発明として、循環水が貯留され、この貯留された循環水中に雪氷が投入されるとともに前記雪氷が融解することによって前記循環水が冷却される融解槽と、前記融解槽の後段に設置され、前記循環水と冷房設備の冷媒との間で熱交換を行う熱交換器が配設された熱交換槽とを含み、
前記融解槽と熱交換槽との間に、所定の水位に達した前記融解槽の循環水が前記熱交換槽側に流れ出るように構成された溢流堰が設けられ、
前記熱交換槽の水深は、前記融解槽の水深より小さく設定されていることを特徴とする雪氷冷熱源システムが提供される。
According to a sixth aspect of the present invention, there is provided a melting tank in which circulating water is stored, snow and ice are poured into the stored circulating water and the circulating water is cooled by melting the snow and ice, and the melting tank A heat exchange tank installed in a subsequent stage and provided with a heat exchanger for exchanging heat between the circulating water and the refrigerant of the cooling facility,
Between the melting tank and the heat exchange tank is provided an overflow weir configured so that the circulating water of the melting tank that has reached a predetermined water level flows out to the heat exchange tank side,
Depth of the heat exchanger vessel, snow ice cold heat source system characterized in that it is set smaller than the depth of the molten bath is provided.

上記請求項6記載の発明では、前記熱交換槽の水深を相対的に小さく設定することによって、熱交換槽内の循環水の流速を増加させ、熱交換器外側の撹拌効率を向上させ、熱交換器による熱交換効率を高めている。   In the invention according to claim 6, by setting the water depth of the heat exchange tank relatively small, the flow rate of circulating water in the heat exchange tank is increased, the stirring efficiency outside the heat exchanger is improved, The heat exchange efficiency by the exchanger is increased.

請求項7に係る本発明として、循環水が貯留され、この貯留された循環水中に雪氷が投入されるとともに前記雪氷が融解することによって前記循環水が冷却される融解槽と、前記融解槽の後段に設置され、前記循環水と冷房設備の冷媒との間で熱交換を行う熱交換器が配設された熱交換槽とを含み、
前記融解槽と熱交換槽との間に、所定の水位に達した前記融解槽の循環水が前記熱交換槽側に流れ出るように構成された溢流堰が設けられ、
前記融解槽の水深は、投入された雪氷が水に浮いた状態となる深さに設定されていることを特徴とする雪氷冷熱源システムが提供される。
As the present invention according to claim 7, circulating water is stored, snow and ice are poured into the stored circulating water, and the circulating water is cooled by melting the snow and ice, and the melting tank A heat exchange tank installed in a subsequent stage and provided with a heat exchanger for exchanging heat between the circulating water and the refrigerant of the cooling facility,
Between the melting tank and the heat exchange tank is provided an overflow weir configured so that the circulating water of the melting tank that has reached a predetermined water level flows out to the heat exchange tank side,
The water depth of the melting tank is set to a depth at which the introduced snow and ice floats on the water, and a snow and ice cooling heat source system is provided.

上記請求項7記載の発明では、前記融解槽の水深を、投入された雪氷が水に浮いた状態となる深さに設定することによって、雪氷が融解して小さくなっても、水流によって下流側に寄せ集められるため、循環水が雪氷に接触せずに熱交換槽に流れ出るような水路のバイパスができにくく、循環水と雪氷との接触機会を増加させることができるとともに、雪氷が融解してなくなるまで無駄なく冷熱回収ができるようになる。また、雪氷が融解槽に浮いた状態となるようにすることによって、雪氷に混在した土砂が沈殿しやすくなり、融解した冷水のみが下流側の熱交換槽に流れ込みやすくなる。   In the invention according to claim 7, the water depth of the melting tank is set to a depth at which the introduced snow ice floats in the water, so that even if the snow ice melts and becomes smaller, the water flow causes the downstream side Therefore, it is difficult to bypass the water channel so that the circulating water does not come into contact with the snow and ice but flows into the heat exchange tank, increasing the chance of contact between the circulating water and the snow and ice, and melting the snow and ice. Cold energy can be recovered without waste until it runs out. Moreover, by making the snow and ice float in the melting tank, the earth and sand mixed in the snow and ice can easily settle, and only the melted cold water easily flows into the heat exchange tank on the downstream side.

請求項8に係る本発明として、循環水が貯留され、この貯留された循環水中に雪氷が投入されるとともに前記雪氷が融解することによって前記循環水が冷却される融解槽と、前記融解槽の後段に設置され、前記循環水と冷房設備の冷媒との間で熱交換を行う熱交換器が配設された熱交換槽とを含み、
前記融解槽と熱交換槽との間に、所定の水位に達した前記融解槽の循環水が前記熱交換槽側に流れ出るように構成された溢流堰が設けられ、
前記融解槽において、投入された雪氷が下流側の溢流堰に接触しないように、下流側の溢流堰から間隔をあけて雪氷の進入を阻止する柵部材が設けられていることを特徴とする雪氷冷熱源システムが提供される。
As the present invention according to claim 8, circulating water is stored, and snow and ice are poured into the stored circulating water and the circulating water is cooled by melting the snow and ice, and the melting tank A heat exchange tank installed in a subsequent stage and provided with a heat exchanger for exchanging heat between the circulating water and the refrigerant of the cooling facility,
Between the melting tank and the heat exchange tank is provided an overflow weir configured so that the circulating water of the melting tank that has reached a predetermined water level flows out to the heat exchange tank side,
In the molten bath, and characterized in that it is turned snow ice is so as not to contact the overflow weir downstream, the fence member spaced from the downstream side of the overflow weir prevents the entry of snow and ice is provided A snow and ice cold heat source system is provided.

上記請求項8記載の発明では、前記融解槽において雪氷が下流側の溢流堰に接触すると、接触した部分の循環水の溢流が遮断され、溢流堰からの流れが均一でなくなるため、雪氷が溢流堰に接触しないように、下流側の溢流堰から間隔をあけて雪氷の進入を阻止する金網などの柵部材を設けるようにしている。   In the invention of claim 8, when snow and ice contact the downstream overflow weir in the melting tank, the overflow of the circulating water in the contacted portion is blocked, and the flow from the overflow weir is not uniform, In order to prevent snow and ice from coming into contact with the overflow weir, a fence member such as a wire mesh is provided to prevent the entrance of snow and ice at a distance from the overflow overflow weir on the downstream side.

請求項9に係る本発明として、上記請求項1〜8いずれかに記載の雪氷冷熱源システムを冷熱源とすることを特徴とする冷房システムが提供される。   The present invention according to claim 9 provides a cooling system characterized in that the snow and ice cooling heat source system according to any one of claims 1 to 8 is used as a cooling heat source.

以上詳説のとおり本発明によれば、雪氷から冷熱エネルギーを効率良く回収できる雪氷冷熱源システム及びこれを冷熱源とする冷房システムが提供できるようになる。   As described above in detail, according to the present invention, it is possible to provide a snow and ice cooling heat source system that can efficiently recover cooling energy from snow and ice, and a cooling system that uses this as a cooling heat source.

本発明に係る冷房システム1の構成図である。1 is a configuration diagram of a cooling system 1 according to the present invention. 本雪氷冷熱源システム2の融解槽6内の流れを示す断面図である。It is sectional drawing which shows the flow in the melting tank 6 of this snow ice cold heat source system 2. FIG. 溢流堰を使用しない場合の融解槽内の流れを示す断面図である。It is sectional drawing which shows the flow in the melting tank when not using an overflow weir. 他の形態例に係る雪氷冷熱源システム2を示す断面図である。It is sectional drawing which shows the snow-ice-cooling heat source system 2 which concerns on another example. 本雪氷冷熱源システム2を使用した場合の性能試験結果を示すグラフである。It is a graph which shows a performance test result at the time of using this snow and ice cold heat source system. 本雪氷冷熱源システム2を使用しない場合の性能試験結果を示すグラフである。It is a graph which shows the performance test result at the time of not using this snow ice cold heat source system 2. FIG. 他の形態例に係る雪氷冷熱源システム2’を示す断面図である。It is sectional drawing which shows the snow-ice-cooling heat source system 2 'which concerns on another form example. 雪氷冷熱源システム2’に係る融解槽6の破断斜視図である。It is a fracture perspective view of melting tank 6 concerning snow and ice cold heat source system 2 '.

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明に係る冷房システム1は、図1に示されるように、雪氷8を冷熱源とする雪氷冷熱源システム2と、この雪氷冷熱源システム2の冷熱を受け取る熱交換器4を備えた冷房設備3とから構成されている。なお、前記冷房設備3は、一般に公知の冷房設備を用いることができ、図示では冷媒が流れる熱交換器4のみが示され、他の構成要素については図示を割愛した。   As shown in FIG. 1, a cooling system 1 according to the present invention includes a snow ice cooling heat source system 2 that uses snow and ice 8 as a cooling heat source, and a cooling facility that includes a heat exchanger 4 that receives the cooling heat of the snow ice cooling heat source system 2. 3. In addition, generally the well-known cooling equipment can be used for the said cooling equipment 3, Only the heat exchanger 4 through which a refrigerant | coolant flows is shown in the figure, and illustration was omitted about the other component.

前記雪氷冷熱源システム2は、循環水が注入され、この循環水が所定の水位まで貯留される循環水注水槽5と、前記循環水注水槽5の後段に設置され前記循環水注水槽5内の循環水が流れ込み、この循環水が所定の水位まで貯留されるとともに、貯留された循環水に雪氷8が投入され、且つ投入された雪氷8が融解することによって前記循環水が冷却される融解槽6と、前記融解槽6の後段に設置され前記融解槽6内の循環水が流れ込み、この循環水が所定の水位まで貯留されるとともに、この循環水と冷房設備3の冷媒との間で熱交換を行う熱交換器4が配設された熱交換槽7とを備えている。   The snow and ice cold heat source system 2 is provided with a circulating water injection tank 5 in which circulating water is injected and the circulating water is stored up to a predetermined water level, and is installed in the subsequent stage of the circulating water injection tank 5. The circulating water flows in, and the circulating water is stored up to a predetermined water level, and the snow and ice 8 is poured into the stored circulating water, and the circulating water is cooled by melting and melting the circulating water. The circulating water in the melting tank 6 that is installed in the rear stage of the tank 6 and the melting tank 6 flows in, and the circulating water is stored up to a predetermined water level, and between the circulating water and the refrigerant of the cooling equipment 3 And a heat exchange tank 7 provided with a heat exchanger 4 for performing heat exchange.

前記熱交換器4は、SUS製や銅製などの内部に冷媒が流れる配管を、直接熱交換槽7に溜まった循環水内に投入し、配管内部の冷媒と循環水との間で間接的に熱交換を行うものである。前記配管は、水平方向に繰り返し折り返した往復式のものや、円形又は矩形のコイル状に巻いたコイル式のものなどを用いることができる。熱交換効率を向上させるため、隣接する配管同士の間にスペーサーを介在させて配管同士の接触をなくし、循環水が流通しやすくするのが好ましい。また、熱交換器4の外側の撹拌効率を向上させるため、吐出口にスプリンクラーヘッドを取り付けた水中ポンプを水中に設置するなど、各種の水槽内の撹拌手段を備えるようにしてもよい。   In the heat exchanger 4, a pipe made of SUS, copper, or the like in which a refrigerant flows is introduced directly into circulating water accumulated in the heat exchange tank 7, and indirectly between the refrigerant inside the pipe and the circulating water. Heat exchange is performed. As the pipe, a reciprocating pipe that is repeatedly folded in the horizontal direction, a coil-type pipe wound in a circular or rectangular coil shape, or the like can be used. In order to improve heat exchange efficiency, it is preferable to interpose a spacer between adjacent pipes to eliminate contact between the pipes and to facilitate circulation of the circulating water. Moreover, in order to improve the stirring efficiency outside the heat exchanger 4, a stirring device in various water tanks may be provided, such as a submersible pump having a sprinkler head attached to the discharge port.

本雪氷冷熱源システム2では、前記循環水注水槽5と融解槽6との間に、前記循環水注水槽5内で所定の水位に達した循環水が融解槽6側に流れ出るように構成された溢流堰9が設けられるとともに、前記融解槽6と熱交換槽7との間に、前記融解槽6内で所定の水位に達した循環水が熱交換槽7側に流れ出るように構成された溢流堰10が設けられている。   The snow and ice cold heat source system 2 is configured such that circulating water that has reached a predetermined water level in the circulating water injection tank 5 flows out between the circulating water injection tank 5 and the melting tank 6 toward the melting tank 6. An overflow overflow weir 9 is provided, and between the melting tank 6 and the heat exchange tank 7, circulating water that has reached a predetermined water level in the melting tank 6 flows out to the heat exchange tank 7 side. An overflow overflow weir 10 is provided.

また、前記熱交換槽7に達した循環水を循環水注水槽5に戻すための管路11及びポンプ12が設けられている。前記熱交換槽7を所定の水位に保つため、前記熱交換槽7の下流側に、所定の水位に達した循環水が流れ出るように構成された溢流堰を設け、その全部又は一部を排水するか、前記管路11の途中に分岐路を設け、該管路11を流れる循環水の一部を排水する構造を備えるようにしてもよい。   Further, a pipe 11 and a pump 12 are provided for returning the circulating water that has reached the heat exchange tank 7 to the circulating water injection tank 5. In order to keep the heat exchange tank 7 at a predetermined water level, an overflow weir is provided on the downstream side of the heat exchange tank 7 so that the circulating water that has reached the predetermined water level flows out. Alternatively, a branch path may be provided in the middle of the pipeline 11 and a part of the circulating water flowing through the pipeline 11 may be drained.

前記雪氷8としては、冬期に降雪地域に積もった雪を冷却貯蔵しておき、本冷房システム1の設置場所まで運搬して使用することが可能である。例えば、首都圏に本冷房システム1を設置する場合、冬期に降雪地域に積もった雪を貯蔵しておき、首都圏から降雪地域に荷物を輸送した船やトレーラーの帰路に空荷で戻る代わりに雪氷8を積んで帰るようにすることができる。これにより、片荷輸送の問題が解消するとともに、雪氷8の輸送コストが大幅に削減でき、冷房システム1の運転にかかるCOの発生を大幅に低減することが可能である。 As the snow and ice 8, it is possible to cool and store the snow accumulated in the snowfall area in the winter and transport it to the place where the present cooling system 1 is installed. For example, when installing the cooling system 1 in the Tokyo metropolitan area, instead of storing the snow accumulated in the snowfall area in winter and returning it to the return route of the ship or trailer that transported the luggage from the metropolitan area to the snowfall area, Snow and ice 8 can be loaded and returned. As a result, the problem of one-piece transportation can be solved, the transportation cost of snow and ice 8 can be greatly reduced, and the generation of CO 2 required for the operation of the cooling system 1 can be significantly reduced.

次に、前記循環水の流れについて説明すると、図2に示されるように、循環水注水槽5に注水された循環水は、溢流堰9を溢流して融解槽6に流れ込み、融解槽6に投入された雪氷8と接触して雪氷8を融解させ冷水が取り出される。この冷水によって冷やされた循環水は、溢流堰10を溢流して熱交換槽7に流れ込み、熱交換槽7内の熱交換器4と接触して熱交換器4内を流れる冷媒との間で熱交換が行われる。   Next, the flow of the circulating water will be described. As shown in FIG. 2, the circulating water poured into the circulating water injection tank 5 overflows the overflow weir 9 and flows into the melting tank 6. The snow ice 8 is melted in contact with the snow ice 8 put into the chilled water, and cold water is taken out. The circulating water cooled by the cold water overflows the overflow weir 10 and flows into the heat exchange tank 7, and contacts with the heat exchanger 4 in the heat exchange tank 7 and between the refrigerant flowing in the heat exchanger 4. Heat exchange takes place at.

このように、本雪氷冷熱源システム2においては、投入された雪氷8が融解する融解槽6と、熱交換器4によって熱交換を行う熱交換槽7とを分けて設置しているため、融解槽6で融解した冷水のみが循環水として熱交換槽7に流入するようになる。その結果、熱交換槽7で熱交換器4によって効率良く冷熱エネルギーが回収できるとともに、安定して冷熱出力が得られるようになる。一方、雪氷に混在した土砂は融解槽6内に沈殿して分離され、熱交換槽7への土砂の流入が防止できるため、熱交換器4に付着する土砂の量が大幅に低減でき、冷熱エネルギーの回収効率が向上する。また、雪氷8に混在した土砂は融解槽6内に沈殿するため、土砂の回収が容易となる。   Thus, in the present snow and ice cold heat source system 2, the melting tank 6 that melts the introduced snow and ice 8 and the heat exchange tank 7 that performs heat exchange by the heat exchanger 4 are separately installed. Only the cold water melted in the tank 6 flows into the heat exchange tank 7 as circulating water. As a result, cold energy can be efficiently recovered by the heat exchanger 4 in the heat exchange tank 7, and a cold output can be stably obtained. On the other hand, since the earth and sand mixed in snow and ice settles in the melting tank 6 and is separated and can prevent the inflow of earth and sand to the heat exchange tank 7, the amount of earth and sand adhering to the heat exchanger 4 can be greatly reduced, Energy recovery efficiency is improved. Moreover, since the earth and sand mixed in the snow and ice 8 settles in the melting tank 6, the collection of earth and sand becomes easy.

特に、本雪氷冷熱源システム2においては、図2に示されるように、融解槽6の前段に循環水注水槽5が設けられ、循環水注水槽5内の循環水が溢流堰9を溢流して融解槽6に流れ込むように構成されているため、図3に示されるように配管などによって融解槽に直接注水する場合よりも、全体の流量に対する流速が緩やかになるので、循環水注水槽5から流れ込んだ循環水が融解槽6の表層を水平方向に流れ、雪氷8を融解して冷水を得ながら下流側に進むようになる。雪氷8が融解することによって冷却された循環水は、下流側の壁面において一部が溢流堰10から溢流して熱交換槽7に流れ出るとともに、一部が下流側壁面に当接して壁面に沿った流れに変換される。その後、底面から上流側壁面に沿うようにして巡回した後、表層を流れるという融解槽6内の巡回水流が形成されやすくなる。このため、循環水が雪氷に接触して融解水によって冷却された循環水が後段の熱交換槽7側に流れ出やすくなっている。   In particular, in the snow and ice cold heat source system 2, as shown in FIG. 2, a circulating water injection tank 5 is provided in front of the melting tank 6, and the circulating water in the circulating water injection tank 5 overflows the overflow weir 9. Since it is configured to flow and flow into the melting tank 6, the flow rate with respect to the entire flow rate becomes slower than the case where water is directly poured into the melting tank by piping or the like as shown in FIG. The circulating water flowing in from 5 flows in the horizontal direction in the surface layer of the melting tank 6, and proceeds to the downstream side while melting the snow and ice 8 to obtain cold water. The circulating water cooled by melting of the snow and ice 8 partially overflows from the overflow weir 10 on the downstream wall surface and flows out to the heat exchange tank 7, and partially contacts the downstream sidewall surface to the wall surface. It is converted into a flow along. Then, after circulating along the upstream side wall surface from the bottom surface, a circulating water flow in the melting tank 6 that flows through the surface layer is easily formed. For this reason, the circulating water which contacted with snow and ice and cooled by the melted water is likely to flow out to the heat exchange tank 7 side in the subsequent stage.

これに対して、図3に示されるように、融解槽の水面上部まで立ち下げた配管から直接融解槽内に注水する場合、上述の溢流堰と同じ水量を供給しようとすると、配管からの流速が速くならざるを得ないため、融解槽に供給された循環水は底部に沈み、底面に沿って下流側に流れ、下流側の壁面に当接して水面へと上昇した後、一部が溢流堰10を溢流して熱交換槽7側に流出するとともに、一部が表層を雪氷を融解しながら上流側に流れるという融解槽6内の巡回路が形成されやすくなる。このように、雪氷の融解水をそのまま熱交換槽7に流出させるという巡回路になっていないため、熱交換槽7に流れ込む循環水の温度が高くなりやすく、熱交換槽7での熱交換効率が悪くなる。   On the other hand, as shown in FIG. 3, when water is poured directly into the melting tank from a pipe that has been lowered to the upper surface of the melting tank, if the same amount of water as that of the above overflow weir is to be supplied, Since the flow rate has to be high, the circulating water supplied to the melting tank sinks to the bottom, flows downstream along the bottom surface, abuts against the downstream wall surface, rises to the water surface, and partly The overflow dam 10 overflows and flows out to the heat exchange tank 7 side, and a circuit in the melting tank 6 is easily formed in which a part of the surface layer flows upstream while melting snow and ice. As described above, since the circuit does not have a circuit in which the melted water of snow and ice flows out to the heat exchange tank 7 as it is, the temperature of the circulating water flowing into the heat exchange tank 7 tends to increase, and the heat exchange efficiency in the heat exchange tank 7 is increased. Becomes worse.

更に、本雪氷冷熱源システム2においては、融解槽6から熱交換槽7へ循環水が流れ込む際にも溢流堰10を溢流する構成としているため、冷水が集中せず広範囲に分散して流れるようになるので、熱交換槽7での熱交換効率がより一層向上する。   Furthermore, in the present snow and ice cold heat source system 2, since the overflow weir 10 overflows even when the circulating water flows from the melting tank 6 to the heat exchange tank 7, the cold water is not concentrated but dispersed widely. Since it comes to flow, the heat exchange efficiency in the heat exchange tank 7 improves further.

前記溢流堰9、10はそれぞれ、循環水注水槽5、融解槽6及び熱交換槽7のほぼ全幅に亘って設けることが好ましい。すなわち、溢流堰9、10が各槽5、6、7の水槽幅とほぼ同等の幅で設けられている。これによって、融解槽6においては、全幅に亘って雪氷8との接触面積が確保でき、雪氷8が融解しやすく冷水が得られやすくなる。また、熱交換槽7においては、全幅に亘って熱交換器4と冷水との接触面積が確保でき、熱交換効率が向上する。前記溢流堰9、10は、各槽5、6、7の幅の70%以上、好ましくは80%以上、より好ましくは90%以上の幅で形成するのがよい。   The overflow weirs 9 and 10 are preferably provided over substantially the entire width of the circulating water injection tank 5, the melting tank 6 and the heat exchange tank 7, respectively. That is, the overflow weirs 9 and 10 are provided with a width substantially equal to the water tank width of each tank 5, 6, and 7. Thereby, in the melting tank 6, a contact area with the snow and ice 8 can be ensured over the entire width, and the snow and ice 8 are easily melted and cold water is easily obtained. Moreover, in the heat exchange tank 7, the contact area of the heat exchanger 4 and cold water can be ensured over the whole width, and heat exchange efficiency improves. The overflow weirs 9 and 10 may be formed with a width of 70% or more, preferably 80% or more, more preferably 90% or more of the width of each of the tanks 5, 6 and 7.

また、前記融解槽6と熱交換槽7との間の溢流堰10を溢流した循環水の落差は、前記循環水注水槽5と融解槽6との間の溢流堰9を溢流した循環水の落差より大きく設定することが好ましい。すなわち、熱交換槽7の水面から溢流堰10までの高さが、融解槽6の水面から溢流堰9までの高さより大きく設定されている。熱交換槽7に流れ込む溢流堰10の落差を相対的に大きくすることによって、熱交換槽7内の循環水の対流が大きくなり、熱交換器4外側の撹拌効率が向上し、熱交換器4による熱交換効率を高めることができるようになる。また、融解槽6に流れ込む溢流堰9の落差を相対的に小さくすることによって、融解槽6に流れ込むときの水流が小さくなって、循環水が融解槽6の表層を流れやすくなり、雪氷8と循環水との接触機会が向上して雪氷8の融解が促進できる。   Moreover, the drop of circulating water overflowing the overflow weir 10 between the melting tank 6 and the heat exchange tank 7 overflows the overflow weir 9 between the circulating water injection tank 5 and the melting tank 6. It is preferable to set larger than the fall of the circulating water. That is, the height from the water surface of the heat exchange tank 7 to the overflow weir 10 is set larger than the height from the water surface of the melting tank 6 to the overflow weir 9. By relatively increasing the head of the overflow weir 10 flowing into the heat exchange tank 7, the convection of the circulating water in the heat exchange tank 7 is increased, the stirring efficiency outside the heat exchanger 4 is improved, and the heat exchanger The heat exchange efficiency by 4 can be increased. Moreover, by making the head of the overflow weir 9 flowing into the melting tank 6 relatively small, the water flow when flowing into the melting tank 6 becomes small, and the circulating water easily flows through the surface layer of the melting tank 6, and snow ice 8 This improves the chance of contact with the circulating water and promotes the melting of the snow and ice 8.

前記溢流堰9の落差(溢流堰9の上端から融解槽6の水面までの高さ)を大きくし過ぎると、溢流堰9を越えた循環水の落水によって底面方向への流れが形成されやすくなり、上述のように雪氷の融解水を熱交換槽7に効率良く流せないこととなってしまうため好ましくない。従って、溢流堰9の落差は、融解槽6内の循環水が循環水注水槽5に逆流しない程度の極小さな落差とすることが好ましい。具体的な溢流堰9の落差としては、実機の大きさや流量などによっても異なるが、10mm〜100mm程度とするのがよい。   If the drop of the overflow weir 9 (height from the upper end of the overflow weir 9 to the water surface of the melting tank 6) is too large, the flow toward the bottom surface is formed by the fall of circulating water over the overflow weir 9. This is not preferable because the melted water of snow and ice cannot be efficiently poured into the heat exchange tank 7 as described above. Therefore, it is preferable that the drop of the overflow weir 9 is an extremely small drop so that the circulating water in the melting tank 6 does not flow back to the circulating water injection tank 5. The specific drop of the overflow weir 9 varies depending on the size and flow rate of the actual machine, but is preferably about 10 mm to 100 mm.

ところで、熱交換槽7の水深は、循環水注水槽5及び融解槽6の水深より小さく設定することが好ましい。これによって、熱交換槽7内の循環水の流速を増加させることができ、熱交換器4による熱交換効率の向上が図れる。より具体的な熱交換槽7の水深は、投げ込み式の前記熱交換器4の熱交換部分が水没する程度の深さ、すなわち熱交換器4の熱交換部分の高さとほぼ同等の深さとすることが好ましい。   By the way, it is preferable to set the water depth of the heat exchange tank 7 smaller than the water depth of the circulating water injection tank 5 and the melting tank 6. Thereby, the flow rate of the circulating water in the heat exchange tank 7 can be increased, and the heat exchange efficiency by the heat exchanger 4 can be improved. More specifically, the water depth of the heat exchange tank 7 is set to such a depth that the heat exchange part of the throw-in type heat exchanger 4 is submerged, that is, a depth substantially equal to the height of the heat exchange part of the heat exchanger 4. It is preferable.

一方、前記融解槽6の水深は、図1に示されるように、投入された雪氷8が水に浮いた状態となる深さに設定することが好ましい。融解槽6内に雪氷8が水に浮いた状態で設けられることによって、雪氷が融解して小さくなっても、水流によって下流側に寄せ集められるため、循環水が雪氷に接触せずに熱交換槽7に流れ出るような水路のバイパスができにくく、循環水と雪氷との接触機会が増加するようになる。また、雪氷8に混在した土砂が沈殿しやすくなり、冷水と土砂との分離が容易となる。   On the other hand, as shown in FIG. 1, the water depth of the melting tank 6 is preferably set to a depth at which the introduced snow ice 8 floats in the water. By providing the snow ice 8 in the melting tank 6 in a floating state, even if the snow ice melts and becomes small, the water flow gathers to the downstream side, so that the circulating water exchanges heat without contacting the snow ice. It is difficult to bypass the water channel that flows out to the tank 7, and the chance of contact between the circulating water and snow and ice increases. Moreover, the earth and sand mixed in the snow and ice 8 are easily settled, and the cold water and the earth and sand are easily separated.

前記融解槽6においては、図4に示されるように、投入された雪氷8が下流側の溢流堰10に接触しないように、下流側の溢流堰10から間隔をあけて雪氷の進入を阻止する柵部材14を設けることが好ましい。これによって、雪氷8が溢流堰10に接触して、この接触した部分の循環水の溢流が遮断されることにより溢流堰10からの流れが不均一化するのが防止できるようになる。前記柵部材14としては、金網や多孔板、棒材など、水が容易に通過でき、ある程度の大きさ以上の雪氷塊が通過できないような構造の柵状のものを用いることができる。前記溢流堰10と柵部材14との間隔部分には、浮遊ゴミなどが下流側に流出しないように金網やネットなどの網部材14aを設けることが好ましい。   In the melting tank 6, as shown in FIG. 4, snow ice is allowed to enter at a distance from the downstream overflow weir 10 so that the introduced snow ice 8 does not contact the downstream overflow weir 10. It is preferable to provide a barrier member 14 for blocking. Accordingly, it is possible to prevent the snow and ice 8 from coming into contact with the overflow weir 10 and blocking the overflow of the circulating water in the contacted portion, thereby preventing the flow from the overflow weir 10 from becoming uneven. . As the fence member 14, a fence-shaped member such as a wire mesh, a perforated plate, a bar, or the like that can easily pass water and cannot pass snow and ice blocks of a certain size or larger can be used. It is preferable to provide a net member 14a such as a wire net or a net in the space between the overflow weir 10 and the fence member 14 so that floating dust or the like does not flow downstream.

本雪氷冷熱源システム2を用いた場合と、図3に示される融解槽への注水を水面上部まで立ち下げた配管から吐出する場合とについて、性能試験を行った。その結果を図5及び図6に示す。なお、入口温度T2とは循環水注水槽5へ注水する循環水の温度であり、出口温度T1とは融解槽6を通過した循環水の温度であり、熱出力とは入口温度T2と出口温度T1の差に流量Fを掛け合わせたものであり、熱量とは熱出力の積算値である。   A performance test was conducted for the case where the snow and ice cold heat source system 2 was used and for the case where water injection to the melting tank shown in FIG. The results are shown in FIGS. The inlet temperature T2 is the temperature of the circulating water poured into the circulating water injection tank 5, the outlet temperature T1 is the temperature of the circulating water that has passed through the melting tank 6, and the heat output is the inlet temperature T2 and the outlet temperature. The difference in T1 is multiplied by the flow rate F, and the amount of heat is an integrated value of heat output.

この結果、本雪氷冷熱源システム2は、図5に示されるように、出口温度T1が長時間に亘って低く抑えられ、熱交換槽7に長時間冷水が供給できるようになる。これに対して、図3に示されるシステムでは、図6に示されるように、出口温度T1が直ぐに上昇しやすくなっている。   As a result, as shown in FIG. 5, the snow and ice cold heat source system 2 can keep the outlet temperature T <b> 1 low for a long time and can supply cold water to the heat exchange tank 7 for a long time. On the other hand, in the system shown in FIG. 3, as shown in FIG. 6, the outlet temperature T1 tends to rise immediately.

〔他の形態例〕
他の形態例に係る雪氷冷熱源システム2’は、図7に示されるように、前記循環水を注水するための配管15が配設されるとともに、循環水中に雪氷が投入され、前記雪氷が融解することによって前記循環水が冷却される融解槽6と、前記熱交換器4が配設された熱交換槽7とから構成されている。
[Other examples]
As shown in FIG. 7, the snow / ice cold heat source system 2 ′ according to another embodiment is provided with a pipe 15 for pouring the circulating water, and snow / ice is poured into the circulating water. It comprises a melting tank 6 in which the circulating water is cooled by melting and a heat exchange tank 7 in which the heat exchanger 4 is disposed.

前記配管15は、図8に示されるように、融解槽6の水面上部まで立ち下げた垂直管15aと、この下端から下流側の溢流堰10と平行する水平方向に延びるとともに、管周面に循環水が下流側の溢流堰10に向けて水平方向に流出可能な多数の開口15c、15c…(又は管軸方向に延びる1又は複数のスリット)が形成された水平管15bとからなるものを用いるのが好ましい。これにより、前記開口15cから融解槽6に流入した循環水が表層を水平方向に流れ、雪氷8を融解して冷熱を取りだした直後に、溢流堰10を越えて熱交換槽7に流れ込みやすくなり、上記雪氷冷熱源システム2と同じような融解槽6内の巡回路が形成され、熱交換槽7での冷熱回収効率が向上できるようになる。前記水平管15bは、融解槽6のほぼ全幅に亘って形成することが好ましい。また、前記水平管15bは、下流側の溢流堰10とほぼ同等の高さに設置され、水平管15bの一部又は全部が水没していることが好ましい。   As shown in FIG. 8, the pipe 15 extends in the horizontal direction parallel to the overflow pipe weir 10 on the downstream side from the vertical pipe 15 a that is lowered to the upper surface of the melting tank 6, and the pipe peripheral surface. And a horizontal pipe 15b in which a large number of openings 15c, 15c... (Or one or a plurality of slits extending in the pipe axis direction) through which the circulating water can flow in the horizontal direction toward the overflow dam 10 on the downstream side are formed. It is preferable to use one. Thereby, the circulating water flowing into the melting tank 6 from the opening 15c flows in the horizontal direction in the surface layer, and immediately after melting the snow ice 8 and taking out the cold heat, it easily flows into the heat exchange tank 7 over the overflow weir 10. Thus, a circuit in the melting tank 6 similar to the above-mentioned snow and ice cold heat source system 2 is formed, and the efficiency of recovering cold heat in the heat exchange tank 7 can be improved. The horizontal tube 15b is preferably formed over substantially the entire width of the melting tank 6. The horizontal pipe 15b is preferably installed at a height substantially equal to the overflow dam 10 on the downstream side, and part or all of the horizontal pipe 15b is submerged.

1…冷房システム、2…雪氷冷熱源システム、3…冷房設備、4…熱交換器、5…循環水注水槽、6…融解槽、7…熱交換槽、8…雪氷、9…溢流堰、10…溢流堰、14…柵部材   DESCRIPTION OF SYMBOLS 1 ... Cooling system, 2 ... Snow ice cooling heat source system, 3 ... Cooling equipment, 4 ... Heat exchanger, 5 ... Circulating water injection tank, 6 ... Melting tank, 7 ... Heat exchange tank, 8 ... Snow ice, 9 ... Overflow weir 10 ... Overflow weir, 14 ... Fence member

Claims (9)

循環水が貯留され、この貯留された循環水中に雪氷が投入されるとともに前記雪氷が融解することによって前記循環水が冷却される融解槽と、前記融解槽の後段に設置され、前記循環水と冷房設備の冷媒との間で熱交換を行う熱交換器が配設された熱交換槽とを含み、
前記融解槽と熱交換槽との間に、所定の水位に達した前記融解槽の循環水が前記熱交換槽側に流れ出るように構成された溢流堰が設けられ
前記融解槽に流れ込んだ循環水が、前記融解槽の表層を水平方向に流れ、前記雪氷を融解して冷水を得ながら下流側に進み、一部が前記溢流堰から溢流して前記熱交換槽に流れ出る前記融解槽内の水流が形成されていることを特徴とする雪氷冷熱源システム。
Circulating water is stored, and snow and ice are introduced into the stored circulating water and the circulating water is cooled by melting the snow and ice, and is installed at a stage subsequent to the melting tank, and the circulating water and A heat exchange tank provided with a heat exchanger for exchanging heat with the refrigerant of the cooling facility,
Between the melting tank and the heat exchange tank is provided an overflow weir configured so that the circulating water of the melting tank that has reached a predetermined water level flows out to the heat exchange tank side ,
Circulating water that has flowed into the melting tank flows in the horizontal direction on the surface layer of the melting tank, proceeds to the downstream side while melting the snow and ice to obtain cold water, and partly overflows from the overflow weir and the heat exchange A snow and ice cooling heat source system, wherein a water flow in the melting tank flowing out into the tank is formed .
前記融解槽の前段に、前記循環水が注水される循環水注水槽が設けられ、
前記循環水注水槽と融解槽との間に、所定の水位に達した前記循環水注水槽の循環水が前記融解槽側に流れ出るように構成された溢流堰が設けられている請求項1記載の雪氷冷熱源システム。
A circulating water injection tank into which the circulating water is injected is provided in the front stage of the melting tank,
2. An overflow weir is provided between the circulating water injection tank and the melting tank so that the circulating water of the circulating water injection tank reaching a predetermined water level flows out to the melting tank side. The snow and ice cold heat source system described.
前記溢流堰はそれぞれ、前記循環水注水槽、融解槽及び熱交換槽のほぼ全幅に亘って設けられている請求項2記載の雪氷冷熱源システム。   The snow and ice cold heat source system according to claim 2, wherein each of the overflow weirs is provided over substantially the entire width of the circulating water injection tank, the melting tank, and the heat exchange tank. 循環水が貯留され、この貯留された循環水中に雪氷が投入されるとともに前記雪氷が融解することによって前記循環水が冷却される融解槽と、前記融解槽の後段に設置され、前記循環水と冷房設備の冷媒との間で熱交換を行う熱交換器が配設された熱交換槽と、前記融解槽の前段に設けられた、前記循環水が注水される循環水注水槽とを含み、
前記融解槽と熱交換槽との間に、所定の水位に達した前記融解槽の循環水が前記熱交換槽側に流れ出るように構成された溢流堰が設けられるとともに、前記循環水注水槽と融解槽との間に、所定の水位に達した前記循環水注水槽の循環水が前記融解槽側に流れ出るように構成された溢流堰が設けられ、
前記融解槽と熱交換槽との間の前記溢流堰を溢流した前記循環水の落差は、前記循環水注水槽と融解槽との間の前記溢流堰を溢流した前記循環水の落差より大きく設定されていることを特徴とする雪氷冷熱源システム。
Circulating water is stored, and snow and ice are introduced into the stored circulating water and the circulating water is cooled by melting the snow and ice, and is installed at a stage subsequent to the melting tank, and the circulating water and Including a heat exchange tank in which a heat exchanger for exchanging heat with a refrigerant in a cooling facility is provided, and a circulating water injection tank provided in the previous stage of the melting tank to which the circulating water is injected,
An overflow weir is provided between the melting tank and the heat exchange tank so that the circulating water of the melting tank that has reached a predetermined water level flows out to the heat exchange tank side, and the circulating water injection tank And an overflow weir configured so that the circulating water of the circulating water injection tank that has reached a predetermined water level flows out to the melting tank side,
The head of the circulating water overflowing the overflow weir between the melting tank and the heat exchange tank is the circulating water overflowing the overflow weir between the circulating water injection tank and the melting tank. Snow and ice cold heat source system characterized by being set larger than the head.
循環水が貯留され、この貯留された循環水中に雪氷が投入されるとともに前記雪氷が融解することによって前記循環水が冷却される融解槽と、前記融解槽の後段に設置され、前記循環水と冷房設備の冷媒との間で熱交換を行う熱交換器が配設された熱交換槽とを含み、
前記融解槽と熱交換槽との間に、所定の水位に達した前記融解槽の循環水が前記熱交換槽側に流れ出るように構成された溢流堰が設けられ、
前記融解槽に、前記循環水を注水するための配管が配設され、
前記配管は、前記融解槽の水面上部まで立ち下げた垂直管と、前記垂直管の下端から水平方向に延びるとともに、管周面に前記循環水が水平方向に流出可能な多数の開口又はスリットが形成された水平管とからなることを特徴とする雪氷冷熱源システム。
Circulating water is stored, and snow and ice are introduced into the stored circulating water and the circulating water is cooled by melting the snow and ice, and is installed at a stage subsequent to the melting tank, and the circulating water and A heat exchange tank provided with a heat exchanger for exchanging heat with the refrigerant of the cooling facility,
Between the melting tank and the heat exchange tank is provided an overflow weir configured so that the circulating water of the melting tank that has reached a predetermined water level flows out to the heat exchange tank side,
A pipe for pouring the circulating water is disposed in the melting tank,
The pipe includes a vertical pipe lowered to the upper surface of the melting tank, and a plurality of openings or slits extending horizontally from the lower end of the vertical pipe and allowing the circulating water to flow out in the horizontal direction on the pipe peripheral surface. A snow and ice cold heat source system characterized by comprising a horizontal tube formed.
循環水が貯留され、この貯留された循環水中に雪氷が投入されるとともに前記雪氷が融解することによって前記循環水が冷却される融解槽と、前記融解槽の後段に設置され、前記循環水と冷房設備の冷媒との間で熱交換を行う熱交換器が配設された熱交換槽とを含み、
前記融解槽と熱交換槽との間に、所定の水位に達した前記融解槽の循環水が前記熱交換槽側に流れ出るように構成された溢流堰が設けられ、
前記熱交換槽の水深は、前記融解槽の水深より小さく設定されていることを特徴とする雪氷冷熱源システム。
Circulating water is stored, and snow and ice are introduced into the stored circulating water and the circulating water is cooled by melting the snow and ice, and is installed at a stage subsequent to the melting tank, and the circulating water and A heat exchange tank provided with a heat exchanger for exchanging heat with the refrigerant of the cooling facility,
Between the melting tank and the heat exchange tank is provided an overflow weir configured so that the circulating water of the melting tank that has reached a predetermined water level flows out to the heat exchange tank side,
Snow and ice cold heat source system, characterized in that depth of the heat exchange chamber is set smaller than the depth of the molten bath.
循環水が貯留され、この貯留された循環水中に雪氷が投入されるとともに前記雪氷が融解することによって前記循環水が冷却される融解槽と、前記融解槽の後段に設置され、前記循環水と冷房設備の冷媒との間で熱交換を行う熱交換器が配設された熱交換槽とを含み、
前記融解槽と熱交換槽との間に、所定の水位に達した前記融解槽の循環水が前記熱交換槽側に流れ出るように構成された溢流堰が設けられ、
前記融解槽の水深は、投入された雪氷が水に浮いた状態となる深さに設定されていることを特徴とする雪氷冷熱源システム。
Circulating water is stored, and snow and ice are introduced into the stored circulating water and the circulating water is cooled by melting the snow and ice, and is installed at a stage subsequent to the melting tank, and the circulating water and A heat exchange tank provided with a heat exchanger for exchanging heat with the refrigerant of the cooling facility,
Between the melting tank and the heat exchange tank is provided an overflow weir configured so that the circulating water of the melting tank that has reached a predetermined water level flows out to the heat exchange tank side,
The snow / ice cold heat source system is characterized in that the water depth of the melting tank is set to a depth at which the introduced snow ice floats in the water.
循環水が貯留され、この貯留された循環水中に雪氷が投入されるとともに前記雪氷が融解することによって前記循環水が冷却される融解槽と、前記融解槽の後段に設置され、前記循環水と冷房設備の冷媒との間で熱交換を行う熱交換器が配設された熱交換槽とを含み、
前記融解槽と熱交換槽との間に、所定の水位に達した前記融解槽の循環水が前記熱交換槽側に流れ出るように構成された溢流堰が設けられ、
前記融解槽において、投入された雪氷が下流側の溢流堰に接触しないように、下流側の溢流堰から間隔をあけて雪氷の進入を阻止する柵部材が設けられていることを特徴とする雪氷冷熱源システム。
Circulating water is stored, and snow and ice are introduced into the stored circulating water and the circulating water is cooled by melting the snow and ice, and is installed at a stage subsequent to the melting tank, and the circulating water and A heat exchange tank provided with a heat exchanger for exchanging heat with the refrigerant of the cooling facility,
Between the melting tank and the heat exchange tank is provided an overflow weir configured so that the circulating water of the melting tank that has reached a predetermined water level flows out to the heat exchange tank side,
In the molten bath, and characterized in that it is turned snow ice is so as not to contact the overflow weir downstream, the fence member spaced from the downstream side of the overflow weir prevents the entry of snow and ice is provided snow and ice cold heat source system.
上記請求項1〜8いずれかに記載の雪氷冷熱源システムを冷熱源とすることを特徴とする冷房システム。   A cooling system comprising the snow and ice cooling heat source system according to any one of claims 1 to 8 as a cooling heat source.
JP2013149166A 2013-07-18 2013-07-18 Snow and ice cold heat source system and cooling system using this as a cold heat source Active JP6202730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013149166A JP6202730B2 (en) 2013-07-18 2013-07-18 Snow and ice cold heat source system and cooling system using this as a cold heat source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013149166A JP6202730B2 (en) 2013-07-18 2013-07-18 Snow and ice cold heat source system and cooling system using this as a cold heat source

Publications (2)

Publication Number Publication Date
JP2015021655A JP2015021655A (en) 2015-02-02
JP6202730B2 true JP6202730B2 (en) 2017-09-27

Family

ID=52486269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013149166A Active JP6202730B2 (en) 2013-07-18 2013-07-18 Snow and ice cold heat source system and cooling system using this as a cold heat source

Country Status (1)

Country Link
JP (1) JP6202730B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017037772A1 (en) * 2015-08-28 2017-03-09 三菱電機株式会社 Heat exchanger and method for manufacturing same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811337A (en) * 1981-07-11 1983-01-22 Gen Oota Method of room cooling and snow melting for building
JP3081275B2 (en) * 1991-06-17 2000-08-28 株式会社大氣社 Ice storage tank
JP2001221468A (en) * 2000-02-07 2001-08-17 Ke Corporation:Kk Ice storage type chilled water supply system
JP3611199B2 (en) * 2001-02-05 2005-01-19 大成建設株式会社 Thermal storage air conditioning system using natural cold air
JP4650857B2 (en) * 2001-02-08 2011-03-16 株式会社竹中工務店 Snow cold storage tank
SE0602639L (en) * 2006-12-08 2007-08-07 Snowpower Ab A system for snow cooling with a pool-like snow layer
EP2142709A4 (en) * 2007-05-07 2017-06-28 Snow Removal Systems, Inc. Portable or tow-behind snow melter

Also Published As

Publication number Publication date
JP2015021655A (en) 2015-02-02

Similar Documents

Publication Publication Date Title
KR101632184B1 (en) A colling system for a ship
KR101739467B1 (en) Cooling water control system of arctic vessel
US4300622A (en) Discharging a latent-heat accumulator
CN101010557B (en) Heat exchanger vessel with means for recirculating cleaning particles
JP6202730B2 (en) Snow and ice cold heat source system and cooling system using this as a cold heat source
KR20130141848A (en) Sea chest for ice class vessle
SE529437C2 (en) System for utilizing cold from snow for cooling buildings or for cooling purposes in processes, has openings with filtering elements on sides of each well and at even heights of upper portion of well, and flanged lid provided for well
JP2017082542A (en) Simple heat exchanger and concrete cooling method using the same
KR20170117031A (en) Mixing vessel of latent heat storage and operation method
JP2017066724A (en) Water inlet with freezing preventive function
JP2017060436A (en) Cleaning system of fish preserve for active squid
JP2015155672A (en) Engine cooling circuit
CN210188437U (en) But drainage continuous casting air cooler
JP2003287325A (en) Freeze-concentration method, and device for the same
JP4905690B2 (en) Heat storage device
KR101658631B1 (en) Snow removal equipment using the partition
JP5600918B2 (en) Continuous heat storage tank
JP2007327694A (en) Ice heat storage device and its water level control method
JP2502029B2 (en) Ice heat storage device
JP2011021370A (en) Snow melting system and snow melting method
CN106969659B (en) A kind of radiator circulating water strainer and its manufactured radiator
JP2018030082A (en) Ion exchanger
JPH11287486A (en) Ice transfer device
JP2015132423A (en) Snow energy supply system
KR100764554B1 (en) Ice maker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170828

R150 Certificate of patent or registration of utility model

Ref document number: 6202730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250