JP6194183B2 - Anode electrode catalyst for alkaline fuel cell - Google Patents

Anode electrode catalyst for alkaline fuel cell Download PDF

Info

Publication number
JP6194183B2
JP6194183B2 JP2013068345A JP2013068345A JP6194183B2 JP 6194183 B2 JP6194183 B2 JP 6194183B2 JP 2013068345 A JP2013068345 A JP 2013068345A JP 2013068345 A JP2013068345 A JP 2013068345A JP 6194183 B2 JP6194183 B2 JP 6194183B2
Authority
JP
Japan
Prior art keywords
anode electrode
electrode catalyst
catalyst
alkaline fuel
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013068345A
Other languages
Japanese (ja)
Other versions
JP2014192098A (en
Inventor
晃 谷口
晃 谷口
浩敏 ▲柳▼
浩敏 ▲柳▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2013068345A priority Critical patent/JP6194183B2/en
Publication of JP2014192098A publication Critical patent/JP2014192098A/en
Application granted granted Critical
Publication of JP6194183B2 publication Critical patent/JP6194183B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、水素を燃料とするアルカリ形燃料電池(アニオン交換膜形燃料電池)の燃料極(アノード電極)に用いられるアノード電極触媒に関するものである。   The present invention relates to an anode electrode catalyst used for a fuel electrode (anode electrode) of an alkaline fuel cell (anion exchange membrane fuel cell) using hydrogen as a fuel.

燃料電池は、出力密度が大きく、環境に優しいことから、自動車用電源としての期待が高まっている。燃料電池は大別すると、高温型(固体酸化物形燃料電池、溶融炭酸塩形燃料電池)と、低・中温型(リン酸形燃料電池、固体高分子形燃料電池、アルカリ形燃料電池)に分類することができる。中でも、アルカリ形燃料電池(アニオン交換膜形燃料電池)はアルカリ環境下で発電が可能であり、白金などの高価な貴金属を使用しなくて済むため、コスト・資源の観点から優位である。   The fuel cell has a high output density and is environmentally friendly, and therefore, the expectation as a power source for automobiles is increasing. Fuel cells can be broadly divided into high-temperature types (solid oxide fuel cells, molten carbonate fuel cells) and low / medium temperature types (phosphoric acid fuel cells, polymer electrolyte fuel cells, alkaline fuel cells). Can be classified. Among them, alkaline fuel cells (anion exchange membrane fuel cells) are advantageous from the viewpoint of cost and resources because they can generate power in an alkaline environment and do not use expensive noble metals such as platinum.

一般に、アルカリ形燃料電池の低温域での反応に優れた水素酸化活性を示すアノード電極触媒は、白金(貴金属)に限定される。白金に代わり得るような優れた水素酸化活性を有し、アニオン交換膜形燃料電池に適するアノード電極触媒として、下記の非特許文献1には、ニッケル(Ni)に少量(10%)のコバルト(Co)または鉄(Fe)を加えることにより、単にカーボン担体にNiをコーティングした電極触媒よりも活性が向上することが記載されている。   In general, an anode electrode catalyst that exhibits excellent hydrogen oxidation activity in a low-temperature reaction of an alkaline fuel cell is limited to platinum (noble metal). As an anode electrode catalyst having an excellent hydrogen oxidation activity that can be substituted for platinum and suitable for an anion exchange membrane fuel cell, the following Non-Patent Document 1 includes a small amount (10%) of cobalt (10%) in addition to nickel (Ni). It is described that by adding Co) or iron (Fe), the activity is improved more than an electrode catalyst simply coated with Ni on a carbon support.

A.K. Chatterjee et al., J. Power Sources 137 (2004) 216-221A.K.Chatterjee et al., J. Power Sources 137 (2004) 216-221

本発明の目的は、上記の非特許文献1に記載の金属触媒よりも水素酸化活性がさらに高く、実用性の高い、アルカリ形燃料電池用アノード電極触媒を提供することにある。   An object of the present invention is to provide an anode electrode catalyst for an alkaline fuel cell that has higher hydrogen oxidation activity and higher practicality than the metal catalyst described in Non-Patent Document 1 above.

本発明者らは、上記の点に鑑み鋭意研究を重ねた結果、ニッケルをベースにクロムを合金化した金属触媒をカーボン担体に担持することにより、水素酸化活性の高い、アルカリ形燃料電池用アノード電極触媒が得られることを見出し、本発明を完成するに至ったものである。   As a result of intensive studies in view of the above points, the present inventors have found that an anode for an alkaline fuel cell having high hydrogen oxidation activity by supporting a metal catalyst made of nickel and chromium alloyed on a carbon support. The inventors have found that an electrode catalyst can be obtained, and have completed the present invention.

上記の目的を達成するために、請求項1のアルカリ形燃料電池用アノード電極触媒の発明は、ニッケルをベースにクロムを合金化した金属触媒が、カーボン担体に担持されていることを特徴とするものである。   In order to achieve the above object, the anode electrode catalyst for an alkaline fuel cell according to claim 1 is characterized in that a metal catalyst in which chromium is alloyed with nickel as a base is supported on a carbon support. Is.

本発明のアルカリ形燃料電池用アノード電極触媒の金属触媒中のクロム濃度は、5〜30重量%であることが好ましい。   The chromium concentration in the metal catalyst of the anode electrode catalyst for alkaline fuel cells of the present invention is preferably 5 to 30% by weight.

また、カーボン担体は、カーボンブラック、カーボンナノチューブ、フラーレン化合物、カーボンナノホーン、グラファイト、およびこれらの誘導体よりなる群の中から選ばれた少なくとも1つのカーボン系化合物よりなるものであることが好ましい。   The carbon support is preferably made of at least one carbon-based compound selected from the group consisting of carbon black, carbon nanotubes, fullerene compounds, carbon nanohorns, graphite, and derivatives thereof.

請求項1のアルカリ形燃料電池用アノード電極触媒の発明は、ニッケルをベースにクロムを合金化した金属触媒が、カーボン担体に担持されていることを特徴とするもので、請求項1の発明によれば、水素酸化活性が非常に高く、実用性の高い、アルカリ形燃料電池用アノード電極触媒を提供することができるという効果を奏する。   The invention of the anode electrode catalyst for alkaline fuel cell according to claim 1 is characterized in that a metal catalyst in which chromium is alloyed with nickel as a base is supported on a carbon support. According to this, there is an effect that it is possible to provide an anode electrode catalyst for an alkaline fuel cell that has very high hydrogen oxidation activity and high practicality.

上記金属触媒中のクロム濃度は、5〜30重量%、好ましくは7〜15重量%であることが好ましい。   The chromium concentration in the metal catalyst is 5 to 30% by weight, preferably 7 to 15% by weight.

本発明の実施例において、アルカリ形燃料電池用アノード電極触媒のクロノアンペロメトリー法に基づく水素酸化電流の測定に用いる回転ディスク電極装置の基本構造を示す概念図である。In the Example of this invention, it is a conceptual diagram which shows the basic structure of the rotating disk electrode apparatus used for the measurement of the hydrogen oxidation current based on the chronoamperometry method of the anode electrode catalyst for alkaline fuel cells. 本発明の実施例および比較例におけるアルカリ形燃料電池用アノード電極触媒のクロノアンペロメトリー法に基づく水素酸化電流の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the hydrogen oxidation current based on the chronoamperometry method of the anode electrode catalyst for alkaline fuel cells in the Example and comparative example of this invention.

つぎに、本発明の実施の形態を、図面を参照して説明するが、本発明はこれらに限定されるものではない。   Next, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

本発明によるアルカリ形燃料電池用アノード電極触媒は、ニッケルをベースにクロムを合金化した金属触媒が、カーボン担体に担持されていることを特徴としている。   The anode catalyst for an alkaline fuel cell according to the present invention is characterized in that a metal catalyst obtained by alloying chromium with nickel as a base is supported on a carbon support.

本発明者らは、ニッケルをベースにクロムを合金化した金属触媒をカーボン担体に担持することにより、水素酸化活性の高い、アルカリ形燃料電池用アノード電極触媒が得られることを見出した。   The present inventors have found that an anode electrode catalyst for an alkaline fuel cell having high hydrogen oxidation activity can be obtained by supporting a metal catalyst obtained by alloying chromium based on nickel on a carbon support.

本発明によるアルカリ形燃料電池用アノード電極触媒において、金属触媒中のクロム濃度は、5〜30重量%、好ましくは7〜15重量%である。   In the anode catalyst for an alkaline fuel cell according to the present invention, the chromium concentration in the metal catalyst is 5 to 30% by weight, preferably 7 to 15% by weight.

本発明のアルカリ形燃料電池用アノード電極触媒において、ニッケルをベースにクロムを合金化した金属触媒中のクロム濃度が、5重量%未満であれば、クロムの添加効果が低減するので、好ましくない。また、金属触媒中のクロム濃度が、30重量%を超えると、水素解離吸着能が発現し難くなるので、好ましくない。   In the anode electrode catalyst for an alkaline fuel cell of the present invention, if the chromium concentration in the metal catalyst in which chromium is alloyed based on nickel is less than 5% by weight, the effect of adding chromium is reduced, which is not preferable. On the other hand, if the chromium concentration in the metal catalyst exceeds 30% by weight, the hydrogen dissociation adsorption ability is hardly exhibited, which is not preferable.

なお、本発明によるアルカリ形燃料電池用アノード電極触媒中のクロム濃度は5〜30重量%であり、従って、電極触媒の残部95〜70重量%は、ニッケルであるが、本発明のアノード電極触媒には、他に、例えば0〜5重量%の鉄、コバルト、亜鉛、銅、およびマンガンよりなる群の中から選ばれた少なくとも1種の遷移金属またはその合金を含んでいてもよい。このように、ニッケル・クロムがベースのアノード電極触媒に、上記のような鉄などの遷移金属を添加する3元系触媒でも、水素酸化活性が非常に高く、実用性の高い、アルカリ形燃料電池用アノード電極触媒とすることが可能である。   Note that the chromium concentration in the anode electrode catalyst for alkaline fuel cells according to the present invention is 5 to 30% by weight, and therefore the remaining 95 to 70% by weight of the electrode catalyst is nickel. In addition, for example, at least one transition metal selected from the group consisting of iron, cobalt, zinc, copper, and manganese, or an alloy thereof may be included in an amount of 0 to 5% by weight. Thus, even a ternary catalyst in which a transition metal such as iron as described above is added to an anode electrode catalyst based on nickel / chromium has an extremely high hydrogen oxidation activity and is highly practical, an alkaline fuel cell. It can be used as an anode electrode catalyst.

また、本発明によるアルカリ形燃料電池用アノード電極触媒において、カーボン担体は、カーボンブラック、カーボンナノチューブ、フラーレン化合物、カーボンナノホーン、グラファイト、およびこれらの誘導体よりなる群の中から選ばれた少なくとも1つのカーボン系化合物よりなるものであることが好ましい。   In the anode electrode catalyst for an alkaline fuel cell according to the present invention, the carbon support is at least one carbon selected from the group consisting of carbon black, carbon nanotubes, fullerene compounds, carbon nanohorns, graphite, and derivatives thereof. It is preferable that it consists of a system compound.

つぎに、本発明の実施例を比較例と共に説明するが、本発明は、これらの実施例に限定されるものではない。   Next, examples of the present invention will be described together with comparative examples, but the present invention is not limited to these examples.

実施例1
本発明のアルカリ形燃料電池用アノード電極触媒は、ニッケルをベースにクロムを合金化した金属触媒が、カーボン担体に担持されているものである。
Example 1
The anode catalyst for an alkaline fuel cell according to the present invention is a catalyst in which a metal catalyst obtained by alloying chromium with nickel as a base is supported on a carbon support.

Ni−Cr系アノード電極触媒の調製
本発明のアルカリ形燃料電池用アノード電極触媒を、つぎのようにして調製した。まず、カーボン担体となるカーボンブラック(Vulcan−XC72R)4.5gをエタノール300mlに分散させて、金属塩(硝酸ニッケル22.9g、硝酸クロム3.8g)を一旦水(50mL)に溶解させた溶液と所定比に混合させた。つぎに、混合物に熱をかけて溶媒を蒸発して乾固し、金属含有のカーボン担体を得た。この金属含有のカーボン担体1gを石英ガラス管に入れて、水素雰囲気下、600℃で3時間焼成して、Ni−Cr系アノード電極触媒を調製した。
Preparation of Ni-Cr type anode electrode catalyst The anode electrode catalyst for alkaline fuel cells of the present invention was prepared as follows. First, carbon black (Vulcan-XC72R) 4.5 g serving as a carbon carrier is dispersed in 300 ml of ethanol, and a metal salt (nickel nitrate 22.9 g, chromium nitrate 3.8 g) is once dissolved in water (50 mL). And mixed at a predetermined ratio. Next, the mixture was heated to evaporate the solvent and dried to obtain a metal-containing carbon support. 1 g of this metal-containing carbon support was placed in a quartz glass tube and calcined at 600 ° C. for 3 hours in a hydrogen atmosphere to prepare a Ni—Cr anode catalyst.

Ni−Cr系アノード電極触媒の組成比は、Ni(90)−Cr(10)であった。ここで、( )内の数字は、重量%を示す。   The composition ratio of the Ni—Cr-based anode electrode catalyst was Ni (90) —Cr (10). Here, the numbers in parentheses indicate weight%.

Ni−Cr系アノード電極触媒の水素酸化電流の測定
本発明のアルカリ形燃料電池用アノード電極触媒のクロノアンペロメトリー法に基づく水素酸化電流の評価装置として、図1に基本構造を示す回転ディスク電極装置(BAS社製)を用いて半電池試験を行った。
Measurement of Hydrogen Oxidation Current of Ni-Cr Anode Electrode Catalyst As a hydrogen oxidation current evaluation apparatus based on the chronoamperometry method of the anode electrode catalyst for alkaline fuel cells of the present invention, a rotating disk electrode having a basic structure shown in FIG. A half-cell test was performed using an apparatus (manufactured by BAS).

すなわち、同図に示す回転ディスク電極法の装置を用い、回転ディスク電極法により、ディスク電極(作用極)(11)を回転させることによって電解質溶液の対流―拡散を積極的に利用した。   That is, the convection-diffusion of the electrolyte solution was positively utilized by rotating the disk electrode (working electrode) (11) by the rotating disk electrode method using the rotating disk electrode method apparatus shown in FIG.

上記の方法で調製した本発明のアノード電極触媒を、水(0.05mL)とアニオン交換樹脂(AS−10、トクヤマ社製、0.4mL)と混合して、回転子を入れて攪拌後、その懸濁液をグラッシーカーボン電極(φ3mm)(BAS社製)に塗布し乾燥して、ディスク電極(作用極)(11)の基板上に触媒電極層(11a)を形成した。電解セル(アクリル容器)(18)の上面は、ゴム栓(17)で密閉されている。対極(12)には白金線を使用し、また塩橋(14)を介して参照極(13)には銀・塩化銀電極(Ag/AgCl)を使用した。電解液(15)は水酸化カリウム水溶液(0.5mol/l)を用いた。そして、回転ディスク電極(作用極)(11)を電解液(15)の入った電解セル(アクリル容器)(18)に設置し、回転させながら電気化学的な評価を行った。回転ディスク電極(作用極)(11)の回転速度を4000rpmとした。   The anode electrode catalyst of the present invention prepared by the above method was mixed with water (0.05 mL) and an anion exchange resin (AS-10, manufactured by Tokuyama Corporation, 0.4 mL), and after stirring with a rotor, The suspension was applied to a glassy carbon electrode (φ3 mm) (manufactured by BAS) and dried to form a catalyst electrode layer (11a) on the substrate of the disk electrode (working electrode) (11). The upper surface of the electrolysis cell (acrylic container) (18) is sealed with a rubber plug (17). A platinum wire was used for the counter electrode (12), and a silver / silver chloride electrode (Ag / AgCl) was used for the reference electrode (13) via the salt bridge (14). As the electrolytic solution (15), an aqueous potassium hydroxide solution (0.5 mol / l) was used. Then, the rotating disk electrode (working electrode) (11) was placed in an electrolytic cell (acrylic container) (18) containing an electrolytic solution (15), and electrochemical evaluation was performed while rotating. The rotational speed of the rotating disk electrode (working electrode) (11) was 4000 rpm.

水酸化カリウム水溶液(電解液)(15)で満たした電解セル(18)を溶存酸素の影響を受けないようにパージライン(16)より窒素ガス(不活性ガス)で十分バブリングをして、窒素雰囲気において触媒金属の溶解電流が無視できる電位である−0.8Vvs.Ag/AgClの低電位に設定して、電流値が定常状態で安定した状態になるまで保持した。ここで、アノード電極触媒金属の保持電流を、10secあたりの電流の振れの変化量が0.001%以下の定常状態まで保持した。   The electrolytic cell (18) filled with the aqueous potassium hydroxide solution (electrolyte) (15) is sufficiently bubbled with nitrogen gas (inert gas) from the purge line (16) so as not to be affected by dissolved oxygen, -0.8 V vs. which is a potential at which the dissolution current of the catalytic metal is negligible in the atmosphere. It was set to a low potential of Ag / AgCl and held until the current value became stable in a steady state. Here, the holding current of the anode electrode catalyst metal was held to a steady state where the amount of change in current fluctuation per 10 sec was 0.001% or less.

その後、電解セル(18)に、窒素ガスに代えてパージライン(16)より水素ガスを投入して、水素酸化電流を発生させ、そのときに流れる水素酸化電流の経時変化を測定し、該電流が定常状態になるまで保持した。   Thereafter, hydrogen gas is introduced into the electrolysis cell (18) from the purge line (16) instead of nitrogen gas to generate a hydrogen oxidation current, and the change over time of the hydrogen oxidation current flowing at that time is measured. Was held until steady state.

アルカリ溶液中におけるアノード電極触媒の水素酸化反応は、以下に示すとおりである。   The hydrogen oxidation reaction of the anode electrode catalyst in the alkaline solution is as follows.

(aq)+2OH(aq)→ 2HO(l)+2e …(1)
そして、窒素雰囲気(0点)から水素雰囲気に切り替えたときのアノード電極触媒の水素酸化電流の経時変化の測定結果を、図2のグラフに示した。
H 2 (aq) + 2OH (aq) → 2H 2 O (l) + 2e (1)
And the measurement result of the time-dependent change of the hydrogen oxidation current of an anode electrode catalyst when switching from nitrogen atmosphere (0 point) to hydrogen atmosphere was shown in the graph of FIG.

比較例1
Ni系アノード電極触媒の調製と水素酸化電流の測定
比較のために、アノード電極触媒をつぎのようにして調製した。まず、カーボン担体となるカーボンブラック(Vulcan−XC72R)をエタノール300mlに分散させて、金属塩(硝酸ニッケル22.9g)を一旦水(50mL)に溶解させた溶液と所定比に混合し、Ni系アノード電極触媒を調製した。調製法は実施例1の場合と同様である。
Comparative Example 1
Preparation of Ni-based anode electrode catalyst and measurement of hydrogen oxidation current For comparison, an anode electrode catalyst was prepared as follows. First, carbon black (Vulcan-XC72R) serving as a carbon carrier is dispersed in 300 ml of ethanol, and mixed with a solution in which a metal salt (nickel nitrate 22.9 g) is once dissolved in water (50 mL) at a predetermined ratio. An anode electrocatalyst was prepared. The preparation method is the same as in Example 1.

Ni系アノード電極触媒の組成比は、Ni(100)である。ここで、( )内の数字は、重量%を示す。   The composition ratio of the Ni-based anode electrode catalyst is Ni (100). Here, the numbers in parentheses indicate weight%.

つぎに、上記の方法で調製したNi系アノード電極触媒を用いて、実施例1の場合と同様の方法により、アノード電極触媒の水素酸化電流の経時変化を測定し、得られた結果を図2のグラフにあわせて示した。   Next, using the Ni-based anode electrode catalyst prepared by the above method, the change over time of the hydrogen oxidation current of the anode electrode catalyst was measured by the same method as in Example 1, and the obtained results are shown in FIG. This is shown together with the graph.

比較例2
Ni−Co系アノード電極触媒の調製と水素酸化電流の測定
比較のために、Ni−Co系アノード電極触媒をつぎのようにして調製した。まず、カーボン担体となるカーボンブラック(Vulcan−XC72R)をエタノール300mlに分散させて、金属塩(硝酸ニッケル22.9g、硝酸コバルト2.5g)を一旦水(50mL)に溶解させた溶液と所定比に混合し、Ni−Co系アノード電極触媒を調製した。調製法は実施例1の場合と同様である。
Comparative Example 2
Preparation of Ni-Co anode electrode catalyst and measurement of hydrogen oxidation current For comparison, a Ni-Co anode electrode catalyst was prepared as follows. First, carbon black (Vulcan-XC72R) serving as a carbon carrier is dispersed in 300 ml of ethanol, and a predetermined ratio with a solution in which a metal salt (nickel nitrate 22.9 g, cobalt nitrate 2.5 g) is once dissolved in water (50 mL). To prepare a Ni—Co based anode electrode catalyst. The preparation method is the same as in Example 1.

Ni−Co系アノード電極触媒の組成比は、Ni(90)−Co(10)である。ここで、( )内の数字は、重量%を示す。   The composition ratio of the Ni—Co based anode electrode catalyst is Ni (90) —Co (10). Here, the numbers in parentheses indicate weight%.

つぎに、上記の方法で調製したNi−Co系アノード電極触媒を用いて、実施例1と同様の方法により、アノード電極触媒の水素酸化電流の経時変化を測定し、得られた結果を図2のグラフにあわせて示した。   Next, using the Ni—Co-based anode electrode catalyst prepared by the above method, the change over time in the hydrogen oxidation current of the anode electrode catalyst was measured by the same method as in Example 1, and the obtained results are shown in FIG. This is shown together with the graph.

比較例3
Ni−Fe系アノード電極触媒の調製と水素酸化電流の測定
比較のために、Ni−Fe系アノード電極触媒をつぎのようにして調製した。まず、カーボン担体となるカーボンブラック(Vulcan−XC72R)をエタノール300mlに分散させて、金属塩(硝酸ニッケル22.9g、硝酸鉄3.6g)を一旦水(50mL)に溶解させた溶液と所定比に混合し、Ni−Fe系アノード電極触媒を調製した。調製法は実施例1と同様である。
Comparative Example 3
Preparation of Ni—Fe-based anode electrode catalyst and measurement of hydrogen oxidation current For comparison, a Ni—Fe-based anode electrode catalyst was prepared as follows. First, carbon black (Vulcan-XC72R) serving as a carbon carrier is dispersed in 300 ml of ethanol, and a predetermined ratio with a solution in which a metal salt (nickel nitrate 22.9 g, iron nitrate 3.6 g) is once dissolved in water (50 mL). To prepare a Ni—Fe based anode electrode catalyst. The preparation method is the same as in Example 1.

Ni−Fe系アノード電極触媒の組成比は、Ni(90)−Fe(10)である。ここで、( )内の数字は、重量%を示す。   The composition ratio of the Ni—Fe based anode electrode catalyst is Ni (90) —Fe (10). Here, the numbers in parentheses indicate weight%.

つぎに、上記の方法で調製したNi−Fe系アノード電極触媒を用いて、実施例1の場合と同様の方法により、アノード電極触媒の水素酸化電流の経時変化を測定し、得られた結果を図2のグラフにあわせて示した。   Next, using the Ni—Fe-based anode electrode catalyst prepared by the above method, the change over time of the hydrogen oxidation current of the anode electrode catalyst was measured by the same method as in Example 1, and the obtained results were obtained. This is shown together with the graph of FIG.

図2に記載のアノード電極触媒の水素酸化電流の経時変化の測定結果のグラフから明らかなように、ニッケルのみで調製されたアノード電極触媒(比較例1)や、ニッケル−コバルト系アノード電極触媒(比較例2)、ニッケル−鉄系アノード電極触媒(比較例3)に比べて、本発明による実施例1のニッケル−クロム系アノード電極触媒は、水素酸化電流が非常に高いことがわかった。   As is clear from the graph of the measurement results of the time-dependent change in the hydrogen oxidation current of the anode electrode catalyst shown in FIG. 2, the anode electrode catalyst prepared only with nickel (Comparative Example 1) and the nickel-cobalt anode electrode catalyst ( It was found that the hydrogen-oxidation current of the nickel-chromium-based anode electrode catalyst of Example 1 according to the present invention was much higher than that of Comparative Example 2) and the nickel-iron-based anode electrode catalyst (Comparative Example 3).

このように、ニッケルをベースにクロムを合金化した金属触媒がカーボン担体に担持されている本発明のアノード電極触媒は、効果的な水素酸化触媒活性を有し、アニオン交換膜を用いたアルカリ形燃料電池のアノード電極触媒として有用であることが確認された。   As described above, the anode electrode catalyst of the present invention in which the metal catalyst in which chromium is alloyed based on nickel is supported on the carbon support has an effective hydrogen oxidation catalytic activity and is in an alkaline form using an anion exchange membrane. It was confirmed to be useful as an anode electrode catalyst for fuel cells.

Claims (3)

ニッケルをベースにクロムを合金化した金属触媒が、カーボン担体に担持されていることを特徴とするアルカリ形燃料電池用アノード電極触媒。   An anode electrode catalyst for an alkaline fuel cell, characterized in that a metal catalyst obtained by alloying chromium with nickel as a base is supported on a carbon support. 金属触媒中のクロム濃度が、5〜30重量%であることを特徴とする、請求項1に記載のアルカリ形燃料電池用アノード電極触媒。   2. The anode electrode catalyst for an alkaline fuel cell according to claim 1, wherein a chromium concentration in the metal catalyst is 5 to 30 wt%. カーボン担体が、カーボンブラック、カーボンナノチューブ、フラーレン化合物、カーボンナノホーン、グラファイト、およびこれらの誘導体よりなる群の中から選ばれた少なくとも1つのカーボン系化合物よりなるものであることを特徴とする、請求項1に記載のアルカリ形燃料電池用アノード電極触媒。   The carbon support is composed of at least one carbon-based compound selected from the group consisting of carbon black, carbon nanotubes, fullerene compounds, carbon nanohorns, graphite, and derivatives thereof. 2. The anode electrode catalyst for alkaline fuel cells according to 1.
JP2013068345A 2013-03-28 2013-03-28 Anode electrode catalyst for alkaline fuel cell Expired - Fee Related JP6194183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013068345A JP6194183B2 (en) 2013-03-28 2013-03-28 Anode electrode catalyst for alkaline fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013068345A JP6194183B2 (en) 2013-03-28 2013-03-28 Anode electrode catalyst for alkaline fuel cell

Publications (2)

Publication Number Publication Date
JP2014192098A JP2014192098A (en) 2014-10-06
JP6194183B2 true JP6194183B2 (en) 2017-09-06

Family

ID=51838153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013068345A Expired - Fee Related JP6194183B2 (en) 2013-03-28 2013-03-28 Anode electrode catalyst for alkaline fuel cell

Country Status (1)

Country Link
JP (1) JP6194183B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7288682B2 (en) 2020-12-18 2023-06-08 株式会社丸忠 Mounting structure of lattice for fixed window

