JP6185744B2 - Manufacturing method of tuning fork crystal unit - Google Patents

Manufacturing method of tuning fork crystal unit Download PDF

Info

Publication number
JP6185744B2
JP6185744B2 JP2013092125A JP2013092125A JP6185744B2 JP 6185744 B2 JP6185744 B2 JP 6185744B2 JP 2013092125 A JP2013092125 A JP 2013092125A JP 2013092125 A JP2013092125 A JP 2013092125A JP 6185744 B2 JP6185744 B2 JP 6185744B2
Authority
JP
Japan
Prior art keywords
crystal
etching
wafer
tuning fork
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013092125A
Other languages
Japanese (ja)
Other versions
JP2014216815A (en
Inventor
康博 井口
康博 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Citizen Fine Device Co Ltd
Original Assignee
Citizen Watch Co Ltd
Citizen Fine Device Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd, Citizen Fine Device Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2013092125A priority Critical patent/JP6185744B2/en
Publication of JP2014216815A publication Critical patent/JP2014216815A/en
Application granted granted Critical
Publication of JP6185744B2 publication Critical patent/JP6185744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Description

本発明は、携帯電話などの発振回路に用いられる音叉型水晶振動子の製造方法に関する。   The present invention relates to a method for manufacturing a tuning fork crystal unit used in an oscillation circuit such as a cellular phone.

音叉型水晶振動子のウェットエッチングプロセスにおいて、水晶エッチング加工では、従来、例えば、あらかじめ水晶エッチング槽のエッチングレートを測定しておき、このエッチングレートの測定値を用いて、狙いの枝幅寸法との差に応じた水晶エッチング時間を算出し、水晶エッチング時間を決めていた。   In the wet etching process of the tuning fork type crystal resonator, conventionally, for example, in the quartz etching process, the etching rate of a quartz etching tank is measured in advance, and the measured value of this etching rate is used to determine the target branch width dimension. The crystal etching time corresponding to the difference was calculated to determine the crystal etching time.

また、特開2002−33639号公報に記載されるように、ダミーパターンを音叉型水晶振動子を形成する水晶ウェハ内にダミーパターンを形成し、エッチングによるダミーパターンの幅Wの変化量を測定し、水晶エッチング時間を算出し、水晶エッチング時間を決める方法なども知られている。   Further, as described in Japanese Patent Application Laid-Open No. 2002-33639, a dummy pattern is formed in a quartz wafer forming a tuning fork type crystal resonator, and the amount of change in the width W of the dummy pattern due to etching is measured. Also known is a method of calculating the crystal etching time and determining the crystal etching time.

特開2002−33639号公報JP 2002-33639 A

水晶エッチング加工の水晶エッチング時間算出において、従来技術では、水晶エッチングを行う槽のエッチングレートは毎回一定という仮定の中で、水晶エッチング前の枝幅を測定して、水晶エッチングで加工する枝幅量を決め、事前に仮定した槽のエッチングレートより、水晶エッチング時間を決定していた。   When calculating the crystal etching time for crystal etching, the conventional technique measures the branch width before crystal etching and assumes that the etching rate of the tank in which crystal etching is performed is constant each time. The crystal etching time was determined from the etching rate of the tank assumed in advance.

しかし実際は、前記の槽のエッチングレートは毎回一定という仮定した具体的な項目には、水晶エッチングを行うエッチング液、例えばバッファードフッ酸の液温度と濃度、水晶エッチング槽の排気量、水晶エッチング槽周辺の温湿度などがあり、前記、全ての項目を毎回一定に管理する事は難しい。従って、水晶エッチングを行う槽のエッチングレートは毎回一定ではない。   However, in practice, the specific items assumed that the etching rate of the tank is constant each time include the etching temperature for crystal etching, for example, the temperature and concentration of buffered hydrofluoric acid, the displacement of the crystal etching tank, the crystal etching tank There are ambient temperature and humidity, etc., and it is difficult to manage all of the above items constantly. Therefore, the etching rate of the tank for performing crystal etching is not constant every time.

前述より、従来技術では、水晶エッチングを行う槽のエッチングレートは毎回一定でないので、加工精度が悪く、水晶エッチング後の枝幅寸法のばらつきが大きくなってしまう。枝幅寸法のばらつきが大きくなると、音叉型水晶振動子の周波数が規格内に収まらず不良となる。また、周波数が規格内に収まったとしても、水晶エッチング工程の後工程の、音叉型水晶振動子の周波数を調整する工程において、加工時間が長くなり、製造時間が長くなってしまう。 As described above, in the prior art, the etching rate of the tank for performing the crystal etching is not constant every time, so that the processing accuracy is poor, and the variation in the branch width after the crystal etching becomes large. When the variation in the branch width dimension becomes large, the frequency of the tuning fork type crystal resonator does not fall within the standard and becomes defective. Further, even if the frequency falls within the standard, the processing time becomes long and the manufacturing time becomes long in the process of adjusting the frequency of the tuning fork type crystal resonator after the crystal etching process.

また、従来技術において、図3に示すように、水晶エッチング中に、狙いの枝幅寸法となる前に、一時的にウェハを取り出し、洗浄、水洗、乾燥した後に枝幅の測定を行い、追加のエッチング時間を決めるという方法があり、この操作を複数回繰り返して、狙いの枝幅寸法に近づけていくという方法もあるが、これには欠点があり、第一に、前記作業を行うための工数が増え製造時間が長くなる、第二に、前記枝幅の測定を行う際、水晶面に形成されたレジスト膜の上から枝幅測定を行うため正確に測定することができない。尚、水晶面に形成されたレジスト膜と耐蝕膜の剥離を行った後に、再度成膜を行えば、枝幅測定を正確に行う事ができるが、その分、製造時間が長くなり、工数的に不利になってしまう。以上、工数と正確さの問題より、従来の方法では、加工精度が悪く、水晶エッチング後の枝幅のばらつきが大きくなってしまう。 In addition, in the prior art, as shown in FIG. 3, during crystal etching, before the target branch width dimension is obtained, the wafer is temporarily taken out, washed, washed and dried, and then the branch width is measured and added. There is a method of deciding the etching time of this, and there is also a method of repeating this operation a plurality of times to bring it closer to the target branch width dimension, but this has a drawback, and firstly, for performing the above work Second, when the branch width is measured, the branch width is measured from the top of the resist film formed on the crystal plane, and thus cannot be measured accurately. Note that if the resist film and the corrosion-resistant film formed on the quartz surface are peeled off and then formed again, the branch width can be measured accurately. It will be disadvantageous. As described above, due to the problems of man-hours and accuracy, in the conventional method, the processing accuracy is poor, and the variation in branch width after crystal etching becomes large.

本発明は、音叉型水晶振動子の水晶エッチング工程におけるエッチングレートの算出を容易に行うことを課題とする。 An object of the present invention is to easily calculate an etching rate in a crystal etching process of a tuning fork type crystal resonator.

本発明は、毎回変動する槽のエッチングレートを、簡単にかつ正確に測定を行い、槽のエッチングレートより、水晶エッチング時間を算出する水晶振動子の製造方法である。   The present invention is a method for manufacturing a crystal resonator, in which a tank etching rate that varies each time is measured simply and accurately, and a crystal etching time is calculated from the tank etching rate.

音叉型水晶振動子のウェットプロセスの水晶エッチング加工の製造方法において、エッチングレート測定専用ウェハの板厚寸法を測定し、測定専用ウェハを、音叉型水晶振動子を形成する水晶ウェハと同時に水晶エッチングを行い、ある一定時間経過後に、測定専用ウェハを引き上げ、測定専用のウェハの板厚寸法を測定して、測定専用ウェハの板厚寸法の変化量と、エッチング時間より、板厚方向のエッチングレートを算出して、水晶エッチング時間を決定する叉型水晶振動子の製造方法とする。 In the manufacturing method of crystal etching processing of the tuning fork crystal unit wet process, the thickness of the etching rate measurement dedicated wafer is measured, and the measurement dedicated wafer is etched simultaneously with the crystal wafer forming the tuning fork crystal unit. After a certain period of time, pull up the measurement-dedicated wafer, measure the thickness of the measurement-dedicated wafer, and determine the etching rate in the thickness direction from the amount of change in the thickness of the measurement-dedicated wafer and the etching time. calculated and, a method for producing a sound or crystal oscillator for determining the crystal etching time.

音叉型水晶振動子は、振動腕に少なくとも一つの溝を有する音叉型水晶振動子の製造方法とする。 Tuning fork crystal oscillator, a method for manufacturing a tuning-fork crystal that having a least one groove in the vibrating arms.

本発明の要点である板厚方向のエッチングレートを求めるための、板厚寸法の測定については、レーザー光などで容易に測定ができ、かつ短時間で行うことができ、それに伴い、板厚方向のエッチングレートの水晶エッチング時間の管理についても、容易に行える。本発明において、従来課題であった槽のエッチングレートの算出を容易かつ正確に行うことができ、水晶エッチング後の枝幅寸法のばらつきを小さくすることができ、水晶振動子の周波数を規格内に収めることができ、また、水晶エッチング工程の後工程の、水晶振動子の周波数を調整する工程において、加工時間が短くなり、全体的な製造時間を短くすることができる。   The measurement of the plate thickness dimension for obtaining the etching rate in the plate thickness direction, which is the main point of the present invention, can be easily measured with a laser beam or the like and can be performed in a short time. The management of the crystal etching time of the etching rate can be easily performed. In the present invention, it is possible to easily and accurately calculate the etching rate of the tank, which has been a problem in the prior art, to reduce the variation in the branch width after the crystal etching, and to keep the frequency of the crystal resonator within the standard. In addition, in the process of adjusting the frequency of the crystal resonator after the crystal etching process, the processing time is shortened, and the overall manufacturing time can be shortened.

本発明におけるエッチングレートの相関を説明する図The figure explaining the correlation of the etching rate in this invention 本発明における測定専用ウェハの板厚の変化を説明する図The figure explaining the change of the plate | board thickness of the measurement exclusive wafer in this invention 従来の枝幅測定を説明する概略図Schematic explaining conventional branch width measurement 溝付き音叉型水晶振動子の斜視図水晶Perspective view of grooved tuning fork crystal unit ウェハの水晶エッチング投入前の工程を説明する図The figure explaining the process before putting crystal etching of the wafer

実施例1と2で用いる水晶ウェハの水晶エッチング投入前の状態までの工程を音叉型水晶振動子の一般に知られている方法で以下に説明する(図5参照)。まず、所定の厚さの水晶ウェハ1を準備する。水晶ウェハ1の第一主面と第二主面に耐蝕膜をスパッタリングなどの方法で成膜する。耐蝕膜について、例えば、金を使用して、下地にクロムとする。次に耐蝕膜が成膜された第一主面と第二主面に、スピンコートなどの方法でレジストコートを行う。次に、マスクに描かれた音叉型水晶振動子の外形パターンを第一主面と第二主面に露光する。次に現像液を用いて、露光した音叉型水晶振動子の外形パターンを形成する。さらに、レジスト4から露出した金層3とクロム層2のエッチングを、それぞれ例えば、ヨウ素とヨウ化カリウムの水溶液と、硝酸第二セリウムアンモニウムと酢酸の水溶液を用いて、エッチングを行う。金層3とクロム層2をエッチングすることによって、耐蝕膜に音叉型水晶振動子の外形パターンを形成する。     The steps up to the state before the crystal etching of the crystal wafer used in Examples 1 and 2 will be described below with a generally known method of a tuning fork type crystal resonator (see FIG. 5). First, a quartz wafer 1 having a predetermined thickness is prepared. A corrosion-resistant film is formed on the first main surface and the second main surface of the crystal wafer 1 by a method such as sputtering. For the corrosion resistant film, for example, gold is used and the base is made of chromium. Next, resist coating is performed on the first main surface and the second main surface on which the corrosion-resistant film is formed by a method such as spin coating. Next, the external pattern of the tuning fork type crystal resonator drawn on the mask is exposed on the first main surface and the second main surface. Next, an external pattern of the exposed tuning fork type crystal resonator is formed using a developer. Furthermore, the gold layer 3 and the chromium layer 2 exposed from the resist 4 are etched using, for example, an aqueous solution of iodine and potassium iodide and an aqueous solution of ceric ammonium nitrate and acetic acid, respectively. By etching the gold layer 3 and the chromium layer 2, an outer pattern of a tuning fork type crystal resonator is formed on the corrosion-resistant film.

まず、水晶ウェハを水晶エッチング槽に投入を行えるように、水晶エッチング槽の条件を、例えば、水晶ウェハのエッチングを行うエッチング液であるバッファードフッ酸の液温度などを、所望の条件にする。 First, the condition of the crystal etching tank, for example, the temperature of buffered hydrofluoric acid that is an etching liquid for etching the crystal wafer is set to a desired condition so that the crystal wafer can be put into the crystal etching tank.

次に、板厚方向のエッチングレート測定専用ウェハを用意して、板厚寸法t1の測定を行う(図2参照)。例えば、板厚寸法の測定は、レーザー光を使用して測定を行う。   Next, a dedicated wafer for etching rate measurement in the plate thickness direction is prepared, and the plate thickness dimension t1 is measured (see FIG. 2). For example, the thickness of the plate is measured using a laser beam.

この板厚寸法の測定を行ったウェハを、水晶エッチング槽に投入を行う水晶ウェハと、同時に、水晶エッチング槽へ投入を行う。ある一定時間、例えば600秒、測定専用ウェハと水晶ウェハのエッチングを行ったら、測定専用ウェハのみを、水晶エッチング槽から引き上げ、洗浄、水洗、乾燥をした後に、板厚寸法t2の測定を行う(図2参照)。尚、水晶ウェハは、水晶エッチング槽から引き上げずに、そのままエッチングを行っている。 The wafer whose thickness was measured is put into the crystal etching tank at the same time as the crystal wafer to be put into the crystal etching tank. After the measurement-specific wafer and the crystal wafer are etched for a certain time, for example, 600 seconds, only the measurement-specific wafer is lifted from the crystal etching tank, washed, washed, and dried, and then the thickness t2 is measured ( (See FIG. 2). The quartz wafer is etched as it is without being lifted from the quartz etching tank.

図1に示すように、板厚方向のエッチングレートと枝幅方向のエッチングレートとは相関があるので、測定専用ウェハの板厚寸法の変化量と、エッチング時間より、板厚方向のエッチングレートを算出して、水晶ウェハの枝幅方向のエッチングレートに換算する。この間、すなわち、測定専用ウェハの引き上げから、板厚寸法測定、枝幅方向のエッチングレート算出までの間、水晶ウェハはエッチング中であるので、測定専用ウェハより算出したエッチングレートより、残りの水晶エッチング時間を決める。尚、測定専用のウェハのエッチング時間は、長ければ長いほど、正確なエッチングレート算出が行う事ができる。 As shown in FIG. 1, since there is a correlation between the etching rate in the plate thickness direction and the etching rate in the branch width direction, the etching rate in the plate thickness direction is determined from the amount of change in the plate thickness dimension of the measurement-dedicated wafer and the etching time. It is calculated and converted into an etching rate in the branch width direction of the crystal wafer. During this period, that is, from the pulling up of the measurement dedicated wafer to the measurement of the plate thickness dimension and the calculation of the etching rate in the branch width direction, the crystal wafer is being etched, so the remaining crystal etching is performed from the etching rate calculated from the measurement dedicated wafer. Decide on time. The longer the etching time of the measurement-dedicated wafer is, the more accurately the etching rate can be calculated.

水晶ウェハを残りのエッチング時間、水晶エッチング槽でエッチングを行い、所定の時間後、水晶ウェハを水晶エッチング槽から引き上げる。このように水晶エッチング時間を決定することで、水晶エッチング後の枝幅寸法のばらつきが小さくなり、水晶振動子の周波数を規格内に収めることができ、また、水晶エッチング工程の後工程の、水晶振動子の周波数を調整する工程において、加工時間が短くなり、全体的な製造時間を短くする事ができる。 The crystal wafer is etched in the crystal etching tank for the remaining etching time, and after a predetermined time, the crystal wafer is pulled up from the crystal etching tank. By determining the crystal etching time in this manner, the variation in the branch width after crystal etching is reduced, so that the frequency of the crystal resonator can be kept within the standard. In the process of adjusting the frequency of the vibrator, the processing time is shortened, and the overall manufacturing time can be shortened.

前記実施例1では、板厚寸法測定専用ウェハを水晶ウェハと同時に水晶エッチング槽に投入して、エッチングレートの算出を行ったが、実施例2では、水晶ウェハのエッチング時間が短い場合は、水晶ウェハを水晶エッチング槽に投入前に、板厚寸法測定専用ウェハで、エッチングレートの算出を行う。   In the first embodiment, the plate thickness measurement dedicated wafer was put into the crystal etching tank simultaneously with the crystal wafer, and the etching rate was calculated. In the second embodiment, when the etching time of the crystal wafer was short, the crystal Before the wafer is put into the crystal etching tank, the etching rate is calculated with a wafer dedicated to thickness measurement.

まず、水晶ウェハを水晶エッチング槽に投入を行えるように、水晶エッチング槽の条件を、例えば、水晶ウェハのエッチングを行うエッチング液であるバッファードフッ酸の液温度などを、所望の条件にする。次に、板厚方向のエッチングレート測定専用ウェハを用意して、板厚寸法の測定を行う。 First, the condition of the crystal etching tank, for example, the temperature of buffered hydrofluoric acid that is an etching liquid for etching the crystal wafer is set to a desired condition so that the crystal wafer can be put into the crystal etching tank. Next, a dedicated wafer for etching rate measurement in the plate thickness direction is prepared, and the plate thickness dimension is measured.

水晶ウェハを水晶エッチング槽投入前に、この板厚寸法の測定を行ったウェハを、水晶エッチング槽に投入する。ある一定時間、例えば600秒、測定専用ウェハのエッチングを行ったら、水晶エッチング槽から引き上げ、洗浄、水洗、乾燥した後に、板厚寸法の測定を行う。 Before the quartz wafer is put into the quartz etching tank, the wafer whose thickness is measured is put into the quartz etching tank. After the measurement-dedicated wafer is etched for a certain period of time, for example, 600 seconds, the plate thickness is measured after being pulled out of the crystal etching tank, washed, washed and dried.

実施例1と同様に、板厚方向のエッチングレートと枝幅方向のエッチングレートとは相関があるので、測定専用ウェハの板厚寸法の変化量と、エッチング時間より、板厚方向のエッチングレートを算出して、水晶ウェハの枝幅方向のエッチングレートに換算し、水晶エッチング槽投入前のエッチング時間を決める。尚、測定専用のウェハのエッチング時間は、長ければ長いほど、正確なエッチングレート算出が行うことができる。 Similar to Example 1, since the etching rate in the plate thickness direction and the etching rate in the branch width direction are correlated, the etching rate in the plate thickness direction is determined from the amount of change in the plate thickness dimension of the measurement-dedicated wafer and the etching time. It is calculated and converted into the etching rate in the branch width direction of the crystal wafer, and the etching time before putting the crystal etching tank is determined. It should be noted that the longer the etching time of the measurement-dedicated wafer, the more accurately the etching rate can be calculated.

実施例1と実施例2で、音叉型水晶振動子の外形形成について記載したが、本発明は、音叉型水晶振動子の外形形状に限らず、図4に示すような溝付き音叉型水晶振動子の音叉腕への溝形成エッチングにも適用可能である。   In the first and second embodiments, the outer shape of the tuning fork crystal unit is described. However, the present invention is not limited to the outer shape of the tuning fork type crystal unit, and the grooved tuning fork type crystal unit as shown in FIG. The present invention can also be applied to groove formation etching on a child tuning fork arm.

枝幅寸法のばらつきと同様に、溝寸法のばらつきが大きくなると特性が悪化するため、本発明を用いることで、溝形成エッチングのエッチング時間を容易に算出することが可能となり、溝寸法(溝幅・溝深さ)のばらつきを小さくし、溝付き音叉型水晶振動子の特性を規格内に収めることができる。   Similar to the variation in the branch width dimension, the characteristics deteriorate as the variation in the groove dimension increases. Therefore, by using the present invention, it becomes possible to easily calculate the etching time of the groove formation etching, and the groove dimension (groove width).・ Variations in groove depth can be reduced, and the characteristics of a tuning-fork crystal unit with grooves can be kept within the specifications.

1 水晶ウェハ
2 Cr層
3 Au層
4 レジスト
5 音叉腕
6 溝
10 水晶振動子
DESCRIPTION OF SYMBOLS 1 Crystal wafer 2 Cr layer 3 Au layer 4 Resist 5 Tuning fork arm 6 Groove 10 Crystal oscillator

Claims (2)

音叉型水晶振動子のウェットプロセスの水晶エッチング加工の製造方法において、エッチングレート測定専用ウェハの板厚寸法を測定し、前記測定専用ウェハを、前記音叉型水晶振動子を形成する水晶ウェハと同時に水晶エッチングを行い、ある一定時間経過後に、前記測定専用ウェハを引き上げ、前記測定専用のウェハの板厚寸法を測定して、前記測定専用ウェハの板厚寸法の変化量と、前記エッチング時間より、板厚方向のエッチングレートを算出して、水晶エッチング時間を決定することを特徴とする音叉型水晶振動子の製造方法。 In the manufacturing method of the crystal etching processing of the tuning fork type crystal resonator wet process, the thickness of the etching rate measurement dedicated wafer is measured, and the measurement dedicated wafer is crystallized simultaneously with the crystal wafer forming the tuning fork crystal resonator. Etching is performed, and after the elapse of a certain time, the measurement-dedicated wafer is pulled up, and the thickness dimension of the measurement-dedicated wafer is measured. A method for manufacturing a tuning fork type crystal resonator, comprising: calculating an etching rate in a thickness direction to determine a crystal etching time. 請求項1に記載の音叉型水晶振動子の製造方法において、前記音叉型水晶振動子は、振動腕に少なくとも一つの溝を有することを特徴とする音叉型水晶振動子の製造方法。 The method of manufacturing a tuning-fork type crystal oscillator according to claim 1, wherein the tuning fork crystal oscillator, manufacturing method of the tuning fork type crystal oscillator according to claim Rukoto that having a least one groove in the vibrating arms.
JP2013092125A 2013-04-25 2013-04-25 Manufacturing method of tuning fork crystal unit Active JP6185744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013092125A JP6185744B2 (en) 2013-04-25 2013-04-25 Manufacturing method of tuning fork crystal unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013092125A JP6185744B2 (en) 2013-04-25 2013-04-25 Manufacturing method of tuning fork crystal unit

Publications (2)

Publication Number Publication Date
JP2014216815A JP2014216815A (en) 2014-11-17
JP6185744B2 true JP6185744B2 (en) 2017-08-23

Family

ID=51942173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013092125A Active JP6185744B2 (en) 2013-04-25 2013-04-25 Manufacturing method of tuning fork crystal unit

Country Status (1)

Country Link
JP (1) JP6185744B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107453726A (en) * 2017-08-08 2017-12-08 随州泰华电子科技有限公司 A kind of technique for lifting tuning fork crystal oscillation ion(ic) etching speed

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942100A (en) * 1997-08-25 1999-08-24 Transat Corporation Crystal etch monitor
JP4100031B2 (en) * 2002-04-22 2008-06-11 セイコーエプソン株式会社 Method and apparatus for manufacturing crystal piece
JP2008079033A (en) * 2006-09-21 2008-04-03 Nippon Dempa Kogyo Co Ltd Method for manufacturing piezoelectric vibrator, piezoelectric vibrator and electronic component
JP2009290169A (en) * 2008-06-02 2009-12-10 Canon Inc Method for manufacturing oscillator
JP2012178716A (en) * 2011-02-25 2012-09-13 Nippon Dempa Kogyo Co Ltd Etching system and etching method

Also Published As

Publication number Publication date
JP2014216815A (en) 2014-11-17

Similar Documents

Publication Publication Date Title
JP4593674B2 (en) Quartz crystal resonator element and manufacturing method thereof
JP6185744B2 (en) Manufacturing method of tuning fork crystal unit
JP2010154513A (en) Method of manufacturing quartz oscillator
JP6018962B2 (en) Manufacturing method of crystal unit
JP4600140B2 (en) Method for manufacturing piezoelectric vibrating piece
JP4638682B2 (en) Manufacturing method of crystal unit
JP5769557B2 (en) Method for manufacturing crystal resonator element
JP2015004597A (en) Scale for photoelectric measurement instrument, encoder, and method for forming scale
KR102050628B1 (en) On-product derivation and adjustment of exposure parameters in a directed self-assembly process
JP2006100745A (en) Resonance vibration device manufacturing method
JP6100582B2 (en) Torsional vibrator
JP6055294B2 (en) Method for manufacturing piezoelectric element
KR20040046696A (en) Method for measuring stress of semiconductor device
JP5758642B2 (en) Manufacturing method of crystal unit
JP2021118368A (en) Method for manufacturing piezoelectric vibration piece
JP2008157845A (en) Manufacturing method of quartz oscillator
JP6055273B2 (en) Method for manufacturing piezoelectric element
JP6424076B2 (en) Method for manufacturing piezoelectric vibrator
JP4498004B2 (en) Manufacturing method of crystal unit
JP2013207510A (en) Method of manufacturing crystal oscillator
JPS5829648B2 (en) How to adjust the natural frequency of a tuning fork crystal resonator
JP2013214638A (en) Manufacturing method of vibration piece
JP6018837B2 (en) Quartz vibrating element and method for manufacturing the same
JP2015159437A (en) Manufacturing method of piezoelectric transducer
JP2007166242A (en) Manufacturing method of crystal blank, and crystal device using this crystal blank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170728

R150 Certificate of patent or registration of utility model

Ref document number: 6185744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150