JP6187062B2 - Evaluation method of rice starch properties by iodometric colorimetry - Google Patents

Evaluation method of rice starch properties by iodometric colorimetry Download PDF

Info

Publication number
JP6187062B2
JP6187062B2 JP2013188951A JP2013188951A JP6187062B2 JP 6187062 B2 JP6187062 B2 JP 6187062B2 JP 2013188951 A JP2013188951 A JP 2013188951A JP 2013188951 A JP2013188951 A JP 2013188951A JP 6187062 B2 JP6187062 B2 JP 6187062B2
Authority
JP
Japan
Prior art keywords
visible region
wavelength
rice
starch
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013188951A
Other languages
Japanese (ja)
Other versions
JP2015055549A (en
Inventor
大坪 研一
研一 大坪
中村 澄子
澄子 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE NIIGATA INSTITUTE OF SCIENCE AND TECHNOLOGY
Original Assignee
THE NIIGATA INSTITUTE OF SCIENCE AND TECHNOLOGY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE NIIGATA INSTITUTE OF SCIENCE AND TECHNOLOGY filed Critical THE NIIGATA INSTITUTE OF SCIENCE AND TECHNOLOGY
Priority to JP2013188951A priority Critical patent/JP6187062B2/en
Publication of JP2015055549A publication Critical patent/JP2015055549A/en
Application granted granted Critical
Publication of JP6187062B2 publication Critical patent/JP6187062B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、米澱粉のヨード比色分光特性に基づいて、難消化性澱粉含量および難消化性澱粉と密接な関係のある糖鎖画分含量などの澱粉特性を簡易迅速かつ高精度で評価する技術に関する。   The present invention simply and quickly evaluates starch properties such as resistant starch content and sugar chain fraction content closely related to resistant starch based on iodine colorimetric spectral characteristics of rice starch. Regarding technology.

近年、わが国は少子高齢化社会となり、機能性成分を多く含む食事によって健康の維持増進、疾病予防を図る必要がある。   In recent years, Japan has become a society with a declining birthrate and an aging society, and it is necessary to promote health maintenance and disease prevention with a diet rich in functional ingredients.

澱粉のアミロース含量の高い米やアミロペクチン長鎖の多い米は、難消化性であり、食後の血糖上昇が緩やかで、糖尿病発症の予防が期待されている(非特許文献1、2)ことから、各種の米の難消化性澱粉及び関連糖鎖画分含量を簡易迅速かつ高精度に測定する技術の開発はきわめて重要である。   Rice with a high amylose content of starch and rice with a long amylopectin chain are indigestible, have a slow increase in blood sugar after meals, and are expected to prevent the onset of diabetes (Non-Patent Documents 1 and 2). It is extremely important to develop a technology that can easily and quickly measure the content of resistant starch and related sugar chain fractions in various rice.

従来、米澱粉のアミロペクチン鎖長分布は、イソアミラーゼによって枝切りした後に高速液体クロマトグラフによって測定されてきた(非特許文献3)。   Conventionally, the amylopectin chain length distribution of rice starch has been measured by high performance liquid chromatography after debranching with isoamylase (Non-patent Document 3).

また、アミロースの分子量分布の精密な分析方法として、花城らは、蛍光標識ゲルろ過法を開発した(非特許文献4)。   As a precise analysis method for the molecular weight distribution of amylose, Hanaki et al. Developed a fluorescence-labeled gel filtration method (Non-patent Document 4).

五十嵐らは、蛍光標識ゲルろ過法によって分析した米澱粉のアミロース分子量分布やアミロペクチン鎖長分布が米澱粉の熱糊化特性や食味に影響すると報告している(非特許文献5)。   Igarashi et al. Reported that the amylose molecular weight distribution and amylopectin chain length distribution of rice starch analyzed by the fluorescence-labeled gel filtration method affect the thermal gelatinization characteristics and taste of rice starch (Non-patent Document 5).

また、五十嵐らは、蛍光標識ゲルろ過法によって分析したもち米のアミロペクチン単位鎖長分布が餅の硬化性に強く影響すること(非特許文献6)および400nmから900nmの米澱粉のヨード比色吸収曲線から600nmを境界として低波長側と高波長側の2つのピーク面積の比率を求め、この比率が米澱粉の老化性指標として有用であることを報告している(非特許文献7)。   In addition, Igarashi et al. Show that the amylopectin unit chain length distribution of glutinous rice analyzed by a fluorescence-labeled gel filtration method strongly affects the curability of rice bran (Non-patent Document 6) and iodometric color absorption of rice starch from 400 nm to 900 nm. From the curve, the ratio of the two peak areas on the low wavelength side and the high wavelength side with 600 nm as the boundary is obtained, and it has been reported that this ratio is useful as an aging index of rice starch (Non-patent Document 7).

これらの従来の測定方法は、アミロペクチン鎖長分布などの正確な測定値が得られるものの、米澱粉における疾病予防機能の期待される難消化性澱粉含量を測定するものではない上に、時間と労力を要し、高速液体クロマトグラフなどの高価な装置を必要とするためにコストのかかる方法であり、育種選抜や食品加工の分野で簡易迅速かつ低コストで高精度に米澱粉の難消化性澱粉含量あるいは難消化性澱粉含量と関係の深い糖鎖画分含量を評価するためには、新たな測定方法が必要とされていた。   Although these conventional measurement methods provide accurate measurement values such as amylopectin chain length distribution, they do not measure the resistant starch content that is expected to prevent disease in rice starch. Is a costly method because it requires expensive equipment such as a high performance liquid chromatograph, and it is simple, quick, low cost and highly resistant to starch in the fields of breeding selection and food processing. In order to evaluate the sugar chain fraction content closely related to the content or resistant starch content, a new measurement method was required.

大坪研一、中村澄子、宇都宮一典、増田泰伸、辻 啓介:硬質米と糖尿病発症予防、実用化に向けた取り組み.食品工業, 53(14), 46-51, 2010.Kenichi Otsubo, Sumiko Nakamura, Kazunori Utsunomiya, Yasunobu Masuda, Keisuke Tsuji: Efforts to prevent and commercialize hard rice and diabetes. Food industry, 53 (14), 46-51, 2010. Ken’ichi Ohtsubo, Sumiko Nakamura, Keisuke Tsuji, Kazunori Utsunomiya, Yasunobu Masuda, Mineo Hasegawa: Possibility of diabetes prevention by high-amylose rice. Rice studies, present and future, Sankyosyuppan Inc., pp.109-115, 2012.Ken’ichi Ohtsubo, Sumiko Nakamura, Keisuke Tsuji, Kazunori Utsunomiya, Yasunobu Masuda, Mineo Hasegawa: Possibility of diabetes prevention by high-amylose rice.Rice studies, present and future, Sankyosyuppan Inc., pp.109-115, 2012. Masako Asaoka, Kazutoshi Okuno, Yasumi Sugimoto, Masahiro Yano, Takeshi Omura, and Hidetsugu Fuwa: Structure and properties of endosperm starch and wated soluble polysaccharides from sugary mutant of rice, Starch, 37, 364-366(11), 1985.Masako Asaoka, Kazutoshi Okuno, Yasumi Sugimoto, Masahiro Yano, Takeshi Omura, and Hidetsugu Fuwa: Structure and properties of endosperm starch and wated soluble polysaccharides from sugary mutant of rice, Starch, 37, 364-366 (11), 1985. Isao Hanashiro and Yasuhito Takeda: Examination of number average degree of polymerization and molar based distribution of amylose by fluorescent labeling with 2-aminopyridine. Carbohydrate Research, 306, 421-426, 1998.Isao Hanashiro and Yasuhito Takeda: Examination of number average degree of polymerization and molar based distribution of amylose by fluorescent labeling with 2-aminopyridine. Carbohydrate Research, 306, 421-426, 1998. Toshinari Igarashi, Isao Hanashiro, and Yasuhito Takeda:Molecular structures and some properties of rice starches from Hokkaido cultivars. J. Applied Glycoscience, 55, 5-12, 2008.Toshinari Igarashi, Isao Hanashiro, and Yasuhito Takeda: Molecular structures and some properties of rice starches from Hokkaido cultivars.J. Applied Glycoscience, 55, 5-12, 2008. Toshinari Igarashi, Masafumi Kinoshita, Hideki Kanda, Tomoko Nakamori, and Toshimi Kusume: Evaluation of hardness of waxy rice cake based on the amylopectin chain-length distribution. J. Applied Glycoscience, 55, 13-19, 2008.Toshinari Igarashi, Masafumi Kinoshita, Hideki Kanda, Tomoko Nakamori, and Toshimi Kusume: Evaluation of hardness of waxy rice cake based on the amylopectin chain-length distribution.J. Applied Glycoscience, 55, 13-19, 2008. 五十嵐俊成:北海道米澱粉の分子構造と性質.北海道立農業試験場報告, 127号,12-19, 2010.Toshinari Igarashi: Molecular structure and properties of Hokkaido rice starch. Hokkaido Agricultural Experiment Station Report, 127, 12-19, 2010.

本発明は、難消化性澱粉含量など、機能性に関係する米澱粉の特性をヨード比色分光測定によって簡易迅速、低コスト、かつ高精度に評価する方法を提供することを目的とする。   It is an object of the present invention to provide a method for simply and quickly evaluating low-cost and high-accuracy rice starch characteristics related to functionality, such as the content of resistant starch, by iodine colorimetric spectrometry.

上記の課題を解決すべく鋭意研究した結果、本発明者らは、米澱粉試料にヨード試薬を添加し、紫外可視分光測定によって得られる吸光度曲線を解析し、その解析値を推定式に当てはめることによって、難消化性澱粉含量あるいは難消化性澱粉含量と関係の深い糖鎖画分含量を簡易迅速、低コスト、かつ高精度に推定することができることを見い出し、本発明に想到した。   As a result of earnest research to solve the above problems, the present inventors added an iodine reagent to a rice starch sample, analyzed the absorbance curve obtained by ultraviolet-visible spectroscopy, and applied the analysis value to the estimation formula. Thus, the present inventors have found that the indigestible starch content or the content of sugar chain fraction deeply related to the indigestible starch content can be estimated simply, rapidly, at low cost and with high accuracy.

すなわち、本発明の米澱粉特性の評価方法は、ヨード試薬を添加した米澱粉の紫外領域から可視領域の吸光度曲線から得られる、可視領域の最大吸収波長における吸光度(Aλ max )、可視領域から紫外領域に長波長側から入射光の波長を走査して吸光度を測定したときの、可視領域の吸収が出現する波長から400nmまでの吸収曲線下部の面積(F1+F2)、可視領域の最大吸収波長から400nmまでの吸収曲線下部の面積(F2)のいずれかを使用した推定式によって難消化性澱粉含量を評価することを特徴とする。 That is, the method for evaluating the characteristics of rice starch of the present invention is based on the absorbance (Aλ max ) at the maximum absorption wavelength in the visible region, which is obtained from the absorbance curve from the ultraviolet region to the visible region of rice starch to which an iodine reagent is added. When the absorbance is measured by scanning the wavelength of the incident light from the long wavelength side into the region, the area under the absorption curve from the wavelength where absorption in the visible region appears to 400 nm (F1 + F2), 400 nm from the maximum absorption wavelength in the visible region It is characterized in that the resistant starch content is evaluated by an estimation formula using any of the areas under the absorption curve (F2) .

また、ヨード試薬を添加した米澱粉の紫外領域から可視領域の吸光度曲線から得られる、可視領域の最大吸収波長(λ max )、可視領域の最大吸収波長における吸光度(Aλ max )、可視領域から紫外領域に長波長側から入射光の波長を走査して吸光度を測定したときの、可視領域の吸収が出現する波長から400nmまでの吸収曲線下部の面積(F1+F2)、可視領域の最大吸収波長から400nmまでの吸収曲線下部の面積(F2)、400nmから可視領域の最大吸収波長のつぎに出現する吸光ピークの波長までの吸光度曲線下部の面積(F3)のいずれかを使用した推定式によってグルコースの重合度10の糖鎖画分の含量を評価することを特徴とする。 Further, the maximum absorption wavelength (λ max ) in the visible region, the absorbance (Aλ max ) at the maximum absorption wavelength in the visible region, obtained from the absorbance curve from the ultraviolet region to the visible region of rice starch added with an iodine reagent, from the visible region to the ultraviolet region When the absorbance is measured by scanning the wavelength of the incident light from the long wavelength side into the region, the area under the absorption curve from the wavelength where absorption in the visible region appears to 400 nm (F1 + F2), 400 nm from the maximum absorption wavelength in the visible region Polymerization of glucose by an estimation formula using either the area under the absorption curve (F2) up to 400 nm or the area under the absorbance curve from the absorption peak wavelength that appears next to the maximum absorption wavelength in the visible region (F3) It is characterized in that the content of the sugar chain fraction having a degree of 10 is evaluated.

また、ヨード試薬を添加した米澱粉の紫外領域から可視領域の吸光度曲線から得られる、可視領域の最大吸収波長における吸光度(Aλ  Further, the absorbance at the maximum absorption wavelength in the visible region (Aλ) obtained from the absorbance curve from the ultraviolet region to the visible region of rice starch to which an iodine reagent was added. maxmax )、可視領域から紫外領域に長波長側から入射光の波長を走査して吸光度を測定したときの、可視領域の吸収が出現する波長から400nmまでの吸収曲線下部の面積(F1+F2)、可視領域の吸収が出現する波長から可視領域の最大吸収波長までの吸収曲線下部の面積(F1)、可視領域の最大吸収波長から400nmまでの吸収曲線下部の面積(F2)、400nmから可視領域の最大吸収波長のつぎに出現する吸光ピークの波長までの吸光度曲線下部の面積(F3)のいずれかを使用した推定式によってグルコースの重合度22の糖鎖画分の含量を評価することを特徴とする。) When the absorbance is measured by scanning the wavelength of incident light from the long wavelength side from the visible region to the ultraviolet region, the area under the absorption curve from the wavelength at which the absorption in the visible region appears to 400 nm (F1 + F2), the visible region The area under the absorption curve (F1) from the wavelength at which absorption occurs to the maximum absorption wavelength in the visible region, the area (F2) under the absorption curve from the maximum absorption wavelength in the visible region to 400 nm, and the maximum absorption in the visible region from 400 nm The content of the sugar chain fraction having a polymerization degree of glucose of 22 is evaluated by an estimation formula using any of the areas (F3) under the absorbance curve up to the wavelength of the absorption peak appearing next to the wavelength.

また、ヨード試薬を添加した米澱粉の紫外領域から可視領域の吸光度曲線から得られる、可視領域の最大吸収波長(λ  Further, the maximum absorption wavelength (λ in the visible region) obtained from the absorbance curve from the ultraviolet region to the visible region of rice starch to which an iodine reagent is added. maxmax )を使用した推定式によって難消化性澱粉含量を評価する米澱粉特性の評価方法であって、) Is a method for evaluating the characteristics of rice starch, wherein the content of resistant starch is evaluated by an estimation formula using
難消化性澱粉含量の推定式がThe estimation formula for resistant starch content is
難消化性澱粉含量(%)=21.2×試料米のアミロース含量(%)/(可視領域の最大吸収波長(λResistant starch content (%) = 21.2 x Amylose content of sample rice (%) / (Maximum absorption wavelength in visible region (λ maxmax )(nm)−もち米の可視領域の最大吸収波長(nm))−3.50) (Nm)-Maximum absorption wavelength in the visible region of glutinous rice (nm))-3.50
であることを特徴とする。It is characterized by being.

本発明によれば、人の食後血糖上昇を緩やかにすることで糖尿病発症予防や肥満予防などの機能性が期待される難消化性澱粉の米における含量を、定温器と分光光度計のみを必要とする米澱粉のヨード比色分光測定によって、簡易迅速かつ低コストで測定することができる。   According to the present invention, it is necessary to use only an incubator and a spectrophotometer for the content of indigestible starch in rice that is expected to have functions such as prevention of diabetes and prevention of obesity by slowing the increase in postprandial blood glucose in humans. Can be measured easily and quickly at low cost.

また、本発明によれば、米澱粉のヨード比色分光測定によって重合度10又は重合度22の糖鎖画分の含量を推定することが可能となり、当該米試料の機能性についての可能性を推定することができる。   In addition, according to the present invention, it is possible to estimate the content of sugar chain fraction having a polymerization degree of 10 or a polymerization degree of 22 by iodine colorimetric spectroscopy measurement of rice starch, and the possibility of the functionality of the rice sample. Can be estimated.

さらに、簡易なヨード比色分光測定によって、従来のアミロース含量に加えて、アミロペクチンの構造についても情報が得られるため、当該試料米の品質特性をある程度推定することも可能となる。   Furthermore, in addition to the conventional amylose content, information on the structure of amylopectin can be obtained by simple iodine colorimetric spectroscopy, so that the quality characteristics of the sample rice can be estimated to some extent.

各種の試料米の難消化性澱粉含量を示すグラフである。It is a graph which shows the resistant starch content of various sample rice. 澱粉のヨード比色における分光特性である。It is a spectral characteristic in the iodine colorimetric color of starch. 高アミロース米およびモチ米の澱粉のヨード比色分光特性である。It is an iodine colorimetric spectral characteristic of high amylose rice and waxy rice starch. 良食味米および超硬質米の澱粉のヨード比色分光特性である。It is an iodine colorimetric spectral characteristic of starch of good taste rice and super hard rice. 各種の試料米のアミロース含量を示すグラフである。It is a graph which shows the amylose content of various sample rice. ヨード吸収曲線の解析方法を示す説明図である。It is explanatory drawing which shows the analysis method of an iodine absorption curve. 各種の試料米における澱粉ヨード比色の最大吸収波長(λmax)を示すグラフである。It is a graph which shows the maximum absorption wavelength ((lambda) max) of the starch iodine colorimetric in various sample rice. 各種試料米澱粉のヨード比色最大吸収波長における吸光度を示すグラフである。It is a graph which shows the light absorbency in the iodine colorimetric maximum absorption wavelength of various sample rice starch. 各種の米澱粉の分光測定におけるF1の面積を示すグラフである。It is a graph which shows the area of F1 in the spectroscopic measurement of various rice starch. 各種の米澱粉の分光測定におけるF2の面積を示すグラフである。It is a graph which shows the area of F2 in the spectroscopic measurement of various rice starch. 各種の米澱粉の分光測定におけるF1+F2の面積を示すグラフである。It is a graph which shows the area of F1 + F2 in the spectroscopic measurement of various rice starch. 難消化性澱粉と相関を示す新指標(New λmax)である。It is a new index (New λmax) showing a correlation with resistant starch. 米澱粉の分光特性に基づく糖鎖画分含量の推定式である。It is a formula for estimating the sugar chain fraction content based on the spectral characteristics of rice starch. 米澱粉の分光特性に基づく難消化性澱粉含量の推定式である。It is an estimation formula of resistant starch content based on spectral characteristics of rice starch. 短鎖糖鎖画分を変数とする難消化性澱粉の推定式である。It is an estimation formula for resistant starch using the short-chain sugar chain fraction as a variable.

本発明は、米澱粉のヨード比色分光特性に基づいて、難消化性澱粉含量及び難消化性澱粉と密接な関係のある糖鎖画分含量などの澱粉特性を簡易迅速かつ高精度で評価する技術に関する。   The present invention easily and quickly evaluates starch properties such as the resistant starch content and the sugar chain fraction content closely related to the resistant starch based on the iodine colorimetric spectral characteristics of rice starch. Regarding technology.

本発明における米澱粉とは、精米試料を脱脂・除タンパクしたものであり、低温下で希アルカリによってタンパク質を除去し、続いてエタノール及びアセトンによって脱脂したものを指すが、アルカリに替えてプロテアーゼなどによって除タンパクしても良く、熱ブタノールやヘキサンなどによって脱脂しても良い。   The rice starch in the present invention is a product obtained by defatting and deproteinizing a polished rice sample, which is obtained by removing protein with a dilute alkali at a low temperature and subsequently defatted with ethanol and acetone. The protein may be deproteinized by heating, or degreased by hot butanol or hexane.

本発明におけるヨード試薬とは、アミロースやアミロペクチンの長鎖にヨウ素を結合させることによって青紫色の発色を行うための試薬であり、ヨウ素2gおよびヨウ化カリウム20gを1Lの水に溶解したものを指す。   The iodo reagent in the present invention is a reagent for developing blue-violet color by binding iodine to a long chain of amylose or amylopectin, and refers to a solution in which 2 g of iodine and 20 g of potassium iodide are dissolved in 1 L of water. .

本発明における紫外可視分光測定とは、可視領域(380〜780nm)と、紫外領域(200〜380nm)の光を糊化澱粉水溶液に照射してその吸光度曲線を得ることを指し、広範囲の波長領域の光を連続的に入射して吸光度を測定した場合の可視領域における吸光度が最大になる波長を最大吸収波長(λmax)と呼ぶ。   The UV-visible spectroscopic measurement in the present invention refers to obtaining an absorbance curve by irradiating the gelatinized starch aqueous solution with light in the visible region (380 to 780 nm) and ultraviolet region (200 to 380 nm), and has a wide wavelength range. The wavelength at which the absorbance in the visible region when the light is continuously incident and the absorbance is measured is referred to as the maximum absorption wavelength (λmax).

本発明における重回帰分析とは、1つの目的変数を複数の説明変数で予測しようというもので、多変量解析の1種であり、どの説明変数が、どの程度目的変数に影響を与えているかを知る事ができる。たとえば3つの独立変数がある場合、重回帰式は以下の式となる。それぞれの独立変数にかかっている係数を「偏回帰係数」と呼ぶ。モデルの適合性は決定係数(重相関係数の2乗)で表され、分散分析で検定できる。   The multiple regression analysis in the present invention is to predict one objective variable with a plurality of explanatory variables, and is a kind of multivariate analysis. Which explanatory variable influences the objective variable to what extent. I can know. For example, when there are three independent variables, the multiple regression equation is as follows. The coefficient applied to each independent variable is called “partial regression coefficient”. The suitability of the model is expressed as a coefficient of determination (the square of the multiple correlation coefficient) and can be tested by analysis of variance.

本発明における澱粉特性とは、澱粉の機能上の特性を指し、たとえば摂食後の消化吸収性のような生理機能上の特性や、糊化澱粉の粘度特性のような物理的な特性を指す。   The starch characteristic in the present invention refers to a functional characteristic of starch, for example, a physiological characteristic such as digestion and absorption after feeding, and a physical characteristic such as viscosity characteristic of gelatinized starch.

本発明における難消化性澱粉とは、摂食後に人の胃や小腸まで消化・吸収されにくい澱粉を指し、澱粉分子が共有結合によって相互に架橋されている場合や、化学的に修飾されている場合、水素結合によって結晶化している場合、澱粉分子が構造的に他の素材で被覆されている場合、糊化澱粉が老化したものなどが挙げられ、食後血糖上昇が緩やかになる、食物繊維と同様に整腸効果があるなどと報告されている澱粉を指す。   The indigestible starch in the present invention refers to a starch that is difficult to digest and absorb to the human stomach and small intestine after feeding, and when starch molecules are mutually cross-linked by a covalent bond or chemically modified. In the case of crystallization by hydrogen bonding, when starch molecules are structurally covered with other materials, gelatinized starch is aged, etc. It also refers to starch that has been reported to have an intestinal effect.

本発明における糖鎖画分とは、澱粉を構成するアミロースやアミロペクチンがアミラーゼやイソアミラーゼによって部分分解を受けて形成されるグルコースの重合体を指し、ゲルろ過クロマトグラフィーなどの手法を用いることで、分子量の大小による分離・分画を行うことができる。   The sugar chain fraction in the present invention refers to a glucose polymer formed by partial decomposition of amylose or amylopectin constituting starch by amylase or isoamylase, and using a technique such as gel filtration chromatography, Separation and fractionation by molecular weight can be performed.

以下、実施例に基づいて本発明を詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples at all.

