JP2015055548A - Method of evaluating rice starch characteristic based on gelatinization and viscosity characteristics - Google Patents

Method of evaluating rice starch characteristic based on gelatinization and viscosity characteristics Download PDF

Info

Publication number
JP2015055548A
JP2015055548A JP2013188950A JP2013188950A JP2015055548A JP 2015055548 A JP2015055548 A JP 2015055548A JP 2013188950 A JP2013188950 A JP 2013188950A JP 2013188950 A JP2013188950 A JP 2013188950A JP 2015055548 A JP2015055548 A JP 2015055548A
Authority
JP
Japan
Prior art keywords
content
rice starch
rice
starch
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013188950A
Other languages
Japanese (ja)
Inventor
大坪 研一
Kenichi Otsubo
研一 大坪
中村 澄子
Sumiko Nakamura
澄子 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University NUC
Original Assignee
Niigata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University NUC filed Critical Niigata University NUC
Priority to JP2013188950A priority Critical patent/JP2015055548A/en
Publication of JP2015055548A publication Critical patent/JP2015055548A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of simply and promptly evaluating functionality-related rice starch characteristics such as an indigestible starch content at low cost with high accuracy by using gelatinization and viscosity characteristics.SOLUTION: Rice starch characteristics are evaluated by a multiple regression analysis using gelatinization and viscosity characteristic values of rice powder or rice starch as explanatory variables. The rice starch characteristics include an indigestible starch content, a sugar chain fraction content of a glucose polymerization degree 10 or 22, an amylose content, and an amylopectin chain length distribution. As the explanatory variables of the multiple regression analysis, one type or two or more types of characteristic values selected from among a group consisting of a gelatinization start temperature, a highest viscosity, a lowest viscosity, a final viscosity, a breakdown, a setback, a consistency, a new gelatinization temperature are used.

Description

本発明は、米澱粉の糊化粘度特性に基づいて、難消化性澱粉含量および難消化性澱粉と密接な関係のある糖鎖画分含量などの米澱粉特性を簡易迅速かつ高精度で評価する方法に関する。   The present invention evaluates rice starch characteristics such as resistant starch content and sugar chain fraction content closely related to resistant starch based on the gelatinized viscosity characteristics of rice starch easily and quickly with high accuracy. Regarding the method.

近年、わが国は少子高齢化社会となり、機能性成分を多く含む食事によって健康の維持増進、疾病予防を図る必要がある。   In recent years, Japan has become a society with a declining birthrate and an aging society, and it is necessary to promote health maintenance and disease prevention with a diet rich in functional ingredients.

澱粉のアミロース含量の高い米やアミロペクチン長鎖の多い米は、難消化性であり、食後の血糖上昇が緩やかで、糖尿病発症の予防が期待されている(非特許文献1、2)ことから、各種の米の難消化性澱粉及び関連糖鎖画分含量を簡易迅速かつ高精度に測定する技術の開発はきわめて重要である。   Rice with a high amylose content of starch and rice with a long amylopectin chain are indigestible, have a slow increase in blood sugar after meals, and are expected to prevent the onset of diabetes (Non-Patent Documents 1 and 2). It is extremely important to develop a technology that can easily and quickly measure the content of resistant starch and related sugar chain fractions in various rice.

従来、米澱粉のアミロペクチン鎖長分布は、イソアミラーゼによって枝切りした後に高速液体クロマトグラフによって測定されてきた(非特許文献3)。   Conventionally, the amylopectin chain length distribution of rice starch has been measured by high performance liquid chromatography after debranching with isoamylase (Non-patent Document 3).

五十嵐らは、蛍光標識ゲルろ過法によって分析した米澱粉のアミロース分子量分布やアミロペクチン鎖長分布が米澱粉の熱糊化特性や食味に影響すると報告している(非特許文献4)。   Igarashi et al. Reported that the amylose molecular weight distribution and amylopectin chain length distribution of rice starch analyzed by fluorescence-labeled gel filtration affect the gelatinization characteristics and taste of rice starch (Non-Patent Document 4).

また、五十嵐らは、蛍光標識ゲルろ過法によって分析したもち米のアミロペクチン単位鎖長分布が餅の硬化性に強く影響すること(非特許文献5)および400nmから900nmの米澱粉のヨード比色吸収曲線から600nmを境界として低波長側と高波長側の2つのピーク面積の比率を求め、この比率が米澱粉の老化性指標として有用であることを報告している(非特許文献6)。   In addition, Igarashi et al. Show that the amylopectin unit chain length distribution of glutinous rice analyzed by fluorescence-labeled gel filtration strongly affects the curability of rice bran (Non-patent Document 5) and the iodometric color absorption of 400-900 nm rice starch. From the curve, the ratio of the two peak areas on the low wavelength side and the high wavelength side with 600 nm as a boundary is obtained, and it has been reported that this ratio is useful as an aging index of rice starch (Non-Patent Document 6).

これらの従来の測定方法は、アミロペクチン鎖長分布などの正確な測定値が得られるものの、米澱粉における疾病予防機能の期待される難消化性澱粉含量を測定するものではない上に、時間と労力を要し、高速液体クロマトグラフなどの高価な装置を必要とするためにコストのかかる方法であり、育種選抜や食品加工の分野で簡易迅速かつ低コストで高精度に米澱粉の難消化性澱粉含量あるいは難消化性澱粉含量と関係の深い糖鎖画分含量を評価するためには、新たな測定方法が必要とされていた。   Although these conventional measurement methods provide accurate measurement values such as amylopectin chain length distribution, they do not measure the resistant starch content that is expected to prevent disease in rice starch. Is a costly method because it requires expensive equipment such as a high performance liquid chromatograph, and it is simple, quick, low cost and highly resistant to starch in the fields of breeding selection and food processing. In order to evaluate the sugar chain fraction content closely related to the content or resistant starch content, a new measurement method was required.

また、穀類の食品物性値を表示する糊化特性測定装置として、大坪らは、特許を出願した(特許文献1)。   Moreover, Otsubo et al. Filed a patent (Patent Document 1) as a gelatinization characteristic measuring device for displaying food property values of cereals.

しかしながら、特許文献1に記載された発明は、糊化特性を変数とする推定式を用いるものであるが、推定の対象が米における米飯物性や小麦における生麺の硬さなどの食品物性であり、難消化性澱粉含量や難消化性澱粉と密接に関係する糖鎖画分含量を推定するものではなかった。   However, although the invention described in Patent Document 1 uses an estimation formula with gelatinization characteristics as a variable, the object of estimation is food physical properties such as rice physical properties in rice and raw noodle hardness in wheat. However, it did not estimate the content of indigestible starch or the content of sugar chain fraction closely related to indigestible starch.

特許第3908227号公報Japanese Patent No. 3908227

大坪研一、中村澄子、宇都宮一典、増田泰伸、辻 啓介:硬質米と糖尿病発症予防、実用化に向けた取り組み.食品工業, 53(14), 46-51, 2010.Kenichi Otsubo, Sumiko Nakamura, Kazunori Utsunomiya, Yasunobu Masuda, Keisuke Tsuji: Efforts to prevent and commercialize hard rice and diabetes. Food industry, 53 (14), 46-51, 2010. Ken’ichi Ohtsubo, Sumiko Nakamura, Keisuke Tsuji, Kazunori Utsunomiya, Yasunobu Masuda, Mineo Hasegawa: Possibility of diabetes prevention by high-amylose rice. Rice studies, present and future, Sankyosyuppan Inc., pp.109-115, 2012.Ken’ichi Ohtsubo, Sumiko Nakamura, Keisuke Tsuji, Kazunori Utsunomiya, Yasunobu Masuda, Mineo Hasegawa: Possibility of diabetes prevention by high-amylose rice.Rice studies, present and future, Sankyosyuppan Inc., pp.109-115, 2012. Masako Asaoka, Kazutoshi Okuno, Yasumi Sugimoto, Masahiro Yano, Takeshi Omura, and Hidetsugu Fuwa: Structure and properties of endosperm starch and wated soluble polysaccharides from sugary mutant of rice, Starch, 37, 364-366(11), 1985.Masako Asaoka, Kazutoshi Okuno, Yasumi Sugimoto, Masahiro Yano, Takeshi Omura, and Hidetsugu Fuwa: Structure and properties of endosperm starch and wated soluble polysaccharides from sugary mutant of rice, Starch, 37, 364-366 (11), 1985. Toshinari Igarashi, Isao Hanashiro, and Yasuhito Takeda:Molecular structures and some properties of rice starches from Hokkaido cultivars. J. Applied Glycoscience, 55, 5-12, 2008.Toshinari Igarashi, Isao Hanashiro, and Yasuhito Takeda: Molecular structures and some properties of rice starches from Hokkaido cultivars.J. Applied Glycoscience, 55, 5-12, 2008. Toshinari Igarashi, Masafumi Kinoshita, Hideki Kanda, Tomoko Nakamori, and Toshimi Kusume: Evaluation of hardness of waxy rice cake based on the amylopectin chain-length distribution. J. Applied Glycoscience, 55, 13-19, 2008.Toshinari Igarashi, Masafumi Kinoshita, Hideki Kanda, Tomoko Nakamori, and Toshimi Kusume: Evaluation of hardness of waxy rice cake based on the amylopectin chain-length distribution.J. Applied Glycoscience, 55, 13-19, 2008. 五十嵐俊成:北海道米澱粉の分子構造と性質.北海道立農業試験場報告, 127号,12-19, 2010.Toshinari Igarashi: Molecular structure and properties of Hokkaido rice starch. Hokkaido Agricultural Experiment Station Report, 127, 12-19, 2010.

本発明は、難消化性澱粉含量など、機能性に関係する米澱粉特性を糊化粘度特性によって簡易迅速、低コスト、かつ高精度に評価する方法を提供することを目的とする。   It is an object of the present invention to provide a method for evaluating rice starch characteristics related to functionality such as resistant starch content easily, quickly, at low cost, and with high accuracy by gelatinization viscosity characteristics.

上記の課題を解決すべく鋭意研究した結果、本発明者らは、米粉あるいは米澱粉試料を解析し、その解析値を推定式に当てはめることによって、難消化性澱粉含量あるいは難消化性澱粉含量と関係の深い糖鎖画分含量を簡易迅速、低コスト、かつ高精度に推定することができることを見い出し、本発明に想到した。   As a result of diligent research to solve the above problems, the present inventors analyzed rice flour or rice starch samples, and applied the analytical values to the estimation formula to obtain the resistant starch content or resistant starch content. The present inventors have found that the sugar chain fraction content closely related can be estimated easily, quickly, at low cost and with high accuracy, and have arrived at the present invention.

すなわち、本発明の米澱粉特性の評価方法は、米粉又は米澱粉の糊化粘度特性値を説明変数とする重回帰分析によって米澱粉特性を評価することを特徴とする。   That is, the rice starch characteristic evaluation method of the present invention is characterized in that the rice starch characteristic is evaluated by multiple regression analysis using rice flour or the gelatinized viscosity characteristic value of rice starch as an explanatory variable.

また、米澱粉特性が難消化性澱粉含量であることを特徴とする。   Moreover, the rice starch characteristic is characterized by the indigestible starch content.

また、米澱粉特性が、グルコースの重合度10又は重合度22の糖鎖画分の含量であることを特徴とする。   Moreover, the rice starch characteristic is the content of sugar chain fraction having a polymerization degree of glucose of 10 or a polymerization degree of 22.

また、米澱粉特性が、アミロース含量であることを特徴とする。   The rice starch characteristic is characterized by amylose content.

また、米澱粉特性が、アミロペクチンの鎖長分布であることを特徴とする。   Moreover, the rice starch characteristic is characterized by the chain length distribution of amylopectin.

また、重回帰分析の説明変数として、糊化粘度特性値のうちの、糊化開始温度、最高粘度、最低粘度、最終粘度、ブレークダウン、セットバック、コンシステンシー、新糊化温度のうちの1種類又は2種類以上を使用することを特徴とする。   In addition, as an explanatory variable for multiple regression analysis, one of the gelatinization viscosity characteristic values among the gelatinization start temperature, maximum viscosity, minimum viscosity, final viscosity, breakdown, setback, consistency, and new gelatinization temperature. It is characterized by using a kind or two or more kinds.

また、重合度10の糖鎖画分の含量の推定式が以下の式であることを特徴とする。   Moreover, the estimation formula of the content of the sugar chain fraction having a polymerization degree of 10 is characterized by the following formula.

また、重合度22の糖鎖画分の含量の推定式が以下の式であることを特徴とする。   Further, the estimation formula for the content of the sugar chain fraction having a degree of polymerization of 22 is the following formula.

また、難消化性澱粉含量の推定式が以下の式であることを特徴とする。   Moreover, the estimation formula of the resistant starch content is the following formula.

また、難消化性澱粉含量の推定式が以下の式であることを特徴とする。   Moreover, the estimation formula of the resistant starch content is the following formula.

また、難消化性澱粉含量の推定式が以下の式であることを特徴とする。   Moreover, the estimation formula of the resistant starch content is the following formula.

また、難消化性澱粉含量の推定式が以下の式であることを特徴とする。   Moreover, the estimation formula of the resistant starch content is the following formula.

また、アミロース含量の推定式が以下の式であることを特徴とする。   The amylose content estimation formula is characterized by the following formula.

本発明によれば、人の食後血糖上昇を緩やかにすることで糖尿病発症予防や肥満予防などの機能性が期待される難消化性澱粉の米における含量を、糊化粘度測定装置のみを必要とする米粉又は米澱粉の糊化粘度測定によって、簡易迅速かつ低コストで評価することができる。   According to the present invention, the content of indigestible starch in rice that is expected to have functions such as prevention of diabetes and prevention of obesity by slowing the increase in postprandial blood glucose of a person, only a gelatinization viscosity measuring device is required. By measuring the gelatinization viscosity of rice flour or rice starch to be evaluated, it can be easily and quickly evaluated at low cost.

また、本発明によれば、米粉又は米澱粉の糊化粘度測定によって重合度10又は重合度22の糖鎖画分の含量を推定することが可能となり、当該米試料の機能性についての可能性を推定することができる。   Further, according to the present invention, it is possible to estimate the content of sugar chain fraction having a polymerization degree of 10 or a polymerization degree of 22 by measuring gelatinization viscosity of rice flour or rice starch, and the possibility of functionality of the rice sample. Can be estimated.

さらに、簡易な糊化粘度測定によって、従来のアミロース含量に加えて、アミロペクチンの構造についても情報が得られるため、当該試料米の品質特性をある程度推定することも可能となる。   In addition to the conventional amylose content, information on the structure of amylopectin can also be obtained by simple gelatinization viscosity measurement, so that the quality characteristics of the sample rice can be estimated to some extent.

各種の試料米のアミロース含量を示すグラフである。It is a graph which shows the amylose content of various sample rice. 各種の試料米の難消化性澱粉含量を示すグラフである。It is a graph which shows the resistant starch content of various sample rice. 糊化粘度特性を変数とする重回帰分析によるアミロース含量の推定式である。It is an estimation formula of amylose content by multiple regression analysis using gelatinization viscosity characteristics as a variable. 糊化粘度特性による難消化性澱粉(RS)含量の推定式である。It is an estimation formula of resistant starch (RS) content by gelatinization viscosity characteristic. 糊化粘度特性による難消化性澱粉(RS)含量の推定式(その2)である。It is the estimation formula (the 2) of indigestible starch (RS) content by gelatinization viscosity characteristic. 糊化粘度特性による糖鎖画分含量の推定式である。It is an estimation formula of sugar chain fraction content by gelatinization viscosity characteristics. アミロペクチン短鎖及び糊化特性値による難消化性澱粉の推定式である。It is an estimation formula of resistant starch by amylopectin short chain and gelatinization characteristic value. 新糊化温度を変数とする難消化性澱粉含量の推定式である。It is an estimation formula of resistant starch content with the new gelatinization temperature as a variable.

本発明は、米粉又は米澱粉の糊化粘度特性に基づいて、難消化性澱粉含量及び難消化性澱粉と密接な関係のある糖鎖画分含量などの澱粉特性を簡易迅速かつ高精度で評価する技術に関する。   The present invention simply and quickly evaluates starch properties such as resistant starch content and sugar chain fraction content closely related to resistant starch based on the gelatinization viscosity characteristics of rice flour or rice starch. Related to technology.

本発明における米粉とは、一般の日本型米あるいはインド型米、最近新たに育成された新形質米、さらにはアミロペクチン長鎖型の米の玄米あるいは精白米を、衝撃式粉砕機やロール式粉砕機あるいは気流粉砕機などを用いて粉砕することによって粉末化したものを指す。   The rice flour in the present invention refers to general Japanese rice or Indian rice, newly cultivated new trait rice, and brown rice or milled rice of amylopectin long-chain rice. It is a powder that has been pulverized by using a pulverizer or an airflow pulverizer.

本発明における米澱粉とは、精米試料を脱脂・除タンパクしたものであり、低温下で希アルカリによってタンパク質を除去し、続いてエタノール及びアセトンによって脱脂したものを指すが、アルカリに替えてプロテアーゼなどによって除タンパクしても良く、熱ブタノールやヘキサンなどによって脱脂しても良い。   The rice starch in the present invention is a product obtained by defatting and deproteinizing a polished rice sample, which is obtained by removing protein with a dilute alkali at a low temperature and subsequently defatted with ethanol and acetone. The protein may be deproteinized by heating, or degreased by hot butanol or hexane.

本発明における糊化粘度特性は、米粉あるいは米澱粉を試料とし、フォス・ジャパン製のラピッドビスコアナライザー(RVA)やブラベンダー製のアミログラフ、微量ビスコグラフ、アントンパール製のレオメーターなど、一般の回転式粘度測定装置を使用し、水または他の分散媒中に試料を懸濁し、撹拌しながら温度を上昇、保持、あるいは下降させ、その間の溶液または懸濁液の粘度を回転抵抗値として検出することによって測定され、糊化開始温度、最高粘度、最低粘度、最終粘度あるいはブレークダウン(最高粘度と最低粘度の差)、セットバック(最終粘度と最高粘度の差)、コンシステンシー(最終粘度と最低粘度の差)、新糊化温度(試料米の糊化温度−もち米の糊化温度)/試料米のアミロース含量)などのパラメーターとして表現される特性を指す。   The gelatinization viscosity characteristics in the present invention are obtained by using rice flour or rice starch as a sample, and a general rotation such as a rapid visco analyzer (RVA) manufactured by Foss Japan, an amylograph manufactured by Brabender, a trace viscograph, and a rheometer manufactured by Anton Paar. Suspend a sample in water or other dispersion medium using a viscometer, and increase, hold, or decrease the temperature while stirring, and detect the viscosity of the solution or suspension as a rotational resistance value Pasting start temperature, maximum viscosity, minimum viscosity, final viscosity or breakdown (difference between maximum viscosity and minimum viscosity), setback (difference between final viscosity and maximum viscosity), consistency (final viscosity and minimum viscosity) Parameters such as viscosity difference), new gelatinization temperature (gelatinization temperature of sample rice-gelatinization temperature of glutinous rice) / amylose content of sample rice) And refers to the property to be expressed.

本発明における重回帰分析とは、1つの目的変数を複数の説明変数で予測しようというもので、多変量解析の1種であり、どの説明変数が、どの程度目的変数に影響を与えているかを知る事ができる。たとえば3つの独立変数がある場合、重回帰式は以下の式となる。それぞれの独立変数にかかっている係数を「偏回帰係数」と呼ぶ。モデルの適合性は決定係数(重相関係数の2乗)で表され、分散分析で検定できる。   The multiple regression analysis in the present invention is to predict one objective variable with a plurality of explanatory variables, and is a kind of multivariate analysis. Which explanatory variable influences the objective variable to what extent. I can know. For example, when there are three independent variables, the multiple regression equation is as follows. The coefficient applied to each independent variable is called “partial regression coefficient”. The suitability of the model is expressed as a coefficient of determination (the square of the multiple correlation coefficient) and can be tested by analysis of variance.

本発明における澱粉特性とは、澱粉の機能上の特性を指し、たとえば摂食後の消化吸収性のような生理機能上の特性や、糊化澱粉の粘度特性のような物理的な特性を指す。   The starch characteristic in the present invention refers to a functional characteristic of starch, for example, a physiological characteristic such as digestion and absorption after feeding, and a physical characteristic such as viscosity characteristic of gelatinized starch.

本発明における難消化性澱粉とは、摂食後に人の胃や小腸まで消化・吸収されにくい澱粉を指し、澱粉分子が共有結合によって相互に架橋されている場合や、化学的に修飾されている場合、水素結合によって結晶化している場合、澱粉分子が構造的に他の素材で被覆されている場合、糊化澱粉が老化したものなどが挙げられ、食後血糖上昇が緩やかになる、食物繊維と同様に整腸効果があるなどと報告されている澱粉を指す。   The indigestible starch in the present invention refers to a starch that is difficult to digest and absorb to the human stomach and small intestine after feeding, and when starch molecules are mutually cross-linked by a covalent bond or chemically modified. In the case of crystallization by hydrogen bonding, when starch molecules are structurally covered with other materials, gelatinized starch is aged, etc. It also refers to starch that has been reported to have an intestinal effect.

本発明における糖鎖画分とは、澱粉を構成するアミロースやアミロペクチンがアミラーゼやイソアミラーゼによって部分分解を受けて形成されるグルコースの重合体を指し、ゲルろ過クロマトグラフィーなどの手法を用いることで、分子量の大小による分離・分画を行うことができる。   The sugar chain fraction in the present invention refers to a glucose polymer formed by partial decomposition of amylose or amylopectin constituting starch by amylase or isoamylase, and using a technique such as gel filtration chromatography, Separation and fractionation by molecular weight can be performed.

以下、実施例に基づいて本発明を詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples at all.

(試料米の難消化性澱粉含量の測定)
精米2gを10mLの0.1%水酸化ナトリウムに懸濁し、4℃で3時間、振とうし、除タンパクした。軽く遠心し、沈殿を3回純水で洗浄し、2回99%エタノールで洗浄し、次いでアセトンで洗浄して風乾し、試料澱粉とした。
(Measurement of resistant starch content of sample rice)
2 g of the polished rice was suspended in 10 mL of 0.1% sodium hydroxide and deproteinized by shaking at 4 ° C. for 3 hours. After light centrifugation, the precipitate was washed three times with pure water, twice with 99% ethanol, then washed with acetone and air-dried to obtain a sample starch.

乾物重量100mgの澱粉試料を試験管に取り、ヨード比色定量法によってアミロース含量を測定した結果を図1に示す。   FIG. 1 shows the results of taking a starch sample having a dry matter weight of 100 mg in a test tube and measuring the amylose content by an iodometric colorimetric method.

また、同じ試料を用いて、メガザイム社製レジスタントスターチ測定用キットを用いて、難消化性澱粉含量を測定した結果は図2に示すとおりであり、EM174、越のかおり、北陸粉243号などが高い値を示した。   Moreover, the result of having measured the indigestible starch content using the same sample and using a resistant starch measurement kit manufactured by Megazyme is as shown in FIG. 2, such as EM174, Kaori Koshinono, Hokuriku Flour 243, etc. Showed a high value.

(鎖長の異なる糖鎖画分の定量)
実施例1で調製した澱粉試料4mgを蒸留水1.6mLに懸濁し、100℃で澱粉を糊化し、1M酢酸緩衝液pH3.5を16μL加え、pH3.5に調製した後、イソアミラーゼ(林原生化学研究所製)0.67μL(0.03U/mg)を加え、45℃で15時間反応させ、澱粉の1,6グルコシド結合を枝切りした。次いで、100℃で10分間加熱して酵素を失活させ、水中で冷却し、遠心濃縮機(トミー製CC−105)で乾燥試料とした。
(Quantification of sugar chain fractions with different chain lengths)
4 mg of the starch sample prepared in Example 1 was suspended in 1.6 mL of distilled water, the starch was gelatinized at 100 ° C., and 16 μL of 1M acetate buffer pH 3.5 was added to adjust the pH to 3.5. 0.67 μL (0.03 U / mg) was added and reacted at 45 ° C. for 15 hours to debranch the 1,6-glucoside bond of starch. Subsequently, the enzyme was inactivated by heating at 100 ° C. for 10 minutes, cooled in water, and used as a dry sample with a centrifugal concentrator (Tomy CC-105).

この試料にジメチルスルホキシド111μLを加えて加熱溶解した。これに蒸留水89μLと2−アミノピリジン200μLを加えて良く混合し、暗所で60℃、1時間インキュベートした。その後、シアノ水素化ホウ素ナトリウムを200μL加え、24時間インキュベートし、HPLC用試料とした。次にこの試料をメンブレンフィルター(ミリポア製、ポアサイズ0.2μm)で濾過し、濾液20μLを日本分光製HPLCに注入して分析を行った。カラムはSHODEXOHPAKSB−803HQとSHODEXOHPAKSB―802.5を連結し、蛍光検出器LP2020で検出した。米試料澱粉の糖鎖画分の測定結果を表1に示す。   To this sample, 111 μL of dimethyl sulfoxide was added and dissolved by heating. To this, 89 μL of distilled water and 200 μL of 2-aminopyridine were added and mixed well, and incubated at 60 ° C. for 1 hour in the dark. Thereafter, 200 μL of sodium cyanoborohydride was added and incubated for 24 hours to prepare a sample for HPLC. Next, this sample was filtered through a membrane filter (manufactured by Millipore, pore size 0.2 μm), and 20 μL of the filtrate was injected into HPLC manufactured by JASCO Corporation for analysis. The column was connected with SHODEXOHPAKSB-803HQ and SHODEXOHPAKSB-802.5 and detected with a fluorescence detector LP2020. The measurement results of the sugar chain fraction of the rice sample starch are shown in Table 1.

(米澱粉の糊化粘度特性の測定)
米澱粉乾物3gに25mLの純水を加え、以下の測定条件により粘度特性を測定した。すなわち50℃で1分間攪拌した後、4分間で50℃から93℃まで昇温し、93℃で7分間攪拌後、93℃から50℃まで4分間降温し、50℃で3分間攪拌後の粘度を測定た。最高粘度と最低粘度の差をブレークダウンとし、最終粘度と最低粘度の差をコンシステンシーとし、最高粘度と最終粘度の差をセットバックとした。
(Measurement of gelatinization viscosity characteristics of rice starch)
25 mL of pure water was added to 3 g of dried rice starch, and the viscosity characteristics were measured under the following measurement conditions. That is, after stirring at 50 ° C. for 1 minute, the temperature was raised from 50 ° C. to 93 ° C. over 4 minutes, stirred at 93 ° C. for 7 minutes, cooled from 93 ° C. to 50 ° C. for 4 minutes, and stirred at 50 ° C. for 3 minutes. The viscosity was measured. The difference between the highest viscosity and the lowest viscosity was taken as breakdown, the difference between the final viscosity and the lowest viscosity was taken as consistency, and the difference between the highest viscosity and the final viscosity was taken as setback.

表2にRVAによる32品種のでんぷんの糊化特性値を示す。最高粘度においては、超硬質米の北陸粉243号、高アミロース米の越のかおり、越佳香、良食味米のゆめぴりか等が高い値を示し、超硬質米のEM10、EM145、もち米は低い値を示した。これらの結果は澱粉を用いた糊化特性試験のため、各酵素活性およびタンパク、脂質の影響を受けず、アミロースとアミロペクチンのでんぷん特性の影響によるものと推定される。   Table 2 shows the gelatinization characteristic values of 32 types of starch by RVA. In the highest viscosity, super hard rice Hokuriku flour No. 243, high amylose rice Koshi no Kaori, Koshika Koshi, good-tasting rice yumepirika etc. show high values, and super hard rice EM10, EM145, glutinous rice It showed a low value. These results are presumed to be due to the influence of starch properties of amylose and amylopectin without being affected by each enzyme activity and protein and lipid because of the gelatinization property test using starch.

また、糊化開始温度においては、超硬質米は非常に高い値を示し、続いて高アミロース米の越の香りと日印交雑種のスーパーハイブリッド米が高い値を示した。また、ブレークダウンにおいては、北陸粉243号以外の超硬質米は非常に低い値を示し、インディカ米、日印交雑米も低い値を示したが、高アミロース米の越の香りは高い値を示した。良食味米、一般汎用米はほぼ高い値を示した。次に、老化の指標とされている最終粘度およびコンシステンシーの値においては、インド型の夢十色、超硬質米が高く、次に日印交雑米のホシユタカ、カルナローリ、高アミロース米の越のかおりが高い値を示した。   Moreover, in the gelatinization start temperature, super hard rice showed a very high value, followed by high amylose rice scent and super hybrid rice of Japan-India hybrid. In addition, in the breakdown, super hard rice other than Hokuriku Flour No. 243 showed a very low value, while Indica rice and Japan-India mixed rice also showed a low value, but the scent of high amylose rice has a high value. Indicated. Good-tasting rice and general-purpose rice showed almost high values. Next, the final viscosity and consistency values, which are indicators of aging, are high in Indian type Yumeji, ultra-hard rice, followed by Hoshiyutaka, Carnaroli, and high amylose rice in Japan-India hybrid rice. Kaori showed a high value.

表3に澱粉の糊化特性値、アミロース含量、難消化性澱粉含量の相関分析t検定の結果を示す。難消化性澱粉含量と相関値が最も高かったのは糊化開始温度で、次に、最低粘度、最終粘度が1%の危険率で有意差を示した。   Table 3 shows the results of a correlation analysis t-test of gelatinization characteristic values, amylose content, and resistant starch content of starch. The highest correlation value with the resistant starch content was the gelatinization start temperature, followed by a significant difference in the risk factor of 1% for the lowest viscosity and the final viscosity.

(米澱粉のアミロース含量の推定)
17品種の糊化特性値(表2)を説明変数に、目的変数をアミロース含量(図1)とし、重回帰分析を行った結果、図3のAに示すように、糊化開始温度、コンシステンシー、コンシステンシー/ブレークダウンを用いた推定式が示され、重相関係数は0.9504を示し、図3のBに示すように、この式を用いた未知試料14品種の検定を行った結果、重相関係数は0.8343を示し、非常に適用性の高い推定式であることが明らかになった。
(Estimation of amylose content of rice starch)
The results of multiple regression analysis with the gelatinization characteristic values of 17 varieties (Table 2) as explanatory variables and the objective variable as the amylose content (FIG. 1), as shown in FIG. The estimation formula using the tenancy and the consistency / breakdown is shown, the multiple correlation coefficient is 0.9504, and as shown in FIG. 3B, as a result of testing the 14 unknown samples using this formula, The multiple correlation coefficient was 0.8343, and it was revealed that this is an extremely applicable estimation formula.

(米澱粉の難消化性澱粉含量の推定)
図4のAに示すように、13品種の糊化特性値(表2)を説明変数に、目的変数を難消化性澱粉含量(図2)とし、重回帰分析を行った結果、糊化開始温度と最低粘度を用いた推定式が示された。この検量線の重相関係数は0.8679を示し、次に図4のBに示すように、未知試料12品種の検定では重相関係数は0.8338を示し、Aの推定式は、未知試料に対しても非常に高い相関を示し、適用性の広い推定式であることが明らかになった。
(Estimation of resistant starch content of rice starch)
As shown in FIG. 4A, the gelatinization characteristic values (Table 2) of 13 varieties are used as explanatory variables, the objective variable is the resistant starch content (FIG. 2), and multiple regression analysis is performed. As a result, gelatinization starts. An estimation formula using temperature and minimum viscosity was shown. In this calibration curve, the multiple correlation coefficient is 0.8679, and as shown in FIG. 4B, in the test of 12 unknown samples, the multiple correlation coefficient is 0.8338. However, it showed a very high correlation and was found to be an estimation formula with wide applicability.

(米澱粉の難消化性澱粉含量の推定−その2)
図5のAに示すように、13品種の糊化特性値(表2)を説明変数に、目的変数を難消化性澱粉含量(図2)とし、重回帰分析を行った結果、糊化開始温度とコンシステンシーおよびコンシステンシー/ブレークダウンを用いた推定式が示された。この検量線の重相関係数は0.871を示し、次に図5のBに示すように、未知試料10品種の検定では重相関係数は0.500を示し、Aの推定式は、未知試料に対しても高い相関を示し、適用性の広い推定式であることが明らかになった。
(Estimation of resistant starch content of rice starch-2)
As shown in FIG. 5A, the gelatinization characteristic values (Table 2) of 13 varieties were used as explanatory variables, the objective variable was set as the indigestible starch content (FIG. 2), and as a result of the multiple regression analysis, gelatinization was started. An estimation formula using temperature and consistency and consistency / breakdown was presented. The multiple correlation coefficient of this calibration curve is 0.871. Next, as shown in FIG. 5B, in the test of 10 unknown samples, the multiple correlation coefficient is 0.500. However, it showed a high correlation and was found to be an estimation formula with wide applicability.

(糊化粘度測定結果に基づく糖鎖画分含量の推定式の作成)
次に表1の鎖長分布と表2の糊化特性値の各分析値、アミロース含量、難消化性澱粉含量の相関分析を行った結果を、アミロペクチン鎖長分布と糊化特性値との関係として、表4に示した。DP7からDP16まで(重合度7から重合度16までの糖鎖画分の含量)はアミロース含量と、DP17からDP18まで(重合度17から重合度18までの糖鎖画分の含量)はブレークダウンと、DP19(重合度19の糖鎖画分の含量)は最低粘度と、DP20(重合度20の糖鎖画分の含量)は最終粘度と、DP21(重合度21の糖鎖画分の含量)は最低粘度、アミロース含量と、DP22からDP24まで(重合度22から重合度24までの糖鎖画分の含量)はアミロース含量と、DP25(重合度25の糖鎖画分の含量)はコンシステンシー/ブレークダウンと、DP26からDP30まで(重合度26から重合度30までの糖鎖画分の含量)はアミロース含量と最も高い相関を示した。RS含量との相関について、DP7からDP14まで(重合度7から重合度14まで)の短鎖において1%の危険率で負の相関を示し、DP21からDP23(重合度21から重合度23まで)の長鎖側では5%の危険率で正の相関を示した。
(Preparation formula of sugar chain fraction content based on gelatinization viscosity measurement results)
Next, the results of the correlation analysis of the chain length distribution in Table 1 and the analysis values of the gelatinization characteristic values in Table 2, the amylose content, and the resistant starch content are shown as the relationship between the amylopectin chain length distribution and the gelatinization characteristic values. As shown in Table 4. From DP7 to DP16 (content of sugar chain fraction from polymerization degree 7 to polymerization degree 16) is amylose content, and from DP17 to DP18 (content of sugar chain fraction from polymerization degree 17 to polymerization degree 18) is breakdown DP19 (content of sugar chain fraction with a polymerization degree of 19) is the minimum viscosity, DP20 (content of sugar chain fraction with a polymerization degree of 20) is the final viscosity, and DP21 (content of sugar chain fraction with a polymerization degree of 21). ) Is the minimum viscosity, amylose content, DP22 to DP24 (content of sugar chain fraction from polymerization degree 22 to polymerization degree 24) is amylose content, DP25 (content of sugar chain fraction of polymerization degree 25) is Consis Tensy / breakdown and DP26 to DP30 (content of sugar chain fraction from polymerization degree 26 to polymerization degree 30) showed the highest correlation with amylose content. As for the correlation with the RS content, a negative correlation is shown with a 1% risk in the short chain from DP7 to DP14 (degree of polymerization 7 to degree 14), DP21 to DP23 (degree of polymerization 21 to degree 23) On the long chain side, a positive correlation was shown with a risk factor of 5%.

次に、図6のAとBに、10品種の糊化特性値を説明変数に、目的変数をA:DP10(重合度10の糖鎖画分の含量)、B:DP22(重合度22の糖鎖画分の含量)とし、重回帰分析を行った結果、最終粘度、糊化開始温度、コンシステンシー/ブレークダウン、コンシステンシーを用いた推定式が示された。この推定式の重相関係数はA:0.9597、B:0.9922を示し相関係数の高い推定式の作成が可能となった。   Next, in A and B of FIG. 6, the gelatinization characteristic values of 10 varieties are used as explanatory variables, the objective variables are A: DP10 (content of sugar chain fraction having a polymerization degree of 10), and B: DP22 (polymerization degree of 22 As a result of multiple regression analysis, the estimation formula using final viscosity, gelatinization start temperature, consistency / breakdown, and consistency was shown. The multiple correlation coefficients of this estimation formula were A: 0.9597 and B: 0.9922, and it was possible to create an estimation formula with a high correlation coefficient.

(糊化粘度測定結果に基づく難消化性澱粉含量の推定式―その3―)
難消化性澱粉含量を目的変数とし、9品種の米試料のアミロペクチン短鎖画分及び糊化特性値を説明変数として重回帰分析を行った結果、図7に示すような推定式が得られた。糊化特性値としては、最低粘度を選択した。この推定式の重相関係数は0.9057を示し相関係数の高い推定式の作成が可能となった。
(Estimated formula for resistant starch content based on gelatinization viscosity measurement results -Part 3-)
As a result of multiple regression analysis using the resistant starch content as an objective variable and the amylopectin short-chain fraction and gelatinization characteristic values of 9 rice varieties as explanatory variables, an estimation formula as shown in FIG. 7 was obtained. . The lowest viscosity was selected as the gelatinization characteristic value. The multiple correlation coefficient of this estimation formula was 0.9057, and it was possible to create an estimation formula with a high correlation coefficient.

(新糊化温度を変数とする難消化性澱粉含量の推定式―その4―)
難消化性澱粉含量を目的変数とし、9品種の米試料のアミロペクチン短鎖画分及び糊化特性値を説明変数として重回帰分析を行った結果、図8に示すような推定式が得られた。糊化特性値としては、新糊化温度を選択した。新糊化温度とは、試料米の糊化温度からもち米の糊化温度を差し引き、その値を試料米のアミロース含量で除したものを指す。この推定式の決定係数(重相関係数の2乗)は0.8110を示し、相関係数の高い推定式の作成が可能となった。
(Estimation formula of resistant starch content using new gelatinization temperature as a variable -Part 4)
As a result of multiple regression analysis using the resistant starch content as an objective variable and the amylopectin short-chain fraction and gelatinization characteristic values of 9 rice varieties as explanatory variables, an estimation formula as shown in FIG. 8 was obtained. . A new gelatinization temperature was selected as the gelatinization characteristic value. The new gelatinization temperature refers to a value obtained by subtracting the gelatinization temperature of glutinous rice from the gelatinization temperature of the sample rice and dividing the value by the amylose content of the sample rice. The coefficient of determination of this estimation formula (the square of the multiple correlation coefficient) is 0.8110, which makes it possible to create an estimation formula with a high correlation coefficient.

Claims (13)

米粉又は米澱粉の糊化粘度特性値を説明変数とする重回帰分析によって米澱粉特性を評価することを特徴とする米澱粉特性の評価方法。 A method for evaluating rice starch characteristics, characterized by evaluating rice starch characteristics by multiple regression analysis using rice flour or gelatinized viscosity characteristic values of rice starch as explanatory variables. 米澱粉特性が難消化性澱粉含量であることを特徴とする請求項1記載の米澱粉特性の評価方法。 2. The method for evaluating rice starch characteristics according to claim 1, wherein the rice starch characteristics are indigestible starch content. 米澱粉特性が、グルコースの重合度10又は重合度22の糖鎖画分の含量であることを特徴とする請求項1記載の米澱粉特性の評価方法。 The method for evaluating rice starch characteristics according to claim 1, wherein the rice starch characteristics are the content of a sugar chain fraction having a polymerization degree of glucose of 10 or a polymerization degree of 22. 米澱粉特性が、アミロース含量であることを特徴とする請求項1記載の米澱粉特性の評価方法。 The method for evaluating rice starch characteristics according to claim 1, wherein the rice starch characteristics are amylose content. 米澱粉特性が、アミロペクチンの鎖長分布であることを特徴とする請求項1記載の米澱粉特性の評価方法。 2. The method for evaluating rice starch characteristics according to claim 1, wherein the rice starch characteristics are amylopectin chain length distribution. 重回帰分析の説明変数として、糊化粘度特性値のうちの、糊化開始温度、最高粘度、最低粘度、最終粘度、ブレークダウン、セットバック、コンシステンシー、新糊化温度のうちの1種類又は2種類以上を使用することを特徴とする請求項1〜5のいずれかに記載の米澱粉特性の評価方法。 As an explanatory variable for multiple regression analysis, one of the pasting viscosity characteristic values of pasting start temperature, maximum viscosity, minimum viscosity, final viscosity, breakdown, setback, consistency, new pasting temperature or Two or more types are used, The evaluation method of the rice starch characteristic in any one of Claims 1-5 characterized by the above-mentioned. 重合度10の糖鎖画分の含量の推定式が
であることを特徴とする請求項3記載の米澱粉特性の評価方法。
The estimation formula for the content of sugar chain fraction with a degree of polymerization of 10 is
The method for evaluating rice starch characteristics according to claim 3, wherein:
重合度22の糖鎖画分の含量の推定式が
であることを特徴とする請求項3記載の米澱粉特性の評価方法。
The estimation formula for the content of the sugar chain fraction with a degree of polymerization of 22 is
The method for evaluating rice starch characteristics according to claim 3, wherein:
難消化性澱粉含量の推定式が
であることを特徴とする請求項2記載の米澱粉特性の評価方法。
The estimation formula for resistant starch content is
The method for evaluating rice starch characteristics according to claim 2, wherein:
難消化性澱粉含量の推定式が
であることを特徴とする請求項2記載の米澱粉特性の評価方法。
The estimation formula for resistant starch content is
The method for evaluating rice starch characteristics according to claim 2, wherein:
難消化性澱粉含量の推定式が
であることを特徴とする請求項2記載の米澱粉特性の評価方法。
The estimation formula for resistant starch content is
The method for evaluating rice starch characteristics according to claim 2, wherein:
難消化性澱粉含量の推定式が
であることを特徴とする請求項2記載の米澱粉特性の評価方法。
The estimation formula for resistant starch content is
The method for evaluating rice starch characteristics according to claim 2, wherein:
アミロース含量の推定式が
であることを特徴とする請求項4記載の米澱粉特性の評価方法。
The estimation formula for amylose content is
The method for evaluating characteristics of rice starch according to claim 4, wherein:
JP2013188950A 2013-09-12 2013-09-12 Method of evaluating rice starch characteristic based on gelatinization and viscosity characteristics Pending JP2015055548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013188950A JP2015055548A (en) 2013-09-12 2013-09-12 Method of evaluating rice starch characteristic based on gelatinization and viscosity characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013188950A JP2015055548A (en) 2013-09-12 2013-09-12 Method of evaluating rice starch characteristic based on gelatinization and viscosity characteristics

Publications (1)

Publication Number Publication Date
JP2015055548A true JP2015055548A (en) 2015-03-23

Family

ID=52820038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013188950A Pending JP2015055548A (en) 2013-09-12 2013-09-12 Method of evaluating rice starch characteristic based on gelatinization and viscosity characteristics

Country Status (1)

Country Link
JP (1) JP2015055548A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223969A (en) * 2015-06-02 2016-12-28 国立大学法人 新潟大学 Rice starch property evaluation method based on gelatinization viscosity property
CN108761004A (en) * 2018-05-21 2018-11-06 北京工商大学 A kind of evaluation method of the rice viscosity based on frictional index
CN113466288A (en) * 2021-07-09 2021-10-01 贵州茅台酒股份有限公司 Method for evaluating sorghum by using peak gelatinization temperature

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223969A (en) * 2015-06-02 2016-12-28 国立大学法人 新潟大学 Rice starch property evaluation method based on gelatinization viscosity property
CN108761004A (en) * 2018-05-21 2018-11-06 北京工商大学 A kind of evaluation method of the rice viscosity based on frictional index
CN108761004B (en) * 2018-05-21 2023-08-11 北京工商大学 Evaluation method of rice viscosity based on friction index
CN113466288A (en) * 2021-07-09 2021-10-01 贵州茅台酒股份有限公司 Method for evaluating sorghum by using peak gelatinization temperature

Similar Documents

Publication Publication Date Title
Butardo et al. Improving rice grain quality: State-of-the-art and future prospects
Punia Barley starch: Structure, properties and in vitro digestibility-A review
Giuberti et al. Reducing the glycaemic index and increasing the slowly digestible starch content in gluten‐free cereal‐based foods: A review
Collado et al. Genetic variation in the physical properties of sweet potato starch
Nakamura et al. Development of formulae for estimating amylose content, amylopectin chain length distribution, and resistant starch content based on the iodine absorption curve of rice starch
Van Hung et al. In vitro digestibility and in vivo glucose response of native and physically modified rice starches varying amylose contents
Reddy et al. Physico-chemical and functional properties of Resistant starch prepared from red kidney beans (Phaseolus vulgaris. L) starch by enzymatic method
Chung et al. Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches
Li et al. In vitro digestion rate of fully gelatinized rice starches is driven by molecular size and amylopectin medium-long chains
Goñi et al. Analysis of resistant starch: a method for foods and food products
Johansson et al. Structural analysis of water-soluble and-insoluble β-glucans of whole-grain oats and barley
Blazek et al. Pasting and swelling properties of wheat flour and starch in relation to amylose content
Yousif et al. Physico-chemical and rheological properties of modified corn starches and its effect on noodle quality
Ahmad et al. Physicochemical and functional properties of barley β‐glucan as affected by different extraction procedures
Correia et al. The effect of starch isolation method on physical and functional properties of Portuguese nuts starches. I. Chestnuts (Castanea sativa Mill. var. Martainha and Longal) fruits
Naidoo et al. In vitro digestibility and some physicochemical properties of starch from wild and cultivated amadumbe corms
Lu et al. The synergistic effects of amylose and phosphorus on rheological, thermal and nutritional properties of potato starch and gel
Mir et al. Physicochemical and structural properties of starches isolated from corn cultivars grown in Indian temperate climate
BR112012008827B1 (en) resistant starch rich starch, drink and food using the same, and production method of starch rich in resistant starch
Lian et al. Identification of the main retrogradation-related properties of rice starch
Clerici et al. Identification and analysis of starch
JP6650555B2 (en) Evaluation method of rice starch characteristics by gelatinization viscosity characteristics
JP2015055548A (en) Method of evaluating rice starch characteristic based on gelatinization and viscosity characteristics
Suh et al. Comparison of starch pasting properties at various cooking conditions using the micro visco‐amylo‐graph and the rapid visco analyser
Ding et al. Retrogradation properties and in vitro digestibility of wild starch from Castanopsis sclerophylla