JP6186555B1 - Power system with shift control and torque vectoring control for electric vehicles - Google Patents

Power system with shift control and torque vectoring control for electric vehicles Download PDF

Info

Publication number
JP6186555B1
JP6186555B1 JP2016128335A JP2016128335A JP6186555B1 JP 6186555 B1 JP6186555 B1 JP 6186555B1 JP 2016128335 A JP2016128335 A JP 2016128335A JP 2016128335 A JP2016128335 A JP 2016128335A JP 6186555 B1 JP6186555 B1 JP 6186555B1
Authority
JP
Japan
Prior art keywords
motor
power transmission
transmission mechanism
power
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016128335A
Other languages
Japanese (ja)
Other versions
JP2018001845A (en
Inventor
矢野 隆志
隆志 矢野
Original Assignee
矢野 隆志
隆志 矢野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢野 隆志, 隆志 矢野 filed Critical 矢野 隆志
Priority to JP2016128335A priority Critical patent/JP6186555B1/en
Application granted granted Critical
Publication of JP6186555B1 publication Critical patent/JP6186555B1/en
Publication of JP2018001845A publication Critical patent/JP2018001845A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/02Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/36Differential gearings characterised by intentionally generating speed difference between outputs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/406Torque distribution between left and right wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/80Control of differentials
    • B60Y2300/82Torque vectoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/36Differential gearings characterised by intentionally generating speed difference between outputs
    • F16H2048/364Differential gearings characterised by intentionally generating speed difference between outputs using electric or hydraulic motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0425Bridging torque interruption
    • F16H2061/0433Bridging torque interruption by torque supply with an electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/0021Transmissions for multiple ratios specially adapted for electric vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0043Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising four forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/089Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears all of the meshing gears being supported by a pair of parallel shafts, one being the input shaft and the other the output shaft, there being no countershaft involved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】電気動力またはハイブリッド動力の自動車、特にスポーツカーのための、変速の衝撃の少ない変速と変速時の駆動トルク抜けがない変速制御が可能な動力システムを提供することである。【解決手段】動力システムは複数のモータ、モータの動力を直接右車輪に伝達する第1系統動力伝達機構、直接左車輪に伝達する第2系統動力伝達機構、モータの動力を右車輪と左車輪に分配伝達する第3系統動力伝達機構、それらを制御する制御装置からなり、制御装置は一方のモータと一方の動力伝達機構で駆動しながら、他方の動力伝達機構について他方のモータで同期をとって変速する変速制御を行う。【選択図】 図6The present invention provides a power system capable of gear shifting with little impact of gear shifting and gear shifting control without driving torque loss during gear shifting for an electric power or hybrid power vehicle, particularly a sports car. A power system includes a plurality of motors, a first system power transmission mechanism that directly transmits motor power to the right wheel, a second system power transmission mechanism that directly transmits power to the left wheel, and the power of the motor to the right wheel and left wheel. A third system power transmission mechanism that distributes the power to the motor, and a control device that controls them. The control device is driven by one motor and one power transmission mechanism, while the other motor transmission mechanism is synchronized by the other motor. Shift control is performed. [Selection] Figure 6

Description

電気動力またはハイブリッド動力の自動車、特にスポーツカーのための動力システムに関するもの、特に変速制御を行う動力システム、さらにはトルクベクタリング制御時に変速制御を行う動力システムに関するものである。   The present invention relates to a power system for an electric power or hybrid power vehicle, in particular, a sports car, particularly to a power system that performs shift control, and further to a power system that performs shift control during torque vectoring control.

まず、電気動力またはハイブリッド動力の自動車の動力システムとして用いられるモータの特性について説明する。
電気動力またはハイブリッド動力の自動車は回生ブレーキを行うので、その動力システムに用いられるのは発電機能を有するモータジェネレータであるが、本発明においてはモータジェネレータと同じ意味でモータと記述する。
図1に、電気動力またはハイブリッド動力の自動車の動力システムとして用いられる一般的な永久磁石型同期モータのエネルギー効率を示す。図1aに回転速度-トルク特性を、図1bに回転速度-出力特性示す。
モータの回転速度-トルク特性を図1aに示す。トルクは低回転速度領域で高く、回転速度が高くなるにつれて低くなること、エネルギー効率は中回転速度大トルクの領域-I で最も高く、領域-II、領域-III の順に低くなる。エネルギー効率はスポット-B が最も高く、スポット-A、スポット-Cの順に低くなり、 高トルク領域(定格出力)にあるスポットBに比べて、低トルク領域にあるスポットDのエネルギー効率は低くなる。
モータの回転速度-出力特性を図1bに示すように、出力を一定にした状態で回転速度を変化することが可能であり、低回転速度の領域-II にあるスポット-A、中回転速度の領域-I にあるスポット-B、高回転速度の領域-III にあるスポット-Cで等しい出力にすることができる。同じ出力でもエネルギー効率は中回転速度領域にあるスポット-Bがもっとも高いことである。
First, characteristics of a motor used as a power system of an electric power or hybrid power automobile will be described.
Since an electric power or hybrid power automobile performs regenerative braking, a motor generator having a power generation function is used in the power system. In the present invention, a motor is described in the same meaning as the motor generator.
FIG. 1 shows the energy efficiency of a general permanent magnet type synchronous motor used as a power system of an electric power or hybrid power automobile. FIG. 1a shows the rotational speed-torque characteristics, and FIG. 1b shows the rotational speed-output characteristics.
The rotation speed-torque characteristics of the motor are shown in FIG. 1a. The torque is high in the low rotational speed region and decreases as the rotational speed increases. The energy efficiency is highest in the region-I where the medium rotational speed is large, and decreases in the order of region-II and region-III. Spot-B has the highest energy efficiency, followed by Spot-A and Spot-C, and the energy efficiency of Spot D in the low torque range is lower than Spot B in the high torque range (rated output). .
As shown in Fig. 1b, the rotation speed-output characteristics of the motor can change the rotation speed with the output kept constant, and the spot-A in the low rotation speed region-II, the medium rotation speed The same output can be obtained by spot-B in area-I and spot-C in area-III of high rotational speed. Even at the same output, the energy efficiency is highest in the spot-B in the middle rotation speed region.

電気動力またはハイブリッド動力のスポーツカーの動力システムにおいては、標準的な動力システムに比べて、定格出力の大きく回転速度の高いモータを用いるので市街地走行時の低トルク領域および低回転速度におけるエネルギー効率の低下の問題は大きく、それらの問題を解決するには、モータの特性の改善だけではそれらを満足することは困難であり、可変定格出力制御や 変速制御が必要になる。   The power system of an electric power or hybrid power sports car uses a motor with a large rated output and a high rotational speed compared to a standard power system, so that the energy efficiency in the low torque range and low rotational speed when traveling in urban areas is high. The problem of decrease is large, and it is difficult to satisfy them by improving the motor characteristics alone to solve these problems, and variable rated output control and shift control are required.

電気動力またはハイブリッド動力の自動車の変速制御の背景について図1dに示す。
理想的なモータの回転速度-トルク特性-eを満足する特性-fのモータは特性-eで使用した場合、前述のようにエネルギー効率が低くなる。
特性-cは減速比の小さなモータ、特性-dは減速比の大きなモータの回転速度-トルク特性であり、変速を行うことにより理想的な特性-eが得られる。また、変速によりエネルギー効率の高い領域-Idと領域-Icとの切換えることにより広い回転速度領域において高いエネルギー効率を 得ることができる。
電気動力またはハイブリッド動力のスポーツカーの動力システムに適した自動変速方式にAMT方式がある。
AMT方式はトルコンAT方式、CVT方式に比べて、動力伝達効率が高い特徴と油圧ポンプをモータで駆動することによる損失がない特徴と電動制御の実現が容易である特徴を有しているが、シフトアップ変速時に駆動トルク抜けが生じる欠点と変速時に衝撃が生じる欠点を有している。
モータの優れた回転速度-トルク特性のために、電気自動車の動力システムは変速機構を持たないことが多く、その場合変速機構固有の問題を有しない。
従がって、電気自動車の動力システムに変速機構を付加するためには、変速時の衝撃が少なく変速時の駆動トルク抜けの問題が発生しない変速機構の実現が重要である。
The background of the shift control of an electric power or hybrid power vehicle is shown in FIG.
An ideal motor rotation speed-torque characteristic-characteristic that satisfies e-f, when used with characteristic-e, has low energy efficiency as described above.
Characteristic-c is a motor with a small reduction ratio, and characteristic-d is a rotational speed-torque characteristic of a motor with a large reduction ratio, and an ideal characteristic -e can be obtained by shifting. Moreover, high energy efficiency can be obtained in a wide rotation speed region by switching between region-Id and region-Ic, which have high energy efficiency by shifting.
There is an AMT system as an automatic transmission system suitable for a power system of an electric power or a hybrid power sports car.
The AMT method has the characteristics that power transmission efficiency is higher than the torque converter AT method and CVT method, the characteristic that there is no loss by driving the hydraulic pump with a motor, and the feature that electric control is easy to realize. It has a drawback that a drive torque is lost during a shift-up shift and a shock that a shock occurs during a shift.
Due to the excellent rotational speed-torque characteristics of the motor, the power system of an electric vehicle often does not have a speed change mechanism, in which case there are no problems inherent to the speed change mechanism.
Therefore, in order to add a speed change mechanism to a power system of an electric vehicle, it is important to realize a speed change mechanism that has a small impact at the time of shifting and does not cause a problem of missing drive torque at the time of shifting.

電気動力またはハイブリッド動力のスポーツカーのトルクベクタリング制御の背景について説明する。
従来の内燃機関動力のスポーツカーにおいてもトルクベクタリング制御はコーナリング特性を向上させる重要な機能であったが、1つの動力のトルクを任意の比率で左右の車輪に分配する機構は複雑であり、重量とコストを増加させること、遊星ギアや多板クラッチ等により制御するために発熱等によるエネルギー損失と制御精度の低さのために普及しなかった。
電気動力またはハイブリッド動力のスポーツカーでは、複数のモータを用いることが容易なこととモータの回転速度またはトルクの高精度の制御が容易なことにより、二つのモータの一方で右車輪を他方で左車輪を駆動する独立駆動方式トルクベクタリング制御の実現が容易になった。
独立駆動方式トルクベクタリング制御は二つの課題を有している。第1の課題は一方のモータのトルクを他方の車輪に配分できないことである。第2の課題は低負荷直進走行時にそれぞれのモータは定格出力に対してかなり低いトルクで駆動することになり、モータをエネルギー効率の低いトルク領域で使用しなければならないことである。
The background of torque vectoring control of an electric power or hybrid power sports car will be described.
Torque vectoring control was an important function for improving cornering characteristics even in conventional internal combustion engine powered sports cars, but the mechanism for distributing the torque of one power to the left and right wheels at an arbitrary ratio is complicated, In order to increase the weight and cost, and to control with planetary gears and multi-plate clutches, etc., it was not popular due to energy loss due to heat generation and low control accuracy.
In electric powered or hybrid powered sports cars, it is easy to use multiple motors and high-precision control of motor rotation speed or torque, so the right wheel on one of the two motors on the left Realization of independent drive system torque vectoring control to drive wheels has become easier.
Independent drive torque vectoring control has two problems. The first problem is that the torque of one motor cannot be distributed to the other wheel. The second problem is that each motor is driven with a considerably low torque with respect to the rated output during low-load straight traveling, and the motor must be used in a torque region with low energy efficiency.

特許文献1はモータで強制的に同期をとって変速を行う動力システムである。
段落0007から段落0010に、クラッチ装置と手動変速機の間にモータを設ける構成とし、変速時にクラッチ装置を制御してエンジンの動力伝達を切断し、次に手動変速機をニュートラルにし、次にモータで手動変速装置の回転数を目標の変速段に調整し、次に手動変速装置の目標の変速段に切換え、次にクラッチ装置を接続することが記述されている。
Patent Document 1 is a power system that performs gear shifting with a motor forcibly synchronized.
In paragraphs 0007 to 0010, a motor is provided between the clutch device and the manual transmission, and the clutch device is controlled during transmission to cut off engine power transmission, and then the manual transmission is set to neutral, and then the motor Describes that the rotational speed of the manual transmission device is adjusted to the target gear position, then switched to the target gear position of the manual transmission device, and then the clutch device is connected.

特許文献2はモータで強制的に同期をとって変速を行う動力システムである。
段落0024に、電動モータ、電磁式の噛み合いクラッチにより断続する変速装置を備え、クラッチの噛み合い接続を解除した後、前記モータ駆動回路への動作指令を行い、回転速度を出力側クラッチの回転速度よりも僅かに大きくして、出力側クラッチに噛み合い接続させる構成の電気自動車の変速駆動方法について記述されている。
また、段落0026に、変速操作時に、クラッチの噛み合い接続を解除した後、再び前記モータ駆動回路への動作指令を行い、出力側クラッチの回転速度に同期させることが記述されている。
Patent Document 2 is a power system that performs gear shifting by forcibly synchronizing with a motor.
Paragraph 0024 includes an electric motor and a transmission that is intermittently engaged by an electromagnetic meshing clutch. After releasing the meshing engagement of the clutch, an operation command is given to the motor drive circuit, and the rotational speed is determined from the rotational speed of the output clutch. Also described is a speed change driving method for an electric vehicle that is slightly enlarged and meshed with an output side clutch.
In paragraph 0026, it is described that the operation command to the motor drive circuit is issued again after the clutch engagement is released at the time of a shift operation, and is synchronized with the rotation speed of the output side clutch.

特許文献3の技術は二つのモータのトルクを遊星歯車機構により左駆動輪と右駆動輪に分配できるトルクベクタリング制御技術であり、独立駆動方式トルクベクタリング制御の第1の課題を解決しようとするものである。
段落0031から段落0032および段落0047から段落0050に、二つのモータのトルク差よりも大きなトルク差で左駆動輪と右駆動輪を駆動できることが、段落0039には左右車輪の駆動トルク差を示す(7)式が記述されている。
しかし、(7)式に示されるように左右車輪の駆動トルク差は二つのモータのトルク差に比例するので、左右車輪の駆動トルク差を最大にするには二つのモータの一方のモータを逆転するものと思われる。この時サンギアとリングギアは逆方向に高速で回転しピニオンギアは高速で回転することになり発熱等によるエネルギー損失の課題を有する。
また、独立駆動方式トルクベクタリング制御の第2の課題については低負荷直進走行時にそれぞれのモータは定格出力に対してかなり低いトルクで駆動することになるので解決されない。
また、特許文献3の技術はスポーツカーやSUV車には適さない。左右車輪の回転数差を制御できないのでリミテッドスリップデフを必要とするが、左右車輪の駆動トルク差を0にするリミテッドスリップデフは左右車輪の駆動トルク差を制御する特許文献3のトルクベクタリング制御技術には適合しない。
The technology of Patent Document 3 is a torque vectoring control technology that can distribute the torques of two motors to the left drive wheel and the right drive wheel by the planetary gear mechanism, and tries to solve the first problem of the independent drive system torque vectoring control. To do.
From paragraph 0031 to paragraph 0032 and from paragraph 0047 to paragraph 0050, it is possible to drive the left driving wheel and the right driving wheel with a torque difference larger than the torque difference between the two motors, and paragraph 0039 shows the driving torque difference between the left and right wheels ( 7) Formula is described.
However, as shown in equation (7), the difference in driving torque between the left and right wheels is proportional to the difference in torque between the two motors. Therefore, to maximize the driving torque difference between the left and right wheels, reverse the motor of one of the two motors. It seems to do. At this time, the sun gear and the ring gear rotate in the opposite directions at a high speed, and the pinion gear rotates at a high speed, which causes a problem of energy loss due to heat generation or the like.
Further, the second problem of the independent drive type torque vectoring control cannot be solved because each motor is driven with a considerably low torque with respect to the rated output during the low load straight traveling.
Further, the technique of Patent Document 3 is not suitable for sports cars and SUV cars. Since the difference between the rotational speeds of the left and right wheels cannot be controlled, a limited slip differential is required. However, the limited slip differential that sets the drive torque difference between the left and right wheels to zero controls the torque difference between the left and right wheels. Not compatible with technology.

特許公開2003-335152 エクセディPatent Publication 2003-335152 EXEDY 特許公開H9-196128 セイコーエプソン株式会社Patent Publication H9-196128 Seiko Epson Corporation 特開2015-021594 澤瀬 薫JP 2015-021594 Akira Sawase

本発明が解決しようとする課題は二つある。
第1の課題は、電気動力またはハイブリッド動力の自動車特にスポーツカーのための、変速時の衝撃の少ない変速と変速時の駆動トルク抜けがない変速制御が可能な動力システム提供することである。
第2の課題は、右車輪と左車輪のトルク差分が大きいトルクベクタリング制御が可能な動力システム提供し、トルク差分が大きいトルクベクタリング制御時にも変速時の衝撃の少ない変速と変速時の駆動トルク抜けがない変速制御が可能な動力システム提供することである。
There are two problems to be solved by the present invention.
The first problem is to provide a power system capable of gear shifting with little impact during gear shifting and gear shifting control without driving torque loss during gear shifting for an electric power or hybrid power vehicle, particularly a sports car.
The second problem is to provide a power system capable of torque vectoring control with a large torque difference between the right wheel and the left wheel. It is an object of the present invention to provide a power system capable of shifting control without torque loss.


本発明の動力システムは、複数のモータ、モータの動力を直接右車輪に伝達する第1系統動力伝達機構、直接左車輪に伝達する第2系統動力伝達機構、モータの動力を右車輪と左車輪に分配伝達する第3系統動力伝達機構からなり、三つの系統の動力伝達機構はそれぞれ変速機構を有する。

制御装置は、モータと三つの系統の動力伝達機構を制御して、一方のモータと一方の動力伝達機構で駆動しながら、他方の動力伝達機構の変速機構について他方のモータを制御して、他方の動力伝達機構の入力軸の回転速度を目的の(変速後に使用する)前記歯車機構の入力側と同じ回転速度に変化させて、他方の動力伝達機構の入力軸と目的の歯車機構とを接続する並列駆動同期変速制御を行う。

また、制御装置は、モータと三つの系統の動力伝達機構を制御して、右車輪に動力を伝達するモータ数と左車輪に動力を伝達するモータ数の差分の制御とそれぞれのモータの駆動トルクを制御するモータ数差分制御方式トルクベクタリング制御を行い、モータ数差分制御方式トルクベクタリング制御時にも並列駆動同期変速制御を行う。



The power system of the present invention includes a plurality of motors, a first system power transmission mechanism that directly transmits the power of the motor to the right wheel, a second system power transmission mechanism that directly transmits the power to the left wheel, and the power of the motor to the right wheel and the left wheel. The power transmission mechanisms of the three systems each have a speed change mechanism.

The control device controls the motor and the power transmission mechanism of the three systems, and controls the other motor with respect to the speed change mechanism of the other power transmission mechanism while driving with the one motor and the one power transmission mechanism. Change the rotational speed of the input shaft of the power transmission mechanism to the same rotational speed as the input side of the target gear mechanism (used after shifting), and connect the input shaft of the other power transmission mechanism to the target gear mechanism the parallel drive synchronous shifting control to perform.

The control device also controls the motor and the power transmission mechanism of the three systems to control the difference between the number of motors that transmit power to the right wheel and the number of motors that transmit power to the left wheel, and the drive torque of each motor. The motor number difference control method torque vectoring control is performed, and the parallel drive synchronous shift control is also performed during the motor number difference control method torque vectoring control.



本発明の並列駆動同期変速制御と特許文献1および特許文献2の技術との差異について説明する。

特許文献1および特許文献2の技術はモータで同期を取って変速を行う同期変速制御技術であり、本発明のような複数のモータ、第1系統動力伝達機構、第2系統動力伝達機構、第3系統動力伝達機構を有していない。

それに対して、本発明の動力システムは、複数のモータ、第1系統動力伝達機構、第2系統動力伝達機構、第3系統動力伝達機構の三つの系統の動力伝達機構を有し、一方のモータと一方の動力伝達機構で駆動しながら、他方の動力伝達機構の変速機構について他方のモータを制御して、他方の動力伝達機構の入力軸の回転速度を目的の(変速後に使用する)前記歯車機構の入力側と同じ回転速度に変化させて、他方の動力伝達機構の入力軸と目的の歯車機構とを接続する並列駆動同期変速制御である。



Differences between the parallel drive synchronous shift control of the present invention and the techniques of Patent Document 1 and Patent Document 2 will be described.

The technologies of Patent Document 1 and Patent Document 2 are synchronous shift control technologies that perform a shift by synchronizing with a motor. A plurality of motors, a first power transmission mechanism, a second power transmission mechanism, It does not have a three-line power transmission mechanism.

On the other hand, the power system of the present invention has three systems of power transmission mechanisms: a plurality of motors, a first system power transmission mechanism, a second system power transmission mechanism, and a third system power transmission mechanism. And driving the other power transmission mechanism while controlling the other motor with respect to the speed change mechanism of the other power transmission mechanism, the desired speed of the input shaft of the other power transmission mechanism (used after the shift) This is parallel drive synchronous shift control in which the rotation speed is changed to the same rotational speed as the input side of the mechanism and the input shaft of the other power transmission mechanism is connected to the target gear mechanism .


次に、本発明のモータ数差分制御方式トルクベクタリング制御と特許文献3の技術との手段の差異について説明する。
特許文献3の技術は遊星歯車機構の複雑な組合せの機構によって独立駆動方式トルクベクタリング制御の第1の課題を解決しようとするトルクベクタリング制御技術である。
それに対して、本発明の動力システムは、第1系統動力伝達機構、第2系統動力伝達機構、第3系統動力伝達機構の三つの系統の動力伝達機構を有する。
さらに、本発明の動力システムはトルクベクタリング制御(モータ数差分制御方式トルクベクタリング制御)の状態においても並列駆動同期変速制御を統合して制御可能なものである。
Next, a difference in means between the motor number difference control method torque vectoring control of the present invention and the technique of Patent Document 3 will be described.
The technology of Patent Document 3 is a torque vectoring control technology that attempts to solve the first problem of independent drive system torque vectoring control by a complex combination of planetary gear mechanisms.
In contrast, the power system of the present invention has three systems of power transmission mechanisms: a first system power transmission mechanism, a second system power transmission mechanism, and a third system power transmission mechanism.
Furthermore, the power system of the present invention can be controlled by integrating parallel drive synchronous shift control even in the state of torque vectoring control (motor number difference control type torque vectoring control).

本発明の動力システムの並列駆動同期変速制御とモータ数差分制御方式トルクベクタリング制御の効果について説明する。
第1の効果は第1の課題の解決、すなわち、並列駆動同期変速制御の実現、変速時の衝撃の少ない変速と変速時の駆動トルク抜けがない変速が可能な変速制御を実現したことである。
第2の効果は第2の課題の解決、すなわち、モータ数差分制御方式トルクベクタリング制御を実現したことであり、モータ数差分制御方式トルクベクタリング制御時にも並列駆動同期変速制御の実現したことである。
The effects of the parallel drive synchronous shift control and the motor number difference control system torque vectoring control of the power system of the present invention will be described.
The first effect is the solution to the first problem, that is, realization of parallel drive synchronous shift control, shift control capable of shifting with little impact during shift and shift without drive torque loss during shift. .
The second effect is that the second problem is solved, that is, the motor number difference control method torque vectoring control is realized, and the parallel drive synchronous shift control is realized also in the motor number difference control method torque vectoring control. It is.

本発明の動力システムのさらなる効果は、並列駆動同期変速制御とモータ数差分制御方式トルクベクタリング制御だけでなく、モータ数総和制御方式可変定格出力制御も可能にしたことであり、並列駆動同期変速制御とモータ数総和制御方式可変定格出力制御の双方の実現によって、モータの、よりエネルギー効率の高いトルク領域での使用を可能にしたことである。   A further effect of the power system of the present invention is that not only parallel drive synchronous shift control and motor number difference control method torque vectoring control, but also motor number total control method variable rated output control is enabled. By realizing both the control and the motor total number control type variable rated output control, it is possible to use the motor in a more energy efficient torque region.

本発明のモータ数差分制御方式トルクベクタリング制御は、ステアリング操作の難しさやフィードバックの不自然さの問題を有しているが、いくつかの方法により解決される。
第1の方法はステア・バイ・ワイヤ技術との組合せである。ステア・バイ・ワイヤ技術はステアリングホイールの角度から目標のヨーレート(ヨー角速度)を求め、コンピュータはプログラムに従がってステアリング制御とトルクベクタリング制御を行う。
第2の方法は四輪駆動の前輪か後輪の駆動に用いる方法である。例えば四輪駆動の前輪に用いた場合、主たる駆動は後輪のトルクで行い、前輪のトルクは旋回に用いることができる。
The motor number difference control type torque vectoring control of the present invention has problems of difficulty in steering operation and unnatural feedback, but can be solved by several methods.
The first method is a combination with steer-by-wire technology. In steer-by-wire technology, the target yaw rate (yaw angular velocity) is determined from the angle of the steering wheel, and the computer performs steering control and torque vectoring control according to the program.
The second method is a method used for driving a front wheel or a rear wheel of four-wheel drive. For example, when used for front wheels of four-wheel drive, the main drive is performed by the torque of the rear wheels, and the torque of the front wheels can be used for turning.

一般的な永久磁石型同期モータの可変定格出力制御と変速制御の特性を説明する図である。It is a figure explaining the characteristic of variable rated output control and shift control of a general permanent magnet type synchronous motor. 主要なモデルと制御技術の分類を示す図である。It is a figure which shows the classification | category of a main model and control technology. Model-2112,2121,2122,2131,2132,2142,2152の動力システムの全体概要構成を説明する図である。It is a figure explaining the general | schematic outline structure of the motive power system of Model-2112,2121,2122,2131,2132,2142,2152. Model-2114,2123,2124,2133,2134の動力システムの全体概要構成を説明する図である。It is a figure explaining the whole general | schematic structure of the motive power system of Model-2114, 2123, 2124, 2133, 2134. Model-2121a,Model-2121bの詳細な部分構成を説明する図である。It is a figure explaining the detailed partial structure of Model-2121a and Model-2121b. Model-2122a,2122b,2122cの詳細な部分構成を説明する図である。。It is a figure explaining the detailed partial structure of Model-2122a, 2122b, 2122c. . Model-2124bの詳細な部分構成を説明する図である。It is a figure explaining the detailed partial structure of Model-2124b. Model-2131s,2132bの詳細な部分構成を説明する図である。It is a figure explaining the detailed partial structure of Model-2131s and 2132b. Model-2132s, Model-2132bの詳細な部分構成を説明する図である。It is a figure explaining the detailed partial structure of Model-2132s and Model-2132b. Model-2134maの詳細な部分構成を説明する図である。It is a figure explaining the detailed partial structure of Model-2134ma. Model-2134sの詳細な部分構成を説明する図である。It is a figure explaining the detailed partial structure of Model-2134s. Model-2134bの詳細な部分構成を説明する図である。It is a figure explaining the detailed partial structure of Model-2134b. Model-2142,2132CXの詳細な部分構成を説明する図である。It is a figure explaining the detailed partial structure of Model-2142 and 2132CX. Model-2121aの並列駆動同期変速制御(MST-11)を説明する図(1)である。FIG. 11A is a diagram (1) illustrating parallel drive synchronous shift control (MST-11) of Model-2121a. Model-2121aの並列駆動同期変速制御(MST-12)を説明する図(2)である。FIG. 8B is a diagram (2) illustrating the parallel drive synchronous shift control (MST-12) of Model-2121a. Model-2121aの並列駆動同期変速制御(MST-13)を説明する図(3)である。FIG. 11C is a diagram (3) illustrating the parallel drive synchronous shift control (MST-13) of Model-2121a. Model-2121bの並列駆動同期変速制御(MST-13)を説明する図である。It is a figure explaining parallel drive synchronous transmission control (MST-13) of Model-2121b. Model-2122aの並列駆動同期変速制御(MST-21)を説明する図(1)である。FIG. 11A is a diagram (1) illustrating parallel drive synchronous shift control (MST-21) of Model-2122a. Model-2122aの並列駆動同期変速制御(MST-22)を説明する図(2)である。FIG. 8B is a diagram (2) illustrating the parallel drive synchronous shift control (MST-22) of Model-2122a. Model-2122aの並列駆動同期変速制御(MST-23)を説明する図(3)である。FIG. 11C is a diagram (3) illustrating the parallel drive synchronous shift control (MST-23) of Model-2122a. Model-2122bの並列駆動同期変速制御(MST-22)を説明する図(1)である。FIG. 6A is a diagram (1) illustrating parallel drive synchronous shift control (MST-22) of Model-2122b. Model-2122bの並列駆動同期変速制御(MST-22)を説明する図(2)である。FIG. 11B is a diagram (2) illustrating the parallel drive synchronous shift control (MST-22) of Model-2122b. Model-2122bの並列駆動同期変速制御(MST-23)を説明する図(3)である。FIG. 11C is a diagram (3) illustrating the parallel drive synchronous shift control (MST-23) of Model-2122b. Model-2122maの並列駆動同期変速制御(MST-21)を説明する図(1)である。FIG. 6A is a diagram (1) for explaining parallel drive synchronous shift control (MST-21) of Model-2122ma. Model-2122maの並列駆動同期変速制御(MST-23)を説明する図(2)である。FIG. 11B is a diagram (2) illustrating the parallel drive synchronous shift control (MST-23) of Model-2122ma. Model-2131sの並列駆動同期変速制御(MST-31)を説明する図(1)である。FIG. 11A is a diagram (1) illustrating parallel drive synchronous shift control (MST-31) of Model-2131s. Model-2131sの並列駆動同期変速制御(MST-32)を説明する図(2)である。FIG. 8B is a diagram (2) illustrating the parallel drive synchronous shift control (MST-32) of Model-2131s. Model-2131sの並列駆動同期変速制御(MST-33)を説明する図(3)である。FIG. 11C is a diagram (3) illustrating the parallel drive synchronous shift control (MST-33) of Model-2131s. Model-2132bの並列駆動同期変速制御(MST-41)を説明する図(1)である。FIG. 10A is a diagram (1) illustrating parallel drive synchronous shift control (MST-41) of Model-2132b. Model-2132bの並列駆動同期変速制御(MST-42)を説明する図(2)である。FIG. 11B is a diagram (2) illustrating the parallel drive synchronous shift control (MST-42) of Model-2132b. Model-2132bの並列駆動同期変速制御(MST-43)を説明する図(3)である。FIG. 11C is a diagram (3) illustrating the parallel drive synchronous shift control (MST-43) of Model-2132b. Model-2132bの並列駆動同期変速制御(MST-44)を説明する図(4)である。FIG. 11 is a diagram (4) for explaining parallel drive synchronous shift control (MST-44) of Model-2132b. Model-2132maの並列駆動同期変速制御(MST-41)を説明する図(1)である。FIG. 11A is a diagram (1) illustrating a parallel drive synchronous shift control (MST-41) of Model-2132ma. Model-2132maの並列駆動同期変速制御(MST-42)を説明する図(2)である。FIG. 11B is a diagram (2) illustrating the parallel drive synchronous shift control (MST-42) of Model-2132ma. Model-2132maの並列駆動同期変速制御(MST-43)を説明する図(3)である。FIG. 11C is a diagram (3) illustrating the parallel drive synchronous shift control (MST-43) of Model-2132ma. Model-2142の並列駆動同期変速制御(MST-51)を説明する図(1)である。FIG. 11A is a diagram (1) illustrating a parallel drive synchronous shift control (MST-51) of Model-2142. Model-2142の並列駆動同期変速制御(MST-52)を説明する図(2)である。FIG. 11B is a diagram (2) illustrating the parallel drive synchronous shift control (MST-52) of Model-2142. Model-2142の並列駆動同期変速制御(MST-61)を説明する図(3)である。FIG. 16C is a diagram (3) illustrating the parallel drive synchronous shift control (MST-61) of Model-2142. Model-2142の並列駆動同期変速制御(MST-62)を説明する図(4)である。FIG. 11 is a diagram (4) illustrating the parallel drive synchronous shift control (MST-62) of Model-2142. Model-2122aのモータ数差分方式トルクベクタリング制御(YC-2)を説明する図である。It is a figure explaining the motor number difference system torque vectoring control (YC-2) of Model-2122a. Model-2122bのモータ数差分方式トルクベクタリング制御(YC-2)を説明する図である。It is a figure explaining the motor number difference system torque vectoring control (YC-2) of Model-2122b. Model-2122maのモータ数差分方式トルクベクタリング制御(YC-2)を説明する図である。It is a figure explaining motor number difference system torque vectoring control (YC-2) of Model-2122ma. Model-2132bのモータ数差分方式トルクベクタリング制御(YC-3)を説明する図(1)である。FIG. 11A is a diagram (1) illustrating a motor number difference method torque vectoring control (YC-3) of Model-2132b. Model-2132bのモータ数差分方式トルクベクタリング制御(YC-3)を説明する図(2)である。FIG. 11B is a diagram (2) illustrating the motor number difference method torque vectoring control (YC-3) of Model-2132b. Model-2132maのモータ数差分方式トルクベクタリング制御(YC-3)を説明する図(1)である。FIG. 5A is a diagram (1) illustrating Model-2132ma motor number difference method torque vectoring control (YC-3). Model-2132maのモータ数差分方式トルクベクタリング制御(YC-3)を説明する図(2)である。FIG. 6B is a diagram (2) illustrating Model-2132ma motor number difference method torque vectoring control (YC-3). Model-2142のモータ数差分方式トルクベクタリング制御(YC-4)を説明する図である。It is a figure explaining the motor number difference system torque vectoring control (YC-4) of Model-2142. Model-2122aのモータ数総和方式可変定格出力制御(VR-1)を説明する図である。It is a figure explaining the motor number sum total system variable rated output control (VR-1) of Model-2122a.

本発明の動力システムは、電気動力またはハイブリッド動力の自動車のための動力システムであって、前記動力システムは、モータ13, 14, 15、モータの動力を第1車輪(右車輪)21に伝達する第1系統動力伝達機構51, 58, 59, 55, 62, 71、第2車輪(左車輪)22に伝達する第2系統動力伝達機構57, 52, 60, 56, 63, 72、モータの動力を第1車輪(右車輪)21と第2車輪(左車輪)22に分配伝達する第3系統動力伝達機構53, 55, 73, 54, 56, 74, 61, 62, 63、制御装置18を有し、三つの系統の動力伝達機構はそれぞれ変速機構を有する。
制御装置18は、モータ13, 14, 15と三つの系統の動力伝達機構を制御して、一方のモータと一方の動力伝達機構で駆動しながら、他方のモータで同期をとって他方の動力伝達機構の変速機構を変速する並列駆動同期変速制御を行う。
モータ13, 14, 15は二つ以上、三つの系統の動力伝達機構はそれぞれ二つ以上必要である。
The power system of the present invention is a power system for an electric power or hybrid power vehicle, and the power system transmits motors 13, 14, 15 and motor power to a first wheel (right wheel) 21. First system power transmission mechanism 51, 58, 59, 55, 62, 71, second system power transmission mechanism 57, 52, 60, 56, 63, 72 transmitting to the second wheel (left wheel) 22, motor power A third power transmission mechanism 53, 55, 73, 54, 56, 74, 61, 62, 63 and a control device 18 that distributes the power to the first wheel (right wheel) 21 and the second wheel (left wheel) 22. And the power transmission mechanisms of the three systems each have a speed change mechanism.
The control device 18 controls the motors 13, 14 and 15 and the power transmission mechanism of the three systems, while driving with one motor and one power transmission mechanism, synchronizing with the other motor and transmitting the other power Parallel drive synchronous shift control for shifting the speed change mechanism of the mechanism is performed.
Two or more motors 13, 14 and 15 are required, and two or more power transmission mechanisms of three systems are required.

前記制御装置18は、さらに、モータ13, 14, 15、三つの系統の動力伝達機構を制御して、並列駆動同期変速制御を行うとともに、第1車輪21に動力を伝達するモータ数と第2車輪22に動力を伝達するモータ数の差分を制御するモータ数差分制御方式トルクベクタリング制御を行う。   The control device 18 further controls the power transmission mechanisms of the motors 13, 14, 15 and the three systems to perform parallel drive synchronous shift control, and the number of motors for transmitting power to the first wheels 21 and the second number. Motor number difference control system torque vectoring control for controlling the difference in the number of motors that transmit power to the wheels 22 is performed.

図2は本発明の動力システムの主要なモデルの分類を説明する図である。まず、構成上の分類について説明する。
Model-21の全てのモデルは、は第1のモータ13、第2モータ14、第3モータ15、モータの動力を第1車輪(右車輪)21 に伝達する第1系統動力伝達機構51, 58, 59, 55, 62, 71、モータの動力を第2車輪(左車輪)22に伝達する第2系統動力伝達機構57, 52, 60, 56, 63, 72、モータの動力を第1車輪(右車輪)21と第2車輪(左車輪)22に分配伝達する第3系統動力伝達機構53, 55, 73, 54, 56, 74, 61, 62, 63の組合せ(それらの要素の有無の組合せ)によって分類される。
Model-211 は第1モータ13 、第1系統動力伝達機構、第2系統動力伝達機構、第3系統動力伝達機構を有するグループである。
Model-212 は第1モータ13、第2モータ14、第1系統動力伝達機構、第2系統動力伝達機構、第3系統動力伝達機構を有するグループである。
Model-213 は第1モータ13、第2モータ14、第3モータ15、第1系統動力伝達機構、第2系統動力伝達機構、第3系統動力伝達機構を有するグループである。
Model-211, Model-212, Model-213 は第3動力伝達機構の動力分配機構が差動機構81であるグループであり、Model-214 は第3動力伝達機構の動力分配機構が3-クラッチ方式動力分配機構83, 84, 85であるグループである。
Model-215 は第1モータ13 、第2モータ14、第1系統動力伝達機構、第2系統動力伝達機構を有し第3系統動力伝達機構を有さないグループである。
さらに、Model-2112, 2121, 2122, 2131, 2132, 2142, 2152は電気自動車の動力システムであり、Model-2114, 2123, 2124, 2133, 2134 はエンジン16 を有するハイブリッド自動車の動力システムである。
FIG. 2 is a diagram for explaining the classification of main models of the power system of the present invention. First, the structural classification will be described.
All models of Model-21 are the first motor 13, the second motor 14, the third motor 15, and the first system power transmission mechanisms 51, 58 that transmit the power of the motor to the first wheel (right wheel) 21. , 59, 55, 62, 71, the second power transmission mechanism 57, 52, 60, 56, 63, 72 for transmitting the motor power to the second wheel (left wheel) 22, and the motor power to the first wheel ( Combination of power transmission mechanisms 53, 55, 73, 54, 56, 74, 61, 62, and 63 (distribution of the presence or absence of these elements) that distribute and transmit to the right wheel (21) and the second wheel (left wheel) 22 ).
Model-211 is a group having a first motor 13, a first system power transmission mechanism, a second system power transmission mechanism, and a third system power transmission mechanism.
Model-212 is a group having a first motor 13, a second motor 14, a first system power transmission mechanism, a second system power transmission mechanism, and a third system power transmission mechanism.
Model-213 is a group having a first motor 13, a second motor 14, a third motor 15, a first system power transmission mechanism, a second system power transmission mechanism, and a third system power transmission mechanism.
Model-211, Model-212, and Model-213 are groups in which the power distribution mechanism of the third power transmission mechanism is the differential mechanism 81, and Model-214 is a group that has a 3-clutch system. The power distribution mechanisms 83, 84, and 85 are groups.
Model-215 is a group having the first motor 13, the second motor 14, the first system power transmission mechanism, and the second system power transmission mechanism, and not the third system power transmission mechanism.
Further, Models-2112, 2121, 2122, 2131, 2132, 2142, 2152 are electric vehicle power systems, and Models-2114, 2123, 2124, 2133, 2134 are hybrid vehicle power systems having an engine 16.

次に、機能上の分類について説明する。
Model-2121, 2122, 2123, 2124, 2131, 2132, 2133, 2134, 2142 は並列駆動同期変速制御(MST-1, MST-2, MST-4, MST-5, MST-6)が可能なグループである。
Model-2112, 2114, 2122, 2124, 2132, 2134, 2142, 2152 はモータ数差分制御方式トルクベクタリング制御(YC-1, YC-2, YC-3, YC-3, YC-4, YC-5)が可能なグループである。
Model-2122, 2124, 2132, 2134, 2142 はモータ数差分制御方式トルクベクタリング制御(YC-2, YC-3, YC-3, YC-4)状態において並列駆動同期変速制御(MST-2, MST-4, MST-6)が可能なグループである。
Next, functional classification will be described.
Models-2121, 2122, 2123, 2124, 2131, 2132, 2133, 2134, 2142 are groups capable of parallel drive synchronous shift control (MST-1, MST-2, MST-4, MST-5, MST-6) It is.
Model-2112, 2114, 2122, 2124, 2132, 2134, 2142, 2152 are motor number difference control torque vectoring control (YC-1, YC-2, YC-3, YC-3, YC-4, YC- 5) is a possible group.
Model-2122, 2124, 2132, 2134, 2142 are parallel drive synchronous shift control (MST-2, 2C) in the torque vectoring control (YC-2, YC-3, YC-3, YC-4) state. MST-4 and MST-6) are possible groups.

図3はModel-2112, 2121, 2122, 2131, 2132, 2142, 2152の動力システムの全体概要構成を説明する図である。
動力システムは複数のモータ13,14,15、動力伝達装置23、複数の車輪21, 22、制御装置18 等を有し、動力伝達装置23 はモータ13,14,15が接続される複数の入力軸 31, 32, 33、車輪が接続される複数の出力軸35, 36、入力軸と出力軸の間に介在する第1系統動力伝達機構51, 58, 59, 55, 62, 71、第2車輪(左車輪)22に伝達する第2系統動力伝達機構57, 52, 60, 56, 63, 72、第3系統動力伝達機構53, 55, 73, 54, 56, 74, 61, 62, 63等を有する。
Model-2112は1つのモータ13、Model-2121, 2122, 2142, 2152は二つのモータ13, 14、Model-2131, 2132は三つのモータ13, 14, 15を有する。
図4はModel-2114, 2123, 2124, 2133, 2134の動力システムの全体概要構成を説明する図である。
動力システムは、さらにエンジン16、エンジン16が接続される入力軸 34等を有する。
Model-2114は1つのモータ13、Model-2123, 2124は二つのモータ13, 14、Model-2133, 2134は三つのモータ13, 14, 15を有する。
FIG. 3 is a diagram for explaining the overall schematic configuration of the power system of Models-2112, 2121, 2122, 2131, 2132, 2142, 2152.
The power system has a plurality of motors 13, 14, 15, a power transmission device 23, a plurality of wheels 21, 22, a control device 18, etc., and the power transmission device 23 has a plurality of inputs to which the motors 13, 14, 15 are connected. Axes 31, 32, 33, multiple output shafts 35, 36 to which wheels are connected, first system power transmission mechanism 51, 58, 59, 55, 62, 71, second interposed between input shaft and output shaft, second Second system power transmission mechanism 57, 52, 60, 56, 63, 72 transmitting to wheel (left wheel) 22, third system power transmission mechanism 53, 55, 73, 54, 56, 74, 61, 62, 63 Etc.
Model-2112 has one motor 13, Models-2121, 2122, 2142, and 2152 have two motors 13 and 14, and Models-2131 and 2132 have three motors 13, 14, and 15.
FIG. 4 is a diagram for explaining the overall schematic configuration of the power system of Model-2114, 2123, 2124, 2133, 2134.
The power system further includes an engine 16, an input shaft 34 to which the engine 16 is connected, and the like.
Model-2114 has one motor 13, Model-2123, 2124 has two motors 13, 14, and Model-2133, 2134 has three motors 13, 14, 15.

実施例1はModel-2121a, 2121b、2123a, 2123bの動力システムである。
Model-2121はModel-2122とともに本発明の最も汎用性の高い電気自動車の動力システム、Model-2123はModel-2124とともに最も汎用性の高いハイブリッド自動車の動力システムであり、二つのモータ、一つの第1系統動力伝達機構、一つの第2系統動力伝達機構、二つの第3系統動力伝達機構を有し、並列駆動同期変速制御を行う。
Model-2121とModel-2123の構成はそれぞれ二方式がある。
Model-2121a, 2123aとModel-2121b, 2123bは、第1入力軸31と第2入力軸32の動力を差動機構入力軸43に伝達する機構が異なり、
Model-2121a, 2121bとModel-2123a, 2123bは、後者がさらに、エンジン16、エンジン16が接続される第4入力軸34等を有する。
Example 1 is a power system of Model-2121a, 2121b, 2123a, 2123b.
Model-2121 is the most versatile electric vehicle power system of the present invention together with Model-2122, and Model-2123 is the most versatile hybrid vehicle power system of the present invention together with Model-2124. It has one system power transmission mechanism, one second system power transmission mechanism, and two third system power transmission mechanisms, and performs parallel drive synchronous shift control.
There are two configurations for Model-2121 and Model-2123, respectively.
Model-2121a, 2123a and Model-2121b, 2123b differ in the mechanism that transmits the power of the first input shaft 31 and the second input shaft 32 to the differential mechanism input shaft 43,
The Model-2121a and 2121b and the Model-2123a and 2123b further include the engine 16, the fourth input shaft 34 to which the engine 16 is connected, and the like.

図5aはModel-2121aの詳細な部分構成を説明する図である。
動力システムは、第1モータ13、第2モータ14、第1モータ13が接続される第1入力軸31、第2モータ14が接続される第2入力軸32、第1車輪21が接続される第1出力軸35、第2車輪22が接続される第2出力軸36、差動機構入力軸43と差動機構81を有する。
第1系統動力伝達機構として第1入力軸31の動力を第1出力軸35に伝達するT1動力伝達機構512, 514を有する。
第2系統動力伝達機構として第2入力軸32の動力を第2入力軸32に伝達するT2動力伝達機構522, 524を有する。
第3系統動力伝達機構として第1入力軸31の動力を差動機構入力軸43に伝達するT3動力伝達機構532, 534と第2入力軸32の動力を差動機構入力軸43に伝達するT4動力伝達機構542, 544を有する。
FIG. 5a is a diagram illustrating a detailed partial configuration of Model-2121a.
The power system includes a first motor 13, a second motor 14, a first input shaft 31 to which the first motor 13 is connected, a second input shaft 32 to which the second motor 14 is connected, and a first wheel 21. A first output shaft 35, a second output shaft 36 to which the second wheel 22 is connected, a differential mechanism input shaft 43, and a differential mechanism 81 are provided.
T1 power transmission mechanisms 512 and 514 that transmit the power of the first input shaft 31 to the first output shaft 35 as a first system power transmission mechanism.
T2 power transmission mechanisms 522 and 524 that transmit the power of the second input shaft 32 to the second input shaft 32 are provided as second system power transmission mechanisms.
T3 power transmission mechanisms 532 and 534 for transmitting the power of the first input shaft 31 to the differential mechanism input shaft 43 and T4 for transmitting the power of the second input shaft 32 to the differential mechanism input shaft 43 as a third system power transmission mechanism. Power transmission mechanisms 542 and 544 are provided.

図5bはModel-2121bの動力システムの詳細な部分構成を説明する図である。
動力システムは、第1モータ13、第2モータ14、第1モータ13が接続される第1入力軸31、第2モータ14が接続される第2入力軸32、第1中間軸41、第2中間軸42、第1車輪21が接続される第1出力軸35、第2車輪22が接続される第2出力軸36、差動機構入力軸43と差動機構81を有する。
第1系統動力伝達機構として第1入力軸31の動力を第1中間軸41に伝達するT5動力伝達機構55と第1中間軸41の動力を第1出力軸35に伝達するC1クラッチ機構71を有する。
第2系統動力伝達機構として第2入力軸32の動力を第2中間軸42に伝達するT6動力伝達機構56と第2中間軸42の動力を第2出力軸36に伝達するC2クラッチ機構72を有し、
第3系統動力伝達機構として第1入力軸31の動力を第1中間軸41に伝達するT5動力伝達機構55と第1中間軸41の動力を差動機構入力軸43に伝達するC3クラッチ機構73、第2入力軸32の動力を第2中間軸42に伝達するT6動力伝達機構56と第2中間軸42の動力を差動機構入力軸43伝達するC4クラッチ機構74を有する。
FIG. 5b is a diagram illustrating a detailed partial configuration of the power system of Model-2121b.
The power system includes a first motor 13, a second motor 14, a first input shaft 31 to which the first motor 13 is connected, a second input shaft 32 to which the second motor 14 is connected, a first intermediate shaft 41, a second The intermediate shaft 42 has a first output shaft 35 to which the first wheel 21 is connected, a second output shaft 36 to which the second wheel 22 is connected, a differential mechanism input shaft 43 and a differential mechanism 81.
As a first system power transmission mechanism, a T5 power transmission mechanism 55 for transmitting the power of the first input shaft 31 to the first intermediate shaft 41 and a C1 clutch mechanism 71 for transmitting the power of the first intermediate shaft 41 to the first output shaft 35 are provided. Have.
As a second power transmission mechanism, a T6 power transmission mechanism 56 that transmits the power of the second input shaft 32 to the second intermediate shaft 42 and a C2 clutch mechanism 72 that transmits the power of the second intermediate shaft 42 to the second output shaft 36 are provided. Have
As a third system power transmission mechanism, a T5 power transmission mechanism 55 that transmits the power of the first input shaft 31 to the first intermediate shaft 41 and a C3 clutch mechanism 73 that transmits the power of the first intermediate shaft 41 to the differential mechanism input shaft 43. And a T6 power transmission mechanism 56 for transmitting the power of the second input shaft 32 to the second intermediate shaft 42 and a C4 clutch mechanism 74 for transmitting the power of the second intermediate shaft 42 to the differential mechanism input shaft 43.


図14はModel-2121bの動力システムの駆動状態(010)の並列駆動同期変速制御(MST-1)を説明する図である。

図14aの駆動状態(010)は、第1モータ13、T3動力伝達機構53(第1速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動する走行である。

図14b、図14cの駆動状態(020)は、第2モータ14を起動して、第2モータ14、T4動力伝達機構54、差動機構81で第1出力軸35と第2出力軸36を分配駆動しながら、第1モータ13でT3動力伝達機構53の入力軸31の目的の(変速後に使用する)歯車機構(第2速)533入力側と同じ回転速度に変化させて目的のクラッチ機構534の接続を行う並列駆動同期変速制御である。

以後、この制御を「第1モータ13でT3動力伝達機構53の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御」と簡略化して記述する。

図14dの駆動状態(010)は、T4動力伝達機構54を切断し、第2モータ14を停止して、第1モータ13、T3動力伝達機構53(第2速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動する走行である。



FIG. 14 is a diagram for explaining parallel drive synchronous shift control (MST-1) in the drive state (010) of the power system of Model-2121b.

The driving state (010) in FIG. 14a is a traveling in which the first output shaft 35 and the second output shaft 36 are driven in a distributed manner by the first motor 13, the T3 power transmission mechanism 53 (first speed), and the differential mechanism 81.

14b and 14c, the drive state (020) is such that the second motor 14 is activated, and the first output shaft 35 and the second output shaft 36 are connected by the second motor 14, the T4 power transmission mechanism 54, and the differential mechanism 81. while distributing drive, (used after shifting) objects of the input shaft 31 of the first motor 13 at T3 power transmission mechanism 53 gear mechanism (second gear) 533 input and is changed to the same rotational speed object of clutch This is parallel drive synchronous shift control for connecting the mechanism 534 .

Hereinafter, this control is simply described as “parallel drive synchronous shift control in which the first motor 13 shifts in synchronization with the rotational speed of the target gear mechanism (second speed) of the T3 power transmission mechanism 53”.

In the drive state (010) of FIG. 14d, the T4 power transmission mechanism 54 is disconnected, the second motor 14 is stopped, the first motor 13, the T3 power transmission mechanism 53 (second speed), and the differential mechanism 81 In this traveling, the first output shaft 35 and the second output shaft 36 are distributed and driven.


図15はModel-2121bの動力システムの駆動状態(010)の変速毎に駆動モータを切り替える方式の並列駆動同期変速制御(MST-1)を説明する図である。
図15aの駆動状態(010)は、第1モータ13、T3動力伝達機構53(第1速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動する走行である。
図15bの駆動状態(020)は、第1モータ13、T3動力伝達機構53、差動機構81で第1出力軸35と第2出力軸36を分配駆動しながら、第2モータ14を起動して、第2モータ14でT4動力伝達機構54の目的の歯車機構(第2速)の回転速度に同期をとって連結(変速)を行う並列駆動同期変速制御である。
図15cの駆動状態(010)は、T3動力伝達機構53(第1速)を切断し、第1モータ13を停止して、第2モータ14、T4動力伝達機構54(第2速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動する走行である。
駆動モータを切り換えることによりモータの温度上昇を低減することができ、モータのエネルギー効率を高くすることができる。
FIG. 15 is a diagram for explaining parallel drive synchronous shift control (MST-1) in which the drive motor is switched for each shift in the drive state (010) of the power system of Model-2121b.
The driving state (010) of FIG. 15a is a travel in which the first output shaft 35 and the second output shaft 36 are driven in a distributed manner by the first motor 13, the T3 power transmission mechanism 53 (first speed), and the differential mechanism 81.
In the driving state (020) of FIG. 15b, the second motor 14 is started while the first output shaft 35 and the second output shaft 36 are distributedly driven by the first motor 13, the T3 power transmission mechanism 53, and the differential mechanism 81. Thus, this is parallel drive synchronous shift control in which the second motor 14 is connected (shifted) in synchronization with the rotational speed of the target gear mechanism (second speed) of the T4 power transmission mechanism 54.
The driving state (010) in FIG. 15c is that the T3 power transmission mechanism 53 (first speed) is disconnected, the first motor 13 is stopped, the second motor 14, T4 power transmission mechanism 54 (second speed), the difference In this traveling, the first output shaft 35 and the second output shaft 36 are distributed and driven by the moving mechanism 81.
By switching the drive motor, the temperature rise of the motor can be reduced, and the energy efficiency of the motor can be increased.

図16はModel-2121bの動力システムの駆動状態(101)の並列駆動同期変速制御(MST-1)を説明する図である。
図16aの駆動状態(101)は、第1モータ13とT1動力伝達機構51(第1速)で第1出力軸35を、第2モータ14とT2動力伝達機構52(第1速)で第2出力軸36を直接駆動する走行である。
図16b、図16cの駆動状態(020)は、T1動力伝達機構51(第1速)とT2動力伝達機構52(第1速)を切断して、第1モータ13とT3動力伝達機構53(第1速)、第2モータ14とT4動力伝達機構54(第1速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動し、第2モータ14、T4動力伝達機構54(第1速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動しながら、第1モータ13でT3動力伝達機構53の目的の歯車機構(第2速)の回転速度に同期をとって変速を行い、次に第1モータ13、T3動力伝達機構53(第2速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動しながら、第2モータ14でT4動力伝達機構54の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図16dの駆動状態(101)は、T3動力伝達機構53(第2速)とT4動力伝達機構54(第2速)を切断して、モータ13とT1動力伝達機構51(第2速)で第1出力軸35を、、第2モータ14とT2動力伝達機構52(第2速)で第2出力軸36を直接駆動する走行である。
FIG. 16 is a diagram for explaining parallel drive synchronous shift control (MST-1) in the drive state (101) of the power system of Model-2121b.
The drive state (101) in FIG. 16a is that the first output shaft 35 is driven by the first motor 13 and the T1 power transmission mechanism 51 (first speed), and the first output shaft 35 is driven by the second motor 14 and the T2 power transmission mechanism 52 (first speed). This is the traveling in which the two output shafts 36 are directly driven.
The driving state (020) of FIGS. 16b and 16c is such that the T1 power transmission mechanism 51 (first speed) and the T2 power transmission mechanism 52 (first speed) are disconnected, and the first motor 13 and the T3 power transmission mechanism 53 ( (First speed), second motor 14 and T4 power transmission mechanism 54 (first speed), and differential mechanism 81 distributes and drives first output shaft 35 and second output shaft 36, and second motor 14, T4 power transmission The target gear mechanism (second speed) of the T3 power transmission mechanism 53 is driven by the first motor 13 while the first output shaft 35 and the second output shaft 36 are distributed and driven by the mechanism 54 (first speed) and the differential mechanism 81. The first output shaft 35 and the second output shaft 36 are distributed and driven by the first motor 13, the T3 power transmission mechanism 53 (second speed), and the differential mechanism 81. However, this is parallel drive synchronous shift control in which the second motor 14 shifts in synchronization with the rotational speed of the target gear mechanism (second speed) of the T4 power transmission mechanism 54.
The drive state (101) in FIG. 16d is that the T3 power transmission mechanism 53 (second speed) and the T4 power transmission mechanism 54 (second speed) are disconnected and the motor 13 and the T1 power transmission mechanism 51 (second speed) are disconnected. In this traveling, the first output shaft 35 is directly driven by the second motor 14 and the T2 power transmission mechanism 52 (second speed).

図17はModel-2121bの動力システムの駆動状態(101)の並列駆動同期変速制御(MST-1)を説明する図である。
図17aの駆動状態(101)は、第1モータ13、T5動力伝達機構51(第1速)、C1クラッチ機構71で第1出力軸35を、第2モータ14、T6動力伝達機構56(第1速)、C2クラッチ機構72で第2出力軸36を直接駆動する走行である。
図17b、図17cの駆動状態(020)は、C1クラッチ機構71とC2クラッチ機構72を切断して、第1モータ13、T5動力伝達機構51(第1速)、C3クラッチ機構73、第2モータ14、T6動力伝達機構56(第1速)、C4クラッチ機構74で第1出力軸35と第2出力軸36を分配駆動し、
第2モータ14、T6動力伝達機構56、C4クラッチ機構74、差動機構81で第1出力軸35と第2出力軸36を分配駆動しながら、第1モータ13でT5動力伝達機構55の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御を行い、次に第1モータ13、T5動力伝達機構55、C3クラッチ機構73、差動機構81で第1出力軸35と第2出力軸36を分配駆動しながら、第2モータ14でT6動力伝達機構56の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図17dの駆動状態(101)は、第1モータ13、C3クラッチ機構73とC4クラッチ機構74を切断して、T5動力伝達機構51(第2速)、C1クラッチ機構71で第1出力軸35を、第2モータ14、T6動力伝達機構56(第2速)、C2クラッチ機構72で第2出力軸36を直接駆動する走行である。
FIG. 17 is a diagram for explaining parallel drive synchronous shift control (MST-1) in the drive state (101) of the power system of Model-2121b.
The drive state (101) of FIG. 17a is the first motor 13, the T5 power transmission mechanism 51 (first speed), the C1 clutch mechanism 71, the first output shaft 35, and the second motor 14, T6 power transmission mechanism 56 (first). First speed), the C2 clutch mechanism 72 directly drives the second output shaft 36.
In the driving state (020) of FIGS. 17b and 17c, the C1 clutch mechanism 71 and the C2 clutch mechanism 72 are disconnected, the first motor 13, the T5 power transmission mechanism 51 (first speed), the C3 clutch mechanism 73, the second The motor 14, the T6 power transmission mechanism 56 (first speed), and the C4 clutch mechanism 74 drive the first output shaft 35 and the second output shaft 36 in a distributed manner.
While the first motor 13 and the T6 power transmission mechanism 56, the C4 clutch mechanism 74, and the differential mechanism 81 distribute and drive the first output shaft 35 and the second output shaft 36, the first motor 13 uses the gears of the T5 power transmission mechanism 55. Parallel drive synchronous shift control is performed in which the shift is performed in synchronization with the rotational speed of the mechanism (second speed), and then the first motor 13, T5 power transmission mechanism 55, C3 clutch mechanism 73, and differential mechanism 81 With parallel drive synchronous shift control, the second motor 14 shifts in synchronization with the rotational speed of the gear mechanism (second speed) of the T6 power transmission mechanism 56 while distributingly driving the output shaft 35 and the second output shaft 36. is there.
In the driving state (101) of FIG. 17d, the first motor 13, the C3 clutch mechanism 73 and the C4 clutch mechanism 74 are disconnected, and the first output shaft 35 is driven by the T5 power transmission mechanism 51 (second speed) and the C1 clutch mechanism 71. The second motor 14, the T6 power transmission mechanism 56 (second speed), and the C2 clutch mechanism 72 directly drive the second output shaft 36.

説明を省略したモデルについて説明する。
Model-2123aとModel-2123bの動力システムの詳細な部分構成はModel-2121aとModel-2121bにエンジン16、エンジン16が接続される第4入力軸34等を付加したものである。
Model-2121bの動力システムの駆動状態(010)の並列駆動同期変速制御(MST-1)および変速毎に駆動モータを切り替える方式の並列駆動同期変速制御(MST-1)については、Model-2121bの駆動状態(101)の並列駆動同期変速制御(MST-1)とModel-2121aの駆動状態(010)の変速毎に駆動モータを切り替える方式の並列駆動同期変速制御(MST-1)から説明できる。
また、Model-2123a、Model-2123bの動力システムの並列駆動同期変速制御(MST-1)はエンジン16の影響を受けないのでModel-2121a、Model-2121bの並列駆動同期変速制御(MST-1)と同じである。
A model whose description is omitted will be described.
The detailed partial configuration of the power system of Model-2123a and Model-2123b is obtained by adding the engine 16 and the fourth input shaft 34 to which the engine 16 is connected to the Model-2121a and Model-2121b.
For the parallel drive synchronous shift control (MST-1) of the driving state (010) of the power system of Model-2121b and the parallel drive synchronous shift control (MST-1) of switching the drive motor for each shift, the model-2121b This can be explained from the parallel drive synchronous shift control (MST-1) in the drive state (101) and the parallel drive synchronous shift control (MST-1) in which the drive motor is switched for each shift in the drive state (010) of the Model-2121a.
The parallel drive synchronous shift control (MST-1) of the power system of Model-2123a and Model-2123b is not affected by the engine 16, so the parallel drive synchronous shift control (MST-1) of Model-2121a and Model-2121b Is the same.

実施例2はModel-2122a, 2122b, 2124a, 2124bの動力システムである。
Model-2122はModel-2121とともに本発明の最も汎用性の高い電気自動車の動力システム、Model-2124はModel-2123とともに最も汎用性の高いハイブリッド自動車の動力システムであり、二つのモータ、一つの第1系統動力伝達機構、一つの第2系統動力伝達機構、二つの第3系統動力伝達機構を有し、並列駆動同期変速制御とモータ数の差分の制御によるトルクベクタリング制御を行う。
Model-2122の構成はModel-2122a, 2122b, 2122ma, 2122mbの四方式、Model-2124の構成はModel-2124a, 2124b, 2124ma, 2124mbの四方式がある。
Model-2122a, 2124aとModel-2122b, 2124bは第1入力軸31と第2入力軸32の動力を差動機構入力軸43に伝達する機構が異なり、Model-2124a, 2124bは、Model-2122a, 2122bにエンジン16、エンジン16が接続される第4入力軸34等が付加されている。
Example 2 is a power system of Model-2122a, 2122b, 2124a, 2124b.
Model-2122 is the most versatile electric vehicle power system of the present invention together with Model-2121, and Model-2124 is the most versatile hybrid vehicle power system of the present invention together with Model-2123. It has one system power transmission mechanism, one second system power transmission mechanism, and two third system power transmission mechanisms, and performs torque vectoring control by parallel drive synchronous transmission control and control of the difference in the number of motors.
The Model-2122 has four systems Model-2122a, 2122b, 2122ma, and 2122mb, and the Model-2124 has four systems Model-2124a, 2124b, 2124ma, and 2124mb.
Model-2122a, 2124a and Model-2122b, 2124b are different in the mechanism for transmitting the power of the first input shaft 31 and the second input shaft 32 to the differential mechanism input shaft 43. Model-2124a, 2124b is model-2122a, An engine 16 and a fourth input shaft 34 to which the engine 16 is connected are added to 2122b.

図6aはModel-2122aの動力システムの詳細な部分構成を説明する図である。
動力システムは、第1モータ13、第2モータ14、第1モータ13が接続される第1入力軸31、第2モータ14が接続される第2入力軸32、第1車輪21が接続される第1出力軸35、第2車輪22が接続される第2出力軸36、差動機構入力軸43と差動機構81、第1入力軸31と第2入力軸32を連結するICクラッチ機構82を有する。
第1系統動力伝達機構として第1入力軸31の動力を第1出力軸35に伝達するT1動力伝達機構512, 514を有する。
第2系統動力伝達機構として第2入力軸32の動力を第2入力軸32に伝達するT2動力伝達機構522, 524を有する。
第3系統動力伝達機構として第1入力軸31の動力を差動機構入力軸43に伝達するT3動力伝達機構532, 534と第2入力軸32の動力を差動機構入力軸43に伝達するT4動力伝達機構542, 544を有する。
FIG. 6a is a diagram illustrating a detailed partial configuration of the power system of Model-2122a.
The power system includes a first motor 13, a second motor 14, a first input shaft 31 to which the first motor 13 is connected, a second input shaft 32 to which the second motor 14 is connected, and a first wheel 21. The first output shaft 35, the second output shaft 36 to which the second wheel 22 is connected, the differential mechanism input shaft 43 and the differential mechanism 81, and the IC clutch mechanism 82 for connecting the first input shaft 31 and the second input shaft 32 Have
T1 power transmission mechanisms 512 and 514 that transmit the power of the first input shaft 31 to the first output shaft 35 as a first system power transmission mechanism.
T2 power transmission mechanisms 522 and 524 that transmit the power of the second input shaft 32 to the second input shaft 32 are provided as second system power transmission mechanisms.
T3 power transmission mechanisms 532 and 534 for transmitting the power of the first input shaft 31 to the differential mechanism input shaft 43 and T4 for transmitting the power of the second input shaft 32 to the differential mechanism input shaft 43 as a third system power transmission mechanism. Power transmission mechanisms 542 and 544 are provided.

図6bはModel-2122bの動力システムの詳細な部分構成を説明する図である。
動力システムは、第1モータ13、第2モータ14、第1モータ13が接続される第1入力軸31、第2モータ14が接続される第2入力軸32、第1中間軸41、第2中間軸42、第1車輪21が接続される第1出力軸35、第2車輪22が接続される第2出力軸36、差動機構入力軸43と差動機構81、第1入力軸31と第2入力軸32を連結するICクラッチ機構82を有する。
第1系統動力伝達機構として第1入力軸31の動力を第1中間軸41に伝達するT5動力伝達機構55と第1中間軸41の動力を第1出力軸35に伝達するC1クラッチ機構71を有する。
第2系統動力伝達機構として第2入力軸32の動力を第2中間軸42に伝達するT6動力伝達機構56と第2中間軸42の動力を第2出力軸36に伝達するC2クラッチ機構72を有し、
第3系統動力伝達機構として第1入力軸31の動力を第1中間軸41に伝達するT5動力伝達機構55と第1中間軸41の動力を差動機構入力軸43に伝達するC3クラッチ機構73、第2入力軸32の動力を第2中間軸42に伝達するT6動力伝達機構56と第2中間軸42の動力を差動機構入力軸43伝達するC4クラッチ機構74を有する。
FIG. 6b is a diagram illustrating a detailed partial configuration of the power system of Model-2122b.
The power system includes a first motor 13, a second motor 14, a first input shaft 31 to which the first motor 13 is connected, a second input shaft 32 to which the second motor 14 is connected, a first intermediate shaft 41, a second Intermediate shaft 42, first output shaft 35 to which first wheel 21 is connected, second output shaft 36 to which second wheel 22 is connected, differential mechanism input shaft 43 and differential mechanism 81, and first input shaft 31 An IC clutch mechanism 82 for connecting the second input shaft 32 is provided.
As a first system power transmission mechanism, a T5 power transmission mechanism 55 for transmitting the power of the first input shaft 31 to the first intermediate shaft 41 and a C1 clutch mechanism 71 for transmitting the power of the first intermediate shaft 41 to the first output shaft 35 are provided. Have.
As a second power transmission mechanism, a T6 power transmission mechanism 56 that transmits the power of the second input shaft 32 to the second intermediate shaft 42 and a C2 clutch mechanism 72 that transmits the power of the second intermediate shaft 42 to the second output shaft 36 are provided. Have
As a third system power transmission mechanism, a T5 power transmission mechanism 55 that transmits the power of the first input shaft 31 to the first intermediate shaft 41 and a C3 clutch mechanism 73 that transmits the power of the first intermediate shaft 41 to the differential mechanism input shaft 43. And a T6 power transmission mechanism 56 for transmitting the power of the second input shaft 32 to the second intermediate shaft 42 and a C4 clutch mechanism 74 for transmitting the power of the second intermediate shaft 42 to the differential mechanism input shaft 43.

図7はModel-2124bの動力システムの詳細な部分構成を説明する図である。
動力システムは、第1モータ13、第2モータ14、エンジン16、第1モータ13が接続される第1入力軸31、第2モータ14が接続される第2入力軸32、エンジン16が接続される第4入力軸34、第1中間軸41、第2中間軸42、第1車輪21が接続される第1出力軸35、第2車輪22が接続される第2出力軸36、差動機構入力軸43と差動機構81、第1入力軸31と第2入力軸32を連結するICクラッチ機構82を有する。
第1系統動力伝達機構として第1入力軸31の動力を第1中間軸41に伝達するT5動力伝達機構552, 554と第1中間軸41の動力を第1出力軸35に伝達するC1クラッチ機構71を有する。
第2系統動力伝達機構として第2入力軸32の動力を第2中間軸42に伝達するT6動力伝達機構562, 564と第2中間軸42の動力を第2出力軸36に伝達するC2クラッチ機構72を有する。
第3系統動力伝達機構として第1入力軸31の動力を第1中間軸41に伝達するT5動力伝達機構552, 554と第1中間軸41の動力を差動機構入力軸43に伝達するC3クラッチ機構73、第2入力軸32の動力を第2中間軸42に伝達するT6動力伝達機構562, 564、第2中間軸42の動力を差動機構入力軸43伝達するC4クラッチ機構74、第4入力軸34の動力を差動機構入力軸43に伝達するC5クラッチ機構75を有する。
また、シリーズハイブリッド走行時に、エンジン16の動力を第1モータ13に伝達するためのC7クラッチ機構77とT5動力伝達機構552, 554を有する。
FIG. 7 is a diagram illustrating a detailed partial configuration of the power system of Model-2124b.
The power system is connected to the first motor 13, the second motor 14, the engine 16, the first input shaft 31 to which the first motor 13 is connected, the second input shaft 32 to which the second motor 14 is connected, and the engine 16. A fourth input shaft 34, a first intermediate shaft 41, a second intermediate shaft 42, a first output shaft 35 to which the first wheel 21 is connected, a second output shaft 36 to which the second wheel 22 is connected, a differential mechanism An IC clutch mechanism 82 that connects the input shaft 43 and the differential mechanism 81 and the first input shaft 31 and the second input shaft 32 is provided.
T5 power transmission mechanisms 552 and 554 that transmit the power of the first input shaft 31 to the first intermediate shaft 41 as the first system power transmission mechanism and the C1 clutch mechanism that transmits the power of the first intermediate shaft 41 to the first output shaft 35 71.
T6 power transmission mechanisms 562 and 564 that transmit the power of the second input shaft 32 to the second intermediate shaft 42 as the second system power transmission mechanism and the C2 clutch mechanism that transmits the power of the second intermediate shaft 42 to the second output shaft 36 72.
T3 power transmission mechanisms 552 and 554 that transmit the power of the first input shaft 31 to the first intermediate shaft 41 as a third system power transmission mechanism, and the C3 clutch that transmits the power of the first intermediate shaft 41 to the differential mechanism input shaft 43 Mechanism 73, T6 power transmission mechanisms 562, 564 for transmitting the power of the second input shaft 32 to the second intermediate shaft 42, C4 clutch mechanism 74 for transmitting the power of the second intermediate shaft 42 to the differential mechanism input shaft 43, fourth A C5 clutch mechanism 75 that transmits the power of the input shaft 34 to the differential mechanism input shaft 43 is provided.
Further, it has a C7 clutch mechanism 77 and T5 power transmission mechanisms 552 and 554 for transmitting the power of the engine 16 to the first motor 13 during series hybrid travel.

図18はModel-2122aの動力システムの駆動状態(001)の並列駆動同期変速制御(MST-2)を説明する図である。
図18aの駆動状態(001)は、第2モータ14とT2動力伝達機構52(第1速)で第2出力軸36を直接駆動する走行である。
図18b、図18cの駆動状態(011)は、第1モータ13を起動して、第1モータ13、T3動力伝達機構53(第1速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動しながら、第2モータ14でT2動力伝達機構52の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図18dの駆動状態(001)は、T3動力伝達機構53(第1速)を切断し、第1モータ13を停止して、第2モータ14とT2動力伝達機構52(第2速)で第2出力軸36を直接駆動する走行である。
FIG. 18 is a diagram for explaining parallel drive synchronous shift control (MST-2) in the drive state (001) of the power system of Model-2122a.
The driving state (001) in FIG. 18a is traveling in which the second output shaft 36 is directly driven by the second motor 14 and the T2 power transmission mechanism 52 (first speed).
The driving state (011) of FIGS. 18b and 18c starts the first motor 13, and the first motor 13, the T3 power transmission mechanism 53 (first speed), and the differential mechanism 81 are connected to the first output shaft 35 and the first output shaft 35. This is parallel drive synchronous shift control in which the second output shaft 36 is shifted in synchronization with the rotational speed of the target gear mechanism (second speed) of the T2 power transmission mechanism 52 while distributingly driving the output shaft 36.
In the driving state (001) of FIG. 18d, the T3 power transmission mechanism 53 (first speed) is disconnected, the first motor 13 is stopped, and the second motor 14 and the T2 power transmission mechanism 52 (second speed) are used. This is the traveling in which the two output shafts 36 are directly driven.

図19はModel-2122aの動力システムの駆動状態(011)の並列駆動同期変速制御(MST-2)を説明する図である。
図19aの駆動状態(011)は、第1モータ13、T3動力伝達機構53(第1速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動し、第2モータ14とT2動力伝達機構52(第1速)で第2出力軸36を直接駆動する走行である。
図19bの駆動状態(011)は、第2モータ14、T2動力伝達機構52(第1速)で第2出力軸36を直接駆動しながら、第1モータ13でT3動力伝達機構53の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図19cの駆動状態(011)は、第1モータ13、T3動力伝達機構53(第2速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動しながら、第2モータ14でT2動力伝達機構52の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
FIG. 19 is a diagram for explaining parallel drive synchronous shift control (MST-2) in the drive state (011) of the power system of Model-2122a.
The driving state (011) of FIG. 19a is the first motor 13, the T3 power transmission mechanism 53 (first speed), and the differential mechanism 81 that distributes and drives the first output shaft 35 and the second output shaft 36, and the second motor. 14 and the T2 power transmission mechanism 52 (first speed) drive the second output shaft 36 directly.
The driving state (011) of FIG. 19b is the purpose of the T3 power transmission mechanism 53 with the first motor 13 while directly driving the second output shaft 36 with the second motor 14 and the T2 power transmission mechanism 52 (first speed). This is parallel drive synchronous shift control that shifts in synchronization with the rotational speed of the gear mechanism (second speed).
The driving state (011) of FIG. 19c is the second motor while the first output shaft 35 and the second output shaft 36 are distributed and driven by the first motor 13, the T3 power transmission mechanism 53 (second speed), and the differential mechanism 81. This is parallel drive synchronous shift control in which the motor 14 shifts in synchronization with the rotational speed of the target gear mechanism (second speed) of the T2 power transmission mechanism 52.

図20はModel-2122aの動力システムの駆動状態(002)の並列駆動同期変速制御(MST-2)を説明する図である。
図20aの駆動状態(002)は、第1モータ13、ICクラッチ機構82、第2モータ14、T2動力伝達機構52(第1速)で第2出力軸36を直接駆動する走行である。
図20b、図19cの駆動状態(011)は、ICクラッチ機構82を切断し、第1モータ13、T3動力伝達機構53(第1速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動しながら、第2モータ14でT2動力伝達機構52の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図20dの駆動状態(002)は、ICクラッチ機構82を接続し、第1モータ13、ICクラッチ機構82、第2モータ14、T2動力伝達機構52(第2速)で第2出力軸36を直接駆動する走行である。
FIG. 20 is a diagram for explaining parallel drive synchronous shift control (MST-2) in the drive state (002) of the power system of Model-2122a.
The driving state (002) in FIG. 20a is a driving in which the second output shaft 36 is directly driven by the first motor 13, the IC clutch mechanism 82, the second motor 14, and the T2 power transmission mechanism 52 (first speed).
The driving state (011) of FIGS. 20b and 19c is such that the IC clutch mechanism 82 is disconnected, and the first output shaft 35 and the second output shaft 35 are connected to the first motor 13, the T3 power transmission mechanism 53 (first speed), and the differential mechanism 81. This is parallel drive synchronous shift control in which the second motor 14 shifts in synchronization with the rotational speed of the target gear mechanism (second speed) of the T2 power transmission mechanism 52 while distributingly driving the output shaft 36.
In the driving state (002) of FIG. 20d, the IC clutch mechanism 82 is connected, and the second output shaft 36 is moved by the first motor 13, the IC clutch mechanism 82, the second motor 14, and the T2 power transmission mechanism 52 (second speed). It is a drive that drives directly.

図21はModel-2122bの動力システムの駆動状態(001)の並列駆動同期変速制御(MST-2)を説明する図である。
図21aの駆動状態(001)は、第2モータ14、T6動力伝達機構56(第1速)、C2クラッチ機構72で第2出力軸36を直接駆動する走行である。
図21bの駆動状態(011)は、第1モータ13を起動して、第1モータ13、T5動力伝達機構55(第1速)、C3クラッチ機構73、差動機構81で第1出力軸35と第2出力軸36を分配駆動し、第2モータ14、T6動力伝達機構56(第1速)、C2クラッチ機構72で第2出力軸36を直接駆動する走行である。
図21cの駆動状態(011)は、第1モータ13、T5動力伝達機構55(第1速)、C3クラッチ機構73、差動機構81で第1出力軸35と第2出力軸36を分配駆動しながら、第2モータ14でT6動力伝達機構56の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図20dの駆動状態(001)は、C3クラッチ機構73を切断し、第1モータ13を停止して、第2モータ14、T6動力伝達機構56(第2速)、C2クラッチ機構72で第2出力軸36を直接駆動する走行である。
FIG. 21 is a diagram for explaining parallel drive synchronous shift control (MST-2) in the drive state (001) of the power system of Model-2122b.
The driving state (001) of FIG. 21a is traveling in which the second output shaft 36 is directly driven by the second motor 14, the T6 power transmission mechanism 56 (first speed), and the C2 clutch mechanism 72.
In the driving state (011) of FIG. 21b, the first motor 13 is started, and the first output shaft 35 is driven by the first motor 13, the T5 power transmission mechanism 55 (first speed), the C3 clutch mechanism 73, and the differential mechanism 81. The second output shaft 36 is distributed and driven, and the second output shaft 36 is directly driven by the second motor 14, the T6 power transmission mechanism 56 (first speed), and the C2 clutch mechanism 72.
The driving state (011) in FIG. 21c is the first motor 13, the T5 power transmission mechanism 55 (first speed), the C3 clutch mechanism 73, and the differential mechanism 81 to distributely drive the first output shaft 35 and the second output shaft 36. On the other hand, this is parallel drive synchronous shift control in which the second motor 14 shifts in synchronization with the rotational speed of the target gear mechanism (second speed) of the T6 power transmission mechanism 56.
In the driving state (001) of FIG. 20d, the C3 clutch mechanism 73 is disconnected, the first motor 13 is stopped, the second motor 14, the T6 power transmission mechanism 56 (second speed), and the C2 clutch mechanism 72 In this traveling, the output shaft 36 is directly driven.

図22はModel-2122bの動力システムの駆動状態(011)の並列駆動同期変速制御(MST-2)を説明する図である。
図22aの駆動状態(011)は、第1モータ13、T5動力伝達機構55(第1速)、C3クラッチ機構73、差動機構81で第1出力軸35と第2出力軸36を分配駆動し、第2モータ14、T6動力伝達機構56(第1速)、C2クラッチ機構72で第2出力軸36を直接駆動する走行である。
図22bの駆動状態(001)は、第2モータ14、T6動力伝達機構56(第1速)、C2クラッチ機構72、差動機構81で第2出力軸36を直接駆動しながら、第1モータ13でT5動力伝達機構55の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図22cの駆動状態(011)は、第1モータ13、T5動力伝達機構55(第2速)、C3クラッチ機構73、差動機構81で第1出力軸35と第2出力軸36を分配駆動しながら、第2モータ14でT6動力伝達機構56の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
FIG. 22 is a diagram for explaining parallel drive synchronous shift control (MST-2) in the drive state (011) of the power system of Model-2122b.
The drive state (011) of FIG. 22a is the first motor 13, the T5 power transmission mechanism 55 (first speed), the C3 clutch mechanism 73, and the differential mechanism 81 to distributely drive the first output shaft 35 and the second output shaft 36. The second output shaft 36 is directly driven by the second motor 14, the T6 power transmission mechanism 56 (first speed), and the C2 clutch mechanism 72.
The driving state (001) in FIG. 22b is that the second motor 14, the T6 power transmission mechanism 56 (first speed), the C2 clutch mechanism 72, and the differential mechanism 81 directly drive the second output shaft 36 while driving the first motor. 13 is a parallel drive synchronous shift control in which the shift is performed in synchronization with the rotational speed of the target gear mechanism (second speed) of the T5 power transmission mechanism 55.
The drive state (011) of FIG. 22c is the first motor 13, the T5 power transmission mechanism 55 (second speed), the C3 clutch mechanism 73, and the differential mechanism 81 to distributely drive the first output shaft 35 and the second output shaft 36. On the other hand, this is parallel drive synchronous shift control in which the second motor 14 shifts in synchronization with the rotational speed of the target gear mechanism (second speed) of the T6 power transmission mechanism 56.

図23はModel-2122bの動力システムの駆動状態(002)の並列駆動同期変速制御(MST-2)を説明する図である。
図23aの駆動状態(002)は、第1モータ13、ICクラッチ機構82、第2モータ14、T6動力伝達機構56(第1速)、C2クラッチ機構72で第2出力軸36を直接駆動する走行である。
図23bの駆動状態(011)は、ICクラッチ機構82を切断して、第1モータ13、T5動力伝達機構55(第1速)、C3クラッチ機構73、差動機構81で第1出力軸35と第2出力軸36を分配駆動する走行である。
図23cの駆動状態(011)は、第1モータ13、T5動力伝達機構55(第1速)、C3クラッチ機構73、差動機構81で第1出力軸35と第2出力軸36を分配駆動しながら、第2モータ14でT6動力伝達機構56の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図23dの駆動状態(002)は、ICクラッチ機構82を接続し、第1モータ13、ICクラッチ機構82、第2モータ14、T6動力伝達機構56(第2速)、C2クラッチ機構72で第2出力軸36を直接駆動する走行である。
FIG. 23 is a diagram for explaining parallel drive synchronous shift control (MST-2) in the drive state (002) of the power system of Model-2122b.
In the driving state (002) of FIG. 23a, the first output shaft 36 is directly driven by the first motor 13, the IC clutch mechanism 82, the second motor 14, the T6 power transmission mechanism 56 (first speed), and the C2 clutch mechanism 72. Traveling.
In the driving state (011) of FIG. 23b, the IC clutch mechanism 82 is disconnected, and the first output shaft 35 is connected to the first motor 13, the T5 power transmission mechanism 55 (first speed), the C3 clutch mechanism 73, and the differential mechanism 81. And traveling to drive the second output shaft 36 in a distributed manner.
The driving state (011) of FIG. 23c is the first motor 13, the T5 power transmission mechanism 55 (first speed), the C3 clutch mechanism 73, and the differential mechanism 81 to distributely drive the first output shaft 35 and the second output shaft 36. On the other hand, this is parallel drive synchronous shift control in which the second motor 14 shifts in synchronization with the rotational speed of the target gear mechanism (second speed) of the T6 power transmission mechanism 56.
In the driving state (002) of FIG. 23d, the IC clutch mechanism 82 is connected and the first motor 13, the IC clutch mechanism 82, the second motor 14, the T6 power transmission mechanism 56 (second speed), and the C2 clutch mechanism 72 This is the traveling in which the two output shafts 36 are directly driven.

図40はModel-2122aの動力システムのモータ数差分制御方式トルクベクタリング制御(YC-2)を説明する図である。
図40aの駆動状態(101)は、第1モータ13とT1動力伝達機構51で第1出力軸35を直接駆動し、第2モータ14とT2動力伝達機構52で第2出力軸36を直接駆動する走行である。
図40bの駆動状態(011)は、第1モータ13、T3動力伝達機構53、差動機構81で第1出力軸35と第2出力軸36を分配駆動し、第2モータ14とT2動力伝達機構52で第2出力軸36を直接駆動する走行である。
図40cの駆動状態(002)は、第1モータ13、ICクラッチ機構82、第2モータ14、T2動力伝達機構52で第2出力軸36を直接駆動する走行である。
モータ数の差分は駆動状態(101)では0、駆動状態(011)では1、駆動状態(002)では2であり、制御装置18 は三つの駆動状態を遷移することによりモータ数差分制御方式トルクベクタリング制御を行う。
FIG. 40 is a diagram for explaining the motor number difference control method torque vectoring control (YC-2) of the power system of Model-2122a.
In the driving state (101) of FIG. 40a, the first output shaft 35 is directly driven by the first motor 13 and the T1 power transmission mechanism 51, and the second output shaft 36 is directly driven by the second motor 14 and the T2 power transmission mechanism 52. It is running to.
The driving state (011) in FIG. 40b is that the first output shaft 35 and the second output shaft 36 are distributed and driven by the first motor 13, the T3 power transmission mechanism 53, and the differential mechanism 81, and the second motor 14 and the T2 power transmission. In this traveling, the second output shaft 36 is directly driven by the mechanism 52.
The driving state (002) of FIG. 40c is a traveling in which the second output shaft 36 is directly driven by the first motor 13, the IC clutch mechanism 82, the second motor 14, and the T2 power transmission mechanism 52.
The difference in the number of motors is 0 in the driving state (101), 1 in the driving state (011), 2 in the driving state (002), and the control device 18 changes the number of motors by controlling the three driving states. Perform vectoring control.

図41はModel-2122bの動力システムのモータ数差分制御方式トルクベクタリング制御(YC-2)を説明する図である。
図41aの駆動状態(101)は、第1モータ13、T5動力伝達機構55、C1クラッチ機構71で第1出力軸35を直接駆動し、第2モータ14、T6動力伝達機構56、C2クラッチ機構72で第2出力軸36を直接駆動する走行である。
図41bの駆動状態(011)は、第1モータ13、T5動力伝達機構55、差動機構81で第1出力軸35と第2出力軸36を分配駆動し、第2モータ14、T6動力伝達機構56、C2クラッチ機構72で第2出力軸36を直接駆動する走行である。
図41cの駆動状態(002)は、第1モータ13、ICクラッチ機構82、第2モータ14、T6動力伝達機構56、C2クラッチ機構72で第2出力軸36を直接駆動する走行である。
FIG. 41 is a diagram for explaining the motor number difference control method torque vectoring control (YC-2) of the power system of Model-2122b.
The drive state (101) in FIG. 41a is that the first output shaft 35 is directly driven by the first motor 13, T5 power transmission mechanism 55, and C1 clutch mechanism 71, and the second motor 14, T6 power transmission mechanism 56, C2 clutch mechanism. In 72, the second output shaft 36 is directly driven.
The driving state (011) of FIG. 41b is that the first output shaft 35 and the second output shaft 36 are distributedly driven by the first motor 13, the T5 power transmission mechanism 55, and the differential mechanism 81, and the second motor 14, T6 power transmission is performed. In this traveling, the second output shaft 36 is directly driven by the mechanism 56 and the C2 clutch mechanism 72.
The driving state (002) in FIG. 41c is a travel in which the first output shaft 36 is directly driven by the first motor 13, the IC clutch mechanism 82, the second motor 14, the T6 power transmission mechanism 56, and the C2 clutch mechanism 72.

図46はModel-2122aの動力システムのモータ数総和制御方式可変定格出力制御(YC-2)を説明する図である。
図46aの駆動状態(010)は、第1モータ13、T3動力伝達機構53、差動機構81で第1出力軸35と第2出力軸36を分配駆動する走行である。
図46bの駆動状態(101)は、第1モータ13とT1動力伝達機構51で第1出力軸35を直接駆動し、第2モータ14とT2動力伝達機構52で第2出力軸36を直接駆動する走行である。
図46cの駆動状態(001)は、第2モータ14とT2動力伝達機構52で第2出力軸36を駆動する走行である。
図46dの駆動状態(002)は、第1モータ13、ICクラッチ機構82、、第2モータ14、T2動力伝達機構52で第2出力軸36を直接駆動する走行である。
他に、駆動状態(011)も可能である。
モータ数の総和は駆動状態(010)と駆動状態(001)では1、駆動状態(101)、駆動状態(002)、(011)、では2であり、制御装置18 は二つの駆動状態を遷移することによりモータ数総和制御方式可変定格出力制御を行う。
FIG. 46 is a diagram for explaining the motor number total control method variable rated output control (YC-2) of the power system of Model-2122a.
The drive state (010) of FIG. 46a is a traveling in which the first output shaft 35 and the second output shaft 36 are distributed and driven by the first motor 13, the T3 power transmission mechanism 53, and the differential mechanism 81.
In the driving state (101) of FIG. 46b, the first output shaft 35 is directly driven by the first motor 13 and the T1 power transmission mechanism 51, and the second output shaft 36 is directly driven by the second motor 14 and the T2 power transmission mechanism 52. It is running to.
The driving state (001) in FIG. 46c is a traveling in which the second output shaft 36 is driven by the second motor 14 and the T2 power transmission mechanism 52.
The drive state (002) of FIG. 46d is a travel in which the first output shaft 36 is directly driven by the first motor 13, the IC clutch mechanism 82, the second motor 14, and the T2 power transmission mechanism 52.
In addition, a driving state (011) is also possible.
The total number of motors is 1 in the drive state (010) and the drive state (001), and 2 in the drive state (101) and the drive states (002) and (011). The control device 18 changes between the two drive states. By doing so, the motor total number control system variable rated output control is performed.

説明を省略したモデルについて説明する。
Model-2124aの動力システムの詳細な部分構成はModel-2122aの動力システムにエンジン16、エンジン16が接続される第4入力軸34等を付加したものである。
Model-2124a、Model-2124bの動力システムの並列駆動同期変速制御(MST-2)はエンジン16の影響を受けないのでModel-2122a、Model-2122bの並列駆動同期変速制御(MST-2)と同じである。
Model-2124a、Model-2124bの動力システムのモータ数差分制御方式トルクベクタリング制御(YC-2)はエンジン16の影響を受けないのでModel-2122a、Model-2122bのモータ数差分制御方式トルクベクタリング制御(YC-2)と同じである
Model-2122bの動力システムのモータ数総和制御方式可変定格出力制御(VR-1)は、Model-2122aのモータ数総和制御方式可変定格出力制御(VR-1)とModel-2122bの並列駆動同期変速制御(MST-2)から説明できる。また、Model-2124a、Model-2124bの動力システムのモータ数総和制御方式可変定格出力制御(VR-1)はエンジン16の影響を受けないのでModel-2122a、Model-2122bのモータ数総和制御方式可変定格出力制御(VR-1)と同じである。
A model whose description is omitted will be described.
The detailed partial configuration of the power system of Model-2124a is obtained by adding the engine 16, a fourth input shaft 34 to which the engine 16 is connected to the power system of Model-2122a.
The parallel drive synchronous shift control (MST-2) of the power system of Model-2124a and Model-2124b is not affected by the engine 16, so it is the same as the parallel drive synchronous shift control (MST-2) of Model-2122a and Model-2122b It is.
Model-2124a, Model-2124b Motor Number Difference Control Method Torque Vectoring Control (YC-2) is not affected by Engine 16, so Model-2122a, Model-2122b Motor Number Difference Control Method Torque Vectoring Same as control (YC-2)
Model-2122b power system total control system variable rated output control (VR-1) is model-2122a motor total control system variable rated output control (VR-1) and Model-2122b parallel drive synchronous shift This can be explained from the control (MST-2). Model-2124a, Model-2124b power system total motor control system variable rated output control (VR-1) is not affected by engine 16, so model-2122a, Model-2122b motor total sum control system variable Same as rated output control (VR-1).

実施例3はModel-2122ma, 2122mb, 2124ma, 2124mbの動力システムである。
Model-2122ma, 2122mb, 2124ma, 2124mbはModel-2122a, 2122b, 2124a, 2124bと第1入力軸31の動力を第2出力軸36に伝達し第2入力軸32の動力を第1出力軸35に伝達する機構が異なり、Model-2122ma, 2124maとModel-2122mb, 2124mbは第1入力軸31と第2入力軸32の動力を差動機構入力軸43に伝達する機構が異なり、Model-2124ma, 2124mbは、Model-2122ma, 2122mbにエンジン16、エンジン16が接続される第4入力軸34等が付加されている。
Example 3 is a power system of Model-2122ma, 2122mb, 2124ma, 2124mb.
Model-2122ma, 2122mb, 2124ma, 2124mb transmit the power of Model-2122a, 2122b, 2124a, 2124b and the first input shaft 31 to the second output shaft 36 and the power of the second input shaft 32 to the first output shaft 35. The mechanism to transmit is different, Model-2122ma, 2124ma and Model-2122mb, 2124mb have different mechanism to transmit the power of the first input shaft 31 and the second input shaft 32 to the differential mechanism input shaft 43, Model-2124ma, 2124mb In the model-2122ma and 2122mb, an engine 16, a fourth input shaft 34 to which the engine 16 is connected, and the like are added.

図6cはModel-2122maの動力システムの詳細な部分構成を説明する図である。
動力システムは、第1モータ13、第2モータ14、第1モータ13が接続される第1入力軸31、第2モータ14が接続される第2入力軸32、第1車輪21が接続される第1出力軸35、第2車輪22が接続される第2出力軸36、差動機構入力軸43と差動機構81を有する。
第1系統動力伝達機構として第1入力軸31の動力を第1出力軸35に伝達するT1動力伝達機構512, 514と第2入力軸32の動力を第1出力軸35に伝達するT8動力伝達機構582, 584を有する。
第2系統動力伝達機構として第2入力軸32の動力を第2入力軸32に伝達するT2動力伝達機構522, 524と第1入力軸31の動力を第2出力軸36に伝達するT7動力伝達機構572, 574を有する。
第3系統動力伝達機構として第1入力軸31の動力を差動機構入力軸43に伝達するT3動力伝達機構532, 534と第2入力軸32の動力を差動機構入力軸43に伝達するT4動力伝達機構542, 544を有する。
FIG. 6c is a diagram illustrating a detailed partial configuration of the power system of Model-2122ma.
The power system includes a first motor 13, a second motor 14, a first input shaft 31 to which the first motor 13 is connected, a second input shaft 32 to which the second motor 14 is connected, and a first wheel 21. A first output shaft 35, a second output shaft 36 to which the second wheel 22 is connected, a differential mechanism input shaft 43, and a differential mechanism 81 are provided.
T1 power transmission mechanisms 512 and 514 for transmitting the power of the first input shaft 31 to the first output shaft 35 as the first system power transmission mechanism and the T8 power transmission for transmitting the power of the second input shaft 32 to the first output shaft 35 It has mechanisms 582 and 584.
T2 power transmission mechanisms 522 and 524 that transmit the power of the second input shaft 32 to the second input shaft 32 as the second system power transmission mechanism and the T7 power transmission that transmits the power of the first input shaft 31 to the second output shaft 36 It has mechanisms 572 and 574.
T3 power transmission mechanisms 532 and 534 for transmitting the power of the first input shaft 31 to the differential mechanism input shaft 43 and T4 for transmitting the power of the second input shaft 32 to the differential mechanism input shaft 43 as a third system power transmission mechanism. Power transmission mechanisms 542 and 544 are provided.

図24はModel-2122maの動力システムの駆動状態(001)の並列駆動同期変速制(MST-2)を説明する図である。
図24aの駆動状態(001)は、第1モータ13とT7動力伝達機構57(第1速)で第2出力軸36を直接駆動する走行である。
図24b、図23cの駆動状態(002)は、第2モータ14を起動して、第2モータ14とT2動力伝達機構52(第1速)で第2出力軸36を直接駆動しながら、第1モータ13でT7動力伝達機構57の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図24dの駆動状態(001)は、T2動力伝達機構52(第1速)を切断し、第2モータ14を停止して、第1モータ13とT7動力伝達機構57(第2速)で第2出力軸36を直接駆動する走行である。
FIG. 24 is a diagram for explaining parallel drive synchronous transmission (MST-2) in the drive state (001) of the power system of Model-2122ma.
The driving state (001) in FIG. 24a is traveling in which the second output shaft 36 is directly driven by the first motor 13 and the T7 power transmission mechanism 57 (first speed).
24b and 23c, the second motor 14 is started and the second output shaft 36 is directly driven by the second motor 14 and the T2 power transmission mechanism 52 (first speed). This is parallel drive synchronous shift control in which one motor 13 shifts in synchronization with the rotational speed of the target gear mechanism (second speed) of the T7 power transmission mechanism 57.
In the driving state (001) of FIG. 24d, the T2 power transmission mechanism 52 (first speed) is disconnected, the second motor 14 is stopped, and the first motor 13 and the T7 power transmission mechanism 57 (second speed) are in the first state. This is the traveling in which the two output shafts 36 are directly driven.

図25はModel-2122maの動力システムの駆動状態(002)の並列駆動同期変速制(MST-2)を説明する図である。
図25aの駆動状態(002)は、第1モータ13とT7動力伝達機構57(第1速)、第2モータ14とT2動力伝達機構52(第1速)で第2出力軸36を直接駆動する走行である。
図25bの駆動状態(002)は、第2モータ14とT2動力伝達機構52(第1速)で第2出力軸36を直接駆動しながら、第1モータ13でT7動力伝達機構57の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図25cの駆動状態(002)は、第1モータ13とT7動力伝達機構57(第2速)で第2出力軸36を直接駆動しながら、第2モータ14でT2動力伝達機構52の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
FIG. 25 is a diagram for explaining parallel drive synchronous transmission (MST-2) in the drive state (002) of the power system of Model-2122ma.
In the driving state (002) of FIG. 25a, the second output shaft 36 is directly driven by the first motor 13 and the T7 power transmission mechanism 57 (first speed), and the second motor 14 and the T2 power transmission mechanism 52 (first speed). It is running to.
The driving state (002) of FIG. 25b is the purpose of the T7 power transmission mechanism 57 with the first motor 13 while directly driving the second output shaft 36 with the second motor 14 and the T2 power transmission mechanism 52 (first speed). This is parallel drive synchronous shift control that shifts in synchronization with the rotational speed of the gear mechanism (second speed).
The driving state (002) of FIG. 25c is the purpose of the T2 power transmission mechanism 52 with the second motor 14 while directly driving the second output shaft 36 with the first motor 13 and the T7 power transmission mechanism 57 (second speed). This is parallel drive synchronous shift control that shifts in synchronization with the rotational speed of the gear mechanism (second speed).

図42はModel-2122maの動力システムのモータ数差分制御方式トルクベクタリング制御(MST-2)を説明する図である。
図42aの駆動状態(101)は、第1モータ13とT1動力伝達機構51で第1出力軸35を直接駆動し、第2モータ14とT2動力伝達機構52で第2出力軸36を直接駆動する走行である。
図42bの駆動状態(011)は、第1モータ13、T3動力伝達機構53、差動機構81で第1出力軸35と第2出力軸36を分配駆動し、第2モータ14とT2動力伝達機構52で第2出力軸36を直接駆動する走行である。
図42cの駆動状態(002)は、第1モータ13とT7動力伝達機構57、第2モータ14とT2動力伝達機構52で第2出力軸36を直接駆動する走行である。
FIG. 42 is a view for explaining the motor number difference control method torque vectoring control (MST-2) of the power system of Model-2122ma.
42A, the first motor 13 and the T1 power transmission mechanism 51 directly drive the first output shaft 35, and the second motor 14 and the T2 power transmission mechanism 52 directly drive the second output shaft 36. It is running to.
The driving state (011) of FIG. 42b is that the first output shaft 35 and the second output shaft 36 are distributed and driven by the first motor 13, the T3 power transmission mechanism 53, and the differential mechanism 81, and the second motor 14 and the T2 power transmission. In this traveling, the second output shaft 36 is directly driven by the mechanism 52.
The driving state (002) of FIG. 42c is a traveling in which the second output shaft 36 is directly driven by the first motor 13 and the T7 power transmission mechanism 57, and the second motor 14 and the T2 power transmission mechanism 52.

説明を省略したモデルについて説明する。
Model-2122mbの動力システムの詳細な部分構成はModel-2122bとModel-2122maから説明できる。また、Model-2124maとModel-2124mbの動力システムの詳細な部分構成はModel-2122maとModel-2122mbにエンジン16、エンジン16が接続される第4入力軸34等を付加したものである。
Model-2122maの動力システムの駆動状態(011)の並列駆動同期変速制御(MST-2)はModel-2122aの駆動状態(011)の並列駆動同期変速制御(MST-2)と制御する動力伝達機構、クラッチ機構が異なるが制御は同じであり、Model-2122mbの動力システムの並列駆動同期変速制御(MST-2)はModel-2122maの並列駆動同期変速制御(MST-2)と制御する動力伝達機構、クラッチ機構が異なるが制御は同じである。また、Model-2124ma、Model-2124mbの動力システムの並列駆動同期変速制御(MST-2)はエンジン16の影響を受けないのでModel-2122ma、Model-2122mbの並列駆動同期変速制御(MST-2)と同じである。
Model-2122mbの動力システムのモータ数差分制御方式トルクベクタリング制御(YC-2)はModel-2122maのモータ数差分制御方式トルクベクタリング制御(YC-2)と制御する動力伝達機構、クラッチ機構が異なるが制御は同じである。また、Model-2124ma、Model-2124mbの動力システムのモータ数差分制御方式トルクベクタリング制御(YC-2)はエンジン16の影響を受けないのでModel-2122ma、Model-2122mbのモータ数差分制御方式トルクベクタリング制御(YC-2)と同じである。
A model whose description is omitted will be described.
The detailed structure of the Model-2122mb power system can be explained from Model-2122b and Model-2122ma. In addition, the detailed partial configuration of the power system of Model-2124ma and Model-2124mb is obtained by adding the engine 16, the fourth input shaft 34 to which the engine 16 is connected to the Model-2122ma and Model-2122mb.
Model 2122ma power system drive state (011) parallel drive synchronous shift control (MST-2) and Model-2122a drive state (011) parallel drive synchronous shift control (MST-2) Although the clutch mechanism is different, the control is the same, and the parallel drive synchronous shift control (MST-2) of the Model-2122mb power system is controlled by the parallel drive synchronous shift control (MST-2) of the Model-2122ma Although the clutch mechanism is different, the control is the same. The parallel drive synchronous shift control (MST-2) of the power system of Model-2124ma and Model-2124mb is not affected by the engine 16, so the parallel drive synchronous shift control (MST-2) of Model-2122ma and Model-2122mb Is the same.
Model-2122mb power system motor number difference control method torque vectoring control (YC-2) is model-2122ma motor number difference control method torque vectoring control (YC-2). Although different, the control is the same. In addition, the motor number difference control method torque vectoring control (YC-2) of the power system of Model-2124ma and Model-2124mb is not affected by the engine 16, so the motor number difference control method torque of Model-2122ma and Model-2122mb Same as vectoring control (YC-2).

実施例4はModel-2131s, 2131a, 2131b, 2133s, 2133a, 2133bの動力システムである。
Model-2131は本発明の最も機能の高い電気自動車の動力システム、Model-2133は本発明の最も機能の高いハイブリッド自動車の動力システムであり、三つのモータ、二つから三つの第1系統動力伝達機構、二つから三つの第2系統動力伝達機構、三つの第3系統動力伝達機構を有し、並列駆動同期変速制御を行う。
Model-2131の構成はModel-2131s, 2131a, 2131bの三方式、Model-2133の構成はModel-2133s, 2133a, 2133bの三方式がある。
Model-2131a, 2133aとModel-2131b, 2133bは第1入力軸31と第2入力軸32の動力を差動機構入力軸43に伝達する機構が異なり、Model-2132sは簡略方式で、第3モータ15の動力を伝達する第1系統動力伝達機構と第2系統動力伝達機構は無く、第3系統動力伝達機構のみによって伝達され、Model-2131a, 2131b, 2131sとModel-2133a, 2133b, 2133sは、後者がさらに、エンジン16、エンジン16が接続される第4入力軸34等を有する。
Example 4 is a power system of Model-2131s, 2131a, 2131b, 2133s, 2133a, 2133b.
Model-2131 is the most functional electric vehicle power system of the present invention, and Model-2133 is the most functional hybrid vehicle power system of the present invention. Three motors, two to three first system power transmissions It has a mechanism, two to three second system power transmission mechanisms, and three third system power transmission mechanisms, and performs parallel drive synchronous shift control.
The Model-2131 has three systems Model-2131s, 2131a, and 2131b, and the Model-2133 has three systems Model-2133s, 2133a, and 2133b.
Model-2131a, 2133a and Model-2131b, 2133b differ in the mechanism for transmitting the power of the first input shaft 31 and the second input shaft 32 to the differential mechanism input shaft 43. The Model-2132s is a simplified method, and the third motor There is no 1st system power transmission mechanism and 2nd system power transmission mechanism to transmit 15 powers, it is transmitted only by 3rd system power transmission mechanism, Model-2131a, 2131b, 2131s and Model-2133a, 2133b, 2133s The latter further includes an engine 16, a fourth input shaft 34 to which the engine 16 is connected.

図8aはModel-2132sの詳細な部分構成を説明する図である。
動力システムは、第1モータ13、第2モータ14、第3モータ15、第1モータ13が接続される第1入力軸31、第2モータ14が接続される第2入力軸32、第3モータ15が接続される第3入力軸33、第1中間軸41、第2中間軸42、第1車輪21が接続される第1出力軸35、第2車輪22が接続される第2出力軸36、差動機構入力軸43と差動機構81、第1入力軸31と第2入力軸32を連結するICクラッチ機構82を有する。
第1系統動力伝達機構として第1入力軸31の動力を第1中間軸41に伝達するT5動力伝達機構552, 554と第1中間軸41の動力を第1出力軸35に伝達するC1クラッチ機構71を有する。
第2系統動力伝達機構として第2入力軸32の動力を第2中間軸42に伝達するT6動力伝達機構562, 564と第2中間軸42の動力を第2出力軸36に伝達するC2クラッチ機構72を有する。
第3系統動力伝達機構として第1入力軸31の動力を第1中間軸41に伝達するT5動力伝達機構552, 554と第1中間軸41の動力を差動機構入力軸43に伝達するC3クラッチ機構73、第2入力軸32の動力を第2中間軸42に伝達するT6動力伝達機構562, 564と第2中間軸42の動力を差動機構入力軸43伝達するC4クラッチ機構74、第3入力軸33の動力を差動機構入力軸43伝達するT11動力伝達機構612, 614を有する。
FIG. 8a is a diagram illustrating a detailed partial configuration of Model-2132s.
The power system includes a first motor 13, a second motor 14, a third motor 15, a first input shaft 31 to which the first motor 13 is connected, a second input shaft 32 to which the second motor 14 is connected, and a third motor. 15 is connected to a third input shaft 33, a first intermediate shaft 41, a second intermediate shaft 42, a first output shaft 35 to which the first wheel 21 is connected, and a second output shaft 36 to which the second wheel 22 is connected. The differential mechanism input shaft 43 and the differential mechanism 81, and the IC clutch mechanism 82 for connecting the first input shaft 31 and the second input shaft 32 are provided.
T5 power transmission mechanisms 552 and 554 that transmit the power of the first input shaft 31 to the first intermediate shaft 41 as the first system power transmission mechanism and the C1 clutch mechanism that transmits the power of the first intermediate shaft 41 to the first output shaft 35 71.
T6 power transmission mechanisms 562 and 564 that transmit the power of the second input shaft 32 to the second intermediate shaft 42 as the second system power transmission mechanism and the C2 clutch mechanism that transmits the power of the second intermediate shaft 42 to the second output shaft 36 72.
T3 power transmission mechanisms 552 and 554 that transmit the power of the first input shaft 31 to the first intermediate shaft 41 as a third system power transmission mechanism, and the C3 clutch that transmits the power of the first intermediate shaft 41 to the differential mechanism input shaft 43 The mechanism 73, T6 power transmission mechanisms 562, 564 for transmitting the power of the second input shaft 32 to the second intermediate shaft 42, and the C4 clutch mechanism 74 for transmitting the power of the second intermediate shaft 42 to the differential mechanism input shaft 43, third T11 power transmission mechanisms 612 and 614 that transmit the power of the input shaft 33 to the differential mechanism input shaft 43 are provided.

図8bはModel-2132bの動力システムの詳細な部分構成を説明する図である。
動力システムは、第1モータ13、第2モータ14、第3モータ15、第1モータ13が接続される第1入力軸31、第2モータ14が接続される第2入力軸32、第3モータ15が接続される第3入力軸33、第1中間軸41、第2中間軸42、第1車輪21が接続される第1出力軸35、第2車輪22が接続される第2出力軸36、差動機構入力軸43と差動機構81、第1入力軸31と第2入力軸32を連結するICクラッチ機構82を有する。
第1系統動力伝達機構として第1入力軸31の動力を第1中間軸41に伝達するT5動力伝達機構552, 554、第3入力軸33の動力を第1中間軸41に伝達するT12動力伝達機構622, 624、第1中間軸41の動力を第1出力軸35に伝達するC1クラッチ機構71を有する。
第2系統動力伝達機構として第2入力軸32の動力を第2中間軸42に伝達するT6動力伝達機構562, 564、第3入力軸33の動力を第2中間軸42に伝達するT13動力伝達機構632, 634、第2中間軸42の動力を第2出力軸36に伝達するC2クラッチ機構72を有する。
第3系統動力伝達機構として第1入力軸31の動力を第1中間軸41に伝達するT5動力伝達機構552, 554と第1中間軸41の動力を差動機構入力軸43に伝達するC3クラッチ機構73、第2入力軸32の動力を第2中間軸42に伝達するT6動力伝達機構562, 564と第2中間軸42の動力を差動機構入力軸43伝達するC4クラッチ機構74、第3入力軸33の動力を差動機構入力軸43伝達するT11動力伝達機構612, 614を有する。
FIG. 8b is a diagram illustrating a detailed partial configuration of the power system of Model-2132b.
The power system includes a first motor 13, a second motor 14, a third motor 15, a first input shaft 31 to which the first motor 13 is connected, a second input shaft 32 to which the second motor 14 is connected, and a third motor. 15 is connected to a third input shaft 33, a first intermediate shaft 41, a second intermediate shaft 42, a first output shaft 35 to which the first wheel 21 is connected, and a second output shaft 36 to which the second wheel 22 is connected. The differential mechanism input shaft 43 and the differential mechanism 81, and the IC clutch mechanism 82 for connecting the first input shaft 31 and the second input shaft 32 are provided.
T5 power transmission mechanisms 552 and 554 that transmit the power of the first input shaft 31 to the first intermediate shaft 41 as the first system power transmission mechanism, and T12 power transmission that transmits the power of the third input shaft 33 to the first intermediate shaft 41 The mechanisms 622 and 624 and the C1 clutch mechanism 71 that transmits the power of the first intermediate shaft 41 to the first output shaft 35 are provided.
T6 power transmission mechanisms 562 and 564 that transmit the power of the second input shaft 32 to the second intermediate shaft 42 as the second system power transmission mechanism, and T13 power transmission that transmits the power of the third input shaft 33 to the second intermediate shaft 42 Mechanisms 632 and 634 and a C2 clutch mechanism 72 for transmitting the power of the second intermediate shaft 42 to the second output shaft 36 are provided.
T3 power transmission mechanisms 552 and 554 that transmit the power of the first input shaft 31 to the first intermediate shaft 41 as a third system power transmission mechanism, and the C3 clutch that transmits the power of the first intermediate shaft 41 to the differential mechanism input shaft 43 The mechanism 73, T6 power transmission mechanisms 562, 564 for transmitting the power of the second input shaft 32 to the second intermediate shaft 42, and the C4 clutch mechanism 74 for transmitting the power of the second intermediate shaft 42 to the differential mechanism input shaft 43, third T11 power transmission mechanisms 612 and 614 that transmit the power of the input shaft 33 to the differential mechanism input shaft 43 are provided.

図26はModel-2131sの動力システムの駆動状態(010)の並列駆動同期変速制御(MST-3)を説明する図である。
図26aの駆動状態(010)は、第3モータ15、T11動力伝達機構61(第1速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動する走行である。
図26b、図26cの駆動状態(111)は、第1モータ13と第2モータ14を起動して、第1モータ13とT1動力伝達機構51(第1速)で第1出力軸35を、第2モータ14とT2動力伝達機構52(第1速)で第2出力軸36を直接駆動しながら、第3モータ15でT11動力伝達機構61の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図26dの駆動状態(010)は、T1動力伝達機構51(第1速)とT2動力伝達機構52(第1速)を切断し、第1モータ13と第2モータ14を停止して、第3モータ15、T11動力伝達機構61(第2速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動する走行である。
FIG. 26 is a diagram for explaining parallel drive synchronous shift control (MST-3) in the drive state (010) of the power system of Model-2131s.
The driving state (010) in FIG. 26a is a traveling in which the first output shaft 35 and the second output shaft 36 are driven in a distributed manner by the third motor 15, the T11 power transmission mechanism 61 (first speed), and the differential mechanism 81.
26b and 26c, the first motor 13 and the second motor 14 are activated, and the first output shaft 35 is driven by the first motor 13 and the T1 power transmission mechanism 51 (first speed). While the second output shaft 36 is directly driven by the second motor 14 and the T2 power transmission mechanism 52 (first speed), the rotational speed of the target gear mechanism (second speed) of the T11 power transmission mechanism 61 is driven by the third motor 15. This is parallel drive synchronous shift control in which the shift is performed in synchronization with each other.
In the driving state (010) of FIG. 26d, the T1 power transmission mechanism 51 (first speed) and the T2 power transmission mechanism 52 (first speed) are disconnected, the first motor 13 and the second motor 14 are stopped, In this traveling, the first output shaft 35 and the second output shaft 36 are distributed and driven by the three motor 15, the T11 power transmission mechanism 61 (second speed), and the differential mechanism 81.

図27はModel-2131sの動力システムの駆動状態(101)の並列駆動同期変速制御(MST-3)を説明する図である。
図27aの駆動状態(101)は第1モータ13とT1動力伝達機構51(第1速)で第1出力軸35を、第2モータ14とT2動力伝達機構52(第1速)で第2出力軸36を直接駆動する走行である。
図27b、図27cの駆動状態(111)は、第3モータ15を起動して、第3モータ15、T11動力伝達機構61(第1速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動しながら、第1モータ13でT1動力伝達機構51の目的の歯車機構(第2速)の回転速度に同期をとって変速を行い、第2モータ14でT2動力伝達機構52の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図27dの駆動状態(101)は、T11動力伝達機構61(第1速)を切断し、第3モータ15を停止して、第1モータ13とT1動力伝達機構51(第2速)で第1出力軸35を、第2モータ14とT2動力伝達機構52(第2速)で第2出力軸36を直接駆動する走行である。
FIG. 27 is a diagram for explaining parallel drive synchronous shift control (MST-3) in the drive state (101) of the power system of Model-2131s.
The driving state (101) of FIG. 27a is the first motor 13 and the T1 power transmission mechanism 51 (first speed) for the first output shaft 35, and the second motor 14 and the T2 power transmission mechanism 52 (first speed) for the second. In this traveling, the output shaft 36 is directly driven.
27b and 27c, the third motor 15 is activated and the third motor 15, the T11 power transmission mechanism 61 (first speed), and the differential mechanism 81 are connected to the first output shaft 35 and the first output shaft 35. While distributing and driving the two output shafts 36, the first motor 13 shifts in synchronization with the rotational speed of the target gear mechanism (second speed) of the T1 power transmission mechanism 51, and the second motor 14 transmits T2 power. This is parallel drive synchronous shift control that shifts in synchronization with the rotational speed of the target gear mechanism (second speed) of the mechanism 52.
In the drive state (101) of FIG. 27d, the T11 power transmission mechanism 61 (first speed) is disconnected, the third motor 15 is stopped, and the first motor 13 and the T1 power transmission mechanism 51 (second speed) are the first. In this traveling, the first output shaft 35 is directly driven by the second motor 14 and the T2 power transmission mechanism 52 (second speed).

図28はModel-2131sの動力システムの駆動状態(111)の並列駆動同期変速制御(MST-3)を説明する図である。
図28aの駆動状態(111)は、第1モータ13とT1動力伝達機構51(第1速)で第1出力軸35を、第2モータ14とT2動力伝達機構52(第1速)で第2出力軸36を直接駆動し、第3モータ15、T11動力伝達機構61(第1速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動する走行である。
図28bの駆動状態(111)は、第1モータ13とT1動力伝達機構51(第1速)で第1出力軸35を、第2モータ14とT2動力伝達機構52(第1速)で第2出力軸36を直接駆動しながら、第3モータ15でT11動力伝達機構61の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図28cの駆動状態(111)は、第3モータ15、T11動力伝達機構61(第2速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動しながら、第1モータ13でT1動力伝達機構51の目的の歯車機構(第2速)の回転速度に同期をとって変速を行い、第2モータ14でT2動力伝達機構52の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
FIG. 28 is a diagram for explaining parallel drive synchronous shift control (MST-3) in the drive state (111) of the power system of Model-2131s.
The drive state (111) in FIG. 28a is that the first output shaft 35 is driven by the first motor 13 and the T1 power transmission mechanism 51 (first speed), and the first output shaft 35 is driven by the second motor 14 and the T2 power transmission mechanism 52 (first speed). In this traveling, the second output shaft 36 is directly driven, and the first output shaft 35 and the second output shaft 36 are distributed and driven by the third motor 15, the T11 power transmission mechanism 61 (first speed), and the differential mechanism 81.
The drive state (111) in FIG. 28b is that the first output shaft 35 is driven by the first motor 13 and the T1 power transmission mechanism 51 (first speed), and the first output shaft 35 is driven by the second motor 14 and the T2 power transmission mechanism 52 (first speed). This is parallel drive synchronous shift control in which the third motor 15 shifts in synchronization with the rotational speed of the target gear mechanism (second speed) of the T11 power transmission mechanism 61 while directly driving the output shaft 36.
The drive state (111) in FIG. 28c is the first motor while the first output shaft 35 and the second output shaft 36 are distributed and driven by the third motor 15, the T11 power transmission mechanism 61 (second speed), and the differential mechanism 81. The motor 13 shifts in synchronism with the rotational speed of the target gear mechanism (second speed) of the T1 power transmission mechanism 51, and the target gear mechanism (second speed) of the T2 power transmission mechanism 52 is controlled by the second motor 14. This is parallel drive synchronous shift control in which the shift is performed in synchronization with the rotation speed of the motor.

説明を省略したモデルについて説明する。
Model-2131aの動力システムの詳細な部分構成はModel-2131bと実施例2のModel-2122aの組合せで説明でき、Model-2133a, 2133b, 2133sの動力システムの詳細な部分構成はModel-2131a, 2132b, 2131sと実施例2のModel-2124bの組合せで説明できる。
Model-2131aとModel-2131bの動力システムの並列駆動同期変速制御はModel-2131sの並列駆動同期変速制御と制御する動力伝達機構、クラッチ機構が異なるが制御は同じである。
また、Model-2133s、Model-2133a、Model-2133bの動力システムの並列駆動同期変速制御はエンジン16の影響を受けないのでModel-2131s、Model-2131a、Model-2131bの並列駆動同期変速制御と同じである。
A model whose description is omitted will be described.
The detailed partial configuration of the power system of Model-2131a can be explained by the combination of Model-2131b and Model-2122a of Example 2, and the detailed partial configuration of the power system of Model-2133a, 2133b, 2133s is Model-2131a, 2132b , 2131s and Model-2124b of the second embodiment.
Model-2131a and Model-2131b power system parallel drive synchronous shift control differs from Model-2131s parallel drive synchronous shift control in the power transmission mechanism and clutch mechanism, but the control is the same.
In addition, the parallel drive synchronous shift control of the power system of Model-2133s, Model-2133a, Model-2133b is not affected by the engine 16, so it is the same as the parallel drive synchronous shift control of Model-2131s, Model-2131a, Model-2131b It is.

実施例5はModel-2132s, 2132a, 2132b2134s, 2134a, 2134bの動力システムである。
Model-2132は本発明の最も機能の高い電気自動車の動力システムであり、三つのモータ、二つから三つの第1系統動力伝達機構、二つから三つの第2系統動力伝達機構、三つの第3系統動力伝達機構を有し、並列駆動同期変速制御を行う。
Model-2132の構成はModel-2132s, 2132a, 2132b, 2132ma, 2132mbの五方式がある。
Model-2132aとModel-2132bは第1入力軸31と第2入力軸32の動力を差動機構入力軸43に伝達する機構が異なり、
Model-2132sは簡略方式で、第3モータ15の動力を伝達する第1系統動力伝達機構と第2系統動力伝達機構は無く、第3系統動力伝達機構のみによって伝達される。
Example 5 is a power system of Model-2132s, 2132a, 2132b2134s, 2134a, 2134b.
Model-2132 is the most functional electric vehicle power system of the present invention, which includes three motors, two to three first power transmission mechanisms, two to three second power transmission mechanisms, and three first power transmission mechanisms. It has a three-system power transmission mechanism and performs parallel drive synchronous shift control.
Model-2132 has five systems: Model-2132s, 2132a, 2132b, 2132ma, 2132mb.
Model-2132a and Model-2132b have different mechanisms for transmitting the power of the first input shaft 31 and the second input shaft 32 to the differential mechanism input shaft 43.
Model-2132s is a simplified method, and has no first system power transmission mechanism and second system power transmission mechanism for transmitting the power of the third motor 15, and is transmitted only by the third system power transmission mechanism.

図9aはModel-2132sの詳細な部分構成を説明する図である。
動力システムは、第1モータ13、第2モータ14、第3モータ15、第1モータ13が接続される第1入力軸31、第2モータ14が接続される第2入力軸32、第3モータ15が接続される第3入力軸33、第1中間軸41、第2中間軸42、第1車輪21が接続される第1出力軸35、第2車輪22が接続される第2出力軸36、差動機構入力軸43と差動機構81、第1入力軸31と第2入力軸32を連結するICクラッチ機構82を有する。
第1系統動力伝達機構として第1入力軸31の動力を第1中間軸41に伝達するT5動力伝達機構552, 554と第1中間軸41の動力を第1出力軸35に伝達するC1クラッチ機構71を有する。
第2系統動力伝達機構として第2入力軸32の動力を第2中間軸42に伝達するT6動力伝達機構562, 564と第2中間軸42の動力を第2出力軸36に伝達するC2クラッチ機構72を有する。
第3系統動力伝達機構として第1入力軸31の動力を第1中間軸41に伝達するT5動力伝達機構552, 554と第1中間軸41の動力を差動機構入力軸43に伝達するC3クラッチ機構73、第2入力軸32の動力を第2中間軸42に伝達するT6動力伝達機構562, 564と第2中間軸42の動力を差動機構入力軸43伝達するC4クラッチ機構74、第3入力軸33の動力を差動機構入力軸43伝達するT11動力伝達機構612, 614を有する。
FIG. 9a is a diagram illustrating a detailed partial configuration of Model-2132s.
The power system includes a first motor 13, a second motor 14, a third motor 15, a first input shaft 31 to which the first motor 13 is connected, a second input shaft 32 to which the second motor 14 is connected, and a third motor. 15 is connected to a third input shaft 33, a first intermediate shaft 41, a second intermediate shaft 42, a first output shaft 35 to which the first wheel 21 is connected, and a second output shaft 36 to which the second wheel 22 is connected. The differential mechanism input shaft 43 and the differential mechanism 81, and the IC clutch mechanism 82 for connecting the first input shaft 31 and the second input shaft 32 are provided.
T5 power transmission mechanisms 552 and 554 that transmit the power of the first input shaft 31 to the first intermediate shaft 41 as the first system power transmission mechanism and the C1 clutch mechanism that transmits the power of the first intermediate shaft 41 to the first output shaft 35 71.
T6 power transmission mechanisms 562 and 564 that transmit the power of the second input shaft 32 to the second intermediate shaft 42 as the second system power transmission mechanism and the C2 clutch mechanism that transmits the power of the second intermediate shaft 42 to the second output shaft 36 72.
T3 power transmission mechanisms 552 and 554 that transmit the power of the first input shaft 31 to the first intermediate shaft 41 as a third system power transmission mechanism, and the C3 clutch that transmits the power of the first intermediate shaft 41 to the differential mechanism input shaft 43 The mechanism 73, T6 power transmission mechanisms 562, 564 for transmitting the power of the second input shaft 32 to the second intermediate shaft 42, and the C4 clutch mechanism 74 for transmitting the power of the second intermediate shaft 42 to the differential mechanism input shaft 43, third T11 power transmission mechanisms 612 and 614 that transmit the power of the input shaft 33 to the differential mechanism input shaft 43 are provided.

図9bはModel-2132bの動力システムの詳細な部分構成を説明する図である。
動力システムは、第1モータ13、第2モータ14、第3モータ15、第1モータ13が接続される第1入力軸31、第2モータ14が接続される第2入力軸32、第3モータ15が接続される第3入力軸33、第1中間軸41、第2中間軸42、第1車輪21が接続される第1出力軸35、第2車輪22が接続される第2出力軸36、差動機構入力軸43と差動機構81、第1入力軸31と第2入力軸32を連結するICクラッチ機構82を有する。
第1系統動力伝達機構として第1入力軸31の動力を第1中間軸41に伝達するT5動力伝達機構552, 554、第3入力軸33の動力を第1中間軸41に伝達するT12動力伝達機構622, 624、第1中間軸41の動力を第1出力軸35に伝達するC1クラッチ機構71を有する。
第2系統動力伝達機構として第2入力軸32の動力を第2中間軸42に伝達するT6動力伝達機構562, 564、第3入力軸33の動力を第2中間軸42に伝達するT13動力伝達機構632, 634、第2中間軸42の動力を第2出力軸36に伝達するC2クラッチ機構72を有する。
第3系統動力伝達機構として第1入力軸31の動力を第1中間軸41に伝達するT5動力伝達機構552, 554と第1中間軸41の動力を差動機構入力軸43に伝達するC3クラッチ機構73、第2入力軸32の動力を第2中間軸42に伝達するT6動力伝達機構562, 564と第2中間軸42の動力を差動機構入力軸43伝達するC4クラッチ機構74、第3入力軸33の動力を差動機構入力軸43伝達するT11動力伝達機構612, 614を有する。
FIG. 9b is a diagram illustrating a detailed partial configuration of the power system of Model-2132b.
The power system includes a first motor 13, a second motor 14, a third motor 15, a first input shaft 31 to which the first motor 13 is connected, a second input shaft 32 to which the second motor 14 is connected, and a third motor. 15 is connected to a third input shaft 33, a first intermediate shaft 41, a second intermediate shaft 42, a first output shaft 35 to which the first wheel 21 is connected, and a second output shaft 36 to which the second wheel 22 is connected. The differential mechanism input shaft 43 and the differential mechanism 81, and the IC clutch mechanism 82 for connecting the first input shaft 31 and the second input shaft 32 are provided.
T5 power transmission mechanisms 552 and 554 that transmit the power of the first input shaft 31 to the first intermediate shaft 41 as the first system power transmission mechanism, and T12 power transmission that transmits the power of the third input shaft 33 to the first intermediate shaft 41 The mechanisms 622 and 624 and the C1 clutch mechanism 71 that transmits the power of the first intermediate shaft 41 to the first output shaft 35 are provided.
T6 power transmission mechanisms 562 and 564 that transmit the power of the second input shaft 32 to the second intermediate shaft 42 as the second system power transmission mechanism, and T13 power transmission that transmits the power of the third input shaft 33 to the second intermediate shaft 42 Mechanisms 632 and 634 and a C2 clutch mechanism 72 for transmitting the power of the second intermediate shaft 42 to the second output shaft 36 are provided.
T3 power transmission mechanisms 552 and 554 that transmit the power of the first input shaft 31 to the first intermediate shaft 41 as a third system power transmission mechanism, and the C3 clutch that transmits the power of the first intermediate shaft 41 to the differential mechanism input shaft 43 The mechanism 73, T6 power transmission mechanisms 562, 564 for transmitting the power of the second input shaft 32 to the second intermediate shaft 42, and the C4 clutch mechanism 74 for transmitting the power of the second intermediate shaft 42 to the differential mechanism input shaft 43, third T11 power transmission mechanisms 612 and 614 that transmit the power of the input shaft 33 to the differential mechanism input shaft 43 are provided.

図11はModel-2134sの詳細な部分構成を説明する図である。
動力システムは、第1モータ13、第2モータ14、第3モータ15、エンジン16、第1モータ13が接続される第1入力軸31、第2モータ14が接続される第2入力軸32、第3モータ15とエンジンが接続される第4入力軸34、第1中間軸41、第2中間軸42、第1車輪21が接続される第1出力軸35、第2車輪22が接続される第2出力軸36、差動機構入力軸43と差動機構81、第1入力軸31と第2入力軸32を連結するICクラッチ機構82を有する。
第1系統動力伝達機構として第1入力軸31の動力を第1中間軸41に伝達するT5動力伝達機構552, 554と第1中間軸41の動力を第1出力軸35に伝達するC1クラッチ機構71を有する。
第2系統動力伝達機構として第2入力軸32の動力を第2中間軸42に伝達するT6動力伝達機構562, 564と第2中間軸42の動力を第2出力軸36に伝達するC2クラッチ機構72を有する。
第3系統動力伝達機構として第1入力軸31の動力を第1中間軸41に伝達するT5動力伝達機構552, 554と第1中間軸41の動力を差動機構入力軸43に伝達するC3クラッチ機構73、第2入力軸32の動力を第2中間軸42に伝達するT6動力伝達機構562, 564と第2中間軸42の動力を差動機構入力軸43伝達するC4クラッチ機構74、第4入力軸34の動力を差動機構入力軸43伝達するC5クラッチ機構75を有する。
FIG. 11 is a diagram for explaining a detailed partial configuration of Model-2134s.
The power system includes a first motor 13, a second motor 14, a third motor 15, an engine 16, a first input shaft 31 to which the first motor 13 is connected, a second input shaft 32 to which the second motor 14 is connected, A fourth input shaft 34 to which the third motor 15 and the engine are connected, a first intermediate shaft 41, a second intermediate shaft 42, a first output shaft 35 to which the first wheel 21 is connected, and a second wheel 22 are connected. The second output shaft 36, the differential mechanism input shaft 43 and the differential mechanism 81, and the IC clutch mechanism 82 for connecting the first input shaft 31 and the second input shaft 32 are provided.
T5 power transmission mechanisms 552 and 554 that transmit the power of the first input shaft 31 to the first intermediate shaft 41 as the first system power transmission mechanism and the C1 clutch mechanism that transmits the power of the first intermediate shaft 41 to the first output shaft 35 71.
T6 power transmission mechanisms 562 and 564 that transmit the power of the second input shaft 32 to the second intermediate shaft 42 as the second system power transmission mechanism and the C2 clutch mechanism that transmits the power of the second intermediate shaft 42 to the second output shaft 36 72.
T3 power transmission mechanisms 552 and 554 that transmit the power of the first input shaft 31 to the first intermediate shaft 41 as a third system power transmission mechanism, and the C3 clutch that transmits the power of the first intermediate shaft 41 to the differential mechanism input shaft 43 Mechanism 73, T6 power transmission mechanisms 562, 564 for transmitting the power of the second input shaft 32 to the second intermediate shaft 42, and C4 clutch mechanism 74 for transmitting the power of the second intermediate shaft 42 to the differential mechanism input shaft 43, the fourth A C5 clutch mechanism 75 for transmitting the power of the input shaft 34 to the differential mechanism input shaft 43 is provided.

図12はModel-2134bの動力システムの詳細な部分構成を説明する図である。
動力システムは、第1モータ13、第2モータ14、第3モータ15、エンジン16、第1モータ13が接続される第1入力軸31、第2モータ14が接続される第2入力軸32、第3モータ15が接続される第3入力軸33、エンジン16が接続される第4入力軸34、第1中間軸41、第2中間軸42、第1車輪21が接続される第1出力軸35、第2車輪22が接続される第2出力軸36、差動機構入力軸43と差動機構81、第1入力軸31と第2入力軸32を連結するICクラッチ機構82を有する。
第1系統動力伝達機構として第1入力軸31の動力を第1中間軸41に伝達するT5動力伝達機構552, 554、第3入力軸33の動力を第1中間軸41に伝達するT12動力伝達機構622,624、第1中間軸41の動力を第1出力軸35に伝達するC1クラッチ機構71を有する。
第2系統動力伝達機構として第2入力軸32の動力を第2中間軸42に伝達するT6動力伝達機構562,564、第3入力軸33の動力を第2中間軸42に伝達するT13動力伝達機構632, 634、第2中間軸42の動力を第2出力軸36に伝達するC2クラッチ機構72を有する。
第3系統動力伝達機構として第1入力軸31の動力を第1中間軸41に伝達するT5動力伝達機構552, 554、第3入力軸33の動力を第1中間軸41に伝達するT12動力伝達機構622,624、第1中間軸41の動力を差動機構入力軸43に伝達するC3クラッチ機構73、第2入力軸32の動力を第2中間軸42に伝達するT6動力伝達機構562, 564、第3入力軸33の動力を第2中間軸42に伝達するT13動力伝達機構632, 634、第2中間軸42の動力を差動機構入力軸43伝達するC4クラッチ機構74、第4入力軸34の動力を差動機構入力軸43伝達するC5クラッチ機構75を有する。
また、シリーズハイブリッド走行時に、エンジン16の動力を第3モータ13に伝達するために第4入力軸と第3入力軸を連結するC7クラッチ機構76を有する。
FIG. 12 is a diagram for explaining a detailed partial configuration of the power system of Model-2134b.
The power system includes a first motor 13, a second motor 14, a third motor 15, an engine 16, a first input shaft 31 to which the first motor 13 is connected, a second input shaft 32 to which the second motor 14 is connected, A third input shaft 33 to which the third motor 15 is connected, a fourth input shaft 34 to which the engine 16 is connected, a first intermediate shaft 41, a second intermediate shaft 42, and a first output shaft to which the first wheels 21 are connected. 35, a second output shaft 36 to which the second wheel 22 is connected, a differential mechanism input shaft 43 and a differential mechanism 81, and an IC clutch mechanism 82 for connecting the first input shaft 31 and the second input shaft 32.
T5 power transmission mechanisms 552 and 554 that transmit the power of the first input shaft 31 to the first intermediate shaft 41 as the first system power transmission mechanism, and T12 power transmission that transmits the power of the third input shaft 33 to the first intermediate shaft 41 The mechanisms 622 and 624 and the C1 clutch mechanism 71 that transmits the power of the first intermediate shaft 41 to the first output shaft 35 are provided.
T6 power transmission mechanisms 562 and 564 that transmit the power of the second input shaft 32 to the second intermediate shaft 42 as the second system power transmission mechanism, and T13 power transmission mechanism 632 that transmits the power of the third input shaft 33 to the second intermediate shaft 42. 634, and a C2 clutch mechanism 72 for transmitting the power of the second intermediate shaft 42 to the second output shaft 36.
T5 power transmission mechanisms 552 and 554 that transmit power from the first input shaft 31 to the first intermediate shaft 41 as a third system power transmission mechanism, and T12 power transmission that transmits power from the third input shaft 33 to the first intermediate shaft 41 Mechanisms 622, 624, C3 clutch mechanism 73 for transmitting the power of the first intermediate shaft 41 to the differential mechanism input shaft 43, T6 power transmission mechanisms 562, 564 for transmitting the power of the second input shaft 32 to the second intermediate shaft 42, T13 power transmission mechanisms 632 and 634 that transmit the power of the three input shaft 33 to the second intermediate shaft 42, C4 clutch mechanism 74 that transmits the power of the second intermediate shaft 42 to the differential mechanism input shaft 43, and the fourth input shaft 34 A C5 clutch mechanism 75 that transmits power to the differential mechanism input shaft 43 is provided.
In addition, a C7 clutch mechanism 76 that connects the fourth input shaft and the third input shaft to transmit the power of the engine 16 to the third motor 13 during series hybrid travel is provided.

図29はModel-2132bの動力システムの駆動状態(021)の並列駆動同期変速制御(MST-4)を説明する図である。
図29aの駆動状態(021)は第1モータ13、T5動力伝達機構55(第1速)、C3クラッチ機構73、第3モータ15、T11動力伝達機構61(第1速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動し、第2モータ14、T6動力伝達機構56(第1速)、C2クラッチ機構72で第2出力軸36を直接駆動する走行である。
図29bの駆動状態(021)は、第3モータ15、T11動力伝達機構61(第1速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動し、第2モータ14、T6動力伝達機構56(第1速)、C2クラッチ機構72で第2出力軸36を直接駆動しながら、第1モータ13でT5動力伝達機構55の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図29cの駆動状態(021)は、第1モータ13とT5動力伝達機構55(第2速)、C3クラッチ機構73、差動機構81で第1出力軸35と第2出力軸36を分配駆動しながら、第2モータ14でT6動力伝達機構56の目的の歯車機構(第2速)の回転速度に同期をとって変速を行い、第3モータ14でT11動力伝達機構61の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
FIG. 29 is a diagram for explaining parallel drive synchronous shift control (MST-4) in the drive state (021) of the power system of Model-2132b.
The driving state (021) of FIG. 29a is the first motor 13, the T5 power transmission mechanism 55 (first speed), the C3 clutch mechanism 73, the third motor 15, the T11 power transmission mechanism 61 (first speed), and the differential mechanism 81. The first output shaft 35 and the second output shaft 36 are distributed and driven, and the second output shaft 36 is directly driven by the second motor 14, the T6 power transmission mechanism 56 (first speed), and the C2 clutch mechanism 72. .
The driving state (021) in FIG. 29b is the second motor, the T11 power transmission mechanism 61 (first speed) and the differential mechanism 81 are used to distribute and drive the first output shaft 35 and the second output shaft 36. 14, T6 power transmission mechanism 56 (first speed), C2 clutch mechanism 72 directly drives the second output shaft 36, and the first motor 13 uses the target gear mechanism (second speed) of the T5 power transmission mechanism 55. This is parallel drive synchronous shift control that shifts in synchronization with the rotational speed.
The driving state (021) of FIG. 29c is the first motor 13 and the T5 power transmission mechanism 55 (second speed), the C3 clutch mechanism 73, and the differential mechanism 81 to distributely drive the first output shaft 35 and the second output shaft 36. However, the second motor 14 shifts in synchronization with the rotational speed of the target gear mechanism (second speed) of the T6 power transmission mechanism 56, and the third motor 14 performs the target gear mechanism of the T11 power transmission mechanism 61. This is parallel drive synchronous shift control that shifts in synchronization with the rotation speed of (second speed).

図30はModel-2132bの動力システムの駆動状態(102)の並列駆動同期変速制御(MST-4)を説明する図である。
図30aの駆動状態(102)は、第1モータ13、T5動力伝達機構55(第1速)、C1クラッチ機構71で第1出力軸35を直接駆動し、第2モータ14、T6動力伝達機構56(第1速)、第3モータ15、T13動力伝達機構63(第1速)、C2クラッチ機構72で第2出力軸36を直接駆動する走行である。
図30bの駆動状態(102)は、第1モータ13、T5動力伝達機構55(第1速)、C1クラッチ機構71で第1出力軸35を直接駆動し、第2モータ14、T6動力伝達機構56(第1速)、C2クラッチ機構72で第2出力軸36を直接駆動しながら、第3モータ15でT13動力伝達機構63の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図30cの駆動状態(102)は、第3モータ15、T13動力伝達機構63(第2速)、C2クラッチ機構72で第2出力軸36を直接駆動しながら、第1モータ13でT5動力伝達機構55の目的の歯車機構(第2速)の回転速度に同期をとって変速を行い、第2モータ14でT6動力伝達機構56の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
FIG. 30 is a diagram for explaining parallel drive synchronous shift control (MST-4) in the drive state (102) of the power system of Model-2132b.
The driving state (102) of FIG. 30a is that the first output shaft 35 is directly driven by the first motor 13, the T5 power transmission mechanism 55 (first speed), and the C1 clutch mechanism 71, and the second motor 14, T6 power transmission mechanism. 56 (first speed), the third motor 15, the T13 power transmission mechanism 63 (first speed), and the C2 clutch mechanism 72 drive the second output shaft 36 directly.
The driving state (102) in FIG. 30b is that the first output shaft 35 is directly driven by the first motor 13, the T5 power transmission mechanism 55 (first speed), and the C1 clutch mechanism 71, and the second motor 14, T6 power transmission mechanism. 56 (first speed), while the second output shaft 36 is directly driven by the C2 clutch mechanism 72, the third motor 15 is synchronized with the rotational speed of the target gear mechanism (second speed) of the T13 power transmission mechanism 63. This is parallel drive synchronous shift control that performs shifting.
The driving state (102) in FIG. 30c is that the third motor 15, T13 power transmission mechanism 63 (second speed), and the C2 clutch mechanism 72 directly drive the second output shaft 36, while the first motor 13 transmits T5 power transmission. The speed is changed in synchronization with the rotational speed of the target gear mechanism (second speed) of the mechanism 55, and the second motor 14 synchronizes with the rotational speed of the target gear mechanism (second speed) of the T6 power transmission mechanism 56. This is parallel drive synchronous shift control for performing shifts.

図31はModel-2132bの動力システムの駆動状態(012)の並列駆動同期変速制御(MST-4)を説明する図である。
図31aの駆動状態(012)は、第1モータ13、T5動力伝達機構55(第1速)、C3クラッチ機構73、差動機構81で第1出力軸35と第2出力軸36を分配駆動し、第2モータ14、T6動力伝達機構56(第1速)、第3モータ15、T13動力伝達機構63(第1速)、C2クラッチ機構72で第2出力軸36を直接駆動する走行である。
図31bの駆動状態(012)は、第1モータ13、T5動力伝達機構55(第1速)、C3クラッチ機構73、差動機構81で第1出力軸35と第2出力軸36を分配駆動し、第2モータ14、T6動力伝達機構56(第1速)、C2クラッチ機構72で第2出力軸36を直接駆動しながら、第3モータ15でT13動力伝達機構63の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図31cの駆動状態(012)は、第3モータ15、T13動力伝達機構63(第2速)、C2クラッチ機構72で第2出力軸36を直接駆動しながら、第1モータ13でT5動力伝達機構55の目的の歯車機構(第2速)の回転速度に同期をとって変速を行い、第2モータ14でT6動力伝達機構56の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
FIG. 31 is a diagram for explaining parallel drive synchronous shift control (MST-4) in the drive state (012) of the power system of Model-2132b.
The driving state (012) of FIG. 31a is the first motor 13, the T5 power transmission mechanism 55 (first speed), the C3 clutch mechanism 73, and the differential mechanism 81 to distributely drive the first output shaft 35 and the second output shaft 36. The second motor 14, the T6 power transmission mechanism 56 (first speed), the third motor 15, the T13 power transmission mechanism 63 (first speed), and the C2 clutch mechanism 72 directly drive the second output shaft 36. is there.
The driving state (012) of FIG. 31b is the first motor 13, the T5 power transmission mechanism 55 (first speed), the C3 clutch mechanism 73, and the differential mechanism 81 to distributely drive the first output shaft 35 and the second output shaft 36. The second motor 14, the T6 power transmission mechanism 56 (first speed), and the C2 clutch mechanism 72 directly drive the second output shaft 36, while the third motor 15 uses the target gear mechanism of the T13 power transmission mechanism 63 ( This is parallel drive synchronous shift control that performs shift in synchronization with the rotation speed of the second speed).
The driving state (012) in FIG. 31c is that the third motor 15, T13 power transmission mechanism 63 (second speed), and C2 clutch mechanism 72 directly drive the second output shaft 36, while the first motor 13 transmits T5 power transmission. The speed is changed in synchronization with the rotational speed of the target gear mechanism (second speed) of the mechanism 55, and the second motor 14 synchronizes with the rotational speed of the target gear mechanism (second speed) of the T6 power transmission mechanism 56. This is parallel drive synchronous shift control for performing shifts.

図30はModel-2132bの動力システムの駆動状態(003)の並列駆動同期変速制御(MST-4)を説明する図である。
図30aの駆動状態(003)は、第1モータ13、ICクラッチ機構82、第2モータ14、T6動力伝達機構56(第1速)、第3モータ15、T13動力伝達機構63(第1速)、C2クラッチ機構72で第2出力軸36を直接駆動する走行である。
図30bの駆動状態(003)は、第1モータ13、ICクラッチ機構82、第2モータ14、T6動力伝達機構56(第1速)、C2クラッチ機構72で第2出力軸36を直接駆動しながら、第3モータ15でT13動力伝達機構63の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図30cの駆動状態(003)は、第3モータ15、T13動力伝達機構63(第2速)、C2クラッチ機構72で第2出力軸36を直接駆動しながら、第1モータ13、第2モータ14でT6動力伝達機構56の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
FIG. 30 is a diagram for explaining parallel drive synchronous shift control (MST-4) in the drive state (003) of the power system of Model-2132b.
The drive state (003) in FIG. 30a is as follows: first motor 13, IC clutch mechanism 82, second motor 14, T6 power transmission mechanism 56 (first speed), third motor 15, T13 power transmission mechanism 63 (first speed). ), Traveling in which the second output shaft 36 is directly driven by the C2 clutch mechanism 72.
In the drive state (003) of FIG. 30b, the second output shaft 36 is directly driven by the first motor 13, the IC clutch mechanism 82, the second motor 14, the T6 power transmission mechanism 56 (first speed), and the C2 clutch mechanism 72. However, this is parallel drive synchronous shift control in which the third motor 15 shifts in synchronization with the rotational speed of the target gear mechanism (second speed) of the T13 power transmission mechanism 63.
The drive state (003) of FIG. 30c is that the third motor 15, T13 power transmission mechanism 63 (second speed), and the C2 clutch mechanism 72 directly drive the second output shaft 36, while the first motor 13 and the second motor. 14 is a parallel drive synchronous shift control in which the shift is performed in synchronization with the rotational speed of the target gear mechanism (second speed) of the T6 power transmission mechanism 56 at 14.

図43、図44はModel-2132bの動力システムのモータ数差分制御方式トルクベクタリング制御(YC-3)を説明する図である。
図43aの駆動状態(111)は、第1モータ13、T5動力伝達機構55、C1クラッチ機構71で第1出力軸35を直接駆動し、第2モータ14、T6動力伝達機構56、C2クラッチ機構72で第2出力軸36を直接駆動し、第3モータ15、T11動力伝達機構61、差動機構81で第1出力軸35と第2出力軸36を分配駆動する走行である。
図43bの駆動状態(021)は、第1モータ13、T5動力伝達機構55、C3クラッチ機構73、第3モータ15、T11動力伝達機構61、差動機構81で第1出力軸35と第2出力軸36を分配駆動し、第2モータ14、T6動力伝達機構56、C2クラッチ機構72で第2出力軸36を直接駆動する走行である。
図43cの駆動状態(102)は、第1モータ13、T5動力伝達機構55、C1クラッチ機構71で第1出力軸35を直接駆動し、第2モータ14、T6動力伝達機構56、第3モータ15、T13動力伝達機構63、C2クラッチ機構72で第2出力軸36を直接駆動する走行である。
図44aの駆動状態(012)は、第1モータ13、ICクラッチ機構82、第2モータ14、T6動力伝達機構56、C2クラッチ機構72で第2出力軸36を直接駆動し、第3モータ15、T11動力伝達機構61、差動機構81で第1出力軸35と第2出力軸36を分配駆動する走行である。
図44bの駆動状態(003)は、第1モータ13、ICクラッチ機構82、第2モータ14、T6動力伝達機構56、第3モータ15、T13動力伝達機構63、C2クラッチ機構72で第2出力軸36を直接駆動する走行である。
43 and 44 are diagrams for explaining the motor number difference control method torque vectoring control (YC-3) of the power system of Model-2132b.
The driving state (111) in FIG. 43a is that the first output shaft 35 is directly driven by the first motor 13, T5 power transmission mechanism 55, and C1 clutch mechanism 71, and the second motor 14, T6 power transmission mechanism 56, C2 clutch mechanism. The second output shaft 36 is directly driven by 72, and the first output shaft 35 and the second output shaft 36 are distributed and driven by the third motor 15, the T11 power transmission mechanism 61, and the differential mechanism 81.
The driving state (021) of FIG. 43b is the first motor 13, the T5 power transmission mechanism 55, the C3 clutch mechanism 73, the third motor 15, the T11 power transmission mechanism 61, and the differential mechanism 81. In this traveling, the output shaft 36 is distributed and driven, and the second output shaft 36 is directly driven by the second motor 14, the T6 power transmission mechanism 56, and the C2 clutch mechanism 72.
The driving state (102) in FIG. 43c is that the first output shaft 35 is directly driven by the first motor 13, the T5 power transmission mechanism 55, and the C1 clutch mechanism 71, and the second motor 14, T6 power transmission mechanism 56, and the third motor. 15, T13 The power transmission mechanism 63 and the C2 clutch mechanism 72 drive the second output shaft 36 directly.
The driving state (012) of FIG. 44a is that the first motor 13, the IC clutch mechanism 82, the second motor 14, the T6 power transmission mechanism 56, and the C2 clutch mechanism 72 directly drive the second output shaft 36 and the third motor 15 , The T11 power transmission mechanism 61 and the differential mechanism 81 are traveling in which the first output shaft 35 and the second output shaft 36 are driven in a distributed manner.
The driving state (003) of FIG. 44b is the second output by the first motor 13, the IC clutch mechanism 82, the second motor 14, the T6 power transmission mechanism 56, the third motor 15, the T13 power transmission mechanism 63, and the C2 clutch mechanism 72. In this traveling, the shaft 36 is directly driven.

説明を省略したモデルについて説明する。
Model-2132a, 2134aの動力システムの詳細な部分構成はModel-2132b, 2134bと実施例4のModel-2131a, 2133aの組合せで説明できる。
Model-2132s、Model-2132aの動力システムの並列駆動同期変速制御(MST-4)はModel-2132bの並列駆動同期変速制御(MST-4)と実施例4のModel-2131sの並列駆動同期変速制御(MST-4)の組合せで説明できる。また、Model-2134s、Model-2134a、Model-2134bの動力システムの並列駆動同期変速制御(MST-4)はエンジン16の影響を受けないのでModel-2132s、Model-2132a、Model-2132bの並列駆動同期変速制御(MST-4)と同じである。
Model-2132s、Model-2132aの動力システムのモータ数差分制御方式トルクベクタリング制御(YC-3)はModel-2132bと制御する動力伝達機構、クラッチ機構が異なるが制御は同じである。また、Model-2134s、Model-2134a、Model-2134bの動力システムのモータ数差分制御方式トルクベクタリング制御(YC-3)はエンジン16の影響を受けないのでModel-2132s、Model-2132a、Model-2132bのモータ数差分制御方式トルクベクタリング制御(YC-3)と同じである。
A model whose description is omitted will be described.
The detailed partial configuration of the power system of Model-2132a, 2134a can be explained by the combination of Model-2132b, 2134b and Model-2131a, 2133a of the fourth embodiment.
Parallel drive synchronous shift control (MST-4) of Model-2132s and Model-2132a power systems is parallel drive synchronous shift control (MST-4) of Model-2132b and parallel drive synchronous shift control of Model-2131s of Example 4 This can be explained by the combination of (MST-4). In addition, the parallel drive synchronous shift control (MST-4) of the power system of Model-2134s, Model-2134a, Model-2134b is not affected by the engine 16, so the model-2132s, Model-2132a, Model-2132b are driven in parallel. This is the same as the synchronous shift control (MST-4).
The motor number difference control system torque vectoring control (YC-3) of the power system of Model-2132s and Model-2132a is different from Model-2132b in the power transmission mechanism and clutch mechanism, but the control is the same. In addition, the motor number difference control method torque vectoring control (YC-3) of the power system of Model-2134s, Model-2134a, Model-2134b is not affected by the engine 16, so Model-2132s, Model-2132a, Model- This is the same as the motor number difference control method torque vectoring control (YC-3) of 2132b.

実施例6はModel-2132ma, 2132mb, 2134ma, 2134mbの動力システムである。
Model-2132maとModel-2132mbは第1入力軸31と第2入力軸32の動力を差動機構入力軸43に伝達する機構が異なり、
Model-2132ma, 2132mbは第1入力軸31の動力を第2出力軸36に伝達し第2入力軸32の動力を第1出力軸35に伝達する機構がModel-2132a, 2132bと異なる。
Example 6 is a power system of Model-2132ma, 2132mb, 2134ma, 2134mb.
Model-2132ma and Model-2132mb have different mechanisms for transmitting the power of the first input shaft 31 and the second input shaft 32 to the differential mechanism input shaft 43.
Models-2132ma and 2132mb differ from Models-2132a and 2132b in the mechanism for transmitting the power of the first input shaft 31 to the second output shaft 36 and transmitting the power of the second input shaft 32 to the first output shaft 35.

図10はModel-2132maの動力システムの詳細な部分構成を説明する図である。
動力システムは、第1モータ13、第2モータ14、第3モータ15、第1モータ13が接続される第1入力軸31、第2モータ14が接続される第2入力軸32、第3モータ15が接続される第3入力軸33、第1車輪21が接続される第1出力軸35、第2車輪22が接続される第2出力軸36、差動機構入力軸43と差動機構81を有する。
三次元に配置された第1入力軸31、第2入力軸32、第3入力軸33を二次元で表示するために、動力伝達装置23の表示は省略している。
第1系統動力伝達機構として第1入力軸31の動力を第1出力軸35に伝達するT1動力伝達機構512, 514、第2入力軸32の動力を第1出力軸35に伝達するT8動力伝達機構582, 584、第3入力軸33の動力を第1出力軸35に伝達するT9動力伝達機構592, 594を有し、第2系統動力伝達機構として第1入力軸31の動力を第2出力軸36に伝達するT7動力伝達機構572, 574、第2入力軸32の動力を第2出力軸36に伝達するT2動力伝達機構522, 524、第3入力軸33の動力を第2出力軸36に伝達するT10動力伝達機構602, 604を有し、第3系統動力伝達機構として第1入力軸31の動力を差動機構入力軸43に伝達するT3動力伝達機構532, 534、第2入力軸32の動力を差動機構入力軸43に伝達するT4動力伝達機構542, 544、第3入力軸33の動力を差動機構入力軸43伝達するT11動力伝達機構612, 614を有する。
FIG. 10 is a diagram for explaining a detailed partial configuration of the power system of Model-2132ma.
The power system includes a first motor 13, a second motor 14, a third motor 15, a first input shaft 31 to which the first motor 13 is connected, a second input shaft 32 to which the second motor 14 is connected, and a third motor. The third input shaft 33 to which 15 is connected, the first output shaft 35 to which the first wheel 21 is connected, the second output shaft 36 to which the second wheel 22 is connected, the differential mechanism input shaft 43 and the differential mechanism 81 Have
In order to display the first input shaft 31, the second input shaft 32, and the third input shaft 33 arranged in three dimensions in two dimensions, the display of the power transmission device 23 is omitted.
T1 power transmission mechanisms 512 and 514 that transmit the power of the first input shaft 31 to the first output shaft 35 as a first system power transmission mechanism, and T8 power transmission that transmits the power of the second input shaft 32 to the first output shaft 35 Mechanisms 582 and 584 and T9 power transmission mechanisms 592 and 594 that transmit the power of the third input shaft 33 to the first output shaft 35, and the second output of the power of the first input shaft 31 as the second power transmission mechanism T7 power transmission mechanisms 572 and 574 for transmitting to the shaft 36, T2 power transmission mechanisms 522 and 524 for transmitting the power of the second input shaft 32 to the second output shaft 36, and the power of the third input shaft 33 for the second output shaft 36 T3 power transmission mechanisms 602, 604 for transmitting to the T3 power transmission mechanisms 532, 534 for transmitting the power of the first input shaft 31 to the differential mechanism input shaft 43 as the third system power transmission mechanism, the second input shaft T4 power transmission mechanisms 542 and 544 that transmit the power of 32 to the differential mechanism input shaft 43, and T11 power transmission mechanisms 612 and 614 that transmit the power of the third input shaft 33 to the differential mechanism input shaft 43.

図33はModel-2132maの動力システムの駆動状態(021)の並列駆動同期変速制御(MST-4)を説明する図である。
図33aの駆動状態(021)は、第1モータ13、T3動力伝達機構53(第1速)、第3モータ15、T11動力伝達機構61(第1速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動し、第2モータ14とT2動力伝達機構52(第1速)で第2出力軸36を直接駆動する走行である。
図33bの駆動状態(021)は、第3モータ15、T11動力伝達機構61(第1速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動し、第2モータ14とT2動力伝達機構52(第1速)で第2出力軸36を直接駆動しながら、第1モータ13でT3動力伝達機構53の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図33cの駆動状態(021)は、第1モータ13、T3動力伝達機構53(第2速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動しながら、第2モータ14でT2動力伝達機構52の目的の歯車機構(第2速)の回転速度に同期をとって変速を行い、第3モータ14でT11動力伝達機構61の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
FIG. 33 is a diagram for explaining parallel drive synchronous shift control (MST-4) in the drive state (021) of the power system of Model-2132ma.
The driving state (021) of FIG. 33a is the first output by the first motor 13, the T3 power transmission mechanism 53 (first speed), the third motor 15, the T11 power transmission mechanism 61 (first speed), and the differential mechanism 81. The shaft 35 and the second output shaft 36 are distributed and driven, and the second output shaft 36 is directly driven by the second motor 14 and the T2 power transmission mechanism 52 (first speed).
The driving state (021) of FIG. 33b is the second motor 15, the T11 power transmission mechanism 61 (first speed), and the differential mechanism 81 that distributes and drives the first output shaft 35 and the second output shaft 36. 14 and T2 power transmission mechanism 52 (first speed), while directly driving the second output shaft 36, the first motor 13 synchronizes with the target gear mechanism (second speed) of the T3 power transmission mechanism 53. This is parallel drive synchronous shift control for performing shifts.
The driving state (021) in FIG. 33c is the second state while the first output shaft 35 and the second output shaft 36 are distributed and driven by the first motor 13, the T3 power transmission mechanism 53 (second speed), and the differential mechanism 81. The motor 14 shifts in synchronization with the rotational speed of the target gear mechanism (second speed) of the T2 power transmission mechanism 52, and the target gear mechanism (second speed) of the T11 power transmission mechanism 61 is performed by the third motor 14. This is parallel drive synchronous shift control in which the shift is performed in synchronization with the rotation speed of the motor.

図34はModel-2132maの動力システムの駆動状態(102)の並列駆動同期変速制御(MST-4)を説明する図である。
図34aの駆動状態(102)は、第1モータ13とT1動力伝達機構51(第1速)で第1出力軸35を直接駆動し、第2モータ14とT2動力伝達機構52(第1速)、第3モータ15とT10動力伝達機構60(第1速)で第2出力軸36を直接駆動する走行である。
図34bの駆動状態(102)は、第1モータ13とT1動力伝達機構51(第1速)で第1出力軸35を直接駆動し、第3モータ15とT10動力伝達機構60(第1速)で第2出力軸36を直接駆動しながら、第2モータ14でT2動力伝達機構52の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図34cの駆動状態(102)は、第2モータ14とT2動力伝達機構52(第2速)で駆動しながら、第1モータ13でT1動力伝達機構51の目的の歯車機構(第2速)の回転速度に同期をとって変速を行い、第3モータ14でT10動力伝達機構60の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
FIG. 34 is a diagram for explaining parallel drive synchronous shift control (MST-4) in the drive state (102) of the power system of Model-2132ma.
In the drive state (102) of FIG. 34a, the first motor 13 and the T1 power transmission mechanism 51 (first speed) directly drive the first output shaft 35, and the second motor 14 and the T2 power transmission mechanism 52 (first speed). ), And the second output shaft 36 is directly driven by the third motor 15 and the T10 power transmission mechanism 60 (first speed).
In the drive state (102) of FIG. 34b, the first motor 13 and the T1 power transmission mechanism 51 (first speed) directly drive the first output shaft 35, and the third motor 15 and the T10 power transmission mechanism 60 (first speed). ), The second output shaft 36 is directly driven, and the second motor 14 is used in parallel drive synchronous shift control for performing a shift in synchronization with the rotational speed of the target gear mechanism (second speed) of the T2 power transmission mechanism 52. is there.
The driving state (102) of FIG. 34c is the target gear mechanism (second speed) of the T1 power transmission mechanism 51 by the first motor 13 while being driven by the second motor 14 and the T2 power transmission mechanism 52 (second speed). Is a parallel drive synchronous shift control in which a shift is performed in synchronization with the rotational speed of the motor and the third motor 14 performs a shift in synchronization with the rotational speed of the target gear mechanism (second speed) of the T10 power transmission mechanism 60. .

図35はModel-2132maの動力システムの駆動状態(102)の並列駆動同期変速制御(MST-4)を説明する図である。
図35aの駆動状態(102)は、第1モータ13とT7動力伝達機構57(第1速)、第2モータ14とT2動力伝達機構52(第1速)で第2出力軸36を直接駆動し、第3モータ15とT11動力伝達機構61(第1速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動する走行である。
図35bの駆動状態(102)は、第2モータ14とT2動力伝達機構52(第1速)で第2出力軸36を直接駆動し、第3モータ15とT11動力伝達機構61(第1速)、差動機構81で第1出力軸35と第2出力軸36を分配駆動しながら、第1モータ13でT7動力伝達機構57の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図35cの駆動状態(102)は、第1モータ13とT7動力伝達機構57(第2速)で駆動しながら、第1モータ13でT7動力伝達機構57の目的の歯車機構(第2速)の回転速度に同期をとって変速を行い、第3モータ14でT11動力伝達機構61の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
FIG. 35 is a diagram for explaining parallel drive synchronous shift control (MST-4) in the drive state (102) of the power system of Model-2132ma.
The driving state (102) of FIG. 35a is the first motor 13 and T7 power transmission mechanism 57 (first speed), and the second motor 14 and T2 power transmission mechanism 52 (first speed) to directly drive the second output shaft 36. The third motor 15, the T11 power transmission mechanism 61 (first speed), and the differential mechanism 81 are used to drive the first output shaft 35 and the second output shaft 36 in a distributed manner.
In the driving state (102) of FIG. 35b, the second output shaft 36 is directly driven by the second motor 14 and the T2 power transmission mechanism 52 (first speed), and the third motor 15 and the T11 power transmission mechanism 61 (first speed) are driven. ), While the first output shaft 35 and the second output shaft 36 are distributed and driven by the differential mechanism 81, the first motor 13 synchronizes with the rotational speed of the target gear mechanism (second speed) of the T7 power transmission mechanism 57. This is parallel drive synchronous shift control for performing shifts.
The driving state (102) in FIG. 35c is the target gear mechanism (second speed) of the T7 power transmission mechanism 57 by the first motor 13 while being driven by the first motor 13 and the T7 power transmission mechanism 57 (second speed). This is a parallel drive synchronous shift control in which a shift is performed in synchronization with the rotational speed of the motor, and the third motor 14 performs a shift in synchronization with the rotational speed of the target gear mechanism (second speed) of the T11 power transmission mechanism 61. .

図45と図46はModel-2132maの動力システムのモータ数差分制御方式トルクベクタリング制御(YC-3)を説明する図である。
図45aの駆動状態(111)は、第1モータ13とT1動力伝達機構51で第1出力軸35を駆動し、第2モータ14とT2動力伝達機構52で第2出力軸36を駆動し、第3モータ15、T11動力伝達機構61、差動機構81で第1出力軸35と第2出力軸36を分配駆動する走行である。
図45bの駆動状態(021)は、第1モータ13とT3動力伝達機構53、第3モータ15とT11動力伝達機構61、差動機構81で第1出力軸35と第2出力軸36を分配駆動し、第2モータ14とT2動力伝達機構52で第2出力軸36を駆動する走行である。
図45cの駆動状態(102)は、第1モータ13とT1動力伝達機構51で第1出力軸35を駆動し、第2モータ14とT2動力伝達機構52、第3モータ15とT10動力伝達機構60で第2出力軸36を駆動する走行である。
図46aの駆動状態(012)は、第1モータ13とT7動力伝達機構57、第2モータ14とT2動力伝達機構52で第2出力軸36を駆動し、第3モータ15、T11動力伝達機構61、差動機構81で第1出力軸35と第2出力軸36を分配駆動する走行である。
図46bの駆動状態(003)は、第1モータ13とT7動力伝達機構57、第2モータ14とT2動力伝達機構52、第3モータ15とT10動力伝達機構60で第2出力軸36を駆動する走行である。
45 and 46 are diagrams for explaining the motor number difference control system torque vectoring control (YC-3) of the power system of Model-2132ma.
45a, the first motor 13 and the T1 power transmission mechanism 51 drive the first output shaft 35, the second motor 14 and the T2 power transmission mechanism 52 drive the second output shaft 36, The third motor 15, the T11 power transmission mechanism 61, and the differential mechanism 81 are traveling in which the first output shaft 35 and the second output shaft 36 are distributed and driven.
45b, the first motor 13 and the T3 power transmission mechanism 53, the third motor 15 and the T11 power transmission mechanism 61, and the differential mechanism 81 distribute the first output shaft 35 and the second output shaft 36. Driving is performed by driving the second output shaft 36 by the second motor 14 and the T2 power transmission mechanism 52.
In the driving state (102) of FIG. 45c, the first output shaft 35 is driven by the first motor 13 and the T1 power transmission mechanism 51, the second motor 14 and the T2 power transmission mechanism 52, the third motor 15 and the T10 power transmission mechanism. In this case, the second output shaft 36 is driven at 60.
The drive state (012) of FIG. 46a is that the first motor 13 and the T7 power transmission mechanism 57, the second motor 14 and the T2 power transmission mechanism 52 drive the second output shaft 36, and the third motor 15 and the T11 power transmission mechanism. 61, The first output shaft 35 and the second output shaft 36 are distributed and driven by the differential mechanism 81.
The drive state (003) in FIG. 46b is to drive the second output shaft 36 by the first motor 13 and the T7 power transmission mechanism 57, the second motor 14 and the T2 power transmission mechanism 52, and the third motor 15 and the T10 power transmission mechanism 60. It is running to.

説明を省略したモデルについて説明する。
Model-2132mbの動力システムの詳細な部分構成はModel-2132bと実施例4のModel-2132maの組合せで説明できる。また、Model-2134ma、Model-2134mbの動力システムの詳細な部分構成はModel-2132maとModel-2132mbの動力システムにエンジン16、エンジン16が接続される第4入力軸34等を付加したものである。
Model-2132mbの動力システムの並列駆動同期変速制御(MST-4)はModel-2132maの並列駆動同期変速制御(MST-4)と実施例5のModel-2132bの並列駆動同期変速制御(MST-4)の組合せで説明できる。また、Model-2134ma、Model-2134mbの動力システムの並列駆動同期変速制御(MST-4)はエンジン16の影響を受けないのでModel-2132ma、Model-2132mbの並列駆動同期変速制御(MST-4)と同じである。
Model-2132mbの動力システムのモータ数差分制御方式トルクベクタリング制御(YC-3)はModel-2132maと制御する動力伝達機構、クラッチ機構が異なるが制御は同じである。また、Model-2134ma、Model-2134mbの動力システムのモータ数差分制御方式トルクベクタリング制御(YC-3)はエンジン16の影響を受けないのでModel-2132ma、Model-2132mbのモータ数差分制御方式トルクベクタリング制御(YC-3)と同じである。
A model whose description is omitted will be described.
The detailed partial configuration of the power system of Model-2132mb can be explained by the combination of Model-2132b and Model-2132ma of the fourth embodiment. In addition, the detailed partial configuration of the power system of Model-2134ma and Model-2134mb is obtained by adding the engine 16 and the fourth input shaft 34 to which the engine 16 is connected to the power system of Model-2132ma and Model-2132mb. .
Model-2132mb power system parallel drive synchronous shift control (MST-4) is model-2132ma parallel drive synchronous shift control (MST-4) and model-2132b parallel drive synchronous shift control (MST-4) of Example 5 ). In addition, the parallel drive synchronous shift control (MST-4) of the power system of Model-2134ma and Model-2134mb is not affected by the engine 16, so the parallel drive synchronous shift control of the Model-2132ma and Model-2132mb (MST-4) Is the same.
Model-2132mb power system differential control system torque vectoring control (YC-3) is different from Model-2132ma in the power transmission mechanism and clutch mechanism, but the control is the same. In addition, the motor number difference control method torque vectoring control (YC-3) of the power system of Model-2134ma and Model-2134mb is not affected by the engine 16, so the motor number difference control method torque of Model-2132ma and Model-2132mb Same as vectoring control (YC-3).

Model-2142は本発明の差動機構81を用いない電気自動車の動力システムであり、二つのモータ、一つの第1系統動力伝達機構、一つの第2系統動力伝達機構、3-クラッチ方式動力分配機構83, 84, 85を有する二つの第3系統動力伝達機構を有し、並列駆動同期変速制御を行う。
図13aはModel-2142の動力システムの詳細な部分構成を説明する図である。
動力システムは、第1モータ13、第2モータ14、第1モータ13が接続される第1入力軸31、第2モータ14が接続される第2入力軸32、第1中間軸41、第2中間軸42、第1車輪21が接続される第1出力軸35、第2車輪22が接続される第2出力軸36、第1入力軸31と第2入力軸32を連結するICクラッチ機構82を有する。
第1系統動力伝達機構として第1入力軸31の動力を第1中間軸41に伝達するT5動力伝達機構552, 554と第1中間軸41の動力を第1出力軸35に伝達するSC1クラッチ機構84を有する。
第2系統動力伝達機構として第2入力軸32の動力を第2中間軸42に伝達するT6動力伝達機構562, 564と第2中間軸42の動力を第2出力軸36に伝達するSC2クラッチ機構85を有する。
第3系統動力伝達機構として第1入力軸31の動力を第1中間軸41に伝達するT5動力伝達機構552, 554、第2入力軸32の動力を第2中間軸42に伝達するT6動力伝達機構562, 564、第1中間軸41と第2中間軸42を連結するCCクラッチ機構83、第1中間軸41と第1出力軸35の滑りを制御するSC1クラッチ機構84、第2中間軸42と第2出力軸36の滑りを制御するSC2クラッチ機構85を有する。
Model-2142 is an electric vehicle power system that does not use the differential mechanism 81 of the present invention, and includes two motors, one first system power transmission mechanism, one second system power transmission mechanism, and 3-clutch power distribution. Two third power transmission mechanisms having mechanisms 83, 84, and 85 are provided to perform parallel drive synchronous shift control.
FIG. 13a is a diagram illustrating a detailed partial configuration of the power system of Model-2142.
The power system includes a first motor 13, a second motor 14, a first input shaft 31 to which the first motor 13 is connected, a second input shaft 32 to which the second motor 14 is connected, a first intermediate shaft 41, a second An intermediate shaft 42, a first output shaft 35 to which the first wheel 21 is connected, a second output shaft 36 to which the second wheel 22 is connected, and an IC clutch mechanism 82 for connecting the first input shaft 31 and the second input shaft 32 Have
T1 power transmission mechanisms 552 and 554 that transmit the power of the first input shaft 31 to the first intermediate shaft 41 as the first system power transmission mechanism, and the SC1 clutch mechanism that transmits the power of the first intermediate shaft 41 to the first output shaft 35 84.
T2 power transmission mechanisms 562 and 564 that transmit the power of the second input shaft 32 to the second intermediate shaft 42 as the second system power transmission mechanism and the SC2 clutch mechanism that transmits the power of the second intermediate shaft 42 to the second output shaft 36 Has 85.
T5 power transmission mechanisms 552 and 554 that transmit the power of the first input shaft 31 to the first intermediate shaft 41 as a third system power transmission mechanism, and T6 power transmission that transmits the power of the second input shaft 32 to the second intermediate shaft 42 Mechanisms 562 and 564, a CC clutch mechanism 83 that connects the first intermediate shaft 41 and the second intermediate shaft 42, an SC1 clutch mechanism 84 that controls slippage of the first intermediate shaft 41 and the first output shaft 35, and a second intermediate shaft 42 And an SC2 clutch mechanism 85 for controlling the slippage of the second output shaft 36.

図36はModel-2142の動力システムの駆動状態(010)の並列駆動同期変速制御(MST-5)を説明する図である。
図36aの駆動状態(010)は、第1モータ13、T5動力伝達機構55(第1速)、CCクラッチ機構83、SC1クラッチ機構84、SC2クラッチ機構85で第1出力軸35と第2出力軸36を分配駆動する走行である。
図31bの駆動状態(020)は、第2モータ14を起動して、第2モータ14、T6動力伝達機構56(第1速)、CCクラッチ機構83、SC1クラッチ機構84、SC2クラッチ機構85で第1出力軸35と第2出力軸36を分配駆動しながら、第1モータ13でT5動力伝達機構55の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図36cの駆動状態(010)は、第2モータ14、T6動力伝達機構56(第1速)を切断し、第2モータ14を停止して、第1モータ13、T5動力伝達機構55(第2速)、CCクラッチ機構83、SC1クラッチ機構84、SC2クラッチ機構85で第1出力軸35と第2出力軸36を分配駆動する。
FIG. 36 is a diagram for explaining parallel drive synchronous shift control (MST-5) in the drive state (010) of the power system of Model-2142.
The drive state (010) of FIG. 36a is the first output shaft 35 and the second output in the first motor 13, T5 power transmission mechanism 55 (first speed), CC clutch mechanism 83, SC1 clutch mechanism 84, and SC2 clutch mechanism 85. This is traveling in which the shaft 36 is distributedly driven.
In the driving state (020) of FIG. 31b, the second motor 14 is started and the second motor 14, the T6 power transmission mechanism 56 (first speed), the CC clutch mechanism 83, the SC1 clutch mechanism 84, and the SC2 clutch mechanism 85 are operated. Parallel drive that shifts in synchronization with the rotational speed of the target gear mechanism (second speed) of the T5 power transmission mechanism 55 by the first motor 13 while distributingly driving the first output shaft 35 and the second output shaft 36. Synchronous shift control.
In the driving state (010) of FIG. 36c, the second motor 14, the T6 power transmission mechanism 56 (first speed) are disconnected, the second motor 14 is stopped, and the first motor 13, T5 power transmission mechanism 55 (first speed). The second output shaft 35 and the second output shaft 36 are distributed and driven by the CC clutch mechanism 83, the SC1 clutch mechanism 84, and the SC2 clutch mechanism 85.

図37はModel-2142の動力システムの駆動状態(101)の並列駆動同期変速制御(MST-5)を説明する図である。
図37aの駆動状態(101)は、第1モータ13、T5動力伝達機構55(第1速)、SC1クラッチ機構84で第1出力軸35を直接駆動し、第2モータ14、T6動力伝達機構56(第1速)、SC2クラッチ機構85で第2出力軸36を直接駆動する走行である。
図37bの駆動状態(020)は、第2モータ14、T6動力伝達機構56(第1速)、CCクラッチ機構83、SC1クラッチ機構84、SC2クラッチ機構85で第1出力軸35と第2出力軸36を分配駆動しながら、第1モータ13、T5動力伝達機構55の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図37cの駆動状態(020)は、第1モータ13、T5動力伝達機構55(第2速)、CCクラッチ機構83、SC1クラッチ機構84、SC2クラッチ機構85で第1出力軸35と第2出力軸36を分配駆動しながら、第2モータ14でT6動力伝達機構56の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図37dの駆動状態(101)は、CCクラッチ機構83を切断し、第1モータ13、T5動力伝達機構55(第2速)、SC1クラッチ機構84で第1出力軸35を直接駆動し、第2モータ14、T6動力伝達機構56(第2速)、SC2クラッチ機構85で第2出力軸36を直接駆動する走行である。
第1出力軸35を直接駆動する時にはSC1クラッチ機構84を連結し、第2出力軸36を直接駆動する時にはSC2クラッチ機構85を連結し、第1出力軸35と第2出力軸36を分配駆動する時にはSC1クラッチ機構84とSC2クラッチ機構85の滑りを制御する。
FIG. 37 is a diagram for explaining parallel drive synchronous shift control (MST-5) in the drive state (101) of the power system of Model-2142.
The driving state (101) in FIG. 37a is that the first output shaft 35 is directly driven by the first motor 13, the T5 power transmission mechanism 55 (first speed), and the SC1 clutch mechanism 84, and the second motor 14, T6 power transmission mechanism. In 56 (first speed), the second output shaft 36 is directly driven by the SC2 clutch mechanism 85.
The drive state (020) of FIG. 37b is the second output 14, the T6 power transmission mechanism 56 (first speed), the CC clutch mechanism 83, the SC1 clutch mechanism 84, and the SC2 clutch mechanism 85. This is parallel drive synchronous shift control that shifts in synchronization with the rotational speed of the target gear mechanism (second speed) of the first motor 13 and the T5 power transmission mechanism 55 while driving the shaft 36 in a distributed manner.
The drive state (020) of FIG. 37c is the first output shaft 35 and the second output in the first motor 13, the T5 power transmission mechanism 55 (second speed), the CC clutch mechanism 83, the SC1 clutch mechanism 84, and the SC2 clutch mechanism 85. This is parallel drive synchronous shift control in which the second motor 14 shifts in synchronization with the rotational speed of the target gear mechanism (second speed) of the T6 power transmission mechanism 56 while distributingly driving the shaft 36.
In the drive state (101) of FIG. 37d, the CC clutch mechanism 83 is disconnected, the first output shaft 35 is directly driven by the first motor 13, the T5 power transmission mechanism 55 (second speed), and the SC1 clutch mechanism 84. In this traveling, the second output shaft 36 is directly driven by the 2-motor 14, the T6 power transmission mechanism 56 (second speed), and the SC2 clutch mechanism 85.
When the first output shaft 35 is directly driven, the SC1 clutch mechanism 84 is connected. When the second output shaft 36 is directly driven, the SC2 clutch mechanism 85 is connected, and the first output shaft 35 and the second output shaft 36 are distributedly driven. When doing so, the slip of SC1 clutch mechanism 84 and SC2 clutch mechanism 85 is controlled.

図38はModel-2142の動力システムの駆動状態(001)の並列駆動同期変速制御を説明する図である。
図38aの駆動状態(001)は、第2モータ14、T6動力伝達機構56(第1速)、SC2クラッチ機構85で第2出力軸36を直接駆動する走行である。
図38bの駆動状態(002)は、第1モータ13を起動し、第1モータ13、T5動力伝達機構55(第1速)、CCクラッチ機構83、SC1クラッチ機構84、SC2クラッチ機構85で第1出力軸35と第2出力軸36を分配駆動しながら、第2モータ14でT6動力伝達機構56の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図38cの駆動状態(001)は、CCクラッチ機構83、SC1クラッチ機構84を切断し、第1モータ13を停止し、第2モータ14、T6動力伝達機構56(第2速)、SC2クラッチ機構85で第2出力軸36を直接駆動する走行である。
FIG. 38 is a diagram for explaining parallel drive synchronous shift control in the drive state (001) of the power system of Model-2142.
The drive state (001) in FIG. 38a is a travel in which the second output shaft 36 is directly driven by the second motor 14, the T6 power transmission mechanism 56 (first speed), and the SC2 clutch mechanism 85.
In the driving state (002) of FIG. 38b, the first motor 13 is activated, and the first motor 13, the T5 power transmission mechanism 55 (first speed), the CC clutch mechanism 83, the SC1 clutch mechanism 84, and the SC2 clutch mechanism 85 Parallel drive synchronization in which the second motor 14 synchronizes with the rotational speed of the target gear mechanism (second speed) of the T6 power transmission mechanism 56 while distributing and driving the output shaft 35 and the second output shaft 36. Shift control.
In the driving state (001) of FIG. 38c, the CC clutch mechanism 83 and the SC1 clutch mechanism 84 are disconnected, the first motor 13 is stopped, the second motor 14, the T6 power transmission mechanism 56 (second speed), and the SC2 clutch mechanism. In 85, the second output shaft 36 is directly driven.

図39はModel-2142の動力システムの駆動状態(002)の並列駆動同期変速制御(MST-6)を説明する図である。
図39aの駆動状態(002)は、第1モータ13、T5動力伝達機構55(第1速)、CCクラッチ機構83、第2モータ14、T6動力伝達機構56(第1速)、SC2クラッチ機構85で第2出力軸36を直接駆動する走行である。
図39bの駆動状態(002)は、第2モータ14、T6動力伝達機構56(第1速)、SC2クラッチ機構85で第2出力軸36を駆動しながら、第1モータ13でT5動力伝達機構55の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
図39cの駆動状態(002)は、第1モータ13、T5動力伝達機構55(第2速)、CCクラッチ機構83、SC2クラッチ機構85で第2出力軸36を直接駆動しながら、第2モータ14でT6動力伝達機構56の目的の歯車機構(第2速)の回転速度に同期をとって変速を行う並列駆動同期変速制御である。
FIG. 39 is a diagram for explaining parallel drive synchronous shift control (MST-6) in the drive state (002) of the power system of Model-2142.
The drive state (002) of FIG. 39a is the first motor 13, the T5 power transmission mechanism 55 (first speed), the CC clutch mechanism 83, the second motor 14, the T6 power transmission mechanism 56 (first speed), and the SC2 clutch mechanism. In 85, the second output shaft 36 is directly driven.
The driving state (002) of FIG. 39b is that the second motor 14, the T6 power transmission mechanism 56 (first speed), and the SC2 clutch mechanism 85 drive the second output shaft 36 while the first motor 13 uses the T5 power transmission mechanism. 55 is a parallel drive synchronous shift control that shifts in synchronization with the rotational speed of the target gear mechanism (second speed).
The driving state (002) of FIG. 39c is that the second motor 36 is driven directly by the first motor 13, the T5 power transmission mechanism 55 (second speed), the CC clutch mechanism 83, and the SC2 clutch mechanism 85, while the second motor 36 is driven. 14 is a parallel drive synchronous shift control in which the shift is performed in synchronization with the rotational speed of the target gear mechanism (second speed) of the T6 power transmission mechanism 56 at 14.

図47はModel-2142の動力システムのモータ数差分制御方式トルクベクタリング制御(YC-4)を説明する図である。
図47aは駆動状態(010)、すなわち第1モータ13、T5動力伝達機構55、CCクラッチ機構83、SC1クラッチ機構84、SC2クラッチ機構85で第1出力軸35と第2出力軸36を分配駆動する走行である。
図47bは駆動状態(001)、すなわち第2モータ14、T6動力伝達機構56、SC2クラッチ機構85で第2出力軸36を駆動する走行である。
図47cは駆動状態(101)、すなわち第1モータ13、T5動力伝達機構55、SC1クラッチ機構84で第1出力軸35を駆動し、第2モータ14、T6動力伝達機構56、SC2クラッチ機構85で第2出力軸36を駆動する走行である。
図47dは駆動状態(002)、すなわち第1モータ13、T5動力伝達機構55、CCクラッチ機構83、第2モータ14、T6動力伝達機構56、SC2クラッチ機構85で第2出力軸36を駆動する走行である。
モータ数の差分は駆動状態(001)、駆動状態(101)では0、駆動状態(001)では1、駆動状態(002)では2であり、制御装置18 は三つの駆動状態を遷移することによりモータ数の差分の制御によるトルクベクタリング制御を行う。
FIG. 47 is a view for explaining the motor number difference control method torque vectoring control (YC-4) of the power system of Model-2142.
47a shows the drive state (010), that is, the first output shaft 35 and the second output shaft 36 are distributedly driven by the first motor 13, the T5 power transmission mechanism 55, the CC clutch mechanism 83, the SC1 clutch mechanism 84, and the SC2 clutch mechanism 85. It is running to.
FIG. 47 b shows a driving state (001), that is, traveling in which the second output shaft 36 is driven by the second motor 14, the T6 power transmission mechanism 56, and the SC2 clutch mechanism 85.
47c shows a driving state (101), that is, the first output shaft 35 is driven by the first motor 13, the T5 power transmission mechanism 55, and the SC1 clutch mechanism 84, and the second motor 14, the T6 power transmission mechanism 56, the SC2 clutch mechanism 85. Thus, the second output shaft 36 is driven.
47d shows the driving state (002), that is, the first output shaft 36 is driven by the first motor 13, the T5 power transmission mechanism 55, the CC clutch mechanism 83, the second motor 14, the T6 power transmission mechanism 56, and the SC2 clutch mechanism 85. Traveling.
The difference in the number of motors is 0 in the driving state (001), 0 in the driving state (101), 1 in the driving state (001), and 2 in the driving state (002), and the control device 18 changes between the three driving states. Torque vectoring control is performed by controlling the difference in the number of motors.

11 二次電池
12 インバータ
13 第1モータ
14 第2モータ
15 第3モータ
16 エンジン
17 燃料噴射装置
18 制御装置
19 第1ハーフシャフト
20 第2ハーフシャフト
21 第1車輪
22 第2車輪
23 動力伝達装置
31 第1入力軸
32 第2入力軸
33 第3入力軸
34 第4入力軸
35 第1出力軸
36 第2出力軸
41 第1中間軸
42 第2中間軸
43 差動機構入力軸
51 T1動力伝達機構
511 T1動力伝達機構第1速歯車機構
512 T1動力伝達機構第1速クラッチ機構
513 T1動力伝達機構第2速歯車機構
514 T1動力伝達機構第2速クラッチ機構
52 T2動力伝達機構
521 T2動力伝達機構第1速歯車機構
522 T2動力伝達機構第1速クラッチ機構
523 T2動力伝達機構第2速歯車機構
524 T2動力伝達機構第2速クラッチ機構
53 T3動力伝達機構
531 T3動力伝達機構第1速歯車機構
532 T3動力伝達機構第1速クラッチ機構
533 T3動力伝達機構第2速歯車機構
534 T3動力伝達機構第2速クラッチ機構
54 T4動力伝達機構
541 T4動力伝達機構第1速歯車機構
542 T4動力伝達機構第1速クラッチ機構
543 T4動力伝達機構第2速歯車機構
544 T4動力伝達機構第2速クラッチ機構
55 T5動力伝達機構
551 T5動力伝達機構第1速歯車機構
552 T5動力伝達機構第1速クラッチ機構
553 T5動力伝達機構第2速歯車機構
554 T5動力伝達機構第2速クラッチ機構
56 T6動力伝達機構
561 T6動力伝達機構第1速歯車機構
562 T6動力伝達機構第1速クラッチ機構
563 T6動力伝達機構第2速歯車機構
564 T6動力伝達機構第2速クラッチ機構
57 T7動力伝達機構
571 T7動力伝達機構第1速歯車機構
572 T7動力伝達機構第1速クラッチ機構
573 T7動力伝達機構第2速歯車機構
574 T7動力伝達機構第2速クラッチ機構
58 T8動力伝達機構
581 T8動力伝達機構第1速歯車機構
582 T8動力伝達機構第1速クラッチ機構
583 T8動力伝達機構第2速歯車機構
584 T8動力伝達機構第2速クラッチ機構
59 T9動力伝達機構
591 T9動力伝達機構第1速歯車機構
592 T9動力伝達機構第1速クラッチ機構
593 T9動力伝達機構第2速歯車機構
594 T9動力伝達機構第2速クラッチ機構
60 T10動力伝達機構
601 T10動力伝達機構第1速歯車機構
602 T10動力伝達機構第1速クラッチ機構
603 T10動力伝達機構第2速歯車機構
604 T10動力伝達機構第2速クラッチ機構
61 T11動力伝達機構
611 T11動力伝達機構第1速歯車機構
612 T11動力伝達機構第1速クラッチ機構
613 T11動力伝達機構第2速歯車機構
614 T11動力伝達機構第2速クラッチ機構
62 T12動力伝達機構
621 T12動力伝達機構第1速歯車機構
622 T12動力伝達機構第1速クラッチ機構
623 T12動力伝達機構第2速歯車機構
624 T12動力伝達機構第2速クラッチ機構
63 T13動力伝達機構
631 T13動力伝達機構第1速歯車機構
632 T13動力伝達機構第1速クラッチ機構
633 T13動力伝達機構第2速歯車機構
634 T13動力伝達機構第2速クラッチ機構
71 C1クラッチ機構
72 C2クラッチ機構
73 C3クラッチ機構
74 C4クラッチ機構
75 C5クラッチ機構
76 C6クラッチ機構
77 C7クラッチ機構
81 差動機構
82 ICクラッチ機構
83 CCクラッチ機構
84 SC1クラッチ機構
85 SC2クラッチ機構
91 第1入力軸回転数センサー
92 第2入力軸回転数センサー
93 第3入力軸回転数センサー
94 第4入力軸回転数センサー
95 第1出力軸回転数センサー
96 第2出力軸回転数センサー
11 Secondary battery
12 Inverter
13 First motor
14 Second motor
15 Third motor
16 engine
17 Fuel injector
18 Control unit
19 1st half shaft
20 Second half shaft
21 1st wheel
22 Second wheel
23 Power transmission device
31 1st input shaft
32 2nd input shaft
33 3rd input shaft
34 4th input shaft
35 1st output shaft
36 2nd output shaft
41 1st intermediate shaft
42 Second intermediate shaft
43 Differential mechanism input shaft
51 T1 power transmission mechanism
511 T1 power transmission mechanism 1st gear mechanism
512 T1 power transmission mechanism 1st speed clutch mechanism
513 T1 power transmission mechanism 2nd speed gear mechanism
514 T1 power transmission mechanism 2nd speed clutch mechanism
52 T2 power transmission mechanism
521 T2 power transmission mechanism 1st gear mechanism
522 T2 power transmission mechanism 1st speed clutch mechanism
523 T2 power transmission mechanism 2nd gear mechanism
524 T2 power transmission mechanism 2nd speed clutch mechanism
53 T3 power transmission mechanism
531 T3 Power Transmission Mechanism 1st Speed Gear Mechanism
532 T3 power transmission mechanism 1st speed clutch mechanism
533 T3 power transmission mechanism 2nd gear mechanism
534 T3 power transmission mechanism 2nd speed clutch mechanism
54 T4 power transmission mechanism
541 T4 power transmission mechanism 1st gear mechanism
542 T4 power transmission mechanism 1st speed clutch mechanism
543 T4 power transmission mechanism 2nd gear mechanism
544 T4 power transmission mechanism 2nd speed clutch mechanism
55 T5 power transmission mechanism
551 T5 power transmission mechanism 1st gear mechanism
552 T5 power transmission mechanism 1st speed clutch mechanism
553 T5 power transmission mechanism 2nd gear mechanism
554 T5 power transmission mechanism 2nd speed clutch mechanism
56 T6 power transmission mechanism
561 T6 power transmission mechanism 1st gear mechanism
562 T6 power transmission mechanism 1st speed clutch mechanism
563 T6 power transmission mechanism 2nd gear mechanism
564 T6 power transmission mechanism 2nd speed clutch mechanism
57 T7 power transmission mechanism
571 T7 power transmission mechanism 1st gear mechanism
572 T7 power transmission mechanism 1st speed clutch mechanism
573 T7 power transmission mechanism 2nd gear mechanism
574 T7 power transmission mechanism 2nd speed clutch mechanism
58 T8 power transmission mechanism
581 T8 power transmission mechanism 1st gear mechanism
582 T8 power transmission mechanism 1st speed clutch mechanism
583 T8 power transmission mechanism 2nd gear mechanism
584 T8 power transmission mechanism 2nd speed clutch mechanism
59 T9 power transmission mechanism
591 T9 power transmission mechanism 1st gear mechanism
592 T9 power transmission mechanism 1st speed clutch mechanism
593 T9 power transmission mechanism 2nd gear mechanism
594 T9 power transmission mechanism 2nd speed clutch mechanism
60 T10 power transmission mechanism
601 T10 power transmission mechanism 1st gear mechanism
602 T10 power transmission mechanism 1st speed clutch mechanism
603 T10 power transmission mechanism 2nd gear mechanism
604 T10 power transmission mechanism 2nd speed clutch mechanism
61 T11 power transmission mechanism
611 T11 power transmission mechanism 1st gear mechanism
612 T11 power transmission mechanism 1st speed clutch mechanism
613 T11 power transmission mechanism 2nd gear mechanism
614 T11 power transmission mechanism 2nd speed clutch mechanism
62 T12 power transmission mechanism
621 T12 power transmission mechanism 1st gear mechanism
622 T12 power transmission mechanism 1st speed clutch mechanism
623 T12 power transmission mechanism 2nd gear mechanism
624 T12 power transmission mechanism 2nd speed clutch mechanism
63 T13 power transmission mechanism
631 T13 power transmission mechanism 1st gear mechanism
632 T13 power transmission mechanism 1st speed clutch mechanism
633 T13 power transmission mechanism 2nd gear mechanism
634 T13 power transmission mechanism 2nd speed clutch mechanism
71 C1 clutch mechanism
72 C2 clutch mechanism
73 C3 clutch mechanism
74 C4 clutch mechanism
75 C5 clutch mechanism
76 C6 clutch mechanism
77 C7 clutch mechanism
81 Differential mechanism
82 IC clutch mechanism
83 CC clutch mechanism
84 SC1 clutch mechanism
85 SC2 clutch mechanism
91 1st input shaft speed sensor
92 Second input shaft speed sensor
93 Third input shaft speed sensor
94 4th input shaft speed sensor
95 1st output shaft speed sensor
96 Second output shaft speed sensor

Claims (6)


電気動力またはハイブリッド動力の自動車のための動力システムであって、

前記動力システムは、複数のモータ(13, 14, 15)、モータの動力を車輪(21, 22)に伝達する複数の動力伝達機構(51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 71, 72, 73, 74, 82, 83, 84, 85)と制御装置(18)を有すること、

前記動力伝達機構は入力軸、複数の異なる減速比の歯車機構、出力軸を有すること、

前記制御装置は前記複数のモータと前記複数の動力伝達機構を制御して、動力を前記車輪に伝達して走行すること、

前記制御装置は下記第1の変速制御と第2の変速制御からなる並列駆動同期変速制御を行うこと、

前記第1の変速制御は、前記複数のモータの一方のモータとそれに接続された前記複数の動力伝達機構の一方の動力伝達機構で駆動しながら他方のモータでそれに接続された他方の動力伝達機構の変速を行う制御であること、

前記第2の変速制御は、前記他方のモータを制御して、前記他方の動力伝達機構の入力軸の回転速度を目的の(変速後に使用する)前記歯車機構の入力側と同じ回転速度に変化させて、前記他方の動力伝達機構の入力軸と目的の歯車機構とを接続する制御であること、

を特徴とする動力システム。



A power system for electric or hybrid powered vehicles,

The power system includes a plurality of motors (13, 14, 15) and a plurality of power transmission mechanisms (51, 52, 53, 54, 55, 56, 57, 58) that transmit the motor power to the wheels (21, 22). , 59, 60, 61, 62, 63, 71, 72, 73, 74, 82, 83, 84, 85) and a control device (18),

The power transmission mechanism has an input shaft, a plurality of gear mechanisms having different reduction ratios, and an output shaft;

The control device controls the plurality of motors and the plurality of power transmission mechanisms to transmit power to the wheels to travel;

The control device performs parallel drive synchronous shift control including the following first shift control and second shift control;

The first shift control is performed by driving one motor of the plurality of motors and one power transmission mechanism of the plurality of power transmission mechanisms connected thereto, and the other power transmission mechanism connected thereto by the other motor. Control to change the speed of

In the second shift control, the other motor is controlled to change the rotation speed of the input shaft of the other power transmission mechanism to the same rotation speed as the input side of the target gear mechanism (used after shifting). The control is to connect the input shaft of the other power transmission mechanism and the target gear mechanism ,

Power system characterized by



請求項1の動力システムにおいて、

前記動力システムは、前記モータとして第1モータ(13) と第2モータ(14)、前記車輪として第1車輪(右車輪)(21) と第2車輪(左車輪)(22)、前記動力伝達機構として、モータの動力を前記第1車輪に伝達する第1系統動力伝達機構(51, 55, 71)、モータの動力を前記第2車輪に伝達する第2系統動力伝達機構(52, 56, 72)、モータの動力を前記第1車輪と前記第2車輪の双方に分配伝達する第3系統動力伝達機構(53, 55, 73, 54, 56, 74)を有すること、

前記制御装置(18)は、前記第1モータ、前記第2モータ、前記第1系統動力伝達機構、前記第2系統動力伝達機構、前記第3系統動力伝達機構を制御して、動力を第1車輪と第2車輪に伝達して走行すること、(駆動状態(010), 駆動状態(020), 駆動状態(101))

前記制御装置は、変速を行う時に、前記第1モータと前記第2モータの双方の動力を前記第3系統動力伝達機構(53, 54, 55, 56, 73, 74, 81)に伝達するように変更すること、(駆動状態(020))

前記制御装置は、前記第1の変速制御として、前記第1モータと前記第2モータの一方のモータとその動力を伝達する前記第3系統動力伝達機構(53, 54, 55, 56, 73, 74, 81)で駆動しながら、他方のモータでその動力を伝達する前記第3系統動力伝達機構(54, 53, 55, 56)の変速を行う、前記並列駆動同期変速制御を行うこと、

を特徴とする動力システム。



The power system of claim 1.

The power system includes a first motor (13) and a second motor (14) as the motor, a first wheel (right wheel) (21) and a second wheel (left wheel) (22) as the wheels, and the power transmission. As a mechanism, a first system power transmission mechanism (51, 55, 71) that transmits the power of the motor to the first wheel, and a second system power transmission mechanism (52, 56, 71) that transmits the power of the motor to the second wheel. 72) having a third power transmission mechanism (53, 55, 73, 54, 56, 74) for distributing and transmitting the power of the motor to both the first wheel and the second wheel;

The control device (18) controls the first motor, the second motor, the first system power transmission mechanism, the second system power transmission mechanism, and the third system power transmission mechanism to control the first power. Traveling to the wheel and the second wheel, (driving state (010), driving state (020), driving state (101))

The control device transmits power of both the first motor and the second motor to the third system power transmission mechanism (53, 54, 55, 56, 73, 74, 81) when performing a shift. (Drive state (020))

As the first shift control, the control device is configured to transmit one of the first motor and the second motor and the third system power transmission mechanism (53, 54, 55, 56, 73, 74, 81), performing the parallel drive synchronous shift control for shifting the third system power transmission mechanism (54, 53, 55, 56) that transmits the power by the other motor while being driven by 74, 81) ,

Power system characterized by



請求項2の動力システムにおいて、

前記制御装置(18)は、さらに、前記第1モータ(13)、前記第2モータ(14)、前記第1系統動力伝達機構(51, 55, 71, 58, 82)、前記第2系統動力伝達機構(52, 56, 72, 57, 82)、前記第3系統動力伝達機構(53, 55, 73, 54, 56, 74)を制御して、前記第1車輪(21)に動力を伝達するモータ数と前記第2車輪(22)に動力を伝達するモータ数の差分を制御するモータ数差分制御方式トルクベクタリング制御を行い走行すること、(駆動状態(001), 駆動状態(011), 駆動状態(002))

前記制御装置は、さらに、変速を行う時に、前記第1モータと前記第2モータの双方の動力を前記第1系統動力伝達機構または前記第2系統動力伝達機構の一方の動力伝達機構に伝達して走行し、(駆動状態(002))

または、前記第1モータと前記第2モータの一方の動力を前記第1系統動力伝達機構または前記第2系統動力伝達機構に伝達、他方のモータの動力を前記第3系統動力伝達機構に伝達して走行すること、(駆動状態(011))

前記制御装置は、前記第1の変速制御として、前記第1モータと前記第2モータの一方のモータとその動力を伝達する動力伝達機構(52, 53, 55, 56, 72, 73, 81)で駆動しながら、他方のモータでその動力を伝達する動力伝達機構(52, 53, 55, 56)の変速を行う、前記並列駆動同期変速制御を行うこと、

を特徴とする動力システム。



The power system of claim 2,

Wherein the control unit (18), further wherein first motor (13), and said second motor (14), the first system power transmission mechanism (51, 55, 71, 58, 82), said second system By controlling the power transmission mechanism (52, 56, 72, 57, 82) and the third power transmission mechanism (53, 55, 73, 54, 56, 74), power is supplied to the first wheel (21). Running with a motor number difference control method torque vectoring control that controls the difference between the number of motors to be transmitted and the number of motors to transmit power to the second wheel (22), (drive state (001), drive state (011 ), Drive state (002))

Wherein the control device further, when performing the shift, transmitting both power of the second motor and the first motor to one of the power transmission mechanism of the first system power transmission mechanism or the second system power transmission mechanism (Drive state (002))

Alternatively, the power of one of the first motor and the second motor is transmitted to the first system power transmission mechanism or the second system power transmission mechanism, and the power of the other motor is transmitted to the third system power transmission mechanism. (Drive state (011))

As the first shift control, the control device includes one of the first motor and the second motor and a power transmission mechanism (52, 53, 55, 56, 72, 73, 81) for transmitting the power of the motor. Performing the parallel drive synchronous shift control, shifting the power transmission mechanism (52, 53, 55, 56) that transmits the power by the other motor while driving at

Power system characterized by



請求項1の動力システムにおいて、

前記動力システムは、前記モータとして第1モータ(13) と第2モータ(14)と第3モータ(15) 、前記車輪として第1車輪(右車輪)(21) と第2車輪(左車輪)(22)、前記動力伝達機構として、モータの動力を前記第1車輪に伝達する第1系統動力伝達機構(51, 55, 71)、モータの動力を前記第2車輪に伝達する第2系統動力伝達機構(52, 56, 72)、モータの動力を前記第1車輪と前記第2車輪の双方に分配伝達する第3系統動力伝達機構(53, 54, 55, 56, 61, 62, 63, 73, 74)を有すること、

前記制御装置(18)は、前記第1モータ(13)、前記第2モータ(14)、前記第3モータ、前記第1系統動力伝達機構、前記第2系統動力伝達機構、前記第3系統動力伝達機構 を制御して動力を第1車輪と第2車輪に伝達して走行すること、(駆動状態(010), 駆動状態(101), 駆動状態(111))

前記制御装置は、変速を行う時に、前記第1モータの動力を前記第1系統動力伝達機構に伝達、前記第2モータの動力を前記第2系統動力伝達機構に伝達、前記第3モータの動力を前記第3系統動力伝達機構に伝達して走行すること、駆動状態(111)

前記制御装置は、前記第1の変速制御として、前記第1モータと前記第1系統動力伝達機構(51)で駆動、前記第2モータと前記第2系統動力伝達機構(52)で駆動しながら、前記第3モータで前記第3系統動力伝達機構(61)変速を行う

または、前記第3モータと前記第3系統動力伝達機構(61, 81)で駆動しながら、前記第1モータで前記第1系統動力伝達機構(51)の変速、前記第2モータで前記第2系統動力伝達機構(52)の変速を行う、前記並列駆動同期変速制御を行うこと

を特徴とする動力システム。



The power system of claim 1.

The power system includes a first motor (13), a second motor (14) and a third motor (15) as the motor, and a first wheel (right wheel) (21) and a second wheel (left wheel) as the wheels. (22) First power transmission mechanism (51, 55, 71) for transmitting motor power to the first wheel as the power transmission mechanism; second power for transmitting motor power to the second wheel A transmission mechanism (52, 56, 72), a third system power transmission mechanism (53, 54, 55, 56, 61, 62, 63, which distributes and transmits the power of the motor to both the first wheel and the second wheel. 73, 74)

The control device (18) includes the first motor (13), the second motor (14), the third motor, the first system power transmission mechanism, the second system power transmission mechanism, and the third system power. Controlling the transmission mechanism to transmit the motive power to the first wheel and the second wheel, (driving state (010), driving state (101), driving state (111))

The control device transmits power of the first motor to the first system power transmission mechanism, transmits power of the second motor to the second system power transmission mechanism, and performs power of the third motor when shifting. Traveling to the third power transmission mechanism , driving state (111 )

The control device is driven by the first motor and the first system power transmission mechanism (51) and driven by the second motor and the second system power transmission mechanism (52) as the first shift control. The third motor power transmission mechanism (61) is shifted by the third motor.

Alternatively, while driving with the third motor and the third system power transmission mechanism (61, 81) , the first motor transmits the first system power transmission mechanism (51) with the first motor, and the second motor performs the second operation with the second motor. Performing the parallel drive synchronous shift control for shifting the system power transmission mechanism (52).

Power system characterized by



請求項4の動力システムにおいて、

前記制御装置(18)は、さらに、前記第1モータ(13)、前記第2モータ(14)、前記第3モータ(35)、前記第1系統動力伝達機構(51, 55, 71, 58, 82, 59, 62, 71)、前記第2系統動力伝達機構(52, 56,72, 57, 82, 60, 63, 72)、前記第3系統動力伝達機構(53, 55, 73, 54, 56, 74, 61, 62, 73, 63, 74) を制御して、前記第1車輪(21)に動力を伝達するモータ数と前記第2車輪(22)に動力を伝達するモータ数の差分を制御するモータ数差分制御方式トルクベクタリング制御を行い走行すること、(駆動状態(021), 駆動状態(102), 駆動状態(012), 駆動状態(003))

前記制御装置(18)は、さらに、前記第1モータと前記第2モータと前記第3モータ の内、二つのモータの動力を前記第3系統動力伝達機構に伝達、他の一つのモータの動力を前記第1系統動力伝達機構または前記第2系統動力伝達機構の一方の動力伝達機構に伝達する走行、(駆動状態(021))

一つのモータの動力を前記第1系統動力伝達機構前記第2系統動力伝達機構の一方の動力伝達機構に伝達、他の二つのモータの動力を他方の動力伝達機構に伝達する走行、(駆動状態(102))

一つのモータの動力を前記第3系統動力伝達機構に伝達、他の二つのモータの動力を前記第1系統動力伝達機構または前記第2系統動力伝達機構の一方の動力伝達機構に伝達する走行、(駆動状態(012))

三つのモータの動力を前記第1系統動力伝達機構または前記第2系統動力伝達機構の一方の動力伝達機構に伝達する走行のいずれかの走行を行うこと、(駆動状態(003))

前記制御装置は、前記第1の変速制御として、前記一つのモータとその動力を伝達する動力伝達機構(55, 63, 72, 73, 81)で駆動しながら、他の二つのモータでそれらの動力を伝達する動力伝達機構(55, 56, 61 )の変速を行う、

または、二つのモータとそれらの動力を伝達する動力伝達機構(55, 56, 61, 71, 72, 73, 81, 82)で駆動しながら、他の一つのモータでその動力を伝達する動力伝達機構(55, 63)の変速を行う、並列駆動同期変速制御をおこなうこと、

を特徴とする動力システム。



The power system of claim 4,

The control device (18) further includes the first motor (13), the second motor (14), the third motor (35), the first power transmission mechanism (51, 55, 71, 58, 82, 59, 62, 71), the second power transmission mechanism (52, 56, 72, 57, 82, 60, 63, 72), the third power transmission mechanism (53, 55, 73, 54, 56, 74, 61, 62, 73, 63, 74), and the difference between the number of motors transmitting power to the first wheel (21) and the number of motors transmitting power to the second wheel (22) Motor number difference control method to control the running with torque vectoring control (drive state (021), drive state (102), drive state (012), drive state (003))

The control device (18) further transmits power of two motors of the first motor, the second motor, and the third motor to the third system power transmission mechanism, and power of the other motor. Traveling to transmit to one power transmission mechanism of the first system power transmission mechanism or the second system power transmission mechanism (drive state (021))

Driving to transmit the power of one motor to one power transmission mechanism of the first system power transmission mechanism and the second system power transmission mechanism , and transmit the power of the other two motors to the other power transmission mechanism (drive (State (102))

Traveling to transmit the power of one motor to the third system power transmission mechanism and to transmit the power of the other two motors to one of the first system power transmission mechanism or the second system power transmission mechanism ; (Drive state (012))

Performing one of the travelings of transmitting the power of the three motors to one of the first system power transmission mechanism or the second system power transmission mechanism (drive state (003))

As the first shift control, the control device is driven by the other two motors while being driven by the power transmission mechanism (55, 63, 72, 73, 81) that transmits the power of the one motor. Shifting the power transmission mechanism (55, 56, 61) that transmits power,

Or, it is driven by two motors and a power transmission mechanism (55, 56, 61, 71, 72, 73, 81, 82) that transmits their power, while the other one motor transmits the power. Performing parallel drive synchronous shift control to shift the mechanism (55, 63),

Power system characterized by



請求項1の動力システムにおいて、

前記動力システムは、前記モータとして第1モータ(13) と第2モータ(14)、前記車輪として第1車輪(右車輪)(21) と第2車輪(左車輪)(22)、前記動力伝達機構として、モータの動力を前記第1車輪に伝達する第1系統動力伝達機構、モータの動力を前記第2車輪に伝達する第2系統動力伝達機構を有すること、

前記第1系統動力伝達機構は、前記第1モータ(13)の動力を第1中間軸(41)に伝達するT5動力伝達機構(55)と前記第1中間軸の動力の前記第1車輪(21)への伝達を制御するSC1クラッチ機構(84)を有し、

前記第2系統動力伝達機構は、前記第2モータ(14)の動力を第2中間軸(42)に伝達するT6動力伝達機構(56)と前記第2中間軸の動力の前記第2車輪(22)への伝達を制御するSC2クラッチ機構(85)を有すること、

さらに、前記第1中間軸と前記第2中間軸の動力を相互に伝達するCCクラッチ機構(83)を有すること、

前記制御装置(18)は、変速を行う時に、前記CCクラッチ機構を連結、前記SC1クラッチ機構と前記SC2クラッチ機構の一方を連結し他方を切断し、前記第1モータと前記第2モータの動力を前記第1車輪または前記第2車輪の一方に伝達して走行すること、(駆動状態(002))

前記制御装置は、前記第1の変速制御として、前記第1モータと前記T5動力伝達機構で駆動しながら、前記第2モータで前記T6動力伝達機構の変速、または、前記第2モータと前記T6動力伝達機構で駆動しながら、前記第1モータで前記T5動力伝達機構の変速を行う、前記並列駆動同期変速制御を行うこと、

を特徴とする動力システム。

The power system of claim 1.

The power system includes a first motor (13) and a second motor (14) as the motor, a first wheel (right wheel) (21) and a second wheel (left wheel) (22) as the wheels, and the power transmission. As a mechanism, having a first system power transmission mechanism that transmits the power of the motor to the first wheel, and a second system power transmission mechanism that transmits the power of the motor to the second wheel,

The first system power transmission mechanism includes a T5 power transmission mechanism (55) for transmitting the power of the first motor (13) to the first intermediate shaft (41), and the first wheel for the power of the first intermediate shaft ( 21) having an SC1 clutch mechanism (84) for controlling transmission to

The second system power transmission mechanism includes a T6 power transmission mechanism (56) for transmitting the power of the second motor (14) to the second intermediate shaft (42), and the second wheel of the power of the second intermediate shaft ( 22) having an SC2 clutch mechanism (85) for controlling transmission to

And a CC clutch mechanism (83) for transmitting the power of the first intermediate shaft and the second intermediate shaft to each other;

The control device (18) connects the CC clutch mechanism , connects one of the SC1 clutch mechanism and the SC2 clutch mechanism and disconnects the other when performing a shift, and powers the first motor and the second motor. Traveling to one of the first wheel or the second wheel, (driving state (002))

As the first shift control, the control device drives the T6 power transmission mechanism with the second motor while driving with the first motor and the T5 power transmission mechanism, or the second motor and the T6. Performing the parallel drive synchronous shift control in which the first motor shifts the T5 power transmission mechanism while being driven by the power transmission mechanism ;

Power system characterized by
JP2016128335A 2016-06-29 2016-06-29 Power system with shift control and torque vectoring control for electric vehicles Active JP6186555B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016128335A JP6186555B1 (en) 2016-06-29 2016-06-29 Power system with shift control and torque vectoring control for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016128335A JP6186555B1 (en) 2016-06-29 2016-06-29 Power system with shift control and torque vectoring control for electric vehicles

Publications (2)

Publication Number Publication Date
JP6186555B1 true JP6186555B1 (en) 2017-08-23
JP2018001845A JP2018001845A (en) 2018-01-11

Family

ID=59678285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016128335A Active JP6186555B1 (en) 2016-06-29 2016-06-29 Power system with shift control and torque vectoring control for electric vehicles

Country Status (1)

Country Link
JP (1) JP6186555B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6471281B1 (en) * 2018-05-28 2019-02-13 矢野 隆志 Power system with torque vectoring control, variable rated output control and shift control for electric vehicles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT525812B1 (en) 2022-04-19 2023-08-15 Avl List Gmbh ELECTRIC DRIVE AXLE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993714A (en) * 1995-09-20 1997-04-04 Mitsubishi Motors Corp Driver for electric vehicle
JP2001048491A (en) * 1999-08-05 2001-02-20 Toyota Autom Loom Works Ltd Industrial vehicle driving device, and gear shaft supporting structure for counter balance three-wheel folklift truck and industrial vehicle driving device
JP2013132960A (en) * 2011-12-26 2013-07-08 Fuji Heavy Ind Ltd Driving device of vehicle
JP2015508353A (en) * 2011-12-22 2015-03-19 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c.F. Porsche Aktiengesellschaft A drive train for a purely electric vehicle with two electric motors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993714A (en) * 1995-09-20 1997-04-04 Mitsubishi Motors Corp Driver for electric vehicle
JP2001048491A (en) * 1999-08-05 2001-02-20 Toyota Autom Loom Works Ltd Industrial vehicle driving device, and gear shaft supporting structure for counter balance three-wheel folklift truck and industrial vehicle driving device
JP2015508353A (en) * 2011-12-22 2015-03-19 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c.F. Porsche Aktiengesellschaft A drive train for a purely electric vehicle with two electric motors
JP2013132960A (en) * 2011-12-26 2013-07-08 Fuji Heavy Ind Ltd Driving device of vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6471281B1 (en) * 2018-05-28 2019-02-13 矢野 隆志 Power system with torque vectoring control, variable rated output control and shift control for electric vehicles
JP2019206204A (en) * 2018-05-28 2019-12-05 矢野 隆志 Power system for executing torque vectoring control, variable rating output control, and shift control for electric vehicle

Also Published As

Publication number Publication date
JP2018001845A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US9845088B2 (en) Torque overlay device for a hybrid drive system, and a method for operating such a hybrid drive system
CN101296830B (en) Control system of vehicle drive apparatus
KR20180052808A (en) Structure for transmission of vehicle
JP4572956B2 (en) Vehicle drive device
KR101673628B1 (en) Hybrid power train for vehicle
US9227623B2 (en) Hybrid drive of a motor vehicle and method for operating same
KR102588325B1 (en) Powertrain for electric vehicle and control method thereof
CN111976463B (en) Hybrid vehicle driving system capable of realizing single-motor two-gear driving
US10232700B2 (en) Transmission for hybrid vehicle
KR101551004B1 (en) Hybrid transmission for vehicle
KR101198443B1 (en) Power transmission structure of hyrid automobile
JP2020506341A (en) Drive assembly for horizontal vehicle
KR20060095238A (en) A dual clutch transmission for hybrid electric vehicle
KR101637740B1 (en) Powertrain for hybrid vehicle
US10486518B2 (en) Gearbox for a hybrid vehicle, drivetrain having a gearbox of said type, and method for operating the same
JP6186555B1 (en) Power system with shift control and torque vectoring control for electric vehicles
WO2022158523A1 (en) Control device for vehicle drive device
JP2017154511A (en) Driving device for vehicle
JP2008179356A (en) Driving device for hybrid vehicle
CN106864243A (en) Seven speed dual clutch hybrid transmissions
JP6214440B2 (en) Automatic transmission
JP6186554B1 (en) Power system with torque vectoring control and variable rated output control for electric vehicles
CN201925422U (en) Transmission system for automatic transmission of electromechanical hybrid electric vehicle
KR101510053B1 (en) Power train for hybrid vehicle
CN103502691A (en) Transmission system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

R150 Certificate of patent or registration of utility model

Ref document number: 6186555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250