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3081082B1 (en) * 2018-05-14 2020-06-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives CATALYTIC LAYERS COMPRISING A FULLERENE
JP2022552412A (en) * 2019-10-18 2022-12-15 ゲンセル エルティーディー Nickel-based catalysts for fuel cell anodes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087924A (en) * 2005-09-21 2007-04-05 Future Solution:Kk Alkaline fuel cell
JP2009004286A (en) * 2007-06-25 2009-01-08 Hitachi Zosen Corp Anode membrane electrode assembly for alkaline fuel cell, and alkaline fuel cell using the same as anode
JP2009152084A (en) * 2007-12-20 2009-07-09 Canon Inc Alkaline fuel cell
JP5275756B2 (en) * 2008-11-05 2013-08-28 国立大学法人京都大学 Electrode for alkaline fuel cell
JP5426910B2 (en) * 2009-03-24 2014-02-26 ダイハツ工業株式会社 Fuel cell
JP5648344B2 (en) * 2010-07-01 2015-01-07 住友電気工業株式会社 Catalyst, electrode, fuel cell, gas abatement apparatus, and catalyst and electrode manufacturing method
JP5773514B2 (en) * 2011-02-24 2015-09-02 株式会社不二越 Nickel-chromium alloy catalyst for hydrogen generation and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7288682B2 (en) 2020-12-18 2023-06-08 株式会社丸忠 Mounting structure of lattice for fixed window

Also Published As

Publication number Publication date
JP2014192098A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
Liu et al. Highly conductive and metallic cobalt–nickel selenide nanorods supported on Ni foam as an efficient electrocatalyst for alkaline water splitting
Sha et al. Hierarchical NiCo2O4 nanowire array supported on Ni foam for efficient urea electrooxidation in alkaline medium
Kwon et al. Current status of self‐supported catalysts for robust and efficient water splitting for commercial electrolyzer
Li et al. Encapsulating hollow (Co, Fe) P nanoframes into N, P-codoped graphene aerogel for highly efficient water splitting
Sukeri et al. Nanoporous gold surface: An efficient platform for hydrogen evolution reaction at very low overpotential
Fu et al. Metal-organic framework derived hierarchically porous nitrogen-doped carbon nanostructures as novel electrocatalyst for oxygen reduction reaction
CN105940526A (en) An electrochemical cell containing a graphene coated electrode
JP2012518532A (en) Carbon-supported CoSe2 nanoparticles for oxygen reduction and hydrogen generation in acidic environment
Safavi et al. Facile electrocatalytic oxidation of ethanol using Ag/Pd nanoalloys modified carbon ionic liquid electrode
Wang et al. Formation of nanoporous NiCuP amorphous alloy electrode by potentiostatic etching and its application for hydrazine oxidation
Bai et al. Electrodeposition of cobalt nickel hydroxide composite as a high-efficiency catalyst for hydrogen evolution reactions
Xiao et al. Synthesis of ultrafine Pt/Pd bimetallic nanoparticles and their decoration on MWCNTs for hydrogen evolution
JP2005129358A (en) Cathode catalyst for fuel cell
Yadav et al. Efficient hydrogen production using Ni-graphene oxide-dispersed laser-engraved 3D carbon micropillars as electrodes for microbial electrolytic cell
JP6194183B2 (en) Anode electrode catalyst for alkaline fuel cell
CN108470917A (en) A kind of carbon carries difunctional electrocatalysis material of compound and preparation method thereof between iridium manganese Metal
Zhang et al. Micro‐Electrode with Fast Mass Transport for Enhancing Selectivity of Carbonaceous Products in Electrochemical CO2 Reduction
Ahmed et al. Iron–nickel nanoparticles as bifunctional catalysts in water electrolysis
Alia et al. Platinum nickel nanowires as methanol oxidation electrocatalysts
Habibi et al. Ni@ Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
Majhi et al. Hydrothermal synthesis of zinc cobalt telluride nanorod towards oxygen evolution reaction (OER)
CN103996861B (en) A kind of purposes of the polymerizate that aromatic nitrile compounds polymerize to obtain as oxygen reduction catalyst
Diabaté et al. Kinetic study of oxygen reduction reaction on carbon supported Pd-based nanomaterials in alkaline medium
Farsak et al. The snowflake‐like structured NiO‐Cu2O@ Fe/Ru catalyst for hydrogen fuel production
Hwang et al. Electrochemically Fabricated Pd–In Catalysts for Carbon Dioxide‐Formate/Formic Acid Inter‐Conversion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R150 Certificate of patent or registration of utility model

Ref document number: 6194183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees