JP6183830B2 - Non-aqueous electrolyte additive, flame retardant non-aqueous electrolyte, non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte additive, flame retardant non-aqueous electrolyte, non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6183830B2
JP6183830B2 JP2013083984A JP2013083984A JP6183830B2 JP 6183830 B2 JP6183830 B2 JP 6183830B2 JP 2013083984 A JP2013083984 A JP 2013083984A JP 2013083984 A JP2013083984 A JP 2013083984A JP 6183830 B2 JP6183830 B2 JP 6183830B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
additive
secondary battery
battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013083984A
Other languages
Japanese (ja)
Other versions
JP2014205637A (en
Inventor
韓 立彪
立彪 韓
松本 一
一 松本
充代 吉永
充代 吉永
浩 山下
浩 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013083984A priority Critical patent/JP6183830B2/en
Publication of JP2014205637A publication Critical patent/JP2014205637A/en
Application granted granted Critical
Publication of JP6183830B2 publication Critical patent/JP6183830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水電解液の添加剤として有用な新規な部分フッ素化ビニルリン酸エステル化合物、該化合物からなる非水電解液用添加剤、該添加剤を含む非水電解液、及び、該非水電解液を備える非水電解液二次電池に関する。
本発明の非水系電解液は優れた難燃性(自己消火性)を有し、かつ該非水系電解液を備える非水電解液二次電池は、室温より高い温度、特に、45℃以上の高い温度において優れた充放電特性を示す。
The present invention relates to a novel partially fluorinated vinyl phosphate ester compound useful as an additive for a non-aqueous electrolyte, an additive for a non-aqueous electrolyte comprising the compound, a non-aqueous electrolyte containing the additive, and the non-aqueous The present invention relates to a non-aqueous electrolyte secondary battery including an electrolyte.
The non-aqueous electrolyte solution of the present invention has excellent flame retardancy (self-extinguishing property), and the non-aqueous electrolyte secondary battery including the non-aqueous electrolyte solution has a temperature higher than room temperature, particularly 45 ° C. or higher. Excellent charge / discharge characteristics at temperature.

リチウム電池はそのエネルギー密度が高い点で非常に有用であり、各社にて盛んに検討が行われているが、充放電を繰り返すことにより、電解液中に溶け出したリチウムが負極表面に均一に析出せずに局所的に析出し、そこを成長核としてリチウムが樹枝(デンドライト)状に成長して、やがて正極と短絡し、ショートを引き起こし、場合によっては発火するという問題がある。   Lithium batteries are very useful because of their high energy density, and various companies are actively investigating them. By repeating charge and discharge, lithium dissolved in the electrolyte is uniformly distributed on the negative electrode surface. There is a problem in that the lithium deposits locally without growing, and grows in the form of dendrites as a growth nucleus, eventually short-circuits with the positive electrode, causes a short-circuit, and sometimes ignites.

また、非水電解質二次電池に電解液として使用されている非水系の化合物としては、エチレンカーボネートやプロピレンカーボネートなどのカーボネート系化合物、ならびにγ−ブチロラクトン、ジメトキシエタンなどの有機溶媒が挙げられるが、これらは非常に燃えやすい化合物であるため、ショートや過充電時の暴走過熱などにより火災の原因となる恐れがある。   In addition, examples of non-aqueous compounds used as an electrolyte in non-aqueous electrolyte secondary batteries include carbonate compounds such as ethylene carbonate and propylene carbonate, and organic solvents such as γ-butyrolactone and dimethoxyethane. Since these are very flammable compounds, they may cause fire due to short circuit or runaway overheating during overcharge.

このような問題を解決するために、各種のP(O)基を含有する五価リン化合物乃至リン酸エステルを非水系電解液に添加することにより電解液を難燃化する技術が数多く提案されている(特許文献1〜11参照)。例えば、特許文献10には、有機電解液リチウム電池において、難燃化の問題点を解決するとともに、初期充電及び充放電時における電池のスウェリングを効果的に抑制させて信頼性を向上させることを課題として、有機電解液に所定の化学式で示されるホスホネート化合物を含有させる旨の構成要件を採用することにより、還元分解安定性を向上させてサイクル初期の非可逆容量を減少させるだけでなく、電池の充放電効率及び寿命特性を向上させることができる、室温での組立て及び標準充電後の電池の厚さが一定の範囲を超えないので、電池の信頼性を向上させ得る等の効果が得られることが記載されている。   In order to solve such problems, many techniques for making the electrolyte solution flame-retardant by adding various P (O) group-containing pentavalent phosphorus compounds or phosphate esters to the non-aqueous electrolyte solution have been proposed. (See Patent Documents 1 to 11). For example, Patent Document 10 discloses that an organic electrolyte lithium battery solves the problem of flame retardancy and effectively suppresses swelling of the battery during initial charging and charging / discharging to improve reliability. By adopting the constitutional requirement that the organic electrolyte contains a phosphonate compound represented by a predetermined chemical formula, the reductive decomposition stability is improved and the irreversible capacity at the beginning of the cycle is reduced, Battery charging / discharging efficiency and life characteristics can be improved. Battery thickness after assembly and standard charging does not exceed a certain range, thus improving battery reliability. It is described that

しかしながら、これらの従来技術に従って電解液にリン酸エステルを添加すると、リン酸エステルと負極材料との反応によって放電容量が低下する結果、充分な放電容量が得られなかったり、サイクル特性が低下してしまったりして、二次電池として使用可能なサイクル数が低下してしまうという問題があった(非特許文献1参照)。   However, when phosphoric acid esters are added to the electrolyte according to these conventional techniques, the discharge capacity is reduced due to the reaction between the phosphoric acid ester and the negative electrode material. As a result, sufficient discharge capacity cannot be obtained or cycle characteristics are reduced. As a result, the number of cycles that can be used as a secondary battery is reduced (see Non-Patent Document 1).

また、非水電解液二次電池は、そのエネルギー密度が高いため、各種用途において使用が拡大しており、車載用大型電池のように室温より高い環境温度条件で使用されるケースも多くなってきている。
そのため、室温より高い環境温度条件で使用される際にもサイクル特性の低下が少ない非水電解液二次電池に対する要望が益々高まってきている。
In addition, non-aqueous electrolyte secondary batteries are used in various applications due to their high energy density, and there are many cases in which they are used at ambient temperature conditions higher than room temperature, such as in-vehicle large batteries. ing.
For this reason, there is an increasing demand for non-aqueous electrolyte secondary batteries in which the deterioration of cycle characteristics is small even when used under environmental temperature conditions higher than room temperature.

一方、上記のような電池に関する技術とは別に、本発明者らは、これまで、特定の触媒を用いて難燃性リン化合物等の機能性リン化合物の製造法を開発してきた(例えば、特許文献12〜22参照)。この開発により、これまで知られていなかった新規又は合成困難な様々な機能性リン化合物を効率よく製造できるようになった。   On the other hand, apart from the technology related to the battery as described above, the present inventors have so far developed a method for producing a functional phosphorus compound such as a flame retardant phosphorus compound using a specific catalyst (for example, patents). References 12-22). With this development, it has become possible to efficiently produce various functional phosphorus compounds that have not been known so far and that are new or difficult to synthesize.

特開平4−184870号公報JP-A-4-184870 特開平10−50342号公報Japanese Patent Laid-Open No. 10-50342 特開平11−233141号公報JP-A-11-233141 特開2003−229173号公報JP 2003-229173 A 特開2002−280061号公報JP 2002-280061 A 特開2007−250191号公報JP 2007-250191 A 特開2009−32454号公報JP 2009-32454 A 特開2009−224258号公報JP 2009-224258 A 特開2010−92706号公報JP 2010-92706 A US2004/0142246 A1US2004 / 0142246 A1 US2004/0142246 A1US2004 / 0142246 A1 特許第2775426号公報Japanese Patent No. 2775426 特許第2777985号公報Japanese Patent No. 2777985 特許第2849712号公報Japanese Patent No. 2849712 特許第3041396号公報Japanese Patent No. 3041396 特許第3051928号公報Japanese Patent No. 3051928 特許第3390399号公報Japanese Patent No. 3390399 特許第3572352号公報Japanese Patent No. 3572352 特許第3836459号公報Japanese Patent No. 3836459 特許第3836460号公報Japanese Patent No. 3836460 特許第3951024号公報Japanese Patent No. 3951024 特許第6111127号公報Japanese Patent No. 6111127

GS Yuasa Technical Report 2005年第2巻第1号、26−31ページGS Yuasa Technical Report 2005 Volume 2 Issue 1 Pages 26-31

本発明は、非水電解液二次電池の非水電解液用添加剤として使用したときに、該非水電解液に優れた難燃性を付与するとともに、室温だけでなく45℃以上等の高温となる環境下で非水電解液二次電池が使用される際にも、該非水電解液二次電池に優れたサイクル特性を発揮させ得る新規な部分フッ素化ビニルリン酸エステル化合物を提供することを第1の課題とする。
本発明は、非水電解液の難燃性を向上するとともに、45℃以上等の高温となる環境下で使用される非水電解液二次電池の非水電解液に適用したときにおいて、該非水電解液二次電池に優れたサイクル特性を発揮させ得る非水電解液用添加剤を提供することを第2の課題とする。
本発明は、優れた難燃性を示すとともに、45℃以上等の高温となる環境下で使用される非水電解液二次電池に用いたときにおいても、該非水電解液二次電池に優れたサイクル特性を発揮させ得る非水電解液を提供することを第3の課題とする。
本発明は、45℃以上等の高温となる環境下で使用される際においても良好なサイクル特性を示す非水電解液二次電池を提供することを第4の課題とする。
The present invention, when used as an additive for a non-aqueous electrolyte in a non-aqueous electrolyte secondary battery, imparts excellent flame retardancy to the non-aqueous electrolyte and is not only at room temperature but also at a high temperature such as 45 ° C or higher. The present invention provides a novel partially fluorinated vinyl phosphate ester compound capable of exhibiting excellent cycle characteristics even when a nonaqueous electrolyte secondary battery is used in an environment where Let it be the first problem.
The present invention improves the flame retardancy of the non-aqueous electrolyte, and when applied to a non-aqueous electrolyte of a non-aqueous electrolyte secondary battery used in a high temperature environment such as 45 ° C. or higher, It is a second object to provide an additive for a non-aqueous electrolyte that can exhibit excellent cycle characteristics in a water electrolyte secondary battery.
The present invention exhibits excellent flame retardancy and is excellent in the non-aqueous electrolyte secondary battery even when used in a non-aqueous electrolyte secondary battery used in a high temperature environment such as 45 ° C or higher. It is a third object to provide a non-aqueous electrolyte that can exhibit the cycle characteristics.
It is a fourth object of the present invention to provide a non-aqueous electrolyte secondary battery that exhibits good cycle characteristics even when used in an environment at a high temperature of 45 ° C. or higher.

上記の課題を解決するために、本発明者らは、上述のように開発してきた各種機能性リン化合物を非水電解液の難燃剤、難燃性添加剤等として使用することを検討した。その研究過程で、前記特許文献10に記載されているホスホネート化合物(ビニルリン酸エステル化合物)などについても検討した。
前記特許文献10に記載された発明は、上述のとおり、初期充電及び充放電時における電池のスウェリングを効果的に抑制させて信頼性を向上させることを課題とするもので、同文献には、所定の化学式で示されるホスホネート化合物としてジエチルビニルホスホネート(DEVP)を実施例で用いた旨や、該化学式中のアルキル基のうち一つ以上の水素原子を、ハロゲン原子や低級アルキル基等を初めとする数多く例示された置換基で置換され得る旨も記載されている。しかしながら、同文献には、室温よりも高い温度でのサイクル特性を改善することや、そのような高温度でのサイクル特性を改善し得る非水電解液や該非水電解液用の添加剤については全く検討されていないし、また、数多く例示された置換基で置換されたホスホネート化合物を用いた実施例は実際上全く記載されていない。
本発明者らは、前記DEVP等のビニルリン酸エステル化合物や、(CH3O)2P(O)C2H5、(CH3O)3PO等のビニル基を有しないリン酸エステルについても試験研究を行ったが、その研究過程で、DEVP等のビニルリン酸エステル化合物を含有する非水電解液電池では、前述のようなビニル基を有しないリン酸エステル含有非水電解液電池よりも室温ではサイクル特性が良好である旨の知見を得たものの、ビニルリン酸エステル化合物であってもDEVP等では、室温よりも高い温度でのサイクル特性が大きく低下することが明らかとなった。
In order to solve the above problems, the present inventors have examined the use of various functional phosphorus compounds that have been developed as described above as flame retardants and flame retardant additives for non-aqueous electrolytes. In the course of the research, the phosphonate compound (vinyl phosphate ester compound) described in Patent Document 10 was also examined.
As described above, the invention described in Patent Document 10 aims to effectively suppress the swelling of the battery at the time of initial charge and charge / discharge to improve the reliability. In addition, the fact that diethyl vinyl phosphonate (DEVP) was used in the examples as the phosphonate compound represented by the predetermined chemical formula, one or more hydrogen atoms among the alkyl groups in the chemical formula, such as halogen atoms and lower alkyl groups, etc. It is also described that it can be substituted with many exemplified substituents. However, the same document describes a non-aqueous electrolyte that can improve cycle characteristics at a temperature higher than room temperature, and an additive for the non-aqueous electrolyte that can improve the cycle characteristics at such a high temperature. It has not been studied at all, and practical examples using phosphonate compounds substituted with many exemplified substituents are not described at all.
The present inventors have also described vinyl phosphate compounds such as DEVP and phosphate esters having no vinyl group such as (CH 3 O) 2 P (O) C 2 H 5 and (CH 3 O) 3 PO. In the research process, a nonaqueous electrolyte battery containing a vinyl phosphate compound such as DEVP was used at room temperature more than a non-aqueous electrolyte battery containing a phosphate ester having no vinyl group as described above. Thus, although it was found that the cycle characteristics were good, it became clear that the cycle characteristics at a temperature higher than room temperature were greatly lowered with DEVP and the like even with vinyl phosphate compounds.

本発明者らは、さらに各種リン化合物を合成し、鋭意検討を行った結果、特定の部分フッ素化ビニルリン酸エステル化合物を非水電解液二次電池の非水電解液用の添加剤として使用したときに、該非水電解液に優れた難燃性を付与するとともに、室温だけでなく45℃以上等の高温となる環境下で非水電解液二次電池が使用される際にも、該非水電解液二次電池に優れたサイクル特性を発揮させ得る新規な部分フッ素化ビニルリン酸エステル化合物を見出し、本発明を完成するに至った。   The inventors of the present invention further synthesized various phosphorus compounds and conducted extensive studies, and as a result, a specific partially fluorinated vinyl phosphate compound was used as an additive for a non-aqueous electrolyte of a non-aqueous electrolyte secondary battery. Sometimes, when the nonaqueous electrolyte secondary battery is used not only at room temperature but also in a high temperature environment such as 45 ° C. or more, the nonaqueous electrolyte secondary battery is used. The inventors have found a novel partially fluorinated vinyl phosphate ester compound capable of exhibiting excellent cycle characteristics in an electrolyte secondary battery, and have completed the present invention.

本発明によれば、非水電解液二次電池の非水電解液用の添加剤として使用したときに有用な以下の式(i)で示される部分フッ素化ビニルリン酸エステル化合物、この化合物からなる非水電解液用添加剤、該添加剤を含む非水電解液、及び、該非水電解液を備える非水電解液二次電池が提供される。
(CF3CH2O)2P(O)CH=CH2 ・・・・・(i)
According to the present invention, a partially fluorinated vinyl phosphate compound represented by the following formula (i) useful when used as an additive for a non-aqueous electrolyte of a non-aqueous electrolyte secondary battery, comprising this compound Provided are a non-aqueous electrolyte additive, a non-aqueous electrolyte containing the additive, and a non-aqueous electrolyte secondary battery including the non-aqueous electrolyte.
(CF 3 CH 2 O) 2 P (O) CH = CH 2 (i)

すなわち、本件により提供される発明は、次のとおりである。
(1)次の式(i)で表される部分フッ素化ビニルリン酸エステル化合物。
(CF3CH2O)2P(O)CH=CH2 ・・・・・(i)
(2)前記(1)に記載の部分フッ素化ビニルリン酸エステル化合物からなる非水電解液用添加剤。
(3)45℃以上となる環境下で使用される非水電解液二次電池に用いられるものである前記(2)に記載の非水電解液用添加剤。
(4)前記(2)又は(3)に記載の添加剤を含む非水電解液。
(5)前記(4)に記載の非水電解液を備える非水電解液二次電池。
(6)正極活物質がLiCoO2である前記(5)に記載の非水電解液二次電池。
That is, the invention provided by this case is as follows.
(1) A partially fluorinated vinyl phosphate compound represented by the following formula (i).
(CF 3 CH 2 O) 2 P (O) CH = CH 2 (i)
(2) The additive for non-aqueous electrolytes which consists of the partially fluorinated vinyl phosphate ester compound as described in said (1).
(3) The additive for non-aqueous electrolyte according to (2), which is used for a non-aqueous electrolyte secondary battery used in an environment of 45 ° C. or higher.
(4) A nonaqueous electrolytic solution containing the additive according to (2) or (3).
(5) A non-aqueous electrolyte secondary battery comprising the non-aqueous electrolyte according to (4).
(6) The nonaqueous electrolyte secondary battery according to (5), wherein the positive electrode active material is LiCoO 2 .

本発明の非水電解液は、次のような態様を含むことができる。
(7)添加剤の添加量が1〜20wt%である前記(4)に記載の非水電解液。
(8)添加剤の添加量が3〜12 wt%である前記(4)又は(7)に記載の非水電解液。
(9)非水電解液を構成する有機溶媒の主要成分が環状カーボネートと鎖状カーボネートである前記(4)、(7)、(8)のいずれか1項に記載の非水電解液。
(10)前記有機溶媒が30〜70vol%のエチレンカーボネートと、70〜30vol%のジメチルカーボネートからなる前記(4)、(7)〜(9)のいずれか1項に記載の非水電解液。
(11)含有する電解質塩がヘキサフルオロリン酸リチウム(LiPF6)である(4)、(7)〜(10)のいずれか1項に記載の非水電解液。
The nonaqueous electrolytic solution of the present invention can include the following aspects.
(7) The nonaqueous electrolytic solution according to (4), wherein the additive is added in an amount of 1 to 20 wt%.
(8) The nonaqueous electrolytic solution according to (4) or (7), wherein the additive is added in an amount of 3 to 12 wt%.
(9) The nonaqueous electrolytic solution according to any one of (4), (7), and (8), wherein main components of the organic solvent constituting the nonaqueous electrolytic solution are a cyclic carbonate and a chain carbonate.
(10) The nonaqueous electrolytic solution according to any one of (4) and (7) to (9), wherein the organic solvent is composed of 30 to 70 vol% ethylene carbonate and 70 to 30 vol% dimethyl carbonate.
(11) The nonaqueous electrolytic solution according to any one of (4) and (7) to (10), wherein the electrolyte salt contained is lithium hexafluorophosphate (LiPF 6 ).

本発明の非水電解液二次電池は、次のような態様を含むことができる。
(12)前記(7)〜(11)のいずれか1項に記載の非水電解液を備える非水電解液二次電池。
(13)負極活物質がLi金属又はLi合金である前記(5)、(6)、(12)のいずれか1項に記載の非水電解液二次電池。
The nonaqueous electrolyte secondary battery of the present invention can include the following aspects.
(12) A non-aqueous electrolyte secondary battery comprising the non-aqueous electrolyte according to any one of (7) to (11).
(13) The nonaqueous electrolyte secondary battery according to any one of (5), (6), and (12), wherein the negative electrode active material is Li metal or Li alloy.

本発明の部分フッ素化ビニルリン酸エステル化合物は、非水電解液二次電池の非水電解液用の添加剤として使用したときに、該非水電解液に優れた難燃性(自己消火性)を付与するとともに、室温だけでなく室温を超える高い温度(例えば、45℃以上、特に55℃以上)となる環境で非水電解液二次電池が使用される際にも、該非水電解液二次電池に優れたサイクル特性(充放電特性)を発揮させる。   The partially fluorinated vinyl phosphate compound of the present invention has excellent flame retardancy (self-extinguishing) when used as an additive for a non-aqueous electrolyte of a non-aqueous electrolyte secondary battery. When the non-aqueous electrolyte secondary battery is used not only at room temperature but also at a high temperature exceeding the room temperature (for example, 45 ° C. or more, particularly 55 ° C. or more), the non-aqueous electrolyte secondary battery is used. The battery exhibits excellent cycle characteristics (charge / discharge characteristics).

本発明の非水電解液用添加剤は、非水電解液の難燃性を向上するとともに、室温だけでなく室温を超える高い温度(例えば、45℃以上、特に55℃以上)となる環境で使用される非水電解液二次電池の非水電解液に適用したときにおいて、該非水電解液二次電池に優れたサイクル特性を発揮させる。   The additive for a non-aqueous electrolyte of the present invention improves the flame retardancy of the non-aqueous electrolyte and is used not only at room temperature but also at a high temperature exceeding room temperature (for example, 45 ° C. or more, particularly 55 ° C. or more). When applied to the non-aqueous electrolyte of the non-aqueous electrolyte secondary battery used, the non-aqueous electrolyte secondary battery exhibits excellent cycle characteristics.

本発明の非水電解液は、優れた難燃性を示すとともに、室温だけでなく室温を超える高い温度(例えば、45℃以上、特に55℃以上)となる環境で使用される非水電解液二次電池に用いたときにおいても、該非水電解液二次電池に優れたサイクル特性を発揮させる。   The nonaqueous electrolytic solution of the present invention exhibits excellent flame retardancy and is used not only at room temperature but also in an environment where the temperature is higher than room temperature (for example, 45 ° C or higher, particularly 55 ° C or higher). Even when used in a secondary battery, the non-aqueous electrolyte secondary battery exhibits excellent cycle characteristics.

本発明の非水電解液二次電池は、45℃以上等の高温となる環境下で使用される際においても良好なサイクル特性を示す。公知の通常の電解液系では45℃を超えると、劣化が促進することが知られており、車載用等の大型電池では、 空冷等によって冷却する必要があるとされているが、本発明の非水電解液二次電池では、そのような冷却を不必要化、簡素化、又は低コスト化することが可能となる。
The nonaqueous electrolyte secondary battery of the present invention exhibits good cycle characteristics even when used in an environment where the temperature is high, such as 45 ° C. or higher. It is known that deterioration is accelerated when the temperature exceeds 45 ° C. in a known normal electrolyte system, and it is said that it is necessary to cool by air cooling or the like in large batteries for in-vehicle use. In the non-aqueous electrolyte secondary battery, such cooling can be made unnecessary, simplified, or reduced in cost.

ベース電解液にそれぞれ、(a)比較例の添加剤Me、(b)比較例の添加剤MeEt、(c)実施例の添加剤Et2を5wt%混合した3種類の非水電解液電池(正極活物質:LiCoO2、負極活物質:Li金属)について、1.0C条件でのサイクル特性試験の途中で環境温度を25℃から順次、45℃、55℃に変更した場合の、サイクル増加に伴う正極活物質単位重量当たりの放電容量の変化を示す図面。Three types of non-aqueous electrolyte batteries (positive electrode) in which 5 wt% of (a) the additive Me of the comparative example, (b) the additive MeEt of the comparative example, and (c) the additive Et2 of the example were mixed in the base electrolyte, respectively. Active material: LiCoO 2 , negative electrode active material: Li metal), positive electrode with cycle increase when environmental temperature is changed from 45 ° C to 45 ° C, 55 ° C in the middle of cycle characteristic test under 1.0C condition The drawing which shows the change of the discharge capacity per active material unit weight. (a)ベース電解液そのままで添加剤を含まないもの、(b)ベース電解液に比較例添加剤Etを5wt%混合したもの、及び、(c)ベース電解液に実施例添加剤Et2を5wt%混合したもの、の3種類の非水電解液電池(正極活物質:LiCoO2、負極活物質:Li金属)について、1.0Cの条件でのサイクル特性試験の途中で環境温度を25℃から順次、45℃、55℃、65℃、75℃、65℃に変更した場合の、サイクル増加に伴う正極活物質単位重量当たりの放電容量の変化を示す図面。(A) The base electrolyte as it is and containing no additive, (b) the base electrolyte mixed with 5 wt% of the comparative example additive Et, and (c) 5 wt% of the example additive Et2 in the base electrolyte. For 3 types of non-aqueous electrolyte batteries (positive electrode active material: LiCoO 2 , negative electrode active material: Li metal), the ambient temperature was gradually increased from 25 ° C during the cycle characteristic test at 1.0C. The figure which shows the change of the discharge capacity per unit weight of positive electrode active materials with a cycle increase when changing to 45 degreeC, 55 degreeC, 65 degreeC, 75 degreeC, and 65 degreeC. 図2と同じ3種類の電池(a)、(b)、(c)について、図2と同じサイクル特性試験の際のサイクル増加に伴うクーロン効率の変化を示す図面。FIG. 3 is a diagram showing a change in coulomb efficiency with an increase in cycle in the same cycle characteristic test as in FIG. 2 for the same three types of batteries (a), (b), and (c) as in FIG. 2. 図2と同じ3種類の電池〔ベース電解液そのままで添加剤を含まないもの(○)、ベース電解液に比較例添加剤Etを5wt%混合したもの(□)、ベース電解液に実施例添加剤Et2を5wt%混合したもの(◇)〕について、環境温度25℃における(a)サイクル増加に伴う放電容量維持率の変化と、(b)サイクル増加に伴うクーロン効率の変化を示す図面。The same three types of batteries as in FIG. 2 (base electrolyte as it is without additives (◯), base electrolyte mixed with 5 wt% of comparative additive Et (□), and examples added to base electrolyte) Drawing which shows change of discharge capacity maintenance rate with (a) cycle increase at environmental temperature of 25 ° C. and (b) change of coulomb efficiency with increase of cycle for mixture of Et2 with 5 wt% (剤)]. 図4と同じ3種類の電池について、環境温度45℃における(a)サイクル増加に伴う放電容量維持率の変化と、(b)サイクル増加に伴うクーロン効率の変化を示す図面。FIG. 5 shows (a) a change in discharge capacity retention rate with an increase in cycle at an environmental temperature of 45 ° C. and (b) a change in coulomb efficiency with an increase in cycle for the same three types of batteries as in FIG. 4. 図4と同じ3種類の電池について、環境温度55℃における(a)サイクル増加に伴う放電容量維持率の変化と、(b)サイクル増加に伴うクーロン効率の変化を示す図面。FIG. 5 shows (a) a change in discharge capacity retention rate with an increase in cycle and (b) a change in coulomb efficiency with an increase in cycle for the same three types of batteries as in FIG. 4. 図4と同じ3種類の電池について、環境温度65℃における(a)サイクル増加に伴う放電容量維持率の変化と、(b)サイクル増加に伴うクーロン効率の変化を示す図面。FIG. 5 shows (a) a change in discharge capacity retention rate with an increase in cycle at an environmental temperature of 65 ° C. and (b) a change in coulomb efficiency with an increase in cycle for the same three types of batteries as in FIG. 4. 図4と同じ3種類の非水電解液電池について、(a)環境温度が25℃での30サイクル後の時点、(b)45℃での30サイクル後の時点、(c)55℃での40サイクル後の時点、(d)65℃での50サイクル後の時点における1.0C充電時の交流インピーダンスを示す図面。For the same three types of nonaqueous electrolyte batteries as in FIG. 4, (a) the time point after 30 cycles at an ambient temperature of 25 ° C., (b) the time point after 30 cycles at 45 ° C., (c) at 55 ° C. The drawing which shows the alternating current impedance at the time of 1.0C charge in the time after 40 cycles and (d) the time after 50 cycles at 65 degreeC.

本発明の新規な部分フッ素化ビニルリン酸エステル化合物は、次の式(i)で表されるものである。
(CF3CH2O)2P(O)CH=CH2 ・・・・・(i)
該部分フッ素化ビニルリン酸エステル化合物は、どのような製造方法により製造されたものでも良いが、後述の実施例1に記載したように、触媒Ni(PMe3)4の存在下、(CF3CH2O)2P(O)Hの溶液にアセチレンガスを吹き込むことにより好適に製造することができる。
The novel partially fluorinated vinyl phosphate ester compound of the present invention is represented by the following formula (i).
(CF 3 CH 2 O) 2 P (O) CH = CH 2 (i)
The partially fluorinated vinyl phosphate ester compound may be produced by any production method, but as described in Example 1 described later, in the presence of the catalyst Ni (PMe 3 ) 4 , (CF 3 CH It can be preferably produced by blowing acetylene gas into a solution of 2 O) 2 P (O) H.

本発明の部分フッ素化ビニルリン酸エステル化合物は、非水電解液に添加した場合に、優れた難燃性を付与するとともに、該非水電解液を具備する非水電解液二次電池に対し室温よりも高い環境温度下での良好なサイクル特性を発揮せしめることができる。
ここで、室温よりも高い環境温度とは、25℃を超える温度であり、45℃以上、50℃以上、55℃以上などを意味する。良好なサイクル特性が発揮される温度の上限は、特に限定するものではないが、通常、80℃以下、好ましくは70℃以下、より好ましくは60℃以下である。
本発明の非水電解液二次電池は、その作動の全期間において高温環境温度下にあっても良いし、一部の作動期間だけ高温環境下にあっても有効である。
The partially fluorinated vinyl phosphate compound of the present invention, when added to a non-aqueous electrolyte, imparts excellent flame retardancy, and from room temperature to a non-aqueous electrolyte secondary battery comprising the non-aqueous electrolyte. Can exhibit good cycle characteristics even at high ambient temperatures.
Here, the environmental temperature higher than room temperature is a temperature exceeding 25 ° C, and means 45 ° C or higher, 50 ° C or higher, 55 ° C or higher, and the like. The upper limit of the temperature at which good cycle characteristics are exhibited is not particularly limited, but is usually 80 ° C. or lower, preferably 70 ° C. or lower, more preferably 60 ° C. or lower.
The non-aqueous electrolyte secondary battery of the present invention may be at a high temperature environment temperature for the entire operation period, or is effective even under a high temperature environment for a part of the operation period.

本発明の非水電解液は、有機溶媒、該有機溶媒に溶解される電解質塩、及び、前記部分フッ素化ビニルリン酸エステル化合物からなる添加剤を含んでいる。該添加剤は、非水電解液用難燃性添加剤、非水電解液用難燃剤などとも言うことができる。
非水電解液における前記添加剤の添加量は、非水電解液に対する難燃性の付与効果と、非水電解液二次電池に対する高温環境下でのサイクル特性向上効果を考慮して設定される。少なすぎると前記効果を得るのが困難であるし、一方、多くしすぎると前記効果が飽和し逆に悪影響を及ぼす可能性がある。非水電解液における前記添加剤の添加量は、通常1〜20wt%、好ましくは2〜15wt%、より好ましくは3〜12wt%、さらに好ましくは4〜10wt%である。
The nonaqueous electrolytic solution of the present invention contains an additive comprising an organic solvent, an electrolyte salt dissolved in the organic solvent, and the partially fluorinated vinyl phosphate compound. The additive can also be referred to as a flame retardant additive for non-aqueous electrolyte, a flame retardant for non-aqueous electrolyte, and the like.
The addition amount of the additive in the non-aqueous electrolyte is set in consideration of the effect of imparting flame retardancy to the non-aqueous electrolyte and the effect of improving the cycle characteristics in a high-temperature environment for the non-aqueous electrolyte secondary battery. . If the amount is too small, it is difficult to obtain the effect. On the other hand, if the amount is too large, the effect may be saturated and adversely affected. The additive amount of the additive in the nonaqueous electrolytic solution is usually 1 to 20 wt%, preferably 2 to 15 wt%, more preferably 3 to 12 wt%, and further preferably 4 to 10 wt%.

非水電解液に含有される電解質塩としては、限定するものではないが、ヘキサフルオロリン酸リチウム(LiPF6)、テトラフルオロ硼酸リチウム(LiBF4)、過塩素酸リチウム(LiClO4)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、トリフルオロメタンスルホン酸イミドリチウム(LiN(CF3SO2)2)等のリチウム塩を用いることができる。好適にはヘキサフルオロリン酸リチウム(LiPF6)を用いることができる。
非水電解液における電解質塩の添加量は、非水電解液の導電率が充分に高くて内部抵抗を低く保つことができ、低温で塩が析出して不具合を生じることがないように設定される。通常は、0.3〜3.0mol/L、より好ましくは、0.5〜2.0mol/Lである。
The electrolyte salt contained in the non-aqueous electrolyte is not limited, but is lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), trifluoromethane. Lithium salts such as lithium sulfonate (LiCF 3 SO 3 ) and lithium trifluoromethanesulfonate imide (LiN (CF 3 SO 2 ) 2 ) can be used. Preferably, lithium hexafluorophosphate (LiPF 6 ) can be used.
The amount of electrolyte salt added to the non-aqueous electrolyte is set so that the conductivity of the non-aqueous electrolyte is sufficiently high and the internal resistance can be kept low, so that the salt does not precipitate at low temperatures. The Usually, it is 0.3-3.0 mol / L, More preferably, it is 0.5-2.0 mol / L.

非水電解液を構成する有機溶媒としては、非水電解液二次電池用の公知のものをいずれも使用することができる。そのような有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1,2−ジメトキシエタン、1,2−ジエトキシエタン、エトキシメトキシエタン等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類などを挙げることができ、これらの一種又は二種以上を混合して使用する。なかでも環状カーボネートと鎖状カーボネートとの混合物を主要成分とするものが好ましい。環状カーボネートと鎖状カーボネートとの好適な混合溶媒としては、主要成分がエチレンカーボネート(EC)とジメチルカーボネート(DMC)であるものが挙げられる。例えば、前記有機溶媒を30〜70vol%(好ましくは40〜60vol%)のECと、70〜30vol%(好ましくは60〜40vol%)のDMCから構成することができる。   As the organic solvent constituting the non-aqueous electrolyte, any known solvent for non-aqueous electrolyte secondary batteries can be used. Examples of such organic solvents include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate, butylene carbonate, and vinylene carbonate, and chain structures such as dimethyl carbonate (DMC), diethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate. Carbonates, aliphatic carboxylic acid esters such as methyl formate, methyl acetate, methyl propionate, ethyl propionate, γ-lactones such as γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, Examples include chain ethers such as ethoxymethoxyethane, and cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran. These are used alone or in combination. Of these, those containing a mixture of a cyclic carbonate and a chain carbonate as main components are preferred. Suitable mixed solvents of cyclic carbonate and chain carbonate include those whose main components are ethylene carbonate (EC) and dimethyl carbonate (DMC). For example, the organic solvent can be composed of 30 to 70 vol% (preferably 40 to 60 vol%) EC and 70 to 30 vol% (preferably 60 to 40 vol%) DMC.

本発明の非水電解液二次電池は、前記非水電解液の外、正極、負極などを具備する。
電池の形状としては、円筒形、角形、コイン型、ボタン型、ペーパー型などを含め何ら限定されず、様々な形状を採用することができる。
正極に用いる活物質としては、限定するものではないが、好ましくはLiCoO2である。負極に用いる活物質としては、限定するものではないが、好ましくはLi金属又はLi合金である。これらの好ましい正極活物質LiCoO2と負極活物質Li金属又はLi合金を用いた場合、他の正極活物質(LiFePO4、LiMn2O4等)を用いた場合よりも、室温より高い温度でのサイクル特性がより良好であった。このことから、本発明の添加剤は、LiCoO2正極やLi金属又はLi合金負極に対して高い環境温度下でのより優れた劣化抑制効果を奏していると言える。
The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, and the like in addition to the non-aqueous electrolyte.
The shape of the battery is not limited at all including a cylindrical shape, a square shape, a coin shape, a button shape, a paper shape, and the like, and various shapes can be adopted.
The active material used for the positive electrode is not limited, but LiCoO 2 is preferable. The active material used for the negative electrode is not limited, but is preferably a Li metal or a Li alloy. When these preferred positive electrode active materials LiCoO 2 and negative electrode active materials Li metal or Li alloy are used, at a temperature higher than room temperature than when other positive electrode active materials (LiFePO 4 , LiMn 2 O 4, etc.) are used. The cycle characteristics were better. From this, it can be said that the additive of the present invention has a more excellent deterioration suppressing effect under a high environmental temperature with respect to the LiCoO 2 positive electrode and the Li metal or Li alloy negative electrode.

以下、実施例に基づいて本発明をさらに詳細に説明するが、本発明は、これら実施例に限定されず、本発明の要旨を逸脱しない範囲で、各種材料変更、設定調整等を適宜行うことができる。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to these examples, and various material changes, setting adjustments, and the like are appropriately performed without departing from the gist of the present invention. Can do.

(実施例1)<部分フッ素化ビニルリン酸エステル化合物(CF3CH2O)2P(O)CH=CH2の合成>
窒素雰囲気下、室温で50mLの反応容器に、(CF3CH2O)2P(O)H(1mmol)をトルエン(5mL)に加えた。続いて、アセチレンガスをバブリングで加え、反応容器をアセチレンガス雰囲気に置換した。ニッケル触媒Ni(PMe3)4(反応基質に対して5mol%)を加え、アセチレンガスをバブリングしながら5時間反応させた後、減圧下溶媒を除去し、残留物をカラムクロマトグラフィー(SiO2、ヘキサン/イソプロピルアルコール=20/1)で精製した(収率86%)。
精製されたものの分析結果は、次のとおりであった。
HRMS:理論値272.0037、測定値:272.0036.
1H NMR(400MHz,CDCl3):δ 6.04-6.48(m,3H),4.33-4.41(m,4H).
31P NMR(162MHz,CDCl3):δ 20.03.
これらの分析結果から、(CF3CH2O)2P(O)CH=CH2で表される部分フッ素化ビニルリン酸エステル化合物と同定された。この化合物は、CASなどに登録されていない新規な化合物である。
Example 1 <Synthesis of Partially Fluorinated Vinyl Phosphate Compound (CF 3 CH 2 O) 2 P (O) CH═CH 2 >
In a 50 mL reaction vessel at room temperature under a nitrogen atmosphere, (CF 3 CH 2 O) 2 P (O) H (1 mmol) was added to toluene (5 mL). Subsequently, acetylene gas was added by bubbling, and the reaction vessel was replaced with an acetylene gas atmosphere. Nickel catalyst Ni (PMe 3 ) 4 (5 mol% with respect to the reaction substrate) was added and reacted for 5 hours while bubbling acetylene gas. Then, the solvent was removed under reduced pressure, and the residue was subjected to column chromatography (SiO 2 , SiO 2 , Purification was performed using hexane / isopropyl alcohol (20/1) (yield 86%).
The analysis results of the purified product were as follows.
HRMS: theoretical value 272.0037, measured value: 272.0036.
1 H NMR (400 MHz, CDCl 3 ): δ 6.04-6.48 (m, 3H), 4.33-4.41 (m, 4H).
31 P NMR (162 MHz, CDCl 3 ): δ 20.03.
From these analysis results, it was identified as a partially fluorinated vinyl phosphate compound represented by (CF 3 CH 2 O) 2 P (O) CH═CH 2 . This compound is a novel compound not registered in CAS or the like.

(実施例2、比較例)<所定環境温度下での電池サイクル特性試験I>
エチレンカーボネート(EC)とジメチルカーボネート(DMC)(EC:DMC=1:1(体積比))の混合溶媒に1mol/LのLiPF6を溶解したもの〔キシダ化学、リチウム電池グレード(LBG)〕をベース電解液とした。
比較例の添加剤(a)として、(CH3O)2P(O)CH=CH2(以下、「Me」という。)を、比較例の添加剤(b)として、CH3O(C2H5O)P(O)CH=CH2(以下、「MeEt」という。)を準備するとともに、実施例の添加剤(c)として、上記実施例1で合成した部分フッ素化ビニルリン酸エステル化合物(CF3CH2O)2P(O)CH=CH2(以下、「Et2」という。)を用いた。
ベース電解液にそれぞれ、Me、MeEt、Et2を5wt%混合し、比較例(a)、(b)の2種類の電解液と、実施例(c)の電解液を調製した。
これら3種類の非水電解液を使用し、正極活物質としてのLiCoO2を86wt%、導電助剤としてのアセチレンブラックを7wt%、結着剤としてポリフッ化ビニリデンを7wt%用いた正極と、負極活物質としてLi金属を用いた負極とを共通して備え、電解液のみが異なる3種類の非水電解液電池を、水蒸気と酸素が1ppm未満のアルゴンガス置換グローブボックス内で組み立てた。
(Example 2, comparative example) <Battery cycle characteristic test I under a predetermined environmental temperature>
1 mol / L LiPF 6 dissolved in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (EC: DMC = 1: 1 (volume ratio)) [Kishida Chemical, Lithium Battery Grade (LBG)] A base electrolyte was used.
As the additive (a) of the comparative example, (CH 3 O) 2 P (O) CH═CH 2 (hereinafter referred to as “Me”) was used, and as the additive (b) of the comparative example, CH 3 O (C 2 H 5 O) P (O) CH═CH 2 (hereinafter referred to as “MeEt”) and the partially fluorinated vinyl phosphate synthesized in Example 1 as an additive (c) of the Example The compound (CF 3 CH 2 O) 2 P (O) CH═CH 2 (hereinafter referred to as “Et2”) was used.
Each of the base electrolytes was mixed with 5 wt% of Me, MeEt, Et2 to prepare two types of electrolytes of Comparative Examples (a) and (b) and an electrolyte solution of Example (c).
Using these three types of non-aqueous electrolytes, a positive electrode using 86 wt% of LiCoO 2 as a positive electrode active material, 7 wt% of acetylene black as a conductive additive, and 7 wt% of polyvinylidene fluoride as a binder, and a negative electrode Three types of non-aqueous electrolyte batteries that are commonly provided with a negative electrode using Li metal as an active material and differ only in the electrolyte were assembled in an argon gas-substituted glove box with less than 1 ppm of water vapor and oxygen.

これら3種類の非水電解液電池について、1.0Cの条件で、環境温度を25℃から順次、45℃、55℃に変更し、充放電サイクル特性試験を行った。
図1(a)、(b)、(c)に、各電池について、サイクル数増加に伴う正極活物質単位重量当たりの放電容量の変化を示す。
室温25℃では、実施例の添加剤Et2を含有する非水電解液電池(c)は、比較例の添加剤MeEt含有電池(b)よりもサイクル数増加に伴う容量減少が少ないものの、比較例の添加剤Me含有電池(a)とそれほど大きな差異はなかった。しかしながら、環境温度を45℃や55℃に変更した後については、実施例の添加剤Et2を含有する非水電解液電池(c)は、比較例の電池(a)、(b)に比べ、サイクル増加に伴う容量減少が顕著に小さくなっており、室温よりも高い45℃以上の環境温度下での容量維持率が顕著に優れていることが分かる。
These three types of non-aqueous electrolyte batteries were subjected to charge / discharge cycle characteristics tests under the condition of 1.0C, changing the environmental temperature from 25 ° C to 45 ° C and 55 ° C sequentially.
FIGS. 1A, 1B, and 1C show the change in discharge capacity per unit weight of the positive electrode active material as the number of cycles increases for each battery.
At room temperature of 25 ° C., the non-aqueous electrolyte battery (c) containing the additive Et2 of the example has a smaller capacity decrease due to the increase in the number of cycles than the additive MeEt-containing battery (b) of the comparative example. The additive Me-containing battery (a) was not so different. However, after changing the environmental temperature to 45 ° C. or 55 ° C., the non-aqueous electrolyte battery (c) containing the additive Et2 of Example is compared with the batteries (a) and (b) of Comparative Examples. It can be seen that the capacity decrease with the increase in the cycle is remarkably small, and the capacity retention rate at an ambient temperature of 45 ° C. or higher, which is higher than the room temperature, is remarkably excellent.

(実施例3、比較例)<所定環境温度下での電池サイクル特性試験II>
比較例の添加剤として、(C2H5O)2P(O)CH=CH2(DEVP、以下、「Et」という。)と、実施例の添加剤Et2を準備した。
前記ベース電解液そのままで、添加剤を含まないもの(a)と、ベース電解液に比較例添加剤のEtを5wt%混合したもの(b)と、ベース電解液に実施例添加剤のEt2を5wt%混合したもの(c)、の3種類の非水電解液を調製した。
これら3種類の非水電解液(a)、(b)、(c)を使用し、電解液以外は上記実施例2と同様にして、電解液のみが異なる3種類の非水電解液電池を組み立てた。
これら3種類の非水電解液電池について、1.0Cの条件で、環境温度を25℃から順次、45℃、55℃、65℃、75℃、65℃に変更し、充放電サイクル特性試験を行った(ただし、(b)については、75℃の段階で放電容量が低下してしまったため、その後の65℃への変更は行わなかった。)。その際、各電池について、(a)環境温度が25℃での30サイクル後の時点、(b)45℃での30サイクル後の時点、(c)55℃での40サイクル後の時点、(d)65℃での50サイクル後の時点において1.0C充電時の交流インピーダンスを測定した。
(Example 3, comparative example) <Battery cycle characteristic test II under a predetermined environmental temperature>
As the additive of the comparative example, (C 2 H 5 O) 2 P (O) CH═CH 2 (DEVP, hereinafter referred to as “Et”) and the additive Et2 of the example were prepared.
The base electrolyte as it is (a) containing no additive, the base electrolyte mixed with 5 wt% of the comparative example additive Et (b), and the base electrolyte containing the example additive Et2 Three types of non-aqueous electrolytes, 5 wt% mixed (c), were prepared.
Using these three types of non-aqueous electrolytes (a), (b), and (c), except for the electrolyte solution, three types of non-aqueous electrolyte batteries differing only in the electrolyte solution were obtained in the same manner as in Example 2 above. Assembled.
For these three types of non-aqueous electrolyte batteries, the environmental temperature was changed from 25 ° C to 45 ° C, 55 ° C, 65 ° C, 75 ° C and 65 ° C under 1.0C conditions, and charge / discharge cycle characteristics tests were conducted. (However, as for (b), since the discharge capacity decreased at the stage of 75 ° C., the subsequent change to 65 ° C. was not performed.) At that time, for each battery, (a) a time point after 30 cycles at 25 ° C., (b) a time point after 30 cycles at 45 ° C., (c) a time point after 40 cycles at 55 ° C., ( d) The AC impedance at the time of 1.0 C charging was measured at the time after 50 cycles at 65 ° C.

<<サイクル増加と環境温度変化に伴う放電容量、クーロン効率の変化>>
図2(a)、(b)、(c)に、各電池について、サイクル数増加と環境温度変化に伴う正極活物質単位重量当たりの放電容量の変化を示す。比較例添加剤Et含有の電池(b)は、添加剤を含まない比較例の電池(a)に比べても、環境温度が45℃以上において、サイクル増加に伴う容量減少が大きくなっている。これに対し、実施例添加剤Et2を含有する電池(c)は、環境温度を45℃、55℃、65℃、75℃に変更した後については、添加剤を含まない比較例の電池(a)や、比較例添加剤Et含有の電池(b)に比べ、サイクル増加に伴う容量減少が顕著に小さくなっており、室温よりも高い45℃以上の環境温度下での容量維持率が顕著に優れていることが分かる。
図3(a)、(b)、(c)に、各電池について、サイクル増加と環境温度変化に伴うクーロン効率(=放電容量/充電容量)の変化を示す。クーロン効率は、1に近いほど望ましく、1より小さい場合、電池反応以外の分解反応などが充電時に起こっていることを意味している。添加剤を含まない比較例の電池(a)や、比較例添加剤Et含有の電池(b)では、45℃の環境温度でもクーロン効率が大きく減少した。これに対し、実施例添加剤Et2を含有する電池(c)は、45℃や55℃の環境温度ではクーロン効率の減少幅が顕著に小さいし、また、65℃では一旦大きく減少するものの、速やかに回復するのが見られた。
これら図2,3の結果から、実施例添加剤Et2を含有する電池(c)は、45℃以上の環境温度下でクーロン効率が高く、容量維持率も高いので、室温よりも高い温度下で使用するのに望ましい電池であると言える。
<< Changes in discharge capacity and coulombic efficiency due to cycle increase and environmental temperature change >>
FIGS. 2A, 2B, and 2C show changes in discharge capacity per unit weight of the positive electrode active material associated with an increase in the number of cycles and environmental temperature changes for each battery. The battery (b) containing the comparative example additive Et has a larger capacity decrease with the increase of the cycle when the environmental temperature is 45 ° C. or higher than the battery (a) of the comparative example containing no additive. On the other hand, the battery (c) containing the additive Et2 of Example has a comparative battery (a) containing no additive after the environmental temperature is changed to 45 ° C, 55 ° C, 65 ° C and 75 ° C. ) And comparative example additive Et-containing battery (b), the capacity decrease with the increase in the cycle is remarkably small, and the capacity retention rate at an ambient temperature of 45 ° C. or higher, which is higher than room temperature, is remarkable. It turns out that it is excellent.
FIGS. 3A, 3B, and 3C show changes in coulomb efficiency (= discharge capacity / charge capacity) accompanying cycle increase and environmental temperature change for each battery. Coulomb efficiency is preferably as close to 1 as possible, and when it is less than 1, it means that a decomposition reaction other than the battery reaction occurs during charging. In the comparative example battery (a) containing no additive and the comparative example additive Et-containing battery (b), the coulomb efficiency was greatly reduced even at an environmental temperature of 45 ° C. On the other hand, the battery (c) containing the example additive Et2 has a remarkably small decrease in the coulomb efficiency at the environmental temperature of 45 ° C. and 55 ° C., and rapidly decreases once at 65 ° C. It was seen to recover.
From these results of FIGS. 2 and 3, the battery (c) containing the example additive Et2 has a high coulomb efficiency and a high capacity retention rate at an environmental temperature of 45 ° C. or higher. It can be said that it is a desirable battery to use.

<<各環境温度下におけるサイクル増加に伴う放電容量維持率とクーロン効率の変化>>
図4〜7は、添加剤を含まない比較例の電池(○)、比較例添加剤Et含有の電池(□)、及び、実施例添加剤Et2含有の電池(◇)について、環境温度が25℃(図4)、45℃(図5)、55℃(図6)、65℃(図7)における(a)サイクル増加に伴う放電容量維持率〔=各サイクルの放電容量/所定環境温度における第1番目のサイクルにおける放電容量〕の変化と、(b)サイクル増加に伴うクーロン効率(=放電容量/充電容量)の変化を示したものである(なお、横軸のサイクルの数字は、所定環境温度変更後からカウントしたサイクル数を意味する。)。図2,3と同様、図4〜7から見ても、実施例添加剤Et2含有の電池(◇)は、45℃以上の高い温度において、放電容量維持率、クーロン効率とも良好であることが分かる。
<< Changes in discharge capacity maintenance ratio and coulomb efficiency with increasing cycle at each ambient temperature >>
FIGS. 4 to 7 show that the environmental temperature of the comparative battery (◯) containing no additive, the battery containing the comparative additive Et (□), and the battery containing the example additive Et2 (◇) is 25. (A) Discharge capacity maintenance rate with increasing cycle at = ° C. (FIG. 4), 45 ° C. (FIG. 5), 55 ° C. (FIG. 6), 65 ° C. (FIG. 7) The change in the discharge capacity in the first cycle] and (b) the change in coulomb efficiency (= discharge capacity / charge capacity) with an increase in the cycle are shown. This means the number of cycles counted since the environmental temperature was changed.) Similar to FIGS. 2 and 3, as seen from FIGS. 4 to 7, the battery (◇) containing Example additive Et2 has a good discharge capacity maintenance rate and coulomb efficiency at a high temperature of 45 ° C. or higher. I understand.

<<各環境温度下における充電時の交流インピーダンス(EIS)>>
図8(a)〜(d)に、前記3種類の各電池について、(a)環境温度が25℃での30サイクル後の時点、(b)45℃での30サイクル後の時点、(c)55℃での40サイクル後の時点、(d)65℃での50サイクル後の時点において1.0C充電時の交流インピーダンス(電気化学インピーダンス、EIS)を測定した結果を示す。実施例添加剤Et2含有の電池(◇)は、25℃の環境温度では、添加剤を含まない比較例の電池(○)や、比較例添加剤Et含有の電池(□)よりも交流インピーダンスがやや大きいことから、25℃(室温)環境下でのサイクル特性は、比較例の電池(○、□)よりも必ずしも良好であるとは言えない。しかしながら、実施例添加剤Et2含有の電池(◇)の充電時交流インピーダンスは、45℃以上で比較例の電池(○、□)よりも小さくなり、特に、55℃や65℃では、比較例の電池(○、□)よりも大幅に小さくなっており、45℃程度を境として比較例よりも劇的に良好となっていることが明らかである。上記実施例1や実施例2の結果を併せ考慮すると、実施例の添加剤Et2は、環境温度上昇の際の活物質の電解液界面における界面電荷移動抵抗の増加等の劣化因子を取り除く効果を奏していると考えることができる。
<< AC impedance (EIS) during charging at each ambient temperature >>
8A to 8D, for each of the three types of batteries, (a) a time point after 30 cycles at 25 ° C., (b) a time point after 30 cycles at 45 ° C., (c The results of measuring AC impedance (electrochemical impedance, EIS) during 1.0C charging at the time point after 40 cycles at 55 ° C. and (d) the time point after 50 cycles at 65 ° C. are shown. The battery containing the additive Et2 in Example (◇) has an AC impedance higher than that of the battery (Comparative Example) containing no additive and the battery containing the additive Et (Comparative Example) (□) at an environmental temperature of 25 ° C. Since it is somewhat large, it cannot be said that the cycle characteristics in a 25 ° C. (room temperature) environment are necessarily better than the batteries of the comparative examples (◯, □). However, the AC impedance during charging of the battery containing the additive Et2 of Example (◇) is lower than that of the comparative battery (◯, □) at 45 ° C or higher, and especially at 55 ° C or 65 ° C, It is clearly smaller than the battery (◯, □) and is dramatically better than the comparative example at about 45 ° C. as a boundary. Considering the results of Example 1 and Example 2 above, the additive Et2 of the example has the effect of removing deterioration factors such as an increase in interfacial charge transfer resistance at the electrolyte interface of the active material when the environmental temperature rises. You can think that you are playing.

(実施例4)<非水電解液の難燃性評価実験>
前記ベース電解液に、添加剤を添加しないもの、実施例の添加剤Et2を5wt%添加したもの、及び、実施例の添加剤Et2を10wt%添加したもの、の3種類の非水電解液0.5mLを調製した。
市販されているグラスフィルター繊維を幅15mm、長さ40mmの短冊状に切断し、シャーレに入れた各電解液に1分間浸漬させた。その後、液中から取り出し過剰な電解液を除くため別のシャーレに移し1分間大気中に置いた。このようにして電解液を含浸させたガラスフィルターを長さ方向が水平となるように、一端を自由端とし他端を固定した。その一端よりライターで3秒間着火し、火元を取り除いた状態から消炎するまでの時間と燃焼率〔(一端から火が到達した位置までの長さ/フィルターの長さ)×100〕で難燃性を評価した。結果を表1に示す。
なお、実施例の添加剤Et2自体に対するライターによる着火実験も行ったが、実施例添加剤Et2自体は着火しなかった。
上記の実験から明らかなように、本発明の添加剤Et2は非水電解液に対して優れた消炎効果乃至難燃性効果があることが分かった。
(Example 4) <Flame retardance evaluation experiment of non-aqueous electrolyte>
Three types of non-aqueous electrolytes 0.5% without additive, 5% by weight of the additive Et2 of the example, and 10% by weight of the additive Et2 of the example were added to the base electrolyte 0.5% mL was prepared.
A commercially available glass filter fiber was cut into strips having a width of 15 mm and a length of 40 mm, and immersed in each electrolyte solution placed in a petri dish for 1 minute. Then, it took out from the liquid, moved to another petri dish to remove excess electrolyte, and left in the atmosphere for 1 minute. The glass filter impregnated with the electrolytic solution in this way was fixed with one end as a free end and the other end fixed so that the length direction was horizontal. Flame ignited with a lighter for 3 seconds from one end, and the time and flame rate ((length from one end to the position where the fire reached / filter length) x 100) after the fire source was removed and extinguished Sex was evaluated. The results are shown in Table 1.
In addition, although the ignition experiment with the lighter was performed on the additive Et2 itself of the example, the example additive Et2 itself was not ignited.
As is clear from the above experiment, it was found that the additive Et2 of the present invention has an excellent flame retardant effect or flame retardant effect with respect to the non-aqueous electrolyte.

Figure 0006183830
Figure 0006183830

Claims (4)

次の式(i)で表される部分フッ素化ビニルリン酸エステル化合物からなる添加剤を3〜12wt%含む非水電解液を備え、45℃以上となる環境下で使用される非水電解液二次電池。
(CF3CH2O)2P(O)CH=CH2 ・・・・・(i)
A non-aqueous electrolyte solution comprising a non-aqueous electrolyte solution containing 3 to 12 wt% of an additive composed of a partially fluorinated vinyl phosphate ester compound represented by the following formula (i) and used in an environment of 45 ° C. or higher Secondary battery.
(CF 3 CH 2 O) 2 P (O) CH = CH 2 (i)
正極活物質がLiCoO2である請求項1に記載の非水電解液二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material is LiCoO 2 . 負極活物質がLi金属又はLi合金である請求項1又は2に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material is Li metal or Li alloy. 前記非水電解液を構成する有機溶媒が30〜70vol%のエチレンカーボネートと、70〜30vol%のジメチルカーボネートからなる請求項1〜のいずれか1項に記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3 , wherein an organic solvent constituting the non-aqueous electrolyte is 30 to 70 vol% ethylene carbonate and 70 to 30 vol% dimethyl carbonate.
JP2013083984A 2013-04-12 2013-04-12 Non-aqueous electrolyte additive, flame retardant non-aqueous electrolyte, non-aqueous electrolyte secondary battery Active JP6183830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013083984A JP6183830B2 (en) 2013-04-12 2013-04-12 Non-aqueous electrolyte additive, flame retardant non-aqueous electrolyte, non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013083984A JP6183830B2 (en) 2013-04-12 2013-04-12 Non-aqueous electrolyte additive, flame retardant non-aqueous electrolyte, non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2014205637A JP2014205637A (en) 2014-10-30
JP6183830B2 true JP6183830B2 (en) 2017-08-23

Family

ID=52119537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013083984A Active JP6183830B2 (en) 2013-04-12 2013-04-12 Non-aqueous electrolyte additive, flame retardant non-aqueous electrolyte, non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6183830B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428716A (en) * 2015-12-10 2016-03-23 合肥国轩高科动力能源有限公司 Lithium-ion battery electrolyte and lithium-ion battery containing electrolyte
JP7282017B2 (en) * 2019-11-27 2023-05-26 丸善石油化学株式会社 Method for producing alkenyl phosphorus compound
CN111342131A (en) * 2020-03-04 2020-06-26 河南省法恩莱特新能源科技有限公司 4.4V high-voltage manganese-based ternary lithium ion battery electrolyte and preparation method thereof
CN112038696B (en) * 2020-08-07 2022-07-05 合肥国轩高科动力能源有限公司 High-voltage electrolyte and lithium ion battery comprising same
CN115706261B (en) * 2021-08-04 2024-03-01 张家港市国泰华荣化工新材料有限公司 Nonaqueous electrolyte and lithium ion battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4407847B2 (en) * 1997-12-02 2010-02-03 株式会社デンソー Flame retardant electrolyte and non-aqueous electrolyte secondary battery
KR100509604B1 (en) * 2003-01-14 2005-08-22 삼성에스디아이 주식회사 Organic electrolytic solution and lithium battery employing the same
US8795903B2 (en) * 2008-08-19 2014-08-05 California Institute Of Technology Lithium-ion electrolytes containing flame retardant additives for increased safety characteristics
JP5303081B2 (en) * 2008-10-08 2013-10-02 国立大学法人福井大学 Positive electrode material for non-aqueous electrolyte secondary battery
JP2013055031A (en) * 2011-08-05 2013-03-21 Sony Corp Nonaqueous electrolytic solution, nonaqueous electrolyte secondary battery, battery pack, electronic device, electric vehicle, power storage device, and electric power system

Also Published As

Publication number Publication date
JP2014205637A (en) 2014-10-30

Similar Documents

Publication Publication Date Title
JP5374871B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP5379688B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery including the same
JP5404567B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
KR101515316B1 (en) Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
JP5484078B2 (en) Nonaqueous electrolyte containing fluorine-containing phosphoric ester amide
CN102569890A (en) Lithium ion secondary battery and electrolyte thereof
KR102371100B1 (en) Flame retardant for electrolytes for batteries
WO2021180135A1 (en) Lithium secondary battery electrolyte and preparation method therefor, and lithium secondary battery and terminal
JP2008300126A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
KR20190057337A (en) Silylester phosphinate as an electrolyte additive
JP5622424B2 (en) Electrolyte for secondary battery
JP6183830B2 (en) Non-aqueous electrolyte additive, flame retardant non-aqueous electrolyte, non-aqueous electrolyte secondary battery
US20130330635A1 (en) Nonaqueous electrolytic solution for secondary battery and nonaqueous electrolytic solution secondary battery
KR20150042091A (en) Electrolyte solution for secondary lithium battery and secondary lithium battery using the same
KR20160109663A (en) Organic electrolytic solution and Lithium battery comprising organic electrolyte solution
JP5403845B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
KR20160057814A (en) Electrolyte for lithium battery, and lithium battery including the electrolyte
JP7194281B2 (en) Electrolyte composition and secondary battery using the same
CN113571769A (en) Electrolyte additive, secondary battery electrolyte, secondary battery and terminal
JP4961714B2 (en) Pentafluorophenyloxy compound, non-aqueous electrolyte using the same, and lithium secondary battery
CN112186254A (en) Electrolyte containing difluoro oxalic acid phosphorus imide lithium and lithium ion battery using electrolyte
CN112713309A (en) Safety lithium ion battery electrolyte and lithium ion battery thereof
JP2022551173A (en) Composition
EP4156364B1 (en) Secondary battery electrolyte and lithium secondary battery including the same
CN111740166B (en) Electrolyte containing bis (trifluorophosphoalkyl) imide salt and lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170719

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170720

R150 Certificate of patent or registration of utility model

Ref document number: 6183830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250