JP2016223969A - Rice starch property evaluation method based on gelatinization viscosity property - Google Patents

Rice starch property evaluation method based on gelatinization viscosity property Download PDF

Info

Publication number
JP2016223969A
JP2016223969A JP2015112176A JP2015112176A JP2016223969A JP 2016223969 A JP2016223969 A JP 2016223969A JP 2015112176 A JP2015112176 A JP 2015112176A JP 2015112176 A JP2015112176 A JP 2015112176A JP 2016223969 A JP2016223969 A JP 2016223969A
Authority
JP
Japan
Prior art keywords
rice
content
starch
rice starch
evaluating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015112176A
Other languages
Japanese (ja)
Other versions
JP6650555B2 (en
Inventor
大坪 研一
Kenichi Otsubo
研一 大坪
中村 澄子
Sumiko Nakamura
澄子 中村
清子 加藤
Kiyoko Kato
清子 加藤
順二 桂
Junji Katsura
順二 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University NUC
NSP Corp
Original Assignee
Niigata University NUC
NSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University NUC, NSP Corp filed Critical Niigata University NUC
Priority to JP2015112176A priority Critical patent/JP6650555B2/en
Publication of JP2016223969A publication Critical patent/JP2016223969A/en
Application granted granted Critical
Publication of JP6650555B2 publication Critical patent/JP6650555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily, quickly, inexpensively and accurately evaluating a property of rice starch for every subspecies related to functionality such as a content of indigestible starch, even when samples are relative species, based on gelatinization viscosity property.SOLUTION: A ratio of a gelatinization property value based on maximum viscosity, minimum viscosity, final viscosity, brake-down, setback, and consistency, and gelatinization start temperature are used as explanatory variables of multiple regression analysis, for evaluating rice starch property for every subspecies. The rice starch property is any of a content of indigestible starch, a content of middle long chain fraction having 13 or more of glucose polymerization degree of amylopectin, and a content of amylose.SELECTED DRAWING: Figure 2

Description

本発明は、米澱粉の糊化粘度特性に基づいて、日本型米、インド型米などの同一亜種同士や硬質米同士といった近縁種同士でも識別可能とするための、難消化性澱粉含量、アミロース含量、あるいは難消化性澱粉と密接な関係のあるアミロペクチン中長鎖画分含量などの澱粉特性を簡易迅速かつ高精度で評価する技術に関する。   The present invention is based on the gelatinization viscosity characteristics of rice starch, in order to be able to discriminate between similar subspecies such as Japanese rice and Indian rice and hard rices, resistant starch content Further, the present invention relates to a technique for simply and rapidly evaluating starch characteristics such as amylose content or content of amidopectin medium and long chain fractions closely related to resistant starch.

近年、わが国は少子高齢化社会となり、機能性成分を多く含む食事によって健康の維持増進、疾病予防を図る必要がある。   In recent years, Japan has become a society with a declining birthrate and an aging society, and it is necessary to promote health maintenance and disease prevention with a diet rich in functional ingredients.

澱粉のアミロース含量の高い米やアミロペクチン長鎖の多い米は、難消化性であり、食後の血糖上昇が緩やかで、糖尿病発症の予防が期待されている(非特許文献1、非特許文献2)ことから、各種の米の難消化性澱粉及び関連糖鎖画分含量を簡易迅速かつ高精度に測定する技術の開発はきわめて重要である。   Rice with a high amylose content in starch and rice with a long amylopectin chain are indigestible, have a moderate increase in blood glucose after meals, and are expected to prevent the onset of diabetes (Non-patent Documents 1 and 2). Therefore, it is extremely important to develop a technique for measuring the contents of resistant starch and related sugar chain fractions of various rice easily and quickly with high accuracy.

従来、米澱粉のアミロペクチン鎖長分布は、イソアミラーゼによって枝切りした後に高速液体クロマトグラフによって測定されてきた(非特許文献3)。   Conventionally, the amylopectin chain length distribution of rice starch has been measured by high performance liquid chromatography after debranching with isoamylase (Non-patent Document 3).

また、蛍光標識ゲルろ過法によって分析した米澱粉のアミロース分子量分布やアミロペクチン鎖長分布が米澱粉の熱糊化特性や食味に影響することが報告されている(非特許文献4)。   In addition, it has been reported that the amylose molecular weight distribution and amylopectin chain length distribution of rice starch analyzed by a fluorescent labeling gel filtration method affect the thermal gelatinization characteristics and taste of rice starch (Non-Patent Document 4).

これらの従来の測定方法は、アミロペクチン鎖長分布などの正確な測定値が得られるものの、米澱粉における疾病予防機能の期待される難消化性澱粉含量を測定するものではない上に、時間と労力を要し、高速液体クロマトグラフなどの高価な装置を必要とするためにコストのかかる方法であり、育種選抜や食品加工の分野で簡易迅速かつ低コストで高精度に米澱粉の難消化性澱粉含量あるいは難消化性澱粉含量と関係の深い糖鎖画分含量を評価するためには、新たな測定方法が必要とされていた。   Although these conventional measurement methods provide accurate measurement values such as amylopectin chain length distribution, they do not measure the resistant starch content that is expected to prevent disease in rice starch. Is a costly method because it requires expensive equipment such as a high performance liquid chromatograph, and it is simple, quick, low cost and highly resistant to starch in the fields of breeding selection and food processing. In order to evaluate the sugar chain fraction content closely related to the content or resistant starch content, a new measurement method was required.

また、本発明者は穀類の食品物性値を表示する糊化特性測定装置が知られている(特許文献1)。   In addition, the present inventor has known a gelatinization characteristic measuring device that displays food property values of cereals (Patent Document 1).

しかし、この糊化特性測定装置は、糊化特性を変数とする推定式を用いるものであるが、推定の対象が米における米飯物性や小麦における生麺の硬さなどの食品物性であり、難消化性澱粉含量や難消化性澱粉と密接に関係するアミロペクチン中長鎖画分含量等の機能性成分含量を推定するものではなかった。   However, this gelatinization property measuring apparatus uses an estimation formula with the gelatinization property as a variable, but the target of estimation is food physical properties such as rice physical properties in rice and raw noodle hardness in wheat, which is difficult. It was not intended to estimate the content of functional components such as the digestible starch content and the content of the long chain fraction in amylopectin which is closely related to the resistant starch.

また、米澱粉の糊化粘度特性に基づいて、米のアミロース含量、難消化性澱粉含量、アミロペクチン糖鎖画分含量等を推定する米澱粉特性の評価方法も知られている(特許文献2)。この評価方法は、日本型米とインド型米を含む広範な試料米同士で高い識別を可能とするものである。   Moreover, based on the gelatinization viscosity characteristics of rice starch, there is also known a method for evaluating rice starch characteristics for estimating the amylose content, resistant starch content, amylopectin sugar chain fraction content, etc. of rice (Patent Document 2). . This evaluation method enables high discrimination among a wide range of sample rices including Japanese rice and Indian rice.

しかしながら、この評価方法によっても、現在、わが国の生産米の99%以上を占める日本型米同士、あるいは逆に、インドやタイなどの南アジア各国で大部分を占めるインド型米同士、あるいは硬質米同士といった、近縁種同士での識別は、きわめて必要性が高いにもかかわらず困難であるという問題が残されていた。   However, even with this evaluation method, Japanese rice that currently accounts for over 99% of Japan's produced rice, or conversely, Indian rice that occupies most of South Asian countries such as India and Thailand, or hard rice The problem remains that identification between related species such as each other is difficult despite the high necessity.

特許第3908227号公報Japanese Patent No. 3908227 特開2015−55548号公報Japanese Patent Laying-Open No. 2015-55548

大坪研一、中村澄子、宇都宮一典、増田泰伸、辻 啓介:硬質米と糖尿病発症予防、実用化に向けた取り組み.食品工業, 53(14), 46-51, 2010.Kenichi Otsubo, Sumiko Nakamura, Kazunori Utsunomiya, Yasunobu Masuda, Keisuke Tsuji: Efforts to prevent and commercialize hard rice and diabetes. Food industry, 53 (14), 46-51, 2010. Ken’ichi Ohtsubo, Sumiko Nakamura, Keisuke Tsuji, Kazunori Utsunomiya, Yasunobu Masuda, Mineo Hasegawa: Possibility of diabetes prevention by high-amylose rice. Rice studies, present and future, Sankyosyuppan Inc., pp.109-115, 2012.Ken’ichi Ohtsubo, Sumiko Nakamura, Keisuke Tsuji, Kazunori Utsunomiya, Yasunobu Masuda, Mineo Hasegawa: Possibility of diabetes prevention by high-amylose rice.Rice studies, present and future, Sankyosyuppan Inc., pp.109-115, 2012. Masako Asaoka, Kazutoshi Okuno, Yasumi Sugimoto, Masahiro Yano, Takeshi Omura, and Hidetsugu Fuwa: Structure and properties of endosperm starch and wated soluble polysaccharides from sugary mutant of rice, Starch, 37, 364-366(11), 1985.Masako Asaoka, Kazutoshi Okuno, Yasumi Sugimoto, Masahiro Yano, Takeshi Omura, and Hidetsugu Fuwa: Structure and properties of endosperm starch and wated soluble polysaccharides from sugary mutant of rice, Starch, 37, 364-366 (11), 1985. Toshinari Igarashi, Isao Hanashiro, and Yasuhito Takeda: Molecular structures and some properties of rice starches from Hokkaido cultivars. J. Applied Glycoscience, 55, 5-12, 2008.Toshinari Igarashi, Isao Hanashiro, and Yasuhito Takeda: Molecular structures and some properties of rice starches from Hokkaido cultivars.J. Applied Glycoscience, 55, 5-12, 2008. Toshinari Igarashi, Masafumi Kinoshita, Hideki Kanda, Tomoko Nakamori, and Toshimi Kusume: Evaluation of hardness of waxy rice cake based on the amylopectin chain-length distribution. J. Applied Glycoscience, 55, 13-19, 2008.Toshinari Igarashi, Masafumi Kinoshita, Hideki Kanda, Tomoko Nakamori, and Toshimi Kusume: Evaluation of hardness of waxy rice cake based on the amylopectin chain-length distribution.J. Applied Glycoscience, 55, 13-19, 2008.

そこで、本発明は、試料が近縁種同士の場合でも、難消化性澱粉含量など、機能性に関係する亜種別の米澱粉の特性を、糊化粘度特性に基づいて、簡易迅速、低コスト、かつ高精度に評価する方法を提供することを目的とする。   Therefore, the present invention provides simple, quick, and low-cost, low-cost, low-cost rice starch properties related to functionality, such as resistant starch content, even when the samples are closely related species. And it aims at providing the method of evaluating with high precision.

上記の課題を解決すべく、本発明者らは鋭意検討した結果、精米粉あるいは米澱粉試料の糊化粘度特性値そのものではなく、それらの比率を変数とする多変量解析を行い、その解析値を、本発明者らが新たに見いだした推定式に当てはめることによって、難消化性澱粉含量、アミロース含量、あるいは難消化性澱粉含量と関係の深いアミロペクチン中長鎖画分含量を簡易迅速、低コスト、かつ高精度に推定することができることを見いだし、本発明に想到した。   In order to solve the above-mentioned problems, the present inventors have intensively studied and, as a result, conducted a multivariate analysis using the ratio of the ratio of the polished rice flour or rice starch sample as a variable instead of the gelatinized viscosity characteristic value, and the analysis value. By applying the estimation formula newly found by the present inventors, it is possible to easily and quickly reduce the low-starch starch content, the amylose content, or the long-chain fraction content in amylopectin, which is closely related to the resistant starch content. In addition, the inventors have found that the estimation can be performed with high accuracy and have arrived at the present invention.

すなわち、本発明は、重回帰分析の説明変数として、最高粘度、最低粘度、最終粘度、ブレークダウン、セットバック、コンシステンシーからなる糊化特性値の比率および糊化開始温度を使用し、亜種別の米澱粉特性を評価することを特徴とする米澱粉特性評価方法である。   That is, the present invention uses the ratio of gelatinization characteristic values consisting of maximum viscosity, minimum viscosity, final viscosity, breakdown, setback, consistency and gelatinization start temperature as explanatory variables for multiple regression analysis. It is a rice starch characteristic evaluation method characterized by evaluating the rice starch characteristic.

また、米澱粉特性が難消化性澱粉含量であることを特徴とする。   Moreover, the rice starch characteristic is characterized by the indigestible starch content.

また、米澱粉特性がアミロペクチンのグルコース重合度が13以上の中長鎖画分含量であることを特徴とする。   In addition, the characteristic of rice starch is that the amylopectin has a medium and long chain fraction content of 13 or more in the degree of glucose polymerization.

また、米澱粉特性がアミロース含量であることを特徴とする。   Moreover, the rice starch characteristic is characterized by amylose content.

また、日本型亜種の難消化性澱粉含量の推定式が、試料が精米粉の場合、   In addition, when the estimation formula for the resistant starch content of the Japanese subspecies is a milled rice flour,

であることを特徴とする。 It is characterized by being.

また、日本型亜種の難消化性澱粉含量の推定式が、試料が米澱粉の場合、   In addition, when the estimation formula for the resistant starch content of Japanese subspecies is rice starch,

であることを特徴とする。 It is characterized by being.

また、アミロペクチンのグルコース重合度13以上の中長鎖画分含量の推定式が、   The formula for estimating the content of medium and long chain fractions of amylopectin with a degree of glucose polymerization of 13 or more is:

であることを特徴とする。 It is characterized by being.

また、日本型亜種のアミロース含量の推定式が、試料が精米粉の場合、   In addition, when the estimation formula for the amylose content of the Japanese subspecies is a milled rice flour,

であることを特徴とする。 It is characterized by being.

また、日本型亜種のアミロース含量の推定式が、試料が米澱粉の場合、   Moreover, when the estimation formula of the amylose content of the Japanese-type subspecies is a sample of rice starch,

であることを特徴とする。 It is characterized by being.

また、硬質米の難消化性澱粉含量の推定式が、試料が米澱粉の場合、   In addition, when the estimation formula of the hard-to-digestible starch content of hard rice is rice starch,

であることを特徴とする。 It is characterized by being.

また、硬質米のアミロース含量の推定式が、試料が米澱粉の場合、   In addition, when the estimation formula for the amylose content of hard rice is rice starch,

であることを特徴とする。 It is characterized by being.

また、日本型米のアミロース含量、アミロペクチン中長鎖含量あるいは難消化性澱粉含量を目的変数とし、ラピッドビスコアナライザーで測定する精米試料懸濁液の一定時間ごとの粘度を説明変数とし、最小二乗法によって誤差を最小とする推定式を作成することを特徴とする糊化粘度特性に基づく日本型米のアミロース含量、アミロペクチン中長鎖含量あるいは難消化性澱粉含量の推定方法である。   In addition, the amylose content, long-chain content of amylopectin, or resistant starch content of Japanese rice is the objective variable, and the viscosity of the polished rice sample suspension measured with a rapid visco analyzer is the explanatory variable, using the least square method. Is a method for estimating the amylose content, long-chain content of amylopectin or resistant starch content of Japanese rice based on the gelatinized viscosity characteristics, which is characterized in that an estimation formula that minimizes the error is created by the method.

本発明によって、人の食後血糖上昇を緩やかにすることで糖尿病発症予防や肥満予防などの機能性が期待される難消化性澱粉の、日本型米同士あるいはインド型米同士といった近縁亜種別の米や硬質米同士といった近縁種の米同士における含量を、糊化粘度測定装置のみを必要とする精米粉あるいは米澱粉の糊化粘度測定によって、簡易迅速、高精度、かつ低コストで測定することができる。   According to the present invention, indigestible starch, which is expected to have functions such as prevention of diabetes and prevention of obesity by slowing the increase in postprandial blood glucose in humans, is a related subtype such as Japanese rice or Indian rice Measure the content of closely related rice, such as rice and hard rice, by measuring the gelatinization viscosity of polished rice flour or rice starch that requires only a gelatinization viscosity measuring device, quickly, accurately, and at low cost. be able to.

また、本発明により、米粉あるいは米澱粉の糊化粘度測定によって、近縁の米でもアミロペクチンのグルコース重合度13以上の中長鎖画分の含量を推定することが可能となり、当該米試料の機能性や利用特性について簡易かつ高精度に推定することができる。   In addition, according to the present invention, by measuring the gelatinization viscosity of rice flour or rice starch, it is possible to estimate the content of medium and long chain fractions of amylopectin having a glucose polymerization degree of 13 or more even in closely related rice. Can be estimated easily and with high accuracy.

さらに、簡易な糊化粘度測定によって、近縁の米のアミロース含量についても推定式が確立されたため、当該試料米の品質特性を簡易かつ高精度に推定することも可能となる。   Furthermore, since a formula for estimating the amylose content of closely related rice has been established by simple gelatinization viscosity measurement, it is possible to easily and accurately estimate the quality characteristics of the sample rice.

ラピッドビスコアナライザーによる糊化粘度特性の測定例と各糊化特性値を示すグラフである。It is a graph which shows the example of a measurement of the gelatinization viscosity characteristic by a rapid visco analyzer, and each gelatinization characteristic value. 精米粉末を試料とする日本型米の難消化性澱粉含量の推定式および未知試料による検定結果を示すグラフである。It is a graph which shows the estimation result of the indigestible starch content of Japanese type rice which uses milled rice powder as a sample, and the test result by an unknown sample. 精米粉末を試料とする日本型米の難消化性澱粉含量の推定式および未知試料による検定結果(比較例)を示すグラフである。It is a graph which shows the estimation result of the indigestible starch content of Japanese type | mold rice which uses milled rice powder as a sample, and the test result (comparative example) by an unknown sample. 米澱粉を試料とする日本型米の難消化性澱粉含量の推定式および未知試料による検定結果を示すグラフである。It is a graph which shows the estimation formula of the resistant starch content of Japanese type | mold rice which uses rice starch as a sample, and the test result by an unknown sample. 米澱粉を試料とする日本型米の難消化性澱粉含量の推定式および未知試料による検定結果(比較例)を示すグラフである。It is a graph which shows the estimation result of the indigestible starch content of Japanese type rice which uses rice starch as a sample, and the test result (comparative example) by an unknown sample. 米澱粉を試料とする日本型米のアミロペクチン中長鎖含量(Fb1+2+3)の推定を示すグラフである。It is a graph which shows the estimation of the long chain content (Fb1 + 2 + 3 ) in amylopectin of Japanese-type rice which uses rice starch as a sample. 精米粉末を試料とする日本型米のアミロース含量の推定および未知試料による検定結果を示すグラフである。It is a graph which shows the estimation result of the amylose content of the Japanese-type rice which uses milled rice powder as a sample, and the test result by an unknown sample. 精米粉末を試料とする日本型米のアミロース含量の推定および未知試料による推定式の検定結果(比較例)を示すグラフである。It is a graph which shows the test result (comparative example) of the estimation formula by the estimation of an amylose content of a Japanese type rice which uses milled rice powder as a sample, and an unknown sample. 米澱粉を試料とする日本型米のアミロース含量の推定および未知試料による推定式の検定結果を示すグラフである。It is a graph which shows the test result of the estimation formula by the estimation of the amylose content of a Japanese type rice which uses rice starch as a sample, and an unknown sample. 米澱粉を試料とする日本型米のアミロース含量の推定および未知試料による推定式の検定結果(比較例)を示すグラフである。It is a graph which shows the test result (comparative example) of the estimation formula by the estimation of the amylose content of a Japanese type rice which uses rice starch as a sample, and an unknown sample. 精米粉末を試料とする硬質米の難消化性澱粉含量の推定式および未知試料による検定結果を示すグラフである。It is a graph which shows the estimation formula of the resistant starch content of the hard rice which uses milled rice powder as a sample, and the test result by an unknown sample. 米澱粉を試料とする硬質米のアミロース含量の推定式および未知試料による検定結果を示すグラフである。It is a graph which shows the estimation result of the amylose content of the hard rice which uses rice starch as a sample, and the test result by an unknown sample. 最小二乗法(PLS法)によるアミロース含量および難消化性澱粉の推定式およびその検定結果を示すグラフである。It is a graph which shows the estimation formula of the amylose content by the least squares method (PLS method) and resistant starch, and its test result.

本発明は、精米粉あるいは米澱粉の糊化粘度特性に基づいて、試料が近縁の米同士でも、難消化性澱粉含量および難消化性澱粉と密接な関係のある糖鎖画分含量などの澱粉特性を簡易迅速かつ高精度で評価する技術に関する。   The present invention is based on the gelatinization viscosity characteristics of polished rice flour or rice starch, such as the content of resistant starch and sugar chain fraction content closely related to resistant starch, even between closely related rice samples. The present invention relates to a technique for simply and quickly evaluating starch characteristics with high accuracy.

本発明は、推定式の説明変数として糊化粘度パラメーターそのものではなく、糊化粘度パラメーターの比を採用することによって、日本型米同士やインド型米同士、あるいは硬質米同士といった近縁種の米同士でも高精度の識別を可能とし、同時に、精米粉を試料とする糊化粘度測定結果に基づく高精度の推定をも可能とするものである。   The present invention adopts a ratio of gelatinized viscosity parameters as explanatory variables in the estimation formula, and uses a ratio of gelatinized viscosity parameters, so that rice of close relatives such as Japanese rices, Indian rices, or hard rices can be used. It enables high-precision discrimination between the two, and at the same time enables high-precision estimation based on the gelatinization viscosity measurement result using polished rice flour as a sample.

また、本発明は、日本型米同士、インド型米同士といった近縁種同士の難消化性澱粉やアミロー素含量、アミロペクチン中長鎖含量等を目的変数とし、これらを近縁種同士で高精度に識別するための第2の方法として、糊化粘度特性を測定する際の一定時間ごとの全ての粘度を説明変数とし、予測誤差を最小とするための重回帰分析を行うものである。   In addition, the present invention uses, as objective variables, resistant starch, amyloelement content, amylopectin medium-long chain content, etc., of closely related species such as Japanese rice and Indian rice, and these are highly accurate between closely related species. As a second method for discriminating, a multiple regression analysis for minimizing a prediction error is performed using all viscosities at regular intervals when measuring gelatinized viscosity characteristics as explanatory variables.

ここで、本発明における精米粉とは、一般の日本型米あるいはインド型米、最近新たに育成された新形質米、さらにはアミロペクチン長鎖型の米の精米を、衝撃式粉砕機やロール式粉砕機あるいは気流粉砕機などを用いて粉砕することによって粉末化したものを指す。   Here, the polished rice flour in the present invention is a general Japanese type rice or Indian type rice, a newly cultivated new trait rice, and a milled rice of amylopectin long chain type rice, an impact grinder or a roll type. It refers to powdered by pulverization using a pulverizer or an airflow pulverizer.

本発明における米澱粉とは、精米試料を脱脂・除タンパクしたものであり、低温下で希アルカリによってタンパク質を除去し、続いてエタノール及びアセトンによって脱脂したものを指すが、アルカリに替えてプロテアーゼなどによって除タンパクしても良く、熱ブタノールやヘキサンなどによって脱脂しても良い。   The rice starch in the present invention is a product obtained by defatting and deproteinizing a polished rice sample, which is obtained by removing protein with a dilute alkali at a low temperature and subsequently defatted with ethanol and acetone. The protein may be deproteinized by heating, or degreased by hot butanol or hexane.

本発明における糊化粘度特性は、米粉あるいは米澱粉を試料とし、パーテン製のラピッドビスコアナライザー(RVA)やブラベンダー製のアミログラフ、微量ビスコグラフ、アントンパール製のレオメーターなど、一般の回転式粘度測定装置を使用し、水または他の分散媒中に試料を懸濁し、撹拌しながら温度を上昇、保持、あるいは下降させ、その間の溶液または懸濁液の粘度を回転抵抗値として検出することによって測定され、糊化開始温度、最高粘度、最低粘度、最終粘度あるいはブレークダウン(最高粘度と最低粘度の差)、セットバック(最終粘度と最高粘度の差)、コンシステンシー(最終粘度と最低粘度の差)などのパラメーターとして表現される特性を指す。   The gelatinization viscosity characteristics in the present invention include rice flour or rice starch as a sample, and a general rotational viscosity such as a rapid visco analyzer (RVA) manufactured by Parten, an amylograph manufactured by Brabender, a trace viscograph, and a rheometer manufactured by Anton Paar. Using a measuring device, suspending the sample in water or other dispersion medium, raising, holding, or lowering the temperature while stirring, and detecting the viscosity of the solution or suspension during that time as the rotational resistance value Measured, gelatinization start temperature, maximum viscosity, minimum viscosity, final viscosity or breakdown (difference between maximum and minimum viscosity), setback (difference between final viscosity and maximum viscosity), consistency (final viscosity and minimum viscosity) A characteristic expressed as a parameter such as (difference).

パーテン製ラピッドビスコアナライザーによって測定した糊化特性値の例を図1に示す。   FIG. 1 shows an example of gelatinization characteristic values measured with a Parten Rapid Visco Analyzer.

なお、この明細書や図面などにおいて、糊化開始温度をPT、最高粘度をVMAX、最低粘度をVMIN、最終粘度をVFIN、ブレークダウンをBD、セットバックをSB2、コンシステンシーをCと表記する場合がある。 In this specification and drawings, etc., the gelatinization start temperature is PT, the maximum viscosity is V MAX , the minimum viscosity is V MIN , the final viscosity is V FIN , the breakdown is BD, the setback is SB2, and the consistency is C. May be written.

本発明における重回帰分析とは、1つの目的変数を複数の説明変数で予測しよう多変量解析の1種であり、重回帰分析によれば、どの説明変数が、どの程度目的変数に影響を与えているかを知ることができる。たとえばn個の独立変数がある場合、重回帰式は   The multiple regression analysis in the present invention is a kind of multivariate analysis in which one objective variable is predicted by a plurality of explanatory variables. According to the multiple regression analysis, which explanatory variable influences the objective variable to what extent. You can know if you are. For example, if there are n independent variables, the multiple regression equation is

となる。それぞれの独立変数にかかっている係数を「偏回帰係数」と呼ぶ。モデルの適合性は決定係数(重相関係数の2乗)で表され、分散分析で検定できる。 It becomes. The coefficient applied to each independent variable is called “partial regression coefficient”. The suitability of the model is expressed as a coefficient of determination (the square of the multiple correlation coefficient) and can be tested by analysis of variance.

本発明における澱粉特性とは、澱粉の機能上の特性を指し、たとえば摂食後の消化吸収性のような生理機能上の特性や、糊化澱粉の粘度特性のような物理的な特性を指す。   The starch characteristic in the present invention refers to a functional characteristic of starch, for example, a physiological characteristic such as digestion and absorption after feeding, and a physical characteristic such as viscosity characteristic of gelatinized starch.

本発明における難消化性澱粉とは、摂食後に人の胃や小腸で消化・吸収されにくい澱粉を指し、澱粉分子が共有結合によって相互に架橋されている場合や、化学的に修飾されている場合、水素結合によって結晶化している場合、澱粉分子が構造的に他の素材で被覆されている場合、糊化澱粉が老化したものなどが挙げられ、食後血糖上昇が緩やかになる、食物繊維と同様に整腸効果があるなどと報告されている澱粉を指し、たとえば、メガザイム社製の酵素キットによって測定することができる。   The indigestible starch in the present invention refers to starch that is difficult to digest and absorb in the human stomach and small intestine after ingestion, and when starch molecules are mutually cross-linked by a covalent bond or chemically modified. In the case of crystallization by hydrogen bonding, when starch molecules are structurally covered with other materials, gelatinized starch is aged, etc. Similarly, it refers to starch that has been reported to have an intestinal regulating effect, and can be measured by, for example, an enzyme kit manufactured by Megazyme.

本発明におけるアミロペクチンの中長鎖画分とは、澱粉の主成分であるアミロペクチンを構成するグルコースの重合体であって、イソアミラーゼによるα―1,6結合を枝切りした後のゲルろ過クロマトグラフィーによって、分子量の大小による分離・分画を行った場合に、グルコース重合度13以上の長い分子からなる糖鎖画分を指す。   The medium and long chain fraction of amylopectin in the present invention is a glucose polymer constituting amylopectin, which is the main component of starch, and gel filtration chromatography after debranching α-1,6 bonds by isoamylase. In the case of separation / fractionation by molecular weight, the sugar chain fraction consisting of long molecules having a glucose polymerization degree of 13 or more is indicated.

以下に実施例に基づいて本発明を詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。   EXAMPLES The present invention will be described in detail below based on examples, but the present invention is not limited to these examples.

<実施例1>(試料米の難消化性澱粉含量の測定)
各種の試料精米2gをそれぞれ10mLの0.1%水酸化ナトリウム水溶液に懸濁し、4℃で3時間、振とうし、除タンパクした。軽く遠心し、沈殿を3回純水で洗浄し、2回99%エタノールで洗浄し、次いでアセトンで洗浄して風乾し、試料澱粉とした。
<Example 1> (Measurement of resistant starch content of sample rice)
Each sample of 2 g of polished rice was suspended in 10 mL of 0.1% aqueous sodium hydroxide solution, shaken at 4 ° C. for 3 hours, and deproteinized. After light centrifugation, the precipitate was washed three times with pure water, twice with 99% ethanol, then washed with acetone and air-dried to obtain a sample starch.

乾物重量100mgの澱粉試料を試験管に取り、ヨード比色定量法によってアミロース含量を測定した結果を表1、表2、表3、表4および表6に示す。   Table 1, Table 2, Table 3, Table 4, and Table 6 show the results of taking a starch sample having a dry matter weight of 100 mg in a test tube and measuring the amylose content by the iodometric method.

また、同じ試料を用いて、メガザイム社製レジスタントスターチ測定用キットを用いて、難消化性澱粉含量を測定した結果は表1、表2、表3、表4および表6に示すとおりであり、EM10(表1の試料米番号1)、EM72(表1の試料米番号4)、EM174(表1の試料米番号7)などが高い値を示した。   Moreover, the result of having measured the resistant starch content using the same sample and using the resistant starch measurement kit made by Megazyme is as shown in Table 1, Table 2, Table 3, Table 4, and Table 6. EM10 (sample rice number 1 in Table 1), EM72 (sample rice number 4 in Table 1), EM174 (sample rice number 7 in Table 1), etc. showed high values.

<実施例2>(鎖長の異なる糖鎖画分の定量)
実施例1で調製した澱粉試料4mgを蒸留水1.6mLに懸濁し、100℃で澱粉を糊化し、1M酢酸緩衝液pH3.5を16μL加え、pH3.5に調製した後、イソアミラーゼ(林原生化学研究所製)0.67μL(0.03U/mg)を加え、45℃で15時間反応させ、澱粉の1,6グルコシド結合を枝切りした。次いで、100℃で10分間加熱して酵素を失活させ、水中で冷却し、遠心濃縮機(トミー製CC−105)で乾燥試料とした。
<Example 2> (Quantification of sugar chain fractions having different chain lengths)
4 mg of the starch sample prepared in Example 1 was suspended in 1.6 mL of distilled water, the starch was gelatinized at 100 ° C., and 16 μL of 1M acetate buffer pH 3.5 was added to adjust the pH to 3.5. 0.67 μL (0.03 U / mg) was added and reacted at 45 ° C. for 15 hours to debranch the 1,6-glucoside bond of starch. Subsequently, the enzyme was inactivated by heating at 100 ° C. for 10 minutes, cooled in water, and used as a dry sample with a centrifugal concentrator (Tomy CC-105).

この試料にジメチルスルホキシド111μLを加えて加熱溶解した。これに蒸留水89μLと2−アミノピリジン200μLを加えて良く混合し、暗所で60℃、1時間インキュベートした。その後、シアノ水素化ホウ素ナトリウムを200μL加え、24時間インキュベートし、HPLC用試料とした。次にこの試料をメンブレンフィルター(ミリポア製、ポアサイズ0.2μm)で濾過し、濾液20μLを日本分光製HPLCに注入して分析を行った。カラムはSHODEXOHPAKSB−803HQとSHODEXOHPAKSB―802.5を連結し、蛍光検出器LP2020で検出した。米試料澱粉のアミロペクチン鎖長分布の測定結果を表1、表5および表6に示す。   To this sample, 111 μL of dimethyl sulfoxide was added and dissolved by heating. To this, 89 μL of distilled water and 200 μL of 2-aminopyridine were added and mixed well, and incubated at 60 ° C. for 1 hour in the dark. Thereafter, 200 μL of sodium cyanoborohydride was added and incubated for 24 hours to prepare a sample for HPLC. Next, this sample was filtered through a membrane filter (manufactured by Millipore, pore size 0.2 μm), and 20 μL of the filtrate was injected into HPLC manufactured by JASCO Corporation for analysis. The column was connected with SHODEXOHPAKSB-803HQ and SHODEXOHPAKSB-802.5 and detected with a fluorescence detector LP2020. Tables 1, 5 and 6 show the measurement results of the amylopectin chain length distribution of the rice sample starch.

<実施例3>(米澱粉あるいは精米粉末の糊化粘度特性の測定)
米澱粉あるいは精米粉末の乾物3gに25mLの純水を加え、以下の測定条件により粘度特性を測定した。すなわち50℃で1分間攪拌した後、4分間で50℃から93℃まで昇温し、93℃で7分間攪拌後、93℃から50℃まで4分間降温し、50℃で3分間攪拌後の粘度を測定しました。最高粘度と最低粘度の差をブレークダウンとし、最終粘度と最低粘度の差をコンシステンシーとし、最高粘度と最終粘度の差をセットバックとした。
<Example 3> (Measurement of gelatinization viscosity characteristics of rice starch or polished rice powder)
25 mL of pure water was added to 3 g of dried rice starch or polished rice powder, and the viscosity characteristics were measured under the following measurement conditions. That is, after stirring at 50 ° C. for 1 minute, the temperature was raised from 50 ° C. to 93 ° C. over 4 minutes, stirred at 93 ° C. for 7 minutes, cooled from 93 ° C. to 50 ° C. for 4 minutes, and stirred at 50 ° C. for 3 minutes. Viscosity was measured. The difference between the highest viscosity and the lowest viscosity was taken as breakdown, the difference between the final viscosity and the lowest viscosity was taken as consistency, and the difference between the highest viscosity and the final viscosity was taken as setback.

表1および表7にラピッドビスコアナライザー(RVA)による各試料米の糊化特性値を示す。最高粘度においては、高アミロース米の越のかおり(表1の試料米番号26)、越佳香(表1の試料米番号23)、良食味米のゆめぴりか(表 1の試料米番号13)等が高い値を示し、超硬質米のEM10(表1の試料米番号1)、EM145(表1の試料米番号8)、もち米(表1の試料米番号10、11,12)は低い値を示した。これらの結果は澱粉を用いた糊化特性試験のため、各酵素活性およびタンパク、脂質の影響を受けず、アミロースとアミロペクチンの澱粉特性の影響によるものと推定される。   Tables 1 and 7 show the gelatinization characteristic values of each sample rice by Rapid Visco Analyzer (RVA). In the maximum viscosity, high amylose rice Koshi no Kaori (sample rice number 26 in Table 1), Yoshika Koshi (sample rice number 23 in Table 1), good taste rice yumepirika (sample rice number 13 in Table 1) EM10 (sample rice number 1 in Table 1), EM145 (sample rice number 8 in Table 1), and glutinous rice (sample rice numbers 10, 11, and 12 in Table 1) are low. The value is shown. These results are presumed to be due to the influence of starch properties of amylose and amylopectin without being affected by each enzyme activity, protein, and lipid because of the gelatinization property test using starch.

また、糊化開始温度においては、超硬質米(表1の試料米番号1〜9)は非常に高い値を示し、続いて高アミロース米の越のかおり(表1の試料米番号26)と日印交雑種のスーパーハイブリッド米(表1の試料米番号31)が高い値を示した。また、最高粘度/最低粘度においては、超硬質米(表1の試料米番号1〜9)は非常に低い値を示し、インディカ米(表1の試料米番号225〜32)も比較的低い値を示したが、インディカ米の中でも高アミロース米のハイブリッド米(表1の試料米番号31)は高い値を示した。良食味米(表1の試料米番号13〜17)、一般汎用米(表1の試料米番号18〜20)はほぼ高い値を示した。次に、老化の指標とされているコンシステンシーの値においては、インド型の夢十色(表1の試料米番号32)、超硬質米(表1の試料米番号1〜9)が高く、次にインディカのホシユタカ(表1の試料米番号25)、日本型硬質米のカルナローリ(表1の試料米番号24)、インディカ高アミロース米の越のかおり(表1の試料米番号26)が高い値を示した。   In addition, at the gelatinization start temperature, super hard rice (sample rice numbers 1 to 9 in Table 1) showed a very high value, and subsequently, high amylose rice Koshi Kaori (sample rice number 26 in Table 1) and Super hybrid rice (sample rice number 31 in Table 1) of a Japan-India hybrid showed a high value. Moreover, in the maximum viscosity / minimum viscosity, super hard rice (sample rice numbers 1 to 9 in Table 1) shows a very low value, and indica rice (sample rice numbers 225 to 32 in Table 1) also has a relatively low value. However, among Indica rice, hybrid rice of high amylose rice (sample rice number 31 in Table 1) showed a high value. Good taste rice (sample rice numbers 13 to 17 in Table 1) and general-purpose rice (sample rice numbers 18 to 20 in Table 1) showed almost high values. Next, in the consistency value which is an index of aging, Indian type dream color (sample rice number 32 in Table 1), super hard rice (sample rice numbers 1 to 9 in Table 1) are high, Next, indica Hoshiyutaka (sample rice number 25 in Table 1), Japanese-type hard rice carnaroli (sample rice number 24 in Table 1), and indica high amylose rice Koshigoe (sample rice number 26 in Table 1) are high. The value is shown.

<実施例4>(日本型米の精米粉末の糊化特性を変数とする難消化性澱粉含量の推定式の作成と未知試料による検定)
図2のAに示すように、21品種の日本型米の精米粉末の糊化特性値(表7)を説明変数に、目的変数を難消化性澱粉含量(RS)とし、重回帰分析により、PTとSB2/C、VMAX/VMINおよびVMAX/VFINを変数とする推定式を作成した。
<Example 4> (Preparation of an estimation formula for the resistant starch content using the gelatinization characteristics of Japanese-type rice milled rice as a variable, and test using an unknown sample)
As shown in FIG. 2A, the gelatinization characteristic value (Table 7) of the polished rice powder of 21 varieties of Japanese rice is used as an explanatory variable, the objective variable is the resistant starch content (RS), and multiple regression analysis is performed. Estimates were made with PT and SB2 / C, V MAX / V MIN and V MAX / V FIN as variables.

この推定式の決定係数(重相関係数の2乗)は0.80を示し、図2のBに示すように、未知試料17品種による検定では、決定係数は0.72を示し、Aの推定式は、未知試料に対しても非常に高い相関を示し、適用性の広い推定式であることが明らかになった。   The coefficient of determination (square of the multiple correlation coefficient) of this estimation equation shows 0.80, and as shown in FIG. 2B, the test with 17 unknown sample types shows a coefficient of determination of 0.72, The estimation formula showed a very high correlation even with unknown samples, and it became clear that the estimation formula was widely applicable.

<比較例1>(日本型米の精米粉末の糊化特性を変数とする難消化性澱粉含量の推定式の作成と未知試料による検定)
図3のAに示すように、実施例4と同じ21品種の日本型米の精米粉末の糊化特性値(表7)を説明変数に、目的変数を難消化性澱粉含量とし、重回帰分析により、PTとVMINを変数とする推定式を作成した。
<Comparative example 1> (Preparation formula of indigestible starch content using the gelatinization characteristics of polished rice powder of Japanese rice as a variable and testing with unknown samples)
As shown in FIG. 3A, multiple regression analysis was performed with the gelatinization characteristic values (Table 7) of the polished rice powder of Japanese rice of the same 21 varieties as in Example 4 as explanatory variables and the objective variable as the resistant starch content. Thus, an estimation formula having PT and V MIN as variables was created.

この推定式の決定係数は0.79を示したが、図3のBに示すように、未知試料17品種による検定では、決定係数は0.55を示し、Aの推定式は、未知試料に対する相関と適用性において、実施例4の推定式に比べ著しく劣る推定式であることが明らかになった。   The coefficient of determination of this estimation formula was 0.79. However, as shown in FIG. 3B, in the test using 17 unknown samples, the coefficient of determination was 0.55, and the estimation formula of A is for the unknown sample. It became clear that the correlation and applicability were significantly inferior to those of Example 4.

<実施例5>(日本型米の澱粉の糊化特性を変数とする難消化性澱粉含量の推定式の作成と未知試料による検定)
図4のAに示すように、日本型米11品種の澱粉の糊化特性値(表8)を説明変数に、目的変数を難消化性澱粉含量とし、重回帰分析により、SB2/C、VMAX/VFINおよびVMAX/VMINを変数に用いた推定式を作成した。
<Example 5> (Preparation of an estimation formula for resistant starch content using the gelatinization characteristics of Japanese-style rice starch as a variable, and test using an unknown sample)
As shown in FIG. 4A, the gelatinization characteristic values (Table 8) of starches of 11 Japanese rice varieties are used as explanatory variables, the objective variable is the resistant starch content, and SB2 / C, V is determined by multiple regression analysis. Estimation formulas using MAX / V FIN and V MAX / V MIN as variables were prepared.

この推定式の決定係数は1.00を示し、図4のBに示すように、未知試料12品種の検定では決定係数は0.83を示し、Aの推定式は、未知試料に対しても高い相関を示し、適用性の広い推定式であることが明らかになった。   The coefficient of determination of this estimation formula is 1.00, and as shown in FIG. 4B, the coefficient of determination is 0.83 in the test of 12 unknown samples. It was revealed that the estimation formula showed high correlation and was widely applicable.

<比較例2>(日本型米の澱粉の糊化特性を変数とする難消化性澱粉含量の推定式の作成と未知試料による検定)
図5のAに示すように、日本型米11品種の澱粉の糊化特性値(表8)を説明変数に、目的変数を難消化性澱粉含量とし、重回帰分析により、ブレークダウン(BD)を変数に用いた推定式を作成した。
<Comparative example 2> (Preparation formula of resistant starch content using the gelatinization characteristics of Japanese rice starch as a variable and testing with unknown samples)
As shown in FIG. 5A, the gelatinization characteristic values (Table 8) of 11 Japanese rice varieties are used as explanatory variables, the objective variable is the resistant starch content, and the breakdown (BD) is determined by multiple regression analysis. The estimation formula using was used as a variable.

この推定式の決定係数は0.72を示し、図5のBに示すように、未知試料12品種の検定では決定係数は0.16を示し、Aの推定式は、実施例5の推定式に比べて著しく劣る推定式であることが明らかになった。   The determination coefficient of this estimation formula is 0.72, and as shown in FIG. 5B, the determination coefficient is 0.16 in the test of 12 unknown samples, and the estimation formula of A is the estimation formula of the fifth embodiment. It became clear that the estimation formula is significantly inferior to.

<実施例6>(日本型米の米澱粉の糊化特性を変数とするアミロペクチン中長鎖の推定式の作成と未知試料による検定)
表5に示す10品種の日本型米の澱粉のアミロペクチンのグルコース重合度13以上の中長鎖画分含量(APL)を目的変数とし、表1に示す糊化特性値のSB2/C、VMAX/VFINおよびVMAX/VMINを説明変数として重回帰分析を行い、推定式を作成した。
<Example 6> (Preparation of an amylopectin medium-long chain estimation formula using a variable of the gelatinization characteristics of Japanese-style rice starch and testing with unknown samples)
The medium variable chain content (APL) of the amylopectin of 13 varieties of Japanese rice starch shown in Table 5 having a degree of glucose polymerization of 13 or more is an objective variable, and SB2 / C, V MAX of gelatinization characteristic values shown in Table 1 Multiple regression analysis was performed using / V FIN and V MAX / V MIN as explanatory variables, and an estimation formula was created.

その結果、図6のAに示すように、この推定式の決定係数は0.99を示し、表1に示す日本型米6品種の米澱粉のアミロペクチン中長鎖における決定係数は0.97を示し、Aの推定式は、未知試料に対しても高い相関を示し、適用性の広い推定式であることが明らかになった。   As a result, as shown in FIG. 6A, the coefficient of determination of this estimation formula shows 0.99, and the coefficient of determination in the medium and long chain of amylopectin of the six types of Japanese rice varieties shown in Table 1 is 0.97. As shown, the estimation formula of A shows a high correlation with an unknown sample, and it has been clarified that the estimation formula has wide applicability.

<実施例7>(日本型米の精米粉末の糊化特性を変数とするアミロース含量の推定式の作成と未知試料による検定)
21品種の日本型米の精米粉末の糊化特性値(表7)を説明変数に、目的変数をアミロース含量(AC)とし、重回帰分析により、PTとSB2/C、VMAX/VMINおよびVMAX/VFINを変数とする推定式を作成した。
<Example 7> (Preparation of an estimation formula of amylose content using the gelatinization characteristics of polished rice powder of Japanese-style rice as a variable and testing with an unknown sample)
The gelatinization characteristic values (Table 7) of 21 types of Japanese rice flour were used as explanatory variables, the objective variable was amylose content (AC), and PT and SB2 / C, V MAX / V MIN and An estimation formula using V MAX / V FIN as a variable was created.

図7のAに示すように、この推定式の決定係数は0.89を示し、図7のBに示すように、未知試料17品種による検定では、決定係数は0.71を示し、Aの推定式は、未知試料に対しても非常に高い相関を示し、適用性の広い推定式であることが明らかになった。   As shown in A of FIG. 7, the coefficient of determination of this estimation formula shows 0.89, and as shown in B of FIG. 7, in the test using 17 unknown sample varieties, the coefficient of determination shows 0.71. The estimation formula showed a very high correlation even with unknown samples, and it became clear that the estimation formula was widely applicable.

<比較例3>(日本型米の精米粉末の糊化特性を変数とするアミロース含量の推定式の作成と未知試料による検定)
実施例7と同じ21品種の日本型米の精米粉末の糊化特性値(表7)を説明変数に、目的変数をアミロース含量とし、重回帰分析により、PTおよびCを変数とする推定式を作成した。
<Comparative Example 3> (Preparation of an estimation formula for amylose content using the gelatinization characteristics of Japanese-style rice milling powder as a variable and testing with an unknown sample)
The pasteurization characteristic value (Table 7) of the polished rice powder of 21 Japanese varieties as in Example 7 is an explanatory variable, the objective variable is amylose content, and an estimation equation with PT and C as variables is obtained by multiple regression analysis. Created.

図8のAに示すように、この推定式の決定係数は0.87を示したが、図8のBに示すように、未知試料17品種による検定では、決定係数は0.30を示し、Aの推定式は、未知試料に対する相関と適用性において、実施例7の推定式に比べて著しく劣る推定式であることが明らかになった。   As shown in A of FIG. 8, the coefficient of determination of this estimation formula showed 0.87, but as shown in B of FIG. 8, in the test with 17 unknown samples, the coefficient of determination showed 0.30, It became clear that the estimation formula of A is significantly inferior to the estimation formula of Example 7 in terms of correlation and applicability to unknown samples.

<実施例8>(日本型米の澱粉の糊化特性を変数とするアミロース含量の推定式の作成と未知試料による検定)
日本型米11品種の澱粉の糊化特性値(表8)を説明変数に、目的変数をアミロース含量とし、重回帰分析により、SB2/C、VMAX/VFINおよびVMAX/VMINを変数に用いた推定式を作成した。
<Example 8> (Preparation of an estimation formula for amylose content using the gelatinization characteristics of Japanese-style rice starch as a variable and testing with an unknown sample)
The gelatinization characteristics (Table 8) of 11 Japanese rice varieties are used as explanatory variables, the objective variable is amylose content, and SB2 / C, V MAX / V FIN, and V MAX / V MIN are variables by multiple regression analysis. The estimation formula used for is made.

その結果、図9のAに示すように、この推定式の決定係数は0.86を示し、図9のBに示すように、未知試料12品種の検定では決定係数は0.76を示し、Aの推定式は、未知試料に対しても高い相関を示し、適用性の広い推定式であることが明らかになった。   As a result, as shown in A of FIG. 9, the coefficient of determination of this estimation formula shows 0.86, and as shown in B of FIG. 9, the coefficient of determination shows 0.76 in the test of 12 unknown samples. The estimation formula of A showed a high correlation even with an unknown sample, and it became clear that the estimation formula has wide applicability.

<比較例4>(日本型米の澱粉の糊化特性を変数とするアミロース含量の推定式の作成と未知試料による検定)
日本型米11品種の澱粉の糊化特性値(表8)を説明変数に、目的変数をアミロース含量とし、重回帰分析により糊化開始温度(PT)を変数に用いた推定式を作成した。
<Comparative Example 4> (Preparation of an estimation formula for amylose content using the gelatinization characteristics of Japanese-style rice starch as a variable and testing with an unknown sample)
An estimation formula was created using the gelatinization characteristic values (Table 8) of 11 Japanese rice varieties as explanatory variables, the objective variable as amylose content, and the gelatinization start temperature (PT) as a variable by multiple regression analysis.

その結果、図10のAに示すように、この推定式の決定係数は0.37を示し、図10のBに示すように、未知試料12品種の検定では決定係数は0.16を示し、Aの推定式は、実施例8の推定式に比べて著しく劣る推定式であることが明らかになった。   As a result, as shown in FIG. 10A, the coefficient of determination of this estimation formula shows 0.37, and as shown in FIG. 10B, the coefficient of determination shows 0.16 in the test of 12 unknown samples. It became clear that the estimation formula of A is a significantly inferior formula compared with the estimation formula of Example 8.

<実施例9>(硬質米の精米粉末の糊化特性を変数とする難消化性澱粉含量の推定式の作成と未知試料による検定)
8品種の硬質米の精米粉末の糊化特性値(表7)を説明変数に、目的変数を表2の難消化性澱粉含量とし、重回帰分析により、SB2/C、VMAX/VMINおよびVMAX/VFINを変数とする推定式を作成した。
<Example 9> (Preparation of an estimation formula for the resistant starch content using the gelatinization characteristic of hard rice milled rice as a variable, and test using an unknown sample)
By using the gelatinization characteristic values (Table 7) of hard rice milling powders of 8 varieties as explanatory variables, the objective variable is the indigestible starch content of Table 2, and by multiple regression analysis, SB2 / C, V MAX / V MIN and An estimation formula using V MAX / V FIN as a variable was created.

図11のAに示すように、この推定式の決定係数は0.83を示し、図11のBに示すように、未知試料8品種による検定では、決定係数は0.69を示し、Aの推定式は、未知試料に対しても非常に高い相関を示し、適用性の広い推定式であることが明らかになった。   As shown in A of FIG. 11, the coefficient of determination of this estimation formula shows 0.83, and as shown in B of FIG. 11, in the test using eight unknown sample varieties, the coefficient of determination shows 0.69. The estimation formula showed a very high correlation even with unknown samples, and it became clear that the estimation formula was widely applicable.

<実施例10>(硬質米の精米粉末の糊化特性を変数とするアミロース含量の推定式の作成と未知試料による検定)
8品種の硬質米の精米粉末の糊化特性値(表7)を説明変数に、目的変数を表1のアミロース含量とし、重回帰分析により、SB2/C、VMAX/VMINおよびVMAX/VFINを変数とする推定式を作成した。
<Example 10> (Preparation of an estimation formula of amylose content using the gelatinization characteristic of polished rice powder of hard rice as a variable and testing with an unknown sample)
By using the gelatinization characteristic values (Table 7) of the polished rice powders of 8 varieties of hard rice as explanatory variables and the objective variable as the amylose content in Table 1, SB2 / C, V MAX / V MIN and V MAX / An estimation formula with V FIN as a variable was created.

図12のAに示すように、この推定式の決定係数は0.87を示し、図12のBに示すように、未知試料8品種による検定では、決定係数は0.77を示し、Aの推定式は、未知試料に対しても非常に高い相関を示し、適用性の広い推定式であることが示された。   As shown in A of FIG. 12, the determination coefficient of this estimation formula shows 0.87, and as shown in B of FIG. 12, in the test using eight unknown sample varieties, the determination coefficient shows 0.77. The estimation formula showed a very high correlation even with unknown samples, indicating that the estimation formula has wide applicability.

<実施例11>(PLS解析によるアミロース及び難消化性澱粉の推定式の開発)
11点の日本型米を試料に用いて、ラピッドビスコアナライザー(RVA)の一定時間(4秒)ごとの粘度を変数とし、試料ごとに284点のデータを変数とし、表2のアミロース含量および難消化性澱粉含量を目的変数として最小二乗法(PLS法)によって推定式を作成し、日本型米の未知試料10点を試料として適合性を検定した。
<Example 11> (Development of estimation formulas for amylose and resistant starch by PLS analysis)
11 samples of Japanese rice were used as samples, the viscosity of Rapid Visco Analyzer (RVA) at a fixed time (4 seconds) was used as a variable, and 284 points of data were used as variables for each sample. An estimation formula was created by the least squares method (PLS method) using digestible starch content as an objective variable, and suitability was tested using 10 unknown samples of Japanese rice as samples.

とすると、各データ収集ポイントXにかかる係数bは表10のとおりである。 When the coefficient b n according to the data collection point X n are shown in Table 10.

この推定式の作成時におけるアミロース含量の推定精度は、決定係数で0.9899であり、未知試料の精度は、決定係数で0.8994であった。   The estimation accuracy of the amylose content at the time of creating this estimation formula was 0.9899 with a coefficient of determination, and the accuracy of the unknown sample was 0.8994 with a coefficient of determination.

また、難消化性澱粉含量の推定式の決定係数は0.9605であり、未知試料の決定係数は0.9667であった。これらの結果は、図13に示すように、きわめて高い推定式が得られ、未知試料に対する適用性もきわめて良好であった。   Moreover, the coefficient of determination of the estimation formula of the resistant starch content was 0.9605, and the coefficient of determination of the unknown sample was 0.9667. As shown in FIG. 13, these results are very high estimation formulas, and the applicability to unknown samples was very good.

Claims (12)

重回帰分析の説明変数として、最高粘度、最低粘度、最終粘度、ブレークダウン、セットバック、コンシステンシーからなる糊化特性値の比率および糊化開始温度を使用し、亜種別の米澱粉特性を評価することを特徴とする米澱粉特性評価方法。 Using the ratio of gelatinization characteristic values consisting of maximum viscosity, minimum viscosity, final viscosity, breakdown, setback, and consistency and the gelatinization start temperature as explanatory variables for multiple regression analysis, subtype rice starch characteristics are evaluated. A method for evaluating the characteristics of rice starch. 米澱粉特性が難消化性澱粉含量であることを特徴とする請求項1記載の米澱粉特性評価方法。 The method for evaluating rice starch characteristics according to claim 1, wherein the rice starch characteristics are indigestible starch content. 米澱粉特性がアミロペクチンのグルコース重合度が13以上の中長鎖画分含量であることを特徴とする請求項1記載の米澱粉特性評価方法。 2. The method for evaluating rice starch characteristics according to claim 1, wherein the rice starch characteristics are a medium and long chain fraction content in which the degree of glucose polymerization of amylopectin is 13 or more. 米澱粉特性がアミロース含量であることを特徴とする請求項1記載の米澱粉特性評価方法。 The method for evaluating rice starch characteristics according to claim 1, wherein the rice starch characteristics are amylose content. 日本型亜種の難消化性澱粉含量の推定式が、試料が精米粉の場合、
であることを特徴とする請求項2記載の米澱粉特性評価方法。
When the estimation formula for the resistant starch content of Japanese subspecies is the milled rice flour,
The method for evaluating characteristics of rice starch according to claim 2, wherein:
日本型亜種の難消化性澱粉含量の推定式が、試料が米澱粉の場合、
であることを特徴とする請求項2記載の米澱粉特性評価方法。
When the estimation formula for the resistant starch content of Japanese subspecies is rice starch,
The method for evaluating characteristics of rice starch according to claim 2, wherein:
アミロペクチンのグルコース重合度13以上の中長鎖画分含量の推定式が、
であることを特徴とする請求項3記載の米澱粉特性評価方法。
The formula for estimating the content of medium and long chain fractions of amylopectin with a degree of glucose polymerization of 13 or more is:
The method for evaluating characteristics of rice starch according to claim 3, wherein:
日本型亜種のアミロース含量の推定式が、試料が精米粉の場合、
であることを特徴とする請求項4記載の米澱粉特性評価方法。
If the formula for estimating the amylose content of Japanese subspecies is a milled rice flour,
The method for evaluating rice starch characteristics according to claim 4, wherein:
日本型亜種のアミロース含量の推定式が、試料が米澱粉の場合、
であることを特徴とする請求項4記載の米澱粉特性評価方法。
When the estimation formula for the amylose content of the Japanese subspecies is rice starch,
The method for evaluating rice starch characteristics according to claim 4, wherein:
硬質米の難消化性澱粉含量の推定式が、試料が米澱粉の場合、
であることを特徴とする請求項2記載の米澱粉特性評価方法。
If the estimation formula of hard-to-digestible starch content of hard rice is rice starch,
The method for evaluating characteristics of rice starch according to claim 2, wherein:
硬質米のアミロース含量の推定式が、試料が米澱粉の場合、
であることを特徴とする請求項4記載の米澱粉特性評価方法。
When the estimation formula for the amylose content of hard rice is rice starch,
The method for evaluating rice starch characteristics according to claim 4, wherein:
日本型米のアミロース含量、アミロペクチン中長鎖含量あるいは難消化性澱粉含量を目的変数とし、ラピッドビスコアナライザーで測定する精米試料懸濁液の一定時間ごとの粘度を説明変数とし、最小二乗法によって誤差を最小とする推定式を作成することを特徴とする糊化粘度特性に基づく日本型米のアミロース含量、アミロペクチン中長鎖含量あるいは難消化性澱粉含量の推定方法。 The amylose content, long-chain content of amylopectin, or resistant starch content of Japanese rice is the objective variable, and the viscosity of the polished rice sample suspension measured by Rapid Visco Analyzer is the explanatory variable, and the error is calculated by the least square method. A method for estimating amylose content, long-chain content of amylopectin, or resistant starch content of Japanese rice based on gelatinization viscosity characteristics, characterized in that an estimation formula that minimizes the content is prepared.
JP2015112176A 2015-06-02 2015-06-02 Evaluation method of rice starch characteristics by gelatinization viscosity characteristics Active JP6650555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015112176A JP6650555B2 (en) 2015-06-02 2015-06-02 Evaluation method of rice starch characteristics by gelatinization viscosity characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015112176A JP6650555B2 (en) 2015-06-02 2015-06-02 Evaluation method of rice starch characteristics by gelatinization viscosity characteristics

Publications (2)

Publication Number Publication Date
JP2016223969A true JP2016223969A (en) 2016-12-28
JP6650555B2 JP6650555B2 (en) 2020-02-19

Family

ID=57748746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015112176A Active JP6650555B2 (en) 2015-06-02 2015-06-02 Evaluation method of rice starch characteristics by gelatinization viscosity characteristics

Country Status (1)

Country Link
JP (1) JP6650555B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761004A (en) * 2018-05-21 2018-11-06 北京工商大学 A kind of evaluation method of the rice viscosity based on frictional index
CN112841501A (en) * 2019-11-12 2021-05-28 丰益(上海)生物技术研发中心有限公司 Special buckwheat flour and flour product prepared from same
CN113466288A (en) * 2021-07-09 2021-10-01 贵州茅台酒股份有限公司 Method for evaluating sorghum by using peak gelatinization temperature

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221344A (en) * 2004-02-04 2005-08-18 National Food Research Institute Pasting characteristic measuring instrument for indicating food physical property value of cereals
JP2005345432A (en) * 2004-06-07 2005-12-15 Toshinari Igarashi Method for estimating physical characteristics and eating quality of starch by iodine absorption multispectral measurement
JP2015055548A (en) * 2013-09-12 2015-03-23 国立大学法人 新潟大学 Method of evaluating rice starch characteristic based on gelatinization and viscosity characteristics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221344A (en) * 2004-02-04 2005-08-18 National Food Research Institute Pasting characteristic measuring instrument for indicating food physical property value of cereals
JP2005345432A (en) * 2004-06-07 2005-12-15 Toshinari Igarashi Method for estimating physical characteristics and eating quality of starch by iodine absorption multispectral measurement
JP2015055548A (en) * 2013-09-12 2015-03-23 国立大学法人 新潟大学 Method of evaluating rice starch characteristic based on gelatinization and viscosity characteristics

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761004A (en) * 2018-05-21 2018-11-06 北京工商大学 A kind of evaluation method of the rice viscosity based on frictional index
CN108761004B (en) * 2018-05-21 2023-08-11 北京工商大学 Evaluation method of rice viscosity based on friction index
CN112841501A (en) * 2019-11-12 2021-05-28 丰益(上海)生物技术研发中心有限公司 Special buckwheat flour and flour product prepared from same
CN112841501B (en) * 2019-11-12 2023-10-27 丰益(上海)生物技术研发中心有限公司 Special buckwheat flour and flour product prepared from special buckwheat flour
CN113466288A (en) * 2021-07-09 2021-10-01 贵州茅台酒股份有限公司 Method for evaluating sorghum by using peak gelatinization temperature

Also Published As

Publication number Publication date
JP6650555B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
Schirmer et al. Starch gelatinization and its complexity for analysis
Butardo et al. Improving rice grain quality: State-of-the-art and future prospects
Li et al. The molecular structural features controlling stickiness in cooked rice, a major palatability determinant
Ma et al. Evaluation studies on effects of pectin with different concentrations on the pasting, rheological and digestibility properties of corn starch
Van Hung et al. In vitro digestibility and in vivo glucose response of native and physically modified rice starches varying amylose contents
Nakamura et al. Development of formulae for estimating amylose content, amylopectin chain length distribution, and resistant starch content based on the iodine absorption curve of rice starch
Punia Barley starch: Structure, properties and in vitro digestibility-A review
Collado et al. Genetic variation in the physical properties of sweet potato starch
Yousif et al. Physico-chemical and rheological properties of modified corn starches and its effect on noodle quality
Blazek et al. Pasting and swelling properties of wheat flour and starch in relation to amylose content
Punia et al. Kidney bean (Phaseolus vulgaris) starch: A review
Ahmad et al. Physicochemical and functional properties of barley β‐glucan as affected by different extraction procedures
Reddy et al. Pasting, textural and thermal properties of resistant starch prepared from potato (Solanum tuberosum) starch using pullulanase enzyme
Chao et al. Starch physicochemical properties of waxy proso millet (Panicum miliaceum L.)
Lu et al. The synergistic effects of amylose and phosphorus on rheological, thermal and nutritional properties of potato starch and gel
Catenza et al. Recent approaches for the quantitative analysis of functional oligosaccharides used in the food industry: A review
Lee et al. Impact of diverse cultivars on molecular and crystalline structures of rice starch for food processing
JP6650555B2 (en) Evaluation method of rice starch characteristics by gelatinization viscosity characteristics
Clerici et al. Identification and analysis of starch
BR112012008827B1 (en) resistant starch rich starch, drink and food using the same, and production method of starch rich in resistant starch
Lian et al. Identification of the main retrogradation-related properties of rice starch
Butt et al. Rheological characterization of cold water soluble rice (Oryza sativa) starch lactates and citrates prepared via alcoholic-alkaline method
Lee et al. Effect of oat β‐glucan and its oxidised derivative on the quality characteristics of sponge cake
Du et al. Quality evaluation systems and methods of the whole making process of Asian noodles: A review
Pojić et al. Gelatinization properties of wheat flour as determined by empirical and fundamental rheometric method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R150 Certificate of patent or registration of utility model

Ref document number: 6650555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250