(試料米の難消化性澱粉含量の測定)
精米2gを10mLの0.1%水酸化ナトリウムに懸濁し、4℃で3時間、振とうし、除タンパクした。軽く遠心し、沈殿を3回純水で洗浄し、2回99%エタノールで洗浄し、次いでアセトンで洗浄して風乾し、試料澱粉とした。
(Measurement of resistant starch content of sample rice)
2 g of the polished rice was suspended in 10 mL of 0.1% sodium hydroxide and deproteinized by shaking at 4 ° C. for 3 hours. After light centrifugation, the precipitate was washed three times with pure water, twice with 99% ethanol, then washed with acetone and air-dried to obtain a sample starch.

乾物重量100mgの澱粉試料を試験管に取り、メガザイム社製レジスタントスターチ測定用キットを用いて、難消化性澱粉含量を測定した。結果は図1に示すとおりであり、EM174、越のかおり、北陸粉243号などが高い値を示した。   A starch sample having a dry matter weight of 100 mg was taken in a test tube, and the resistant starch content was measured using a resistant starch measurement kit manufactured by Megazyme. The results are as shown in FIG. 1, and EM174, Kaori Koshino, Hokuriku powder 243, etc. showed high values.

(鎖長の異なる糖鎖画分の定量)
実施例1で調製した澱粉試料4mgを蒸留水1.6mLに懸濁し、100℃で澱粉を糊化し、1M酢酸緩衝液pH3.5を16μL加え、pH3.5に調製した後、イソアミラーゼ(林原生化学研究所製)0.67μL(0.03U/mg)を加え、45℃で15時間反応させ、澱粉の1,6グルコシド結合を枝切りした。次いで、100℃で10分間加熱して酵素を失活させ、水中で冷却し、遠心濃縮機(トミー製CC−105)で乾燥試料とした。
(Quantification of sugar chain fractions with different chain lengths)
4 mg of the starch sample prepared in Example 1 was suspended in 1.6 mL of distilled water, the starch was gelatinized at 100 ° C., and 16 μL of 1M acetate buffer pH 3.5 was added to adjust the pH to 3.5. 0.67 μL (0.03 U / mg) was added and reacted at 45 ° C. for 15 hours to debranch the 1,6-glucoside bond of starch. Subsequently, the enzyme was inactivated by heating at 100 ° C. for 10 minutes, cooled in water, and used as a dry sample with a centrifugal concentrator (Tomy CC-105).

この試料にジメチルスルホキシド111μLを加えて加熱溶解した。これに蒸留水89μLと2−アミノピリジン200μLを加えて良く混合し、暗所で60℃、1時間インキュベートした。その後、シアノ水素化ホウ素ナトリウムを200μL加え、24時間インキュベートし、HPLC用試料とした。次にこの試料をメンブレンフィルター(ミリポア製、ポアサイズ0.2μm)で濾過し、濾液20μLを日本分光製HPLCに注入して分析を行った。カラムはSHODEXOHPAKSB−803HQとSHODEXOHPAKSB―802.5を連結し、蛍光検出器LP2020で検出した。米試料澱粉の糖鎖画分の測定結果を表1に示す。   To this sample, 111 μL of dimethyl sulfoxide was added and dissolved by heating. To this, 89 μL of distilled water and 200 μL of 2-aminopyridine were added and mixed well, and incubated at 60 ° C. for 1 hour in the dark. Thereafter, 200 μL of sodium cyanoborohydride was added and incubated for 24 hours to prepare a sample for HPLC. Next, this sample was filtered through a membrane filter (manufactured by Millipore, pore size 0.2 μm), and 20 μL of the filtrate was injected into HPLC manufactured by JASCO Corporation for analysis. The column was connected with SHODEXOHPAKSB-803HQ and SHODEXOHPAKSB-802.5 and detected with a fluorescence detector LP2020. The measurement results of the sugar chain fraction of the rice sample starch are shown in Table 1.

(米澱粉のヨード比色分光測定)
試料澱粉溶液の濃度はJulianoのヨード比色定量法に従って行い、まず200〜900nmのスキャンを行い、図2に示した、可視領域の最大吸収波長λmaxと、この波長での吸光度であるAλmax、400nmから低波長側の最初の最大吸収波長Bと400nmの面積をF1とし、同様に400nmからλmaxまでの面積をF2、λmaxから900nmまでの面積をF3として測定し、32品種の米澱粉における分光特性を評価した。測定例として、高アミロース米およびモチ米の測定例を図3に、良食味米の例およびアミロペクチン長鎖型の超硬質米の測定例を図4に示す。
(Iodine colorimetric spectrophotometry of rice starch)
The concentration of the sample starch solution was determined according to Juliano's iodine colorimetric method. First, a 200 to 900 nm scan was performed, and the maximum absorption wavelength λmax in the visible region and the absorbance at this wavelength, Aλmax, 400 nm, shown in FIG. The first maximum absorption wavelength B on the lower wavelength side and the area of 400 nm as F1, the area from 400 nm to λmax as F2, the area from λmax to 900 nm as F3, and the spectral characteristics of 32 types of rice starch Evaluated. As a measurement example, FIG. 3 shows a measurement example of high amylose rice and mochi rice, and FIG. 4 shows a measurement example of good taste rice and amylopectin long-chain ultra-hard rice.

(米澱粉のヨード比色分光測定結果の解析)
図5にJulianoの方法による各種の米のアミロース含量を示す。
(Analysis of iodine colorimetric spectroscopic measurement results of rice starch)
FIG. 5 shows the amylose content of various rices according to Juliano's method.

図6に新たなヨウ素吸収曲線の分析として、澱粉のヨード吸収曲線の値から、もち米のヨード吸収曲線の値との差を求め、この値とヨウ素結合量(アミロース含量)の比率をだし、この値をNew λmaxとした。   As an analysis of a new iodine absorption curve in FIG. 6, the difference between the iodine absorption curve value of glutinous rice is obtained from the value of the iodine absorption curve of starch, and the ratio of this value and the amount of iodine binding (amylose content) is calculated. This value was defined as New λmax.

ヨード比色分光測定における32品種の試料米のヨード吸収曲線の可視領域の最大吸収波長λmaxの測定値を図7に、それぞれの試料米の可視領域の最大吸収波長における吸光度(Aλmax)を図8に示す。λmaxの値では、高アミロース米の越のかおりが最も高く、アミロース含量がそれほど高くない日印交雑米のカルナローリ、台湾産米の香り米、アミロース含量の低い良食味米の中国産米88号、および北海道産米のゆめぴりか等が高い値を示した。Aλmaxの値では、北陸粉243号を除くAE米は非常に高い値を示し、インド型の夢十色、日印交雑米のホシユタカ、高アミロース米の越のかおりが高い値を示し、カルナローリ、ミズホチカラ等が、良食味米に比べてやや高い値を示した。   FIG. 7 shows measured values of the maximum absorption wavelength λmax in the visible region of the iodine absorption curves of 32 kinds of sample rice in iodine colorimetric spectrometry, and FIG. 8 shows the absorbance (Aλmax) at the maximum absorption wavelength in the visible region of each sample rice. Shown in In the value of λmax, the high amylose rice has the highest Koshi Kaori, Carnaloli of India-Japan hybrid rice not having a very high amylose content, Taiwanese rice fragrant rice, Chinese rice No. 88 of good taste rice with low amylose content, In addition, the value of Yumepirika from Hokkaido rice was high. As for the value of Aλmax, AE rice except Hokuriku Flour No. 243 shows a very high value, Indian type Yumeji, Hoshiyutaka of India-India hybrid rice, high amylose rice shows a high value, Carnaloli, Mizuhochikara etc. showed a slightly higher value than good-tasting rice.

また、各試料米のF1を図9に、F2を図10に、F1とF2の合計を図11に示す。   Moreover, F1 of each sample rice is shown in FIG. 9, F2 is shown in FIG. 10, and the total of F1 and F2 is shown in FIG.

次に表1の鎖長分布とヨウ素吸収曲線の各分析値、難消化性澱粉含量の相関分析を行った結果を表2に示す。DP7からDP12まで(重合度7から重合度12まで)の糖鎖画分の含量はF2と、DP12からDP16まで(重合度12から重合度16まで)の糖鎖画分の含量はAλmaxと、DP17からDP19まで(重合度17から重合度19まで)の糖鎖画分の含量はF1と、DP20からDP23まで(重合度20から重合度23まで)の糖鎖画分の含量はF2と、DP24(重合度24)以上の糖鎖画分の含量はAλmaxと、DP25からDP30まで(重合度25から重合度30まで)の糖鎖画分の含量はF2と最も高い相関を示した。この結果、ヨウ素吸収曲線のF2はアミロペクチンの中鎖画分と相関が高く、F1はDP18からDP23まで(重合度18から重合度23まで)のアミロペクチン中鎖画分と相関の高いことが確認できた。これとは相対的にλmaxはDP17からDP23まで(重合度17から重合度23まで)の画分とは相関がなく、短鎖のDP7からDP15まで(重合度7から重合度15まで)の画分とは5%の危険率で有意差を示した。   Next, Table 2 shows the results of the correlation analysis of the chain length distribution and iodine absorption curve analysis values shown in Table 1 and the resistant starch content. The content of the sugar chain fraction from DP7 to DP12 (polymerization degree 7 to polymerization degree 12) is F2, and the content of the sugar chain fraction from DP12 to DP16 (polymerization degree 12 to polymerization degree 16) is Aλmax, The content of the sugar chain fraction from DP17 to DP19 (degree of polymerization 17 to polymerization degree 19) is F1, and the content of the sugar chain fraction from DP20 to DP23 (degree of polymerization 20 to degree of polymerization 23) is F2. The content of the sugar chain fraction of DP24 (polymerization degree 24) or higher showed the highest correlation with Aλmax, and the content of the sugar chain fraction from DP25 to DP30 (polymerization degree 25 to polymerization degree 30) showed the highest correlation with F2. As a result, it can be confirmed that F2 in the iodine absorption curve has a high correlation with the medium chain fraction of amylopectin, and F1 has a high correlation with the medium chain fraction of DP18 to DP23 (degree of polymerization 18 to degree of polymerization 23). It was. Relative to this, λmax has no correlation with the fraction from DP17 to DP23 (polymerization degree 17 to polymerization degree 23), and is a short-chain DP7 to DP15 (polymerization degree 7 to polymerization degree 15). Minutes showed a significant difference with a risk rate of 5%.

難消化性澱粉と可視領域の最大吸収波長(λmax)、Aλmax、F1、F2、およびF1+F2との関係を表3に示す。難消化性澱粉含量と相関が最も高かったのはAλmaxであり、F2、F1+F2が1%の危険率で有意な相関を示した。   Table 3 shows the relationship between the resistant starch and the maximum absorption wavelength (λmax) in the visible region, Aλmax, F1, F2, and F1 + F2. Aλmax showed the highest correlation with the resistant starch content, and F2 and F1 + F2 showed a significant correlation with a risk rate of 1%.

図6で説明したNew λmaxを各種の試料米について測定した結果を図12に示す。通常のλmaxは、難消化性澱粉と相関を示さなかった(r=0.133)が、New λmaxの場合は、1%の危険率で有意な正の相関を示し(r=0.5967)、米澱粉のヨード比色分光測定の結果から、難消化性澱粉を推定するに当たって有望な指標と考えられた。   FIG. 12 shows the results of measuring New λmax described with reference to FIG. 6 for various sample rice. Normal λmax did not correlate with resistant starch (r = 0.133), but New λmax showed a significant positive correlation with 1% risk (r = 0.5967) From the results of iodine colorimetric spectroscopy, it was considered a promising index for estimating resistant starch.

(ヨード比色分光測定結果に基づく糖鎖画分含量の推定式の作成)
図13のAとBに示すように、10品種のヨウ素吸収曲線の分析値を説明変数とし、目的変数をAではDP10(重合度10)の糖鎖画分含量、BではDP22(重合度22)の糖鎖画分とし、重回帰分析を行って推定式を作成した結果、これらの推定式の重相関係数はAで0.9467、Bで0.9062示し、きわめて相関係数の高い推定式の作成が可能となった。
(Preparation formula for sugar chain fraction content based on iodine colorimetric spectroscopic measurement results)
As shown in FIGS. 13A and 13B, analysis values of iodine absorption curves of 10 varieties are used as explanatory variables. The objective variable is DP10 (degree of polymerization 10) for the sugar chain fraction content in A, and DP22 (degree of polymerization 22 in B). As a result of multiple regression analysis and formulas for estimation, the multiple correlation coefficients of these estimation formulas were 0.9467 for A and 0.9062 for B, creating an estimation formula with a very high correlation coefficient. Became possible.

(ヨード比色分光測定結果に基づく難消化性澱粉含量の推定式の作成)
実施例4の結果を踏まえて、New λmaxを説明変数に加えて重回帰分析を行った結果を図14に示す。図のAとBに示すように、難消化性澱粉含量を目的変数とし、12品種のヨウ素吸収曲線の分析値を説明変数として、重回帰分析を行って推定式を作成した結果、Aに示すように、決定係数0.9332の検量線が得られた。この推定式について、Aとは異なる10品種によって未知試料への適用性の検定を行った結果、Bに示すように、決定係数0.9326を示し、きわめて相関係数の高く、しかも未知試料への適用性も高い推定式であることが示された。
(Preparation formula for resistant starch content based on iodine colorimetric spectroscopic measurement results)
Based on the results of Example 4, the results of multiple regression analysis with New λmax added to the explanatory variables are shown in FIG. As shown in A and B of the figure, the results of creating an estimation formula by performing multiple regression analysis using the resistant starch content as an objective variable and the analysis values of iodine absorption curves of 12 varieties as explanatory variables are shown in A. Thus, a calibration curve with a coefficient of determination of 0.9332 was obtained. As a result of testing the applicability to unknown samples with 10 varieties different from A, this estimation formula shows a coefficient of determination of 0.9326 as shown in B, and has a very high correlation coefficient and is applicable to unknown samples. It was shown that this is an estimation formula with high characteristics.

比較のために、特許文献1に示す五十嵐らの方法によってFr.I/Fr.IIを求め、本実施例の難消化性澱粉含量との相関を調べたところ、r=0.58であり、このことから、本発明の推定式が、従来技術に比べて著しく優れていることが明らかになった。   For comparison, Fr.I / Fr.II was obtained by the method of Igarashi et al. Shown in Patent Document 1 and the correlation with the indigestible starch content of this example was found to be r = 0.58. Thus, it has been clarified that the estimation formula of the present invention is remarkably superior to the prior art.

(難消化性澱粉含量の推定式の作成―その2―)
図15に示すように、難消化性澱粉含量を目的変数とし、9品種のヨウ素吸収曲線の分析値を説明変数として、重回帰分析を行って推定式を作成した結果、図に示すように、決定係数0.8523の検量線が得られた。
(Preparation formula for resistant starch content-Part 2-)
As shown in FIG. 15, as a result of creating an estimation formula by performing multiple regression analysis using the resistant starch content as an objective variable, and analyzing values of iodine absorption curves of nine varieties as explanatory variables, as shown in the figure, A calibration curve with a coefficient of determination of 0.8523 was obtained.

Claims (4)

ヨード試薬を添加した米澱粉の紫外領域から可視領域の吸光度曲線から得られる、可視領域の最大吸収波長における吸光度(Aλ max )、可視領域から紫外領域に長波長側から入射光の波長を走査して吸光度を測定したときの、可視領域の吸収が出現する波長から400nmまでの吸収曲線下部の面積(F1+F2)、可視領域の最大吸収波長から400nmまでの吸収曲線下部の面積(F2)のいずれかを使用した推定式によって難消化性澱粉含量を評価することを特徴とする米澱粉特性の評価方法。 Scan the absorbance (Aλ max ) at the maximum absorption wavelength in the visible region, obtained from the absorbance curve from the ultraviolet region to the visible region of rice starch to which the iodine reagent is added, and the wavelength of incident light from the long wavelength side from the visible region to the ultraviolet region. When the absorbance is measured, either the area under the absorption curve from the wavelength at which absorption in the visible region appears to 400 nm (F1 + F2) or the area under the absorption curve from the maximum absorption wavelength in the visible region to 400 nm (F2) A method for evaluating the characteristics of rice starch, wherein the content of indigestible starch is evaluated by an estimation formula using a rice cake. ヨード試薬を添加した米澱粉の紫外領域から可視領域の吸光度曲線から得られる、可視領域の最大吸収波長(λ max )、可視領域の最大吸収波長における吸光度(Aλ max )、可視領域から紫外領域に長波長側から入射光の波長を走査して吸光度を測定したときの、可視領域の吸収が出現する波長から400nmまでの吸収曲線下部の面積(F1+F2)、可視領域の最大吸収波長から400nmまでの吸収曲線下部の面積(F2)、400nmから可視領域の最大吸収波長のつぎに出現する吸光ピークの波長までの吸光度曲線下部の面積(F3)のいずれかを使用した推定式によってグルコースの重合度10の糖鎖画分の含量を評価することを特徴とする米澱粉特性の評価方法。 The maximum absorption wavelength in the visible region (λ max ), the absorbance at the maximum absorption wavelength in the visible region (Aλ max ), obtained from the absorbance curve from the ultraviolet region to the visible region of rice starch added with an iodine reagent, from the visible region to the ultraviolet region When the absorbance is measured by scanning the wavelength of the incident light from the long wavelength side, the area under the absorption curve from the wavelength where absorption in the visible region appears to 400 nm (F1 + F2), the maximum absorption wavelength from the visible region to 400 nm The degree of polymerization of glucose by an estimation formula using either the area under the absorption curve (F2), the area under the absorbance curve from 400 nm to the wavelength of the absorption peak appearing next to the maximum absorption wavelength in the visible region (F3) A method for evaluating the characteristics of rice starch, characterized by evaluating the content of a 0 sugar chain fraction. ヨード試薬を添加した米澱粉の紫外領域から可視領域の吸光度曲線から得られる、可視領域の最大吸収波長における吸光度(AλThe absorbance at the maximum absorption wavelength in the visible region (Aλ) obtained from the absorbance curve from the ultraviolet region to the visible region of rice starch to which an iodine reagent was added. maxmax )、可視領域から紫外領域に長波長側から入射光の波長を走査して吸光度を測定したときの、可視領域の吸収が出現する波長から400nmまでの吸収曲線下部の面積(F1+F2)、可視領域の吸収が出現する波長から可視領域の最大吸収波長までの吸収曲線下部の面積(F1)、可視領域の最大吸収波長から400nmまでの吸収曲線下部の面積(F2)、400nmから可視領域の最大吸収波長のつぎに出現する吸光ピークの波長までの吸光度曲線下部の面積(F3)のいずれかを使用した推定式によってグルコースの重合度22の糖鎖画分の含量を評価することを特徴とする米澱粉特性の評価方法。) When the absorbance is measured by scanning the wavelength of incident light from the long wavelength side from the visible region to the ultraviolet region, the area under the absorption curve from the wavelength at which the absorption in the visible region appears to 400 nm (F1 + F2), the visible region The area under the absorption curve (F1) from the wavelength at which absorption occurs to the maximum absorption wavelength in the visible region, the area (F2) under the absorption curve from the maximum absorption wavelength in the visible region to 400 nm, and the maximum absorption in the visible region from 400 nm Rice characterized by evaluating the content of a sugar chain fraction having a polymerization degree of glucose of 22 by an estimation formula using any of the areas (F3) under the absorbance curve up to the wavelength of the absorption peak appearing next to the wavelength Evaluation method of starch properties. ヨード試薬を添加した米澱粉の紫外領域から可視領域の吸光度曲線から得られる、可視領域の最大吸収波長(λMaximum absorption wavelength in the visible region (λ) obtained from the absorbance curve from the ultraviolet region to the visible region of rice starch with iodine reagent added. maxmax )を使用した推定式によって難消化性澱粉含量を評価する米澱粉特性の評価方法であって、) Is a method for evaluating the characteristics of rice starch, wherein the content of resistant starch is evaluated by an estimation formula using
難消化性澱粉含量の推定式がThe estimation formula for resistant starch content is
難消化性澱粉含量(%)=21.2×試料米のアミロース含量(%)/(可視領域の最大吸収波長(λResistant starch content (%) = 21.2 x Amylose content of sample rice (%) / (Maximum absorption wavelength in visible region (λ maxmax )(nm)−もち米の可視領域の最大吸収波長(nm))−3.50) (Nm)-Maximum absorption wavelength in the visible region of glutinous rice (nm))-3.50
であることを特徴とする米澱粉特性の評価方法。The method for evaluating the characteristics of rice starch,
JP2013188951A 2013-09-12 2013-09-12 Evaluation method of rice starch properties by iodometric colorimetry Expired - Fee Related JP6187062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013188951A JP6187062B2 (en) 2013-09-12 2013-09-12 Evaluation method of rice starch properties by iodometric colorimetry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013188951A JP6187062B2 (en) 2013-09-12 2013-09-12 Evaluation method of rice starch properties by iodometric colorimetry

Publications (2)

Publication Number Publication Date
JP2015055549A JP2015055549A (en) 2015-03-23
JP6187062B2 true JP6187062B2 (en) 2017-08-30

Family

ID=52820039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013188951A Expired - Fee Related JP6187062B2 (en) 2013-09-12 2013-09-12 Evaluation method of rice starch properties by iodometric colorimetry

Country Status (1)

Country Link
JP (1) JP6187062B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20165270A (en) * 2016-03-31 2017-10-01 Kemira Oyj Method and system for determining starch in a sample

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304698A (en) * 1998-04-16 1999-11-05 Natl Food Res Inst Method and device for measuring amylose content in rice
JP2005345432A (en) * 2004-06-07 2005-12-15 Toshinari Igarashi Method for estimating physical characteristics and eating quality of starch by iodine absorption multispectral measurement
US8153062B2 (en) * 2007-03-30 2012-04-10 Teledyne Scientific & Imaging, Llc Analyte detection via electrochemically transported and generated reagent
JP2014522404A (en) * 2011-05-31 2014-09-04 ノース・キャロライナ・ステイト・ユニヴァーシティ Bacteriochlorinimide

Also Published As

Publication number Publication date
JP2015055549A (en) 2015-03-23

Similar Documents

Publication Publication Date Title
Butardo et al. Improving rice grain quality: State-of-the-art and future prospects
Fitzgerald et al. Addressing the dilemmas of measuring amylose in rice
Liu et al. Comparison of the HPLC method and FT-NIR analysis for quantification of glucose, fructose, and sucrose in intact apple fruits
Chung et al. Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches
Collado et al. Genetic variation in the physical properties of sweet potato starch
CN104833671B (en) A kind of assay method of the absolute amylose content of rice
Stawski New determination method of amylose content in potato starch
Knutson Evaluation of variations in amylose–iodine absorbance spectra
Sit et al. Physicochemical, functional, textural and colour characteristics of starches isolated from four taro cultivars of North‐E ast India
Ryu et al. Effects of barley and oat β-glucan structures on their rheological and thermal characteristics
Ringsted et al. Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy
Lu et al. The synergistic effects of amylose and phosphorus on rheological, thermal and nutritional properties of potato starch and gel
Clerici et al. Identification and analysis of starch
Ottenhof et al. Comparative study of the retrogradation of intermediate water content waxy maize, wheat, and potato starches
Garófalo et al. Wheat flour non-starch polysaccharides and their effect on dough rheological properties
Zhang et al. Synthesis and structure characterization of sulfated galactomannan from fenugreek gum
JP6650555B2 (en) Evaluation method of rice starch characteristics by gelatinization viscosity characteristics
Liu et al. An improved method for quantitative analysis of total fructans in plant tissues
CN106124640B (en) A kind of method for measuring amylose in rice and amylopectin content with half
Hódsági et al. Investigations of native and resistant starches and their mixtures using near-infrared spectroscopy
Du et al. Quality evaluation systems and methods of the whole making process of Asian noodles: A review
JP2015055548A (en) Method of evaluating rice starch characteristic based on gelatinization and viscosity characteristics
JP6187062B2 (en) Evaluation method of rice starch properties by iodometric colorimetry
Cozzolino et al. An attenuated total reflectance mid infrared (ATR-MIR) spectroscopy study of gelatinization in barley
Pezzotti et al. Raman spectroscopic analysis of polysaccharides in popular Japanese rice cultivars

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160909

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20161214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170717

R150 Certificate of patent or registration of utility model

Ref document number: 6187062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees