JP3611199B2 - Thermal storage air conditioning system using natural cold air - Google Patents

Thermal storage air conditioning system using natural cold air Download PDF

Info

Publication number
JP3611199B2
JP3611199B2 JP2001028233A JP2001028233A JP3611199B2 JP 3611199 B2 JP3611199 B2 JP 3611199B2 JP 2001028233 A JP2001028233 A JP 2001028233A JP 2001028233 A JP2001028233 A JP 2001028233A JP 3611199 B2 JP3611199 B2 JP 3611199B2
Authority
JP
Japan
Prior art keywords
water
water tank
ice
outside air
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001028233A
Other languages
Japanese (ja)
Other versions
JP2002228207A (en
Inventor
敏一 坂本
新一 鴫原
浩文 洞田
邦道 石黒
秀勝 遠藤
仁 深尾
良一 神内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2001028233A priority Critical patent/JP3611199B2/en
Publication of JP2002228207A publication Critical patent/JP2002228207A/en
Application granted granted Critical
Publication of JP3611199B2 publication Critical patent/JP3611199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自然冷気を利用した蓄熱空調システムに関するものである。
【0002】
【従来の技術】
冬期の自然冷気を蓄熱して、冷房期における空調用冷熱源として利用するシステムが従来から提案されている。
例えば特開2000−28240号公報は、底部に熱交換用冷媒管を配置した水槽を構成し、冬期において、水槽内に水を供給して、氷点下の外気を供給することを日々繰り返すことにより層状に氷結させて冷房期まで保存し、冷房期においては、冷媒管と熱交換器により構成した循環経路にエチレングリコール等を含有した不凍液を循環させることにより氷の冷熱を回収して冷熱源として利用するものである。
【0003】
【発明が解決しようとする課題】
このようなものでは、氷の冷熱の回収を、水槽の底部に設置した冷媒管を流れる冷媒との熱交換により行うので、次のような課題がある。
a.構成が複雑となり、冷媒管の設置コストがかかる。
b.単位時間あたりの冷熱回収量が比較的少ない。
c.伝熱性の維持や冷媒管の上側の氷の荷重を受けるための工夫が必要となる。
本発明はこのような課題を解決することを目的とするものである。
【0004】
【課題を解決するための手段】
上述した課題を解決するために本発明では、ファンを回転駆動することにより外気を室内に流通させるための外気導入部と排気部を備えた断熱室と、該断熱室内に設けられた水槽と、該水槽上部に設けられた製氷用水供給部、前記水槽の一側の上部に設けられて多数の孔が穿設された横方向に延びるヘッダー管からなる散水部、及び前記水槽の他側に設けられて多数の孔が穿設された横方向に延びるヘッダー管からなる取水部と、空調用熱交換部と、外気温を検出する外気温検出部と、前記水槽の満水位を検知する水位センサーと、所定時間毎に外気温・時間を積算する外気温・時間積算手段とを具備し、前記取水部から前記空調用熱交換部を経て前記散水部に至る熱源水循環系統を構成し、製氷する冬期において、前記製氷用水供給部から前記水槽内に製氷用水を所定時間給水して所定量給水した後、次回以降、前記外気温・時間積算手段が設定した外気温・時間を積算したとき、前記製氷用水供給部から前記水槽内に製氷用水を所定時間給水して所定量給水するとともに、前記外気温・時間積算手段の積算値をクリアすることを繰り返し、前記水位センサーが満水位を検知したとき、前記水槽内への製氷用水の給水を停止する一方、前記外気温検出部が設定した外気温を検出したとき、前記ファンを駆動して前記外気導入部と前記排気部により前記断熱室内に氷点下の外気を流通させることにより前記水槽内に順次層状に製氷して、冷房期まで断熱保存し、冷房期において、前記水槽内の氷上に前記散水部から熱源水を散水して、水槽に対して均一な一方向流として氷を均一に融解させ、前記取水部から取水して前記熱源水循環系統の空調用熱交換部により空調用冷熱源として利用する構成とした自然冷気を利用した蓄熱空調システムを提案する。
【0005】
また本発明では、上記の構成において、水槽の他側に隣接して取水槽を構成し、融解した水を取水槽を介して取水して熱源水循環系統に導入する構成とすることを提案する。
【0006】
そして本発明では、以上の構成において、複数の水槽の散水部と取水部を接続して直列の熱源水循環系統を構成したり、又は複数の水槽の散水部と取水部を夫々並列に接続して熱源水循環系統を構成したり、複数の水槽の散水部と取水部を直並列に接続して熱源水循環系統を構成することを提案する。
【0007】
このように、本発明によれば、冷房期には水槽内の氷上に散水部から熱源水を散水して融解させ、取水部から取水して熱源水循環系統の空調用熱交換部により空調用冷熱源として利用するので、氷と熱交換するための冷媒管等の設備は不要であり、また氷からの冷熱の回収は、氷上に散水した水により直接的に行うので、冷熱の回収を効率的に行うことができる。
【0008】
【発明の実施の形態】
次に本発明の実施の形態を図を参照して説明する。
図1は本発明の自然冷気を利用した蓄熱空調システムの全体構成の実施の形態を概念的に示す系統図である。
符号1は地下等に設置した断熱室であり、この断熱室には外気導入部2と排気部3を構成して、外気を室内に流通可能に構成しており、そしてこれらの外気導入部2と排気部3は不使用時において断熱性の蓋(図示省略)等により閉とすることができるように構成している。
【0009】
この断熱室1内に上部を開口した水槽4を設置しており、水槽4には、その上部の適所に製氷用水供給部5を構成している。また水槽4の一側の上部に散水部6を構成すると共に他側に取水部7を構成している。尚、散水部6と製氷用水供給部5は兼用する構成とすることができる。
【0010】
符号8は熱源水槽であり、上記取水部7から熱源水槽8に至り、熱源水槽8から散水部6に還流する熱源水循環系統9を構成している。この熱源水循環系統9には適所にポンプ10やバルブ11等を設けることができる。
【0011】
符号12は空調機、13はその熱交換器であり、上記熱源水槽8から熱交換器13に至り、熱交換器13から熱源水槽8に還流する第2の熱源水循環系統14を構成している。この第2の熱源水循環系統14にも適所にポンプ15、バルブ等を設けることができる。
【0012】
以上の構成において、冬期には、水槽4に製氷用水供給部5から所定量の水を供給して溜め、外気が氷点下となった際に、外気導入部2から氷点下の空気を断熱室1内に導入すると共に、その分の断熱室1内の空気を排気部3から排気すると、断熱室1内に導入された外気は開口を介して水槽内の水と直接に接触する。従って水槽内に溜っている水は氷点下の外気により冷却されて氷結する。外気は、外気導入部2、排気部3に設けたファン16を動作させることにより、効率的に導入することができる。
【0013】
この際、氷点下の外気により水槽4内の水を氷結させる方法は、上述した文献等に開示されるような方法、例えば、水槽内に水を供給して、氷点下の外気を供給することを繰り返すことにより層状に氷結させるような方法を適用することができるし、他の適宜の方法を用いることもできる。
【0014】
また以上の製氷においては、断熱室1に対する外気の流通を、外気の温度を検出して自動的に行うようにすることができるし、また温度や電気抵抗による氷結センサを設ける等により、供給した水が全て凍った後に、次の給水を自動的に行うこともでき、その制御方法は適宜である。
【0015】
以上の製氷における給水及びファン16の制御手法の一例を次に説明する。
この例では、ファン16は、製氷期間、例えば12月〜3月において、外気温を検出してON,OFF制御を行い、また水槽4への給水は、外気温・時間の積算値でON−OFF制御を行う。
例えばファン16は、外気温が−2℃以下でONとし、−1℃以上でOFFとするように制御する。
一方、水槽4への給水は、給水弁をON、即ち開としてタイマーにより所定時間給水し、即ち一定量の給水を行い、給水弁をOFF、即ち閉として給水を停止すると共に、それまでの外気温・時間の積算値をクリアして新たに外気温・時間の積算を開始する。この外気温・時間の積算は、例えば1時間毎に行い、その値が設定値を越えた時点で、上述の給水により水槽4に供給された水が氷結したものと見做して、上述と同様に次の給水を行う。この際、上記設定値は予めの実験等により、上記給水量に対して導出して設定することができる。例えば水槽4に10cmの深さで給水を行った水を全て氷結させるのに、−5℃の外気温で6日間必要とする場合には、外気温・時間の積算値、
−5(℃)×24(時間)×6(日)=−720(℃・時間
を設定値の下限とすればよい。
このようにして水槽4内に層状の氷を次第に形成して行き、給水において水槽4内が満水状態となった場合には、これを水位センサー等で検出して給水弁を閉とすると共に、ファン16をONとして最上層の製氷を行う。
【0016】
以上のようにして水槽4内に所定の氷ができたら、外気導入部2及び排気部3を閉とし、断熱状態で冷房期まで保存する。尚、氷は符号17で示す。
【0017】
冷房期において、氷の冷熱を利用するには、熱源水循環系統9,14を動作させる。即ち、水槽4内の一側の散水部6から氷17の上に市水や地下水を散水すると、氷が融解して、散水した水と混合して冷水となり、この冷水18を取水部7から取水して熱源水循環系統9により熱源水槽8に導入する。一方、熱源水槽8内の水は熱源水循環系統9により還流して再び散水部6から散水されて氷17の融解に供される。
【0018】
そして熱源水循環系統9により水槽4から冷水を供給されて温度が低下した熱源水槽8内の水は第2の熱源水循環系統14により空調機12の熱交換器13に供給されて冷熱源として利用される。
【0019】
このように冬期に水槽4内に作った氷17からの冷熱の回収は、その氷17の上に散水した水により融解させ、融解した水を熱源水槽8に導入することにより行うので、冷熱の回収を直接的に効率的に行うことができる。このため氷と間接的に熱交換するための冷媒管等は不要である。
【0020】
図2は散水部6と取水部7の実施の形態を示すものであり、この散水部6と取水部7は、夫々横方向に延びるヘッダー管19に多数の孔20を設けて構成され、この構成では、散水部6から散水されて取水部7に至る水は、水槽4に対して均一な一方向流となり、氷を均一に融解することができる。
【0021】
次に図3〜図6は本発明の自然冷気を利用した蓄熱空調システムの全体構成の第2の実施の形態と、その動作を概念的に示す系統図である。この実施の形態において、図1の構成要素に対応する要素は、同一の符号を付して重複する説明は省略する。また、図3〜図6においては、説明の便宜上、各図には必ずしも全ての構成要素を表示しておらず、説明に必要な要素のみを表示している。
即ち、この実施の形態では、水槽4の他側に隣接して取水槽21を構成している。取水槽21内には下部を連通した隔壁22を設けており、また取水槽21と水槽4との隔壁23には上部連通部24と下部連通部25とを構成している。
【0022】
まず図3は冬期の製氷状況を示すもので、下部連通部25にはキャップ26を装着している。このような状態において、散水部5から所定量の水を供給して、それを外気導入部2から導入される氷点下の外気により氷結させ、氷結後に再び散水部5から水を供給するという動作を繰り返し行うことにより、層状の氷17、例えば5〜10cm厚さの多層の氷を製氷することができる。
このような繰り返し動作は、上述した制御手法を用いたり、タイマーや温度センサ等を用いて自動化することができる。
【0023】
図4は、図3により水槽内に多層の氷を製氷した状態で保存し、冷房期において空調の冷熱源として利用する前の状態を示すものである。
即ち、冷熱源として利用する前には、下部連通部25のキャップ26を外した後、水位センサを用いた制御により給水部27から水を供給する。
給水部27から供給される水は次第に取水槽21に溜り、ついには隔壁23の上部連通部24から水槽4内に流入して氷17上に溜まり、水槽4と取水槽21とが上部連通部24を介して所定の連通状態となった時点で水位センサがONとなって給水を停止する。
【0024】
図5は、冷熱源として利用している状態を示すもので、符号13は上述したとおり空調機の熱交換器を示すもので、この熱交換器13は例えばAHUとすることができる。
図5において、取水槽21内の水は、熱源水循環系統9の還流経路により散水部6に還流されて、散水部6から水槽4の一側に散水される。一方、水槽4内に溜っている水、即、冷水18は上部連通部24を介して取水槽21内に流入し、こうして取水槽21から散水部6に至り、水槽4内から上部連通部24を経て取水槽21に還流する水、即ち熱源水の循環が行われる。
【0025】
一方、取水槽21内の冷水は、ポンプ15により熱源水循環系統14の往き経路を流れて熱交換器13に至り、そこで冷風の発生等の空調における熱源水としての利用に供された後、熱源水循環系統14の還流経路を流れて取水槽21に流入して熱源水の循環が行われる。以上の動作説明から分かるように、取水槽21は、図1の構成における熱源水槽8と同様な機能を有している。
【0026】
以上の運転により、氷17は、図中2点鎖線に示すように熱源水18と接している上部から次第に融解して行き、全て融解して水槽4内の水温が所定以上になった時点で熱源水としての利用を停止する。
【0027】
次いで、必要な場合には、図6に示すように、取水槽21の底部に設けた排水系統28のバルブ29を開として適宜の排水槽30に排水したり、熱源水循環系統9の還流経路から分岐した排水系統31のバルブ32を開として雨水槽等に排水する。
水槽4内の水は、下部連通部25の位置まで排水され、その位置をできるだけ低く設定することにより、水槽4内の水を殆ど排水することができる。
このような排水は省略することもできる。
【0028】
以上のようにして水槽4及び取水槽21内の排水が完了したら、次の冬期における製氷の準備として、下部連通部25にキャップ26を装着する。
【0029】
尚、以上の実施の形態において、製氷用水供給部5、散水部6及び給水部27は部材を共通化することができるものである。
【0030】
また以上の実施の形態の説明においては、キャップ26は製氷時に下部連通部25に装着しておき、冷熱源として利用する前に外して水を供給するようにしているが、これとは異なり、キャップ26は製氷の開始時に仮に下部連通部25に装着し、下部連通部25の位置の水が氷結した後には取り外しておくことも可能であり、この場合には、冷熱源として利用する際に取り外す手間が省かれる。
【0031】
次に図7は本発明の自然冷気を利用した蓄熱空調システムの第3の実施の形態を示すもので、この実施の形態では、概ね、第2の実施の形態に示すように、水槽4に隣接して取水槽21を設けたものを複数構成し、これらの散水部5と取水部6を接続して直列の熱源水循環系統を構成したものである。従って第2の実施の形態と同様な構成要素には同一の符号を付して重複する説明は省略する。
この実施の形態では、上流側の取水槽21には、下流側の取水槽21に設けられているような隔壁22は設けられておらず、この取水槽21から下流側の水槽4の一側にポンプ33を設けた熱源水中継経路34を構成している。一方、この上流側の水槽4の一側には、熱交換器13の熱源水循環系統14の還流経路が散水部5に接続されており、この散水部5からは下流側の取水槽21からの熱源水循環系統9の還流経路を経て熱源水と、熱交換器13を経た熱源水が上流側の水槽4内に散水される構成となっている。一方、下流側の取水槽21については第2の実施の形態と同様に、熱源水循環系統14の往き経路と還流経路及び熱源水循環系統9の還流経路が接続されている。
【0032】
以上の直列構成により、空調機の熱交換器13に供給する熱源水の温度を低くすることができる。
【0033】
また本発明の蓄熱空調システムの他の実施の形態として、図示は省略しているが、複数の水槽の散水部と取水部を夫々並列に接続して並列の熱源水循環系統を構成することもでき、この場合には、一つの熱源水循環系統当たりの蓄熱容量を大きくすることができる。
【0034】
本発明の蓄熱空調システムの更に他の実施の形態として、図示は省略しているが、複数の水槽を直並列に接続して一つの熱源水循環系統を構成することもできる。
【0035】
【発明の効果】
本発明は以上のとおり、断熱室内に設置した水槽は、製氷部と、空調用の冷熱の供給部を兼用する構成であるので、従来のものと比較して次のような効果がある。
a.氷から冷熱を回収するための冷媒管が不要であるので、構成が簡単となり、設置コストがかからない。
b.単位時間あたりの冷熱回収量を大きくすることができる。
c.冷媒管が不要であるから、これに関する伝熱性の維持や冷媒管の上側の氷の荷重を受けるための工夫等が不要となる。
【図面の簡単な説明】
【図1】本発明の蓄熱空調システムの全体構成の実施の形態を概念的に示す系統図である。
【図2】散水部及び取水部の構成の実施の形態を示す斜視図である。
【図3】本発明の蓄熱空調システムの全体構成の第2の実施の形態と、その動作の一局面を概念的に示す系統図である。
【図4】本発明の蓄熱空調システムの全体構成の第2の実施の形態と、その動作の他の局面を概念的に示す系統図である。
【図5】本発明の蓄熱空調システムの全体構成の第2の実施の形態と、その動作の更に他の局面を概念的に示す系統図である。
【図6】本発明の蓄熱空調システムの全体構成の第2の実施の形態と、その動作の更に他の局面を概念的に示す系統図である。
【図7】本発明の蓄熱空調システムの構成の第3の実施の形態を概念的に示す系統図である。
【符号の説明】
1 断熱室
2 外気導入部
3 排気部
4 水槽
5 製氷用水供給部
6 散水部
7 取水部
8 熱源水槽
9,14 熱源水循環系統
10,15 ポンプ
11 バルブ
12 空調機
13 熱交換器
16 ファン
17 氷
18 冷水
19 ヘッダー管
20 孔
21 取水槽
22,23 隔壁
24 上部連通部
25 下部連通部
26 キャップ
27 給水部
28,31 排水系統
29,32 バルブ
30 排水槽
33 ポンプ
34 熱源水中継経路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat storage air conditioning system using natural cold air.
[0002]
[Prior art]
Conventionally, a system for storing natural cold air in winter and using it as a cooling heat source for air conditioning in the cooling season has been proposed.
For example, Japanese Patent Laid-Open No. 2000-28240 constitutes a water tank in which a heat exchange refrigerant pipe is arranged at the bottom, and in winter, water is supplied into the water tank and layered by repeatedly supplying outside air below freezing point every day. Freeze the ice and store it until the cooling period. During the cooling period, the anti-freezing liquid containing ethylene glycol is circulated in the circulation path composed of the refrigerant pipe and the heat exchanger to collect the ice cold and use it as a cooling heat source. To do.
[0003]
[Problems to be solved by the invention]
In such a thing, since the cold heat | fever recovery of ice is performed by heat exchange with the refrigerant | coolant which flows through the refrigerant | coolant pipe | tube installed in the bottom part of the water tank, there exist the following subjects.
a. The configuration becomes complicated and the installation cost of the refrigerant pipe is increased.
b. Recovered cold energy per unit time is relatively small.
c. It is necessary to devise measures for maintaining heat transfer and receiving the load of ice on the upper side of the refrigerant pipe.
The present invention aims to solve such problems.
[0004]
[Means for Solving the Problems]
In order to solve the above-described problems, in the present invention, a heat insulation chamber provided with an outside air introduction portion and an exhaust portion for circulating outside air by rotating the fan, a water tank provided in the heat insulation chamber, An ice-making water supply unit provided at the upper part of the water tank, a watering part that is provided at the upper part of one side of the water tank and includes a laterally extending header pipe having a large number of holes , and provided on the other side of the water tank A water intake section comprising a laterally extending header pipe having a large number of holes, an air conditioning heat exchange section, an outside air temperature detecting section for detecting the outside air temperature, and a water level sensor for detecting the full water level of the water tank. If, comprising an outer air temperature-time integrating means for integrating an outside air temperature-time every predetermined time, constitute the heat source water circulation system leading to the nozzle unit through the air-conditioning heat exchanger from the water intake unit to the ice making Oite in winter, from the ice-making water supply unit After the ice making water into serial water tank and the water supply predetermined time watered predetermined amount, next time, when the outside temperature-time integrating means by integrating the outside air temperature-time set, the water tank from the ice-making water supply unit Ice making water is supplied for a predetermined time and supplied in a predetermined amount, and repeatedly clearing the accumulated value of the outside air temperature / time integrating means, and when the water level sensor detects the full water level, the ice making water into the water tank is While stopping the water supply, when the outside air temperature detecting unit detects the outside air temperature, the fan is driven to allow the outside air introduction unit and the exhaust unit to circulate outside air below the freezing point into the heat insulation chamber. In order to make ice in layers one after another, heat insulation is stored until the cooling period, and in the cooling period, heat source water is sprinkled on the ice in the water tank from the water sprinkling unit, and the ice is made uniform as a uniform unidirectional flow to the water tank In It is the solution, proposed a heat storage air conditioning system using natural cold air is configured to be utilized as a cold heat source for air conditioning by the air-conditioning heat-exchange portion of water is taken the heat source water circulation system from the intake portion.
[0005]
Moreover, in this invention, it proposes that it is set as the structure which comprises a water intake tank adjacent to the other side of a water tank in the said structure, takes the melted water through a water tank, and introduces it into a heat source water circulation system.
[0006]
And in this invention, in the above structure, the water sprinkling part and water intake part of a some water tank are connected, a serial heat source water circulation system is comprised, or the water spray part and water intake part of a some water tank are connected in parallel, respectively. It is proposed to construct a heat source water circulation system or to connect a watering part and a water intake part of a plurality of water tanks in series and parallel.
[0007]
As described above, according to the present invention, during the cooling period, the heat source water is sprinkled and melted from the sprinkler on the ice in the water tank, the water is taken from the water intake, and the air conditioning heat exchange unit of the heat source water circulation system cools the air conditioning heat. Because it is used as a source, there is no need for equipment such as a refrigerant tube for heat exchange with ice, and the recovery of cold from ice is performed directly with water sprinkled on ice, so the recovery of cold is efficient Can be done.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a system diagram conceptually showing an embodiment of the overall configuration of a heat storage air-conditioning system using natural cold air according to the present invention.
Reference numeral 1 denotes a heat insulation room installed in the basement or the like. The heat insulation room includes an outside air introduction part 2 and an exhaust part 3 so that the outside air can be circulated into the room. The exhaust section 3 can be closed by a heat insulating lid (not shown) or the like when not in use.
[0009]
A water tank 4 having an upper opening is installed in the heat insulating chamber 1, and an ice-making water supply unit 5 is configured in the water tank 4 at an appropriate position in the upper part. Moreover, the watering part 6 is comprised in the upper part of the one side of the water tank 4, and the water intake part 7 is comprised in the other side. In addition, the water sprinkling part 6 and the ice-making water supply part 5 can be used as a structure.
[0010]
Reference numeral 8 denotes a heat source water tank, which constitutes a heat source water circulation system 9 that reaches from the water intake section 7 to the heat source water tank 8 and returns from the heat source water tank 8 to the water spray section 6. The heat source water circulation system 9 can be provided with a pump 10, a valve 11 and the like at appropriate positions.
[0011]
Reference numeral 12 denotes an air conditioner, and 13 denotes a heat exchanger thereof, which constitutes a second heat source water circulation system 14 that reaches the heat exchanger 13 from the heat source water tank 8 and returns to the heat source water tank 8 from the heat exchanger 13. . The second heat source water circulation system 14 can also be provided with a pump 15, a valve and the like at appropriate positions.
[0012]
In the above configuration, in the winter, a predetermined amount of water is supplied to the water tank 4 from the ice-making water supply unit 5 and stored, and when the outside air becomes below freezing, air below the freezing point is supplied from the outside air introduction unit 2 to the inside of the heat insulating chamber 1. When the air in the heat insulation chamber 1 is exhausted from the exhaust portion 3, the outside air introduced into the heat insulation chamber 1 comes into direct contact with the water in the water tank through the opening. Accordingly, the water accumulated in the water tank is cooled by the outside air below freezing and freezes. The outside air can be efficiently introduced by operating the fan 16 provided in the outside air introduction unit 2 and the exhaust unit 3.
[0013]
At this time, the method of freezing the water in the water tank 4 with the outside air below freezing is a method as disclosed in the above-mentioned literature, for example, supplying water into the water tank and supplying outside air below freezing is repeated. Thus, a method of freezing in layers can be applied, and other appropriate methods can also be used.
[0014]
Further, in the above ice making, the circulation of the outside air to the heat insulating chamber 1 can be automatically performed by detecting the temperature of the outside air, and it is supplied by providing an icing sensor based on the temperature or electric resistance. After all the water is frozen, the next water supply can be automatically performed, and the control method is appropriate.
[0015]
Next, an example of a method for controlling the water supply and the fan 16 in the ice making will be described.
In this example, the fan 16 detects the outside air temperature during the ice making period, for example, from December to March, and performs the ON / OFF control, and the water supply to the water tank 4 is turned on by the integrated value of the outside air temperature and time. Perform OFF control.
For example, the fan 16 is controlled to be turned on when the outside air temperature is −2 ° C. or lower and turned off when the outdoor temperature is −1 ° C. or higher.
On the other hand, the water supply to the water tank 4, ON the water supply valve, i.e. water supply predetermined time by the timer as the open, ie with constant amount of feed water, OFF the water supply valve, i.e. it stops the water supply is closed, out of the far Clear the accumulated temperature / time value and start accumulating outside temperature / time . This outside temperature / time integration is performed, for example, every hour, and when the value exceeds a set value, the water supplied to the water tank 4 by the above-mentioned water supply is considered to be frozen, Similarly, the next water supply is performed. At this time, the set value can be derived and set with respect to the water supply amount by a prior experiment or the like. For example, if it takes 6 days at an external temperature of -5 ° C to freeze all the water supplied to the water tank 4 at a depth of 10 cm, the integrated value of the external temperature and time ,
-5 (℃) × 24 (hours) × 6 (day) = - 720 (℃ · time)
May be the lower limit of the set value.
In this way, layered ice is gradually formed in the water tank 4, and when the water tank 4 becomes full in the water supply, this is detected by a water level sensor or the like and the water supply valve is closed, The fan 16 is turned on to make the top layer of ice.
[0016]
When predetermined ice is formed in the water tank 4 as described above, the outside air introduction unit 2 and the exhaust unit 3 are closed and stored in an adiabatic state until the cooling period. Ice is indicated by reference numeral 17.
[0017]
In the cooling period, the heat source water circulation systems 9 and 14 are operated to use the cold heat of ice. That is, when city water or ground water is sprinkled on the ice 17 from the water sprinkling part 6 on one side in the water tank 4, the ice melts and mixes with the sprinkled water to form cold water. Water is taken and introduced into the heat source water tank 8 by the heat source water circulation system 9. On the other hand, the water in the heat source water tank 8 is recirculated by the heat source water circulation system 9 and sprinkled from the sprinkler 6 again to be used for melting the ice 17.
[0018]
Then, the water in the heat source water tank 8 whose temperature is lowered by being supplied with cold water from the water tank 4 by the heat source water circulation system 9 is supplied to the heat exchanger 13 of the air conditioner 12 by the second heat source water circulation system 14 and used as a cold heat source. The
[0019]
Thus, the recovery of cold heat from the ice 17 made in the water tank 4 in winter is performed by melting the water sprayed on the ice 17 and introducing the melted water into the heat source water tank 8. Recovery can be performed directly and efficiently. For this reason, a refrigerant pipe or the like for indirectly exchanging heat with ice is unnecessary.
[0020]
FIG. 2 shows an embodiment of the water sprinkling part 6 and the water intake part 7, and the water sprinkling part 6 and the water intake part 7 are configured by providing a large number of holes 20 in the header pipe 19 extending in the lateral direction. In the configuration, the water sprayed from the water sprinkling unit 6 and reaching the water intake unit 7 becomes a uniform unidirectional flow with respect to the water tank 4 and can melt the ice uniformly.
[0021]
Next, FIGS. 3 to 6 are system diagrams conceptually showing the second embodiment of the overall configuration of the heat storage air-conditioning system using natural cold air according to the present invention and its operation. In this embodiment, elements corresponding to those in FIG. 1 are assigned the same reference numerals, and redundant description is omitted. 3 to 6, for convenience of explanation, not all the constituent elements are necessarily displayed in each figure, and only elements necessary for the explanation are displayed.
That is, in this embodiment, the water intake tank 21 is configured adjacent to the other side of the water tank 4. A partition wall 22 communicating with the lower part is provided in the intake tank 21, and an upper communication part 24 and a lower communication part 25 are formed in the partition wall 23 between the intake tank 21 and the water tank 4.
[0022]
First, FIG. 3 shows the ice making situation in winter, and a cap 26 is attached to the lower communication portion 25. In such a state, an operation is performed in which a predetermined amount of water is supplied from the water sprinkling unit 5 and is frozen by the outside air below freezing point introduced from the outside air introduction unit 2, and water is supplied again from the watering unit 5 after freezing. By repeating the process, layered ice 17, for example, multi-layered ice having a thickness of 5 to 10 cm can be made.
Such a repetitive operation can be automated using the control method described above or using a timer, a temperature sensor, or the like.
[0023]
FIG. 4 shows a state before multilayer ice is stored in the water tank as shown in FIG. 3 and before it is used as a cooling heat source for air conditioning in the cooling period.
That is, before using as a cold heat source, after removing the cap 26 of the lower communication part 25, water is supplied from the water supply part 27 by control using a water level sensor.
The water supplied from the water supply unit 27 gradually accumulates in the water intake tank 21, finally flows into the water tank 4 from the upper communication part 24 of the partition wall 23 and accumulates on the ice 17, and the water tank 4 and the water intake tank 21 are connected to the upper communication part. When a predetermined communication state is reached via 24, the water level sensor is turned on to stop water supply.
[0024]
FIG. 5 shows a state where it is used as a cold heat source. Reference numeral 13 denotes a heat exchanger of an air conditioner as described above, and this heat exchanger 13 can be, for example, AHU.
In FIG. 5, the water in the water intake tank 21 is recirculated to the water sprinkling part 6 through the recirculation path of the heat source water circulation system 9 and sprinkled from the water sprinkling part 6 to one side of the water tank 4. On the other hand, the water, that is, the cold water 18 stored in the water tank 4 flows into the water intake tank 21 via the upper communication part 24 and thus reaches the water spraying part 6 from the water intake tank 21, and the upper communication part 24 from the water tank 4. Then, the water returning to the water intake tank 21, that is, the heat source water is circulated.
[0025]
On the other hand, the cold water in the intake tank 21 flows through the forward path of the heat source water circulation system 14 by the pump 15 to the heat exchanger 13 where it is used as heat source water in air conditioning such as the generation of cold air. The heat source water is circulated by flowing through the reflux path of the water circulation system 14 and flowing into the water intake tank 21. As can be seen from the above description of the operation, the water intake tank 21 has the same function as the heat source water tank 8 in the configuration of FIG.
[0026]
As a result of the above operation, the ice 17 gradually melts from the upper part in contact with the heat source water 18 as shown by a two-dot chain line in the figure, and when all the water is melted and the water temperature in the water tank 4 exceeds a predetermined value. Stop using as heat source water.
[0027]
Next, if necessary, as shown in FIG. 6, the valve 29 of the drainage system 28 provided at the bottom of the intake tank 21 is opened to drain to an appropriate drainage tank 30, or from the return path of the heat source water circulation system 9. The valve 32 of the branched drainage system 31 is opened to drain into a rainwater tank or the like.
The water in the water tank 4 is drained to the position of the lower communication part 25, and the water in the water tank 4 can be almost drained by setting the position as low as possible.
Such drainage can be omitted.
[0028]
When drainage in the water tank 4 and the water intake tank 21 is completed as described above, a cap 26 is attached to the lower communication portion 25 as preparation for ice making in the next winter season.
[0029]
In the above embodiment, the ice-making water supply unit 5, the water sprinkling unit 6 and the water supply unit 27 can share the same members.
[0030]
In the above description of the embodiment, the cap 26 is attached to the lower communication portion 25 during ice making, and is removed before being used as a cold heat source to supply water. The cap 26 is temporarily attached to the lower communication portion 25 at the start of ice making, and can be removed after the water at the position of the lower communication portion 25 freezes. In this case, when the cap 26 is used as a cooling heat source. The trouble of removing is saved.
[0031]
Next, FIG. 7 shows a third embodiment of a heat storage air conditioning system using natural cold air according to the present invention. In this embodiment, as shown in the second embodiment, the water tank 4 is generally A plurality of water tanks 21 provided adjacent to each other are configured, and the water sprinkling unit 5 and the water intake unit 6 are connected to form a series heat source water circulation system. Therefore, the same components as those in the second embodiment are denoted by the same reference numerals, and redundant description is omitted.
In this embodiment, the upstream intake tank 21 is not provided with a partition wall 22 as provided in the downstream intake tank 21, and one side of the downstream water tank 4 from the intake tank 21. The heat source water relay path 34 provided with the pump 33 is configured. On the other hand, a reflux path of the heat source water circulation system 14 of the heat exchanger 13 is connected to the watering part 5 on one side of the upstream water tank 4, and the watering part 5 from the downstream water intake tank 21 is connected to the water supply part 21. The heat source water and the heat source water that has passed through the heat exchanger 13 are sprayed into the upstream water tank 4 through the reflux path of the heat source water circulation system 9. On the other hand, the downstream intake water tank 21 is connected to the return path and the return path of the heat source water circulation system 14 and the return path of the heat source water circulation system 9 as in the second embodiment.
[0032]
With the above series configuration, the temperature of the heat source water supplied to the heat exchanger 13 of the air conditioner can be lowered.
[0033]
Further, as another embodiment of the heat storage air-conditioning system of the present invention, although not shown, it is also possible to configure a parallel heat source water circulation system by connecting the watering parts and water intake parts of a plurality of water tanks in parallel. In this case, the heat storage capacity per one heat source water circulation system can be increased.
[0034]
Although not shown in the drawings as yet another embodiment of the heat storage air conditioning system of the present invention, a single heat source water circulation system can be configured by connecting a plurality of water tanks in series and parallel.
[0035]
【The invention's effect】
As described above, the water tank installed in the heat-insulating chamber is configured to serve both as an ice making unit and a cooling air supply unit for air conditioning, and thus has the following effects as compared with the conventional one.
a. Since a refrigerant pipe for recovering cold heat from ice is not required, the configuration is simplified and installation costs are not incurred.
b. The amount of cold energy recovered per unit time can be increased.
c. Since the refrigerant pipe is unnecessary, it is not necessary to devise measures for maintaining the heat transfer and receiving the ice load on the upper side of the refrigerant pipe.
[Brief description of the drawings]
FIG. 1 is a system diagram conceptually showing an embodiment of the overall configuration of a heat storage air conditioning system of the present invention.
FIG. 2 is a perspective view showing an embodiment of a configuration of a watering part and a water intake part.
FIG. 3 is a system diagram conceptually showing a second embodiment of the overall configuration of the heat storage air conditioning system of the present invention and one aspect of its operation.
FIG. 4 is a system diagram conceptually showing a second embodiment of the overall configuration of the heat storage air conditioning system of the present invention and other aspects of its operation.
FIG. 5 is a system diagram conceptually showing a second embodiment of the overall configuration of the heat storage air conditioning system of the present invention and still another aspect of its operation.
FIG. 6 is a system diagram conceptually showing a second embodiment of the overall configuration of the heat storage air conditioning system of the present invention and still another aspect of the operation thereof.
FIG. 7 is a system diagram conceptually showing a third embodiment of the configuration of the heat storage air conditioning system of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heat insulation room 2 Outside air introduction part 3 Exhaust part 4 Water tank 5 Ice making water supply part 6 Sprinkling part 7 Water intake part 8 Heat source water tank 9, 14 Heat source water circulation system 10, 15 Pump 11 Valve 12 Air conditioner 13 Heat exchanger 16 Fan 17 Ice 18 Cold water 19 Header pipe 20 Hole 21 Water intake tank 22, 23 Bulkhead 24 Upper communication part 25 Lower communication part 26 Cap 27 Water supply part 28, 31 Drainage system 29, 32 Valve 30 Drainage tank 33 Pump 34 Heat source water relay path

Claims (4)

ファンを回転駆動することにより外気を室内に流通させるための外気導入部と排気部を備えた断熱室と、
該断熱室内に設けられた水槽と、
該水槽上部に設けられた製氷用水供給部、前記水槽の一側の上部に設けられて多数の孔が穿設された横方向に延びるヘッダー管からなる散水部、及び前記水槽の他側に設けられて多数の孔が穿設された横方向に延びるヘッダー管からなる取水部と、
空調用熱交換部と、
外気温を検出する外気温検出部と、
前記水槽の満水位を検知する水位センサーと、
所定時間毎に外気温・時間を積算する外気温・時間積算手段とを具備し、
前記取水部から前記空調用熱交換部を経て前記散水部に至る熱源水循環系統を構成し、
製氷する冬期において、前記製氷用水供給部から前記水槽内に製氷用水を所定時間給水して所定量給水した後、次回以降、前記外気温・時間積算手段が設定した外気温・時間を積算したとき、前記製氷用水供給部から前記水槽内に製氷用水を所定時間給水して所定量給水するとともに、前記外気温・時間積算手段の積算値をクリアすることを繰り返し、前記水位センサーが満水位を検知したとき、前記水槽内への製氷用水の給水を停止する一方、前記外気温検出部が設定した外気温を検出したとき、前記ファンを駆動して前記外気導入部と前記排気部により前記断熱室内に氷点下の外気を流通させることにより前記水槽内に順次層状に製氷して、冷房期まで断熱保存し、
冷房期において、前記水槽内の氷上に前記散水部から熱源水を散水して、水槽に対して均一な一方向流として氷を均一に融解させ、前記取水部から取水して前記熱源水循環系統の空調用熱交換部により空調用冷熱源として利用する構成としたことを特徴とする自然冷気を利用した蓄熱空調システム
A heat insulating chamber having an outside air introduction part and an exhaust part for circulating outside air by rotating the fan ;
A water tank provided in the heat insulation chamber;
An ice-making water supply unit provided in the upper part of the water tank, a watering part provided in an upper part on one side of the water tank and including a laterally extending header pipe having a plurality of holes , and provided on the other side of the water tank A water intake section consisting of a laterally extending header pipe with a large number of holes drilled;
A heat exchanger for air conditioning;
An outside air temperature detector for detecting outside air temperature,
A water level sensor for detecting the full water level of the tank,
And an outside air temperature / time integrating means for integrating outside air temperature / time every predetermined time,
Through the air-conditioning heat exchanger from the intake section constitutes a heat source water circulation system leading to the nozzle unit,
Oite winter to ice, after the ice water water supply to a predetermined time from the ice-making water supply unit to the water tank and the water supply a predetermined amount, the next time, integrating the outside air temperature-time during which the outside temperature and time integrating means is set The ice level water supply unit supplies water to the water tank for a predetermined time to supply a predetermined amount of water, and repeats clearing the integrated value of the outside air temperature / time integrating means, so that the water level sensor is at the full water level. When the outside air temperature detecting unit detects the outside air temperature set by the outside air temperature detecting unit, the fan is driven and the outside air introducing unit and the exhaust unit are used to stop the supply of ice-making water into the water tank. By circulating outside air below the freezing point in the heat insulation room, ice is made in layers in the water tank in order, and is insulated and stored until the cooling period,
In the cooling phase, by sprinkling a heat source water from the nozzle unit to ice of the water tank, the ice uniformly melted as uniform unidirectional flow with respect to the water tank, the heat source water circulation system and intake from the intake portion A heat storage air-conditioning system using natural cold air, characterized in that the air-conditioning heat exchange unit is used as a cooling air source for air conditioning .
前記水槽の他側に隣接して取水槽を構成し、融解した水を取水槽を介して取水して前記熱源水循環系統に導入する構成としたことを特徴とする請求項1に記載の自然冷気を利用した蓄熱空調システム Natural cool air according to claim 1, wherein adjacent to the other side constitute the aquarium intake and the water tank, and water intake through a water bath preparative molten water characterized by being configured to be introduced into the heat source water circulation system thermal storage air conditioning system using. 複数の前記水槽の前記散水部と前記取水部を直列に接続して直列の熱源水循環系統を構成したことを特徴とする請求項1又は2に記載の自然冷気を利用した蓄熱空調システム Heat storage air conditioning system using natural cold air according to claim 1 or 2, characterized in that to constitute a series of heat source water circulation system by connecting the water intake portion and the nozzle unit of the plurality of the water tank in series. 複数の前記水槽の前記散水部と前記取水部を夫々並列に接続して並列の熱源水循環系統を構成したことを特徴とする請求項1〜3までのいずれか1項に記載の自然冷気を利用した蓄熱空調システム。Utilizing natural cool air according to any one of up to claims 1 to 3, characterized in that the intake unit and the nozzle unit of the plurality of the water tank up parallel heat source water circulation system connected in parallel respectively to Heat storage air conditioning system.
JP2001028233A 2001-02-05 2001-02-05 Thermal storage air conditioning system using natural cold air Expired - Fee Related JP3611199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001028233A JP3611199B2 (en) 2001-02-05 2001-02-05 Thermal storage air conditioning system using natural cold air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001028233A JP3611199B2 (en) 2001-02-05 2001-02-05 Thermal storage air conditioning system using natural cold air

Publications (2)

Publication Number Publication Date
JP2002228207A JP2002228207A (en) 2002-08-14
JP3611199B2 true JP3611199B2 (en) 2005-01-19

Family

ID=18892771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001028233A Expired - Fee Related JP3611199B2 (en) 2001-02-05 2001-02-05 Thermal storage air conditioning system using natural cold air

Country Status (1)

Country Link
JP (1) JP3611199B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5411541B2 (en) * 2009-03-18 2014-02-12 株式会社ドーコン Temperature difference power generation system using ice layer
KR101075097B1 (en) * 2009-06-12 2011-10-21 부경대학교 산학협력단 Apparatus and method for in-water-production and keeping of ice in reservoir
JP2012041832A (en) * 2010-08-17 2012-03-01 Docon Co Ltd Temperature difference power generation system
KR20140003695A (en) * 2012-06-22 2014-01-10 한국에너지기술연구원 An air-conditioning system based on seasonal cooling power storage
JP6202730B2 (en) * 2013-07-18 2017-09-27 新日本空調株式会社 Snow and ice cold heat source system and cooling system using this as a cold heat source
JP7370656B1 (en) 2023-06-01 2023-10-30 株式会社シェルタージャパン Shelter indoor cooling system

Also Published As

Publication number Publication date
JP2002228207A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
CN102401428B (en) Air conditioner
CN103765111A (en) Air conditioner and refrigeration cycle device
JP3611199B2 (en) Thermal storage air conditioning system using natural cold air
US20200166291A1 (en) Latent heat storage system having a latent heat storage device and method for operating a latent heat storage system
US4187690A (en) Ice-maker heat pump
US3077084A (en) Heat pump having drain pan heating means
JP3042179B2 (en) Ice storage device
JP2011247548A (en) Snow air conditioning system
CN104620055B (en) Utilize the heater of solar panels heating liquid
KR101260198B1 (en) Using the latent heat of refrigerant defrost air heat boiler
CN219494904U (en) Cooling tower and nuclear power station
JP2001317845A (en) Method and apparatus for utilizing cold heat of natural ice
JPS6078237A (en) Air conditioning system combined iced cold heat accumulating type cooling with hot water heating
CN2305594Y (en) Calandria cold storage air conditioner cold water device capable of deicing
CN203642584U (en) Unit cooler and cooling device
CN216132002U (en) Spraying system for outdoor heat exchanger and air conditioner
CN217483323U (en) Heat exchanger for thermal storage system and thermal storage system
JP3365371B2 (en) Ice storage device
JPS6229866Y2 (en)
KR100371682B1 (en) Cooling & Heating System of Hybrid Thermal Storage Using Midnight Electricity
JP3464267B2 (en) Gas turbine intake cooling system
JPH10311653A (en) Low temperature storehouse
JPH07293949A (en) Cooler
KR200222684Y1 (en) Thawing Device for Ice Storage
JP3788391B2 (en) Ice heat storage device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040708

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041014

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees