JP6202333B2 - Rotational viscometer - Google Patents

Rotational viscometer Download PDF

Info

Publication number
JP6202333B2
JP6202333B2 JP2014055240A JP2014055240A JP6202333B2 JP 6202333 B2 JP6202333 B2 JP 6202333B2 JP 2014055240 A JP2014055240 A JP 2014055240A JP 2014055240 A JP2014055240 A JP 2014055240A JP 6202333 B2 JP6202333 B2 JP 6202333B2
Authority
JP
Japan
Prior art keywords
inner cylinder
cylinder
shaft
outer cylinder
guard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014055240A
Other languages
Japanese (ja)
Other versions
JP2015175841A (en
Inventor
健司 菜嶋
健司 菜嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014055240A priority Critical patent/JP6202333B2/en
Publication of JP2015175841A publication Critical patent/JP2015175841A/en
Application granted granted Critical
Publication of JP6202333B2 publication Critical patent/JP6202333B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、回転粘度計に関するものであって、特に、外筒回転方式の共軸二重円筒型回転粘度計に関する。   The present invention relates to a rotational viscometer, and more particularly to an outer cylinder rotating type coaxial double cylindrical rotational viscometer.

回転粘度計は試料と接する部分の形状によって、大きく円錐−平板型と共軸二重円筒型に分かれる。両者ともずり速度と呼ばれる、試料の流動(変形)する速度が試料の場所に依らない測定状態を作ることが出来るので、粘度のずり速度依存性のある試料の測定に利用されている。
また、回転粘度計は試料部に回転を伝え、応答トルクを測定する、或いは、トルクを伝えて回転させ、その回転速度を測定する機能を有している。試料部は、温度制御する必要があるため、これを回転軸により離れた位置に取り出して操作、或いは、測定するものであった。
回転粘度計として広く用いられている共軸二重円筒型回転粘度計(特許文献1、2等参照)は、中心軸が一致する外筒と内筒の間に試料が保持され、多くの測定装置は、そのどちらか一方が回転し、内筒側でトルクを測定、或いは、発生する構成となっており、測定の理論は、無限に長い二重円筒に基づいているが、現実的では無いので、実際は、端面による影響を評価して補正している。
The rotational viscometer is roughly divided into a cone-plate type and a coaxial double cylindrical type depending on the shape of the portion in contact with the sample. Both of them can be used for measurement of a sample whose shear rate is dependent on the shear rate because the sample flow rate (deformation) can be measured regardless of the location of the sample.
Further, the rotational viscometer has a function of transmitting rotation to the sample portion and measuring response torque, or transmitting torque and rotating it and measuring the rotation speed. Since it is necessary to control the temperature of the sample portion, the sample portion is taken out to a position separated by a rotating shaft and is operated or measured.
A coaxial double-cylinder rotational viscometer widely used as a rotational viscometer (see Patent Documents 1 and 2, etc.) holds a sample between an outer cylinder and an inner cylinder whose central axes coincide with each other, and performs many measurements. The device is configured so that either one of them rotates and torque is measured or generated on the inner cylinder side. The theory of measurement is based on an infinitely long double cylinder, but it is not realistic. Therefore, in practice, the influence of the end face is evaluated and corrected.

特開2005−49214号公報JP 2005-49214 A 特開2009−63505号公報JP 2009-63505 A

共軸二重円筒型回転粘度計は、端面による影響の補正が必要であり、特に粘度のずり速度依存性の大きな試料の測定において、端面補正量の変動が問題となる。端面補正については従来から種々提案されており、本出願人等も内筒下面での補正量について先に特許文献2を提案している。しかしながら、内筒上面での端面補正量については、正確な補正量を求めることが困難であった。
また、共軸二重円筒型回転粘度計は、試料部の温度を制御するため、外筒を液体恒温槽に入れて温度制御することが行われてきた。しかしながら、内筒上部の内筒軸を伝わって熱伝達が発生するので、試料の温度制御を高精度にするのに限界があった。
また、共軸二重円筒型回転粘度計は、軸の保持位置が測定部である内筒の位置と離れており、片持ち支持の構成となるので、内筒を交換する等の操作時に、軸受けを損傷する危険性を持っている。
そこで、本発明の課題は、上記3つの問題点を解決した外筒回転方式の共軸二重円筒型回転粘度計を提供することにある。
The coaxial double cylinder type rotational viscometer needs to correct the influence of the end face, and the fluctuation of the end face correction amount becomes a problem particularly in the measurement of a sample whose viscosity is highly dependent on the shear rate. Various end face corrections have been proposed in the past, and the present applicants have previously proposed Patent Document 2 regarding the correction amount on the lower surface of the inner cylinder. However, it has been difficult to obtain an accurate correction amount for the end face correction amount on the upper surface of the inner cylinder.
Moreover, in order to control the temperature of the sample part, the coaxial double cylindrical rotational viscometer has been controlled by putting the outer cylinder in a liquid thermostat. However, since heat transfer occurs along the inner cylinder shaft at the upper part of the inner cylinder, there is a limit to making the temperature control of the sample highly accurate.
In addition, the coaxial double cylinder type rotational viscometer is separated from the position of the inner cylinder that is the measurement unit of the shaft holding position, and is configured to be cantilevered, so during an operation such as replacing the inner cylinder, There is a risk of damaging the bearing.
Therefore, an object of the present invention is to provide an outer cylinder rotation type coaxial double cylindrical rotational viscometer that solves the above three problems.

上記の課題を解決するために、本発明は、外筒回転方式の共軸二重円筒型回転粘度計において、内筒軸の外側に固定ガード軸を設置し、この固定ガード軸に複数の機能を持たせ、同時に、或いは、必要に応じて選択された機能を固定ガード軸に持たせることにより、上記の3つの課題を解決するものである。   In order to solve the above-described problems, the present invention provides an outer cylinder rotation type coaxial double cylinder type rotational viscometer, in which a fixed guard shaft is installed outside the inner cylinder shaft, and a plurality of functions are provided on the fixed guard shaft. At the same time, or by providing the fixed guard shaft with a function selected as necessary, the above three problems are solved.

すなわち、本発明は、同一中心軸をもつ外筒及び内筒と、外筒を回転駆動させる回転機構と、内筒上部に固定され軸受けで回転軸支された内筒軸と、内筒軸に設けたトルク検出機構を備え、前記外筒を回転させることにより外筒と内筒の間に満たされた試料流体を層流状態で回転流動させ、内筒に作用するトルクを前記トルク検出機構で検出し粘度を測定する外筒回転方式の共軸二重円筒型回転粘度計であって、前記内筒軸の外側を囲む固定ガード軸を設け、当該固定ガード軸に、前記内筒軸の横方向の過大な変位を抑える内筒軸ガードを設けたことを特徴とする。
また、本発明は、同一中心軸をもつ外筒及び内筒と、外筒を回転駆動させる回転機構と、内筒上部に固定され軸受けで回転軸支された内筒軸と、内筒軸に設けたトルク検出機構を備え、前記外筒を回転させることにより外筒と内筒の間に満たされた試料流体を層流状態で回転流動させ、内筒に作用するトルクを前記トルク検出機構で検出し粘度を測定する外筒回転方式の共軸二重円筒型回転粘度計であって、前記内筒軸の外側を囲む固定ガード軸を設け、当該固定ガード軸に、前記内筒と同じ半径の内筒上面ガード円筒を僅かな隙間を挟んで内筒周面を上に延長する位置に設けたことを特徴とする。
また、本発明は、同一中心軸をもつ外筒及び内筒と、外筒を回転駆動させる回転機構と、内筒上部に固定され軸受けで回転軸支された内筒軸と、内筒軸に設けたトルク検出機構を備え、前記外筒を回転させることにより外筒と内筒の間に満たされた試料流体を層流状態で回転流動させ、内筒に作用するトルクを前記トルク検出機構で検出し粘度を測定する外筒回転方式の共軸二重円筒型回転粘度計であって、前記外筒を入れ前記試料流体の温度を所定温度に保持する恒温槽を備え、前記内筒軸の外側を囲む固定ガード軸を設け、当該固定ガード軸に、温度調節部材を設けたことを特徴とする。
また、本発明は、同一中心軸をもつ外筒及び内筒と、外筒を回転駆動させる回転機構と、内筒上部に固定され軸受けで回転軸支された内筒軸と、内筒軸に設けたトルク検出機構を備え、前記外筒を回転させることにより外筒と内筒の間に満たされた試料流体を層流状態で回転流動させ、内筒に作用するトルクを前記トルク検出機構で検出し粘度を測定する外筒回転方式の共軸二重円筒型回転粘度計であって、前記外筒を入れ前記試料流体の温度を所定温度に保持する恒温槽を備え、前記内筒軸の外側を囲む固定ガード軸を設け、当該固定ガード軸に、温度調節部材を固設し、さらに、当該固定ガード軸に、前記内筒と同じ半径の内筒上面ガード円筒を僅かな隙間を挟んで内筒周面を上に延長する位置に設けたことを特徴とする。
また、本発明は、上記外筒回転方式の共軸二重円筒型回転粘度計において、前記固定ガード軸に、前記内筒軸の横方向の過大な変位を抑える内筒軸ガードを設けたことを特徴とする。
That is, the present invention relates to an outer cylinder and an inner cylinder having the same central axis, a rotation mechanism for rotating the outer cylinder, an inner cylinder shaft fixed to the upper part of the inner cylinder and supported by a bearing, and an inner cylinder shaft. A torque detection mechanism provided, and rotating the outer cylinder causes the sample fluid filled between the outer cylinder and the inner cylinder to rotate and flow in a laminar flow state, and the torque acting on the inner cylinder is caused by the torque detection mechanism. An outer cylinder rotation type coaxial double cylinder type rotational viscometer for detecting and measuring viscosity, provided with a fixed guard shaft surrounding the outer side of the inner cylinder shaft, An inner cylinder shaft guard that suppresses excessive displacement in the direction is provided.
Further, the present invention provides an outer cylinder and an inner cylinder having the same central axis, a rotation mechanism for rotating the outer cylinder, an inner cylinder shaft fixed to the upper part of the inner cylinder and supported by a bearing, and an inner cylinder shaft. A torque detection mechanism provided, and rotating the outer cylinder causes the sample fluid filled between the outer cylinder and the inner cylinder to rotate and flow in a laminar flow state, and the torque acting on the inner cylinder is caused by the torque detection mechanism. An outer cylinder rotation type coaxial double cylinder type rotational viscometer for detecting and measuring the viscosity, provided with a fixed guard shaft surrounding the outer side of the inner cylinder shaft, the fixed guard shaft having the same radius as the inner cylinder The inner cylinder upper surface guard cylinder is provided at a position where the inner cylinder peripheral surface extends upward with a slight gap therebetween.
Further, the present invention provides an outer cylinder and an inner cylinder having the same central axis, a rotation mechanism for rotating the outer cylinder, an inner cylinder shaft fixed to the upper part of the inner cylinder and supported by a bearing, and an inner cylinder shaft. A torque detection mechanism provided, and rotating the outer cylinder causes the sample fluid filled between the outer cylinder and the inner cylinder to rotate and flow in a laminar flow state, and the torque acting on the inner cylinder is caused by the torque detection mechanism. An outer cylinder rotation type coaxial double cylinder type rotational viscometer for detecting and measuring the viscosity, comprising a thermostatic bath for holding the outer cylinder and holding the temperature of the sample fluid at a predetermined temperature. A fixed guard shaft surrounding the outside is provided, and a temperature adjusting member is provided on the fixed guard shaft.
Further, the present invention provides an outer cylinder and an inner cylinder having the same central axis, a rotation mechanism for rotating the outer cylinder, an inner cylinder shaft fixed to the upper part of the inner cylinder and supported by a bearing, and an inner cylinder shaft. A torque detection mechanism provided, and rotating the outer cylinder causes the sample fluid filled between the outer cylinder and the inner cylinder to rotate and flow in a laminar flow state, and the torque acting on the inner cylinder is caused by the torque detection mechanism. An outer cylinder rotation type coaxial double cylinder type rotational viscometer for detecting and measuring the viscosity, comprising a thermostatic bath for holding the outer cylinder and holding the temperature of the sample fluid at a predetermined temperature. A fixed guard shaft is provided to surround the outside, a temperature adjusting member is fixed to the fixed guard shaft, and an inner cylinder upper surface guard cylinder having the same radius as the inner cylinder is sandwiched between the fixed guard shaft with a slight gap. The inner cylinder peripheral surface is provided at a position extending upward.
Further, the present invention provides the outer cylinder rotation type coaxial double cylindrical rotational viscometer, wherein the fixed guard shaft is provided with an inner cylinder shaft guard that suppresses excessive lateral displacement of the inner cylinder shaft. It is characterized by.

本発明の固定ガード軸に設けた内筒軸ガードによれば、内筒軸に過大な力が掛かって変位したとしても軸受けが損壊しない変位に抑えられる様、狭い内筒軸との間隔で設計されているので、内筒軸が大きく偏芯しようとした時に内筒軸ガードに当たり、それ以上の偏芯が起こらなくなり、軸受けの損傷を防ぐことができる。
本発明の固定ガード軸に設けた内筒上面ガード円筒によれば、内筒の上面に関しては、端面補正を不要とすることができる。
本発明の固定ガード軸に設けた温度調節部材によれば、固定ガード軸の温度を恒温槽、或いは、内筒の温度と同じになるように制御してやれば、外筒上部、或いは、内筒と温度勾配が無くなり、結果として試料温度の制御性が良くなる。
また、本発明の内筒軸ガード、内筒上面ガード円筒、温度調節部材は、単独でも、2つ以上同時でも固定軸ガードに設けることができる。
According to the inner cylinder shaft guard provided on the fixed guard shaft of the present invention, the inner cylinder shaft is designed at a distance from the narrow inner cylinder shaft so that even if the inner cylinder shaft is displaced due to excessive force, the bearing is prevented from being damaged. Therefore, when the inner cylinder shaft is about to be largely decentered, it strikes the inner cylinder shaft guard, and no further eccentricity occurs, and damage to the bearing can be prevented.
According to the inner cylinder upper surface guard cylinder provided on the fixed guard shaft of the present invention, end face correction can be made unnecessary for the upper surface of the inner cylinder.
According to the temperature adjusting member provided on the fixed guard shaft of the present invention, if the temperature of the fixed guard shaft is controlled to be the same as the temperature of the thermostatic bath or the inner cylinder, the upper part of the outer cylinder or the inner cylinder The temperature gradient is eliminated, and as a result, the controllability of the sample temperature is improved.
Further, the inner cylinder shaft guard, the inner cylinder upper surface guard cylinder, and the temperature adjusting member of the present invention can be provided on the fixed shaft guard alone or in combination of two or more.

図1は、本発明の外筒回転方式の共軸二重円筒型回転粘度計の一実施例を示したものである。FIG. 1 shows an embodiment of a coaxial double cylindrical rotational viscometer of the outer cylinder rotation type of the present invention. 図2は、本発明の内筒上面ガード円筒を説明するための図であり、左図が従来の外筒回転方式の共軸二重円筒型回転粘度計(固定ガード軸・内筒上面ガード円筒無し)の場合、右図が本発明の固定ガード軸・内筒上面ガード円筒を有する外筒回転方式の共軸二重円筒型回転粘度計の場合を示したものである。FIG. 2 is a diagram for explaining the inner cylinder upper surface guard cylinder of the present invention, and the left figure shows a conventional outer cylinder rotation type coaxial double cylindrical rotational viscometer (fixed guard shaft / inner cylinder upper surface guard cylinder). In the case of (No), the right figure shows the case of a coaxial double cylinder type rotational viscometer of the outer cylinder rotation type having the fixed guard shaft and inner cylinder upper surface guard cylinder of the present invention.

本発明の固定ガード軸は、内筒を上部から支持するための軸部分(内筒軸)の周囲を囲む状態に配置される中空の軸である。本考案では外筒回転方式の共軸二重円筒型回転粘度計を想定しており、内筒と内筒軸はトルク測定のために不必要なトルクが作用しないように懸架されている。内筒のトルク測定感度を高めるために、内筒と内筒軸は繊細な軸受けを必要とし、比較的壊れやすい構造の構成となっている。これに対し、固定ガード軸は、直接内筒及び内筒軸に接しておらず、剛性の高い構造体である。剛性の高い構造体を内筒軸の外に配置することで下記3種類の機能を持たせることができる。
(1)外筒回転方式の共軸二重円筒型回転粘度計の原理は、無限に長い二重円筒を規定しているが、長い円筒の一部を測定部の円筒とし、両端を非常に小さい間隔で力学的に隔てられた状態で、幾何学的に一つの円筒となるような構成とすれば、測定部分の円筒は、共軸二重円筒型回転粘度計の原理を満たす状態にでき、端面補正が不要になる。本発明では、固定ガード軸を内筒と一致する半径と軸心をもつ円筒とし、内筒に充分接近させれば、内筒の上面に関しては、測定原理を満たし、端面補正を不要とすることができる。
(2)外筒回転方式の共軸二重円筒型回転粘度計は外筒を液体恒温槽に入れることができるので、円錐平板型回転粘度計に比べて温度制御性能が優れている。しかし、内筒上部を細くすることはできないため、室温と恒温槽の温度に差がある場合は、外筒上部と内筒軸からの熱伝達により、内筒と試料の間に温度差ができてしまう。これに対し、本発明の固定ガード軸は、内筒軸を包む構造であり、外筒の上部に位置するので、固定ガード軸の温度を恒温槽、或いは、内筒の温度と同じになるように制御してやれば、外筒上部、或いは、内筒と温度勾配が無くなり、結果として試料温度の制御性が良くなる。
(3)内筒軸に横方向の力が加わった時、繊細な軸受けで支えられている内筒軸は軸受けの変形により、軸心から偏芯してゆく。偏芯が許容範囲を超えると、軸受けの損傷を引き起こしてしまう。これに対し、固定ガード軸を内筒軸に対し充分間隔が小さい状態に配置して設けておけば、内筒軸が偏芯した時に内筒軸ガードに当たり、それ以上の偏芯が起こらなくなり軸受けの損傷を防ぐことができる。
上記3つの機能は個別に達成できるが、いずれか2つの機能または3つ全ての機能を同時に1つの固定ガード軸に組み込むこともできる。
The fixed guard shaft of the present invention is a hollow shaft that is disposed in a state of surrounding the periphery of a shaft portion (inner tube shaft) for supporting the inner tube from above. The present invention assumes an outer cylinder rotation type coaxial double cylinder type rotational viscometer, and the inner cylinder and the inner cylinder shaft are suspended so that unnecessary torque does not act for torque measurement. In order to increase the torque measurement sensitivity of the inner cylinder, the inner cylinder and the inner cylinder shaft require delicate bearings and have a structure that is relatively fragile. On the other hand, the fixed guard shaft is not in direct contact with the inner cylinder and the inner cylinder shaft, and is a highly rigid structure. By disposing a highly rigid structure outside the inner cylinder shaft, the following three functions can be provided.
(1) The principle of the outer cylinder rotation type coaxial double cylinder type rotational viscometer prescribes an infinitely long double cylinder, but a part of the long cylinder is used as the cylinder of the measurement part, and both ends are very If the structure is such that it is mechanically separated at small intervals and geometrically forms one cylinder, the cylinder of the measurement part can satisfy the principle of a coaxial double-cylinder rotational viscometer. , End face correction becomes unnecessary. In the present invention, if the fixed guard shaft is a cylinder having a radius and an axial center coinciding with the inner cylinder, and sufficiently close to the inner cylinder, the measurement principle for the upper surface of the inner cylinder is satisfied, and end face correction is not required. Can do.
(2) Since the outer cylinder rotation type coaxial double cylinder type rotational viscometer can put the outer cylinder in a liquid thermostat, the temperature control performance is superior to the conical plate type rotational viscometer. However, since the upper part of the inner cylinder cannot be made thinner, if there is a difference between the room temperature and the temperature of the thermostatic chamber, there is a temperature difference between the inner cylinder and the sample due to heat transfer from the upper part of the outer cylinder and the inner cylinder shaft. End up. On the other hand, the fixed guard shaft of the present invention has a structure that encloses the inner cylinder shaft, and is located at the upper part of the outer cylinder, so that the temperature of the fixed guard shaft is the same as the temperature of the thermostatic bath or the inner cylinder. If this is controlled, the temperature gradient between the upper part of the outer cylinder or the inner cylinder is eliminated, and as a result, the controllability of the sample temperature is improved.
(3) When a lateral force is applied to the inner cylinder shaft, the inner cylinder shaft supported by the delicate bearing is eccentric from the shaft center due to deformation of the bearing. If the eccentricity exceeds the allowable range, the bearing may be damaged. On the other hand, if the fixed guard shaft is arranged with a sufficiently small distance from the inner cylinder shaft, it will hit the inner cylinder shaft guard when the inner cylinder shaft is eccentric and no further eccentricity will occur. Can prevent damage.
The above three functions can be achieved individually, but any two functions or all three functions can be simultaneously incorporated into one fixed guard shaft.

図1は、本発明の固定ガード軸を備えた外筒回転方式の共軸二重円筒型回転粘度計の一実施例を示したものであり、図示のものは上記3つの全ての機能を1つの固定ガード軸に組み込んだ例である。
図1に示す様に、昇降装置(i)の上に載置された恒温槽(d)に二重円筒を入れ、二重円筒の外筒(j)とその中で共軸に保持される内筒(c)との間に測定試料が入り、内筒(c)は内筒軸の下端に固定されており、トルクを検出するトルク検出機構(a,e,f)を内筒軸側に有し、外筒(j)を回転させる回転機構(g,h)をもつ構成となっている。内筒側は、トルクを検出するために、エアベアリングなどの回転の抵抗が小さい軸受け(b)によって支えられている。なお、図示の例では、外筒の回転により試料が層流状態で回転流動し試料の粘性に応じたトルクが内筒に作用しこのトルクを検出する検出機構としては、内筒軸の上部に設けた回転位置検出器(e)で基準位置からの回転変位量を検出し、制御手段(f)が常に基準位置に戻るようにトルク付与手段(a)に流す電流量を制御することによりトルクを検出する検出機構を用いたが、トルクが検出できるものであればどのような検出機構でもよく、また、外筒(j)の回転機構としては、モータ(g)と歯車伝達機構(h)を用いたがこれに限定されるものではない。
FIG. 1 shows an embodiment of a coaxial double-cylinder rotational viscometer of the outer cylinder rotation type having a fixed guard shaft according to the present invention. This is an example of incorporation into two fixed guard shafts.
As shown in FIG. 1, a double cylinder is placed in a thermostatic chamber (d) placed on the lifting device (i), and is held coaxially with the double cylinder outer cylinder (j). A measurement sample enters between the inner cylinder (c), the inner cylinder (c) is fixed to the lower end of the inner cylinder shaft, and a torque detection mechanism (a, e, f) for detecting torque is provided on the inner cylinder shaft side. And has a rotation mechanism (g, h) for rotating the outer cylinder (j). The inner cylinder side is supported by a bearing (b) having a small rotational resistance, such as an air bearing, in order to detect torque. In the example shown in the figure, the detection mechanism for detecting the torque by rotating the outer cylinder in a laminar flow and the torque corresponding to the viscosity of the sample acting on the inner cylinder is detected at the upper part of the inner cylinder shaft. Torque is detected by detecting the amount of rotational displacement from the reference position with the provided rotational position detector (e) and controlling the amount of current flowing through the torque applying means (a) so that the control means (f) always returns to the reference position. However, any detection mechanism may be used as long as the torque can be detected. As a rotation mechanism of the outer cylinder (j), a motor (g) and a gear transmission mechanism (h) However, the present invention is not limited to this.

次に、本発明の特徴である上記3つの機能を備える点について以下に説明する。
本実施例では、まず、トルク測定を高感度にするために軸受け(b)は壊れやすい物が多いことに鑑み、強固なベース板(q)に直接固定できる固定ガード軸(k)を設置すれば、内筒軸の限界を超える変位を抑える内筒軸ガード(m)を設置できる。図1に示すように、固定ガード軸(k)に取り付けられた内筒軸ガード(m)は、内筒軸に力が掛かって変位したとしても軸受けが損壊しない変位に抑えられる様、狭い内筒軸との間隔で設計されている。
本実施例では、これに加え、内筒(c)と同じ半径の内筒上面ガード円筒(n)を僅かな隙間を挟んで内筒(c)の周面を上側に延長する様に固定軸ガード(k)に設置すると、内筒上面の流体の流れを無くすことができ、内筒上面に関しては、共軸二重円筒の原理に則った流れを実現できる。これにより、共軸二重円筒の長所である試料の量を厳密にしなくても精度良く測定できるという特徴を損ねること無く、測定試料のずり速度がより厳密に定まるという円錐平板型の長所に近づけることができる(すなわち、試料の量の違いにより試料液面が変動しても内筒上面に働こうとする試料流体の流動によるトルクは、内筒上面ガード円筒(n)により遮断できるので試料液面が上下したとしても内筒上面への影響が及ばない)。尚、内筒下端部の非理想性に関しては、例えば、上記特許文献2記載の円錐形状を導入して外筒との間隔を半径に比例する形状とする、或いは、図1の如く、内外筒共半球面形状とすることで、係る非理想性の影響を緩和することが可能である。
本実施例では、さらに、内筒上面部の適当な場所にヒータやペルチェ素子のような発熱・吸熱作用を持つ温度調節部材(o)を設置し、その場所の温度を制御すると、内筒軸のこの部材の位置から内筒上面までの温度勾配を小さくでき、内筒の温度制御性能を高めることができる。なお、図1の熱交換器(p)は、温度調節部材(o)がペルチェ素子の場合に、外部に熱を逃がす必要性により設置される。熱交換器(p)と温度調節部材(o)は、ヒートパイプ等で熱伝達される。さらに、追加するならば、この様にヒートパイプ等を用いて外部と熱交換する仕組みが導入されると、内筒軸の上部は外部の、即ち、装置の環境温度に近くなる。このことにより、内筒軸の熱膨張の影響、或いは、装置内部への測定部の熱の影響が軽減できる。この仕組みも、固定ガード軸(k)を備えることで可能になる。
Next, the point provided with the above-mentioned three functions that are the features of the present invention will be described below.
In this embodiment, first, in order to make torque measurement highly sensitive, in view of the fact that many bearings (b) are fragile, a fixed guard shaft (k) that can be directly fixed to a strong base plate (q) is installed. For example, the inner cylinder shaft guard (m) that suppresses the displacement exceeding the limit of the inner cylinder shaft can be installed. As shown in FIG. 1, the inner cylinder shaft guard (m) attached to the fixed guard shaft (k) has a narrow inner diameter so that the bearing can be restrained from being damaged even if the inner cylinder shaft is displaced by a force. Designed at a distance from the cylinder axis.
In this embodiment, in addition to this, a fixed shaft is formed so that the inner cylinder upper surface guard cylinder (n) having the same radius as the inner cylinder (c) extends upward with the circumferential surface of the inner cylinder (c) sandwiched by a slight gap. When installed on the guard (k), the flow of fluid on the upper surface of the inner cylinder can be eliminated, and the flow in accordance with the principle of the coaxial double cylinder can be realized on the upper surface of the inner cylinder. This makes it closer to the advantage of the conical flat plate type that the shear rate of the sample to be measured is more strictly determined without losing the characteristic that the sample can be accurately measured without strict amount of the sample, which is an advantage of the coaxial double cylinder. (In other words, even if the sample liquid level fluctuates due to the difference in the amount of the sample, the torque due to the flow of the sample fluid that acts on the upper surface of the inner cylinder can be cut off by the inner cylinder upper surface guard cylinder (n). Even if the surface moves up and down, the upper surface of the inner cylinder is not affected. As for the non-ideality of the lower end of the inner cylinder, for example, the conical shape described in Patent Document 2 is introduced so that the distance from the outer cylinder is proportional to the radius. Alternatively, as shown in FIG. By adopting a co-hemispherical shape, it is possible to reduce the influence of such non-ideality.
In this embodiment, when a temperature adjusting member (o) having a heat generating / absorbing action such as a heater or a Peltier element is installed at an appropriate place on the upper surface of the inner cylinder, and the temperature at that place is controlled, the inner cylinder shaft The temperature gradient from the position of the member to the upper surface of the inner cylinder can be reduced, and the temperature control performance of the inner cylinder can be improved. In addition, the heat exchanger (p) of FIG. 1 is installed by the necessity of releasing heat outside, when the temperature control member (o) is a Peltier element. The heat exchanger (p) and the temperature adjustment member (o) are transferred with heat by a heat pipe or the like. In addition, if a mechanism for exchanging heat with the outside using a heat pipe or the like is introduced as described above, the upper part of the inner cylinder shaft is close to the outside, that is, the environmental temperature of the apparatus. Thereby, the influence of the thermal expansion of the inner cylinder shaft or the influence of the heat of the measuring part inside the apparatus can be reduced. This mechanism is also possible by providing a fixed guard shaft (k).

図2は、内筒上面ガード円筒(n)の有する機能について説明するための図であって、左図が従来の外筒回転方式の共軸二重円筒型回転粘度計(固定ガード軸・内筒上面ガード円筒無し)の場合、右図が本発明の固定ガード軸・内筒上面ガード円筒を有する外筒回転方式の共軸二重円筒型回転粘度計の場合を示したものである。
左図の従来の構成では、外筒(j)が回転軸(t)の周りに回転したとき、内筒(c)は共軸二重円筒部のトルク(中央矢印参照)の他に、内筒(c)の上面、及び、内筒(c)の下面も測定試料流体の流動によるトルクを受け、このトルクの合計が内筒軸(s)の上部に設けた図示しないトルク検出機構で検出される。内筒の上面及び下面に受けるトルクは、共軸二重円筒方式の特徴である粘度のずり速度依存性の測定に関しては誤差要因となるので、排除することが望ましい。このため、下面からのトルク(下面へ向かう矢印参照)に関しては、右図下部の例示の如く、内筒底面部と外筒底面部の間隔が中心軸からの半径に比例し、最外周では内筒側面と外筒側面の間隔に一致するようにすれば、誤差要因を緩和することができる(特許文献2参照)、あるいは、図1の如く、内筒底面部と内筒側面をなだらかに半球面で接続した方がより良く誤差要因の緩和が可能である。しかしながら、内筒上面に働くトルク(上面に向かう矢印参照)に関しては、従来の構成では、構造的に緩和することはできない。そのため、例えば、試料量を正確に管理しないと、試料量の増減により試料液面が変動し、液面が変動すると内筒上面に働くトルクの大きさも変動するので測定の誤差要因となる。
右図は本発明の構成を示したものであって、内筒側面を上に延長する位置に内筒上面ガード円筒(n)を備えており、図示しない固定ガード軸(k)に一体的に固定されている。内筒上面ガード円筒(n)は、回転する外筒(j)により回転流動する試料の流れを遮断するので、内筒上面の試料の流動を無くすことができ、内筒上面に働く粘度のずり速度依存性の測定の誤差要因となるトルクを内筒上面ガード円筒(n)で構造的に遮断できる(上部矢印参照)。
FIG. 2 is a diagram for explaining the function of the inner cylinder upper surface guard cylinder (n). The left figure is a conventional outer cylinder rotation type coaxial double cylinder type rotational viscometer (fixed guard shaft / inner In the case of no cylinder upper surface guard cylinder), the right figure shows the case of the outer cylinder rotation type coaxial double cylinder type rotational viscometer having the fixed guard shaft and inner cylinder upper surface guard cylinder of the present invention.
In the conventional configuration shown in the left figure, when the outer cylinder (j) rotates around the rotation axis (t), the inner cylinder (c) The upper surface of the cylinder (c) and the lower surface of the inner cylinder (c) also receive torque due to the flow of the measurement sample fluid, and the total torque is detected by a torque detection mechanism (not shown) provided on the upper part of the inner cylinder shaft (s). Is done. The torque received on the upper and lower surfaces of the inner cylinder is an error factor in measuring the shear rate dependence of the viscosity, which is a feature of the coaxial double cylinder system, and is therefore preferably eliminated. For this reason, regarding the torque from the lower surface (see the arrow toward the lower surface), as illustrated in the lower part of the right figure, the distance between the bottom surface of the inner cylinder and the bottom surface of the outer cylinder is proportional to the radius from the central axis. By matching the distance between the cylinder side surface and the outer cylinder side surface, the error factor can be reduced (see Patent Document 2), or the inner cylinder bottom surface and the inner cylinder side surface are gently hemispherical as shown in FIG. It is possible to reduce the error factor better by connecting on the surface. However, the torque acting on the upper surface of the inner cylinder (see the arrow toward the upper surface) cannot be relaxed structurally with the conventional configuration. Therefore, for example, if the sample amount is not managed accurately, the sample liquid level fluctuates due to increase / decrease of the sample amount, and if the liquid level fluctuates, the magnitude of the torque acting on the upper surface of the inner cylinder also fluctuates, which causes measurement errors.
The right figure shows the configuration of the present invention, which is provided with an inner cylinder upper surface guard cylinder (n) at a position where the inner cylinder side surface extends upward, and is integrated with a fixed guard shaft (k) (not shown). It is fixed. Since the inner cylinder upper surface guard cylinder (n) blocks the flow of the sample rotating and rotating by the rotating outer cylinder (j), the flow of the sample on the upper surface of the inner cylinder can be eliminated, and the viscosity acting on the upper surface of the inner cylinder can be prevented. Torque, which becomes an error factor in measurement of speed dependence, can be structurally interrupted by the inner cylinder upper surface guard cylinder (n) (see the upper arrow).

上記実施例は、内筒軸を囲む固定ガード軸(k)に、内筒軸ガード(m)、内筒上面ガード円筒(n)、温度調節部材(o)の3つ全てを固設した例で説明したが、内筒軸ガード(m)、内筒上面ガード円筒(n)、温度調節部材(o)の少なくとも1つを固設することによってもそれぞれの効果が得られることは言うまでもない。
また、内筒軸ガード(m)、内筒上面ガード円筒(n)、温度調節部材(o)は、固定ガード(k)に固設する例で説明したが、固定ガードに一体的に作り込むこともできる。
In the above-described embodiment, all three of the inner cylinder shaft guard (m), the inner cylinder upper surface guard cylinder (n), and the temperature adjustment member (o) are fixed to the fixed guard shaft (k) surrounding the inner cylinder shaft. However, it goes without saying that the respective effects can also be obtained by fixing at least one of the inner cylinder shaft guard (m), the inner cylinder upper surface guard cylinder (n), and the temperature adjusting member (o).
The inner cylinder shaft guard (m), the inner cylinder upper surface guard cylinder (n), and the temperature adjustment member (o) have been described as being fixed to the fixed guard (k). You can also.

上記説明では回転粘度計として説明したが、レオメータとしても用いることができる。   In the above description, the rotational viscometer has been described, but it can also be used as a rheometer.

Claims (5)

同一中心軸をもつ外筒及び内筒と、外筒を回転駆動させる回転機構と、内筒上部に固定され軸受けで回転軸支された内筒軸と、内筒軸に設けたトルク検出機構を備え、前記外筒を回転させることにより外筒と内筒の間に満たされた試料流体を層流状態で回転流動させ、内筒に作用するトルクを前記トルク検出機構で検出し粘度を測定する外筒回転方式の共軸二重円筒型回転粘度計であって、
前記内筒軸の外側を囲む固定ガード軸を設け、当該固定ガード軸に、前記内筒軸の横方向の過大な変位を抑える内筒軸ガードを設けたことを特徴とする外筒回転方式の共軸二重円筒型回転粘度計。
An outer cylinder and an inner cylinder having the same central axis, a rotation mechanism for rotating the outer cylinder, an inner cylinder shaft fixed to the upper portion of the inner cylinder and supported by a bearing, and a torque detection mechanism provided on the inner cylinder shaft And rotating the outer cylinder to rotate the sample fluid filled between the outer cylinder and the inner cylinder in a laminar flow state, and the torque acting on the inner cylinder is detected by the torque detection mechanism and the viscosity is measured. It is a coaxial double cylinder type rotational viscometer of outer cylinder rotation type,
A fixed guard shaft that surrounds the outer side of the inner cylinder shaft, and an inner cylinder shaft guard that suppresses excessive lateral displacement of the inner cylinder shaft is provided on the fixed guard shaft. A coaxial double cylinder type rotational viscometer.
同一中心軸をもつ外筒及び内筒と、外筒を回転駆動させる回転機構と、内筒上部に固定され軸受けで回転軸支された内筒軸と、内筒軸に設けたトルク検出機構を備え、前記外筒を回転させることにより外筒と内筒の間に満たされた試料流体を層流状態で回転流動させ、内筒に作用するトルクを前記トルク検出機構で検出し粘度を測定する外筒回転方式の共軸二重円筒型回転粘度計であって、
前記内筒軸の外側を囲む固定ガード軸を設け、当該固定ガード軸に、前記内筒と同じ半径の内筒上面ガード円筒を僅かな隙間を挟んで内筒周面を上に延長する位置に設けたことを特徴とする外筒回転方式の共軸二重円筒型回転粘度計。
An outer cylinder and an inner cylinder having the same central axis, a rotation mechanism for rotating the outer cylinder, an inner cylinder shaft fixed to the upper portion of the inner cylinder and supported by a bearing, and a torque detection mechanism provided on the inner cylinder shaft And rotating the outer cylinder to rotate the sample fluid filled between the outer cylinder and the inner cylinder in a laminar flow state, and the torque acting on the inner cylinder is detected by the torque detection mechanism and the viscosity is measured. It is a coaxial double cylinder type rotational viscometer of outer cylinder rotation type,
A fixed guard shaft that surrounds the outer side of the inner cylinder shaft is provided, and an inner cylinder upper surface guard cylinder having the same radius as the inner cylinder is extended to the fixed guard axis with a slight gap therebetween to extend the inner cylinder circumferential surface upward. An outer cylinder rotating type coaxial double cylindrical rotational viscometer characterized by being provided.
同一中心軸をもつ外筒及び内筒と、外筒を回転駆動させる回転機構と、内筒上部に固定され軸受けで回転軸支された内筒軸と、内筒軸に設けたトルク検出機構を備え、前記外筒を回転させることにより外筒と内筒の間に満たされた試料流体を層流状態で回転流動させ、内筒に作用するトルクを前記トルク検出機構で検出し粘度を測定する外筒回転方式の共軸二重円筒型回転粘度計であって、
前記外筒を入れ前記試料流体の温度を所定温度に保持する恒温槽を備え、
前記内筒軸の外側を囲む固定ガード軸を設け、当該固定ガード軸に、温度調節部材を設けたことを特徴とする外筒回転方式の共軸二重円筒型回転粘度計。
An outer cylinder and an inner cylinder having the same central axis, a rotation mechanism for rotating the outer cylinder, an inner cylinder shaft fixed to the upper portion of the inner cylinder and supported by a bearing, and a torque detection mechanism provided on the inner cylinder shaft And rotating the outer cylinder to rotate the sample fluid filled between the outer cylinder and the inner cylinder in a laminar flow state, and the torque acting on the inner cylinder is detected by the torque detection mechanism and the viscosity is measured. It is a coaxial double cylinder type rotational viscometer of outer cylinder rotation type,
A thermostatic chamber for holding the outer cylinder and holding the temperature of the sample fluid at a predetermined temperature;
An outer cylinder rotation type coaxial double cylindrical rotational viscometer characterized in that a fixed guard shaft surrounding the outer side of the inner cylinder shaft is provided, and a temperature adjusting member is provided on the fixed guard shaft.
同一中心軸をもつ外筒及び内筒と、外筒を回転駆動させる回転機構と、内筒上部に固定され軸受けで回転軸支された内筒軸と、内筒軸に設けたトルク検出機構を備え、前記外筒を回転させることにより外筒と内筒の間に満たされた試料流体を層流状態で回転流動させ、内筒に作用するトルクを前記トルク検出機構で検出し粘度を測定する外筒回転方式の共軸二重円筒型回転粘度計であって、
前記外筒を入れ前記試料流体の温度を所定温度に保持する恒温槽を備え、
前記内筒軸の外側を囲む固定ガード軸を設け、当該固定ガード軸に、温度調節部材を設け、さらに、当該固定ガード軸に、前記内筒と同じ半径の内筒上面ガード円筒を僅かな隙間を挟んで内筒周面を上に延長する位置に設けたことを特徴とする外筒回転方式の共軸二重円筒型回転粘度計。
An outer cylinder and an inner cylinder having the same central axis, a rotation mechanism for rotating the outer cylinder, an inner cylinder shaft fixed to the upper portion of the inner cylinder and supported by a bearing, and a torque detection mechanism provided on the inner cylinder shaft And rotating the outer cylinder to rotate the sample fluid filled between the outer cylinder and the inner cylinder in a laminar flow state, and the torque acting on the inner cylinder is detected by the torque detection mechanism and the viscosity is measured. It is a coaxial double cylinder type rotational viscometer of outer cylinder rotation type,
A thermostatic chamber for holding the outer cylinder and holding the temperature of the sample fluid at a predetermined temperature;
A fixed guard shaft that surrounds the inner cylinder shaft is provided, a temperature adjustment member is provided on the fixed guard shaft, and an inner cylinder upper surface guard cylinder having the same radius as the inner cylinder is provided on the fixed guard shaft with a slight gap. An outer cylinder rotation type coaxial double cylinder type rotational viscometer, characterized in that it is provided at a position where the inner cylinder peripheral surface extends upward with the cylinder interposed therebetween.
前記固定ガード軸に、前記内筒軸の横方向の過大な変位を抑える内筒軸ガードを設けたことを特徴とする請求項2〜4のいずれかに記載の外筒回転方式の共軸二重円筒型回転粘度計。   5. The outer cylinder rotation type coaxial shaft according to claim 2, wherein an inner cylinder shaft guard that suppresses excessive lateral displacement of the inner cylinder shaft is provided on the fixed guard shaft. Heavy cylindrical rotational viscometer.
JP2014055240A 2014-03-18 2014-03-18 Rotational viscometer Active JP6202333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014055240A JP6202333B2 (en) 2014-03-18 2014-03-18 Rotational viscometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014055240A JP6202333B2 (en) 2014-03-18 2014-03-18 Rotational viscometer

Publications (2)

Publication Number Publication Date
JP2015175841A JP2015175841A (en) 2015-10-05
JP6202333B2 true JP6202333B2 (en) 2017-09-27

Family

ID=54255134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014055240A Active JP6202333B2 (en) 2014-03-18 2014-03-18 Rotational viscometer

Country Status (1)

Country Link
JP (1) JP6202333B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109799169A (en) * 2019-03-01 2019-05-24 同济大学 A kind of revolution viscosity apparatus can be used for concrete

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111999224B (en) * 2020-08-28 2023-09-29 陕西延长石油(集团)有限责任公司 Fracturing fluid dynamic sand suspension testing device and method
WO2023067960A1 (en) * 2021-10-20 2023-04-27 住友重機械プロセス機器株式会社 Viscosity estimation device, stirring method, stirring program, and stirring device
CN116440760B (en) * 2023-03-14 2023-09-22 广东美味源香料股份有限公司 Paste gelatinizing device and beef monosodium glutamate paste gelatinizing processing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4214397Y1 (en) * 1964-04-14 1967-08-16
JPS63317744A (en) * 1987-06-22 1988-12-26 Marukomu:Kk Rotary viscosimeter
JPH06109612A (en) * 1992-08-25 1994-04-22 Brookfield Eng Lab Inc Rheology measuring device
JPH06347392A (en) * 1993-06-10 1994-12-22 Nippon Steel Corp Viscosity measuring jig of coal in softened and melted state and measuring method therefor
US5535619A (en) * 1994-11-17 1996-07-16 Brookfield Engineering Laboratories, Inc. Pressurized viscometer
JP4096099B2 (en) * 2003-07-28 2008-06-04 独立行政法人産業技術総合研究所 Rotational viscometer using direct drive motor
JP4675946B2 (en) * 2007-09-07 2011-04-27 独立行政法人産業技術総合研究所 Viscosity measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109799169A (en) * 2019-03-01 2019-05-24 同济大学 A kind of revolution viscosity apparatus can be used for concrete
CN109799169B (en) * 2019-03-01 2021-08-06 同济大学 Rotary viscometer for concrete

Also Published As

Publication number Publication date
JP2015175841A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
JP6202333B2 (en) Rotational viscometer
US6167752B1 (en) Rotary viscometer with an air bearing
JP5905791B2 (en) Structure strength test apparatus and strength test method
US20170343401A1 (en) Thermal, Flow Measuring Device with Diagnostic Function
JP2008309729A (en) Device and method for measuring thermal conductivity
CN105424556B (en) Viscosimeter
JP2003121215A (en) Axial flow turbine flowmeter using magnetic bearing
US4968151A (en) Temperature measurement for flowing fluids
JP4162047B2 (en) Rotational viscometer
JP6434706B2 (en) Support device for balance correction
KR101761696B1 (en) Thrust applying apparatus for sensitive test of torque measurement system of model hydraulic turbine
BR112017011456B1 (en) Coupling load measuring method and coupling load measuring device
WO2012142363A1 (en) Low friction rheometer
CN106441602A (en) Anti-vibration bimetal thermometer
CN116907716B (en) Thermal noise suppression based torsion pendulum type micro-thrust measuring device and method
US10557782B2 (en) Pressure cell for rheological experiments under oscillatory shear and pressure
JP2019100434A (en) Bearing device and rotary machine
KR101485372B1 (en) Rotational viscometer
EP2742335B1 (en) Maintaining a measurement gap in a rheometer
KR102161320B1 (en) Air control damper of building ventilation duct and air control system
SE503570C2 (en) Device for concentration sensors
EP3070444B1 (en) A surface temperature measuring device
JP2021080986A (en) Fluid bearing device
JP6851047B2 (en) Rotation mechanism
KR102228680B1 (en) Balance testing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170816

R150 Certificate of patent or registration of utility model

Ref document number: 6202333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250