JP6182248B2 - Die bonder - Google Patents

Die bonder Download PDF

Info

Publication number
JP6182248B2
JP6182248B2 JP2016157074A JP2016157074A JP6182248B2 JP 6182248 B2 JP6182248 B2 JP 6182248B2 JP 2016157074 A JP2016157074 A JP 2016157074A JP 2016157074 A JP2016157074 A JP 2016157074A JP 6182248 B2 JP6182248 B2 JP 6182248B2
Authority
JP
Japan
Prior art keywords
image
semiconductor die
bonding tool
reference line
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016157074A
Other languages
Japanese (ja)
Other versions
JP2016189495A (en
Inventor
正人 辻
正人 辻
沖人 梅原
沖人 梅原
圭一 比留間
圭一 比留間
亮 浦橋
亮 浦橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinkawa Ltd
Original Assignee
Shinkawa Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinkawa Ltd filed Critical Shinkawa Ltd
Priority to JP2016157074A priority Critical patent/JP6182248B2/en
Publication of JP2016189495A publication Critical patent/JP2016189495A/en
Application granted granted Critical
Publication of JP6182248B2 publication Critical patent/JP6182248B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ダイボンダの構造およびボンディングツールとボンディングツールの先端に吸着された半導体ダイとの相対位置の検出方法に関する。   The present invention relates to a structure of a die bonder and a method for detecting a relative position between a bonding tool and a semiconductor die adsorbed on the tip of the bonding tool.

半導体ダイをリードフレーム等の回路基板にボンディングする装置としてダイボンダが多く用いられている。ダイボンダは、ボンディングステージの上に吸着固定した回路基板の表面に向かってボンディングツールの先端に吸着保持した半導体ダイを降下させ、半導体ダイを回路基板上にボンディングするものである。   A die bonder is often used as an apparatus for bonding a semiconductor die to a circuit board such as a lead frame. The die bonder lowers the semiconductor die sucked and held at the tip of the bonding tool toward the surface of the circuit board sucked and fixed on the bonding stage, and bonds the semiconductor die onto the circuit board.

ダイボンダでは、ボンディングツールに吸着された半導体ダイの位置を回路基板のボンディング位置に合わせた状態で半導体ダイを回路基板に押し付けることが必要となる。このため、ボンディングツールによって半導体ダイを移送する際に、ボンディングツールに吸着された半導体ダイの裏面の画像を取得し、半導体ダイ裏面のアライメントマークに基づいて半導体ダイと回路基板との相対位置を合わせる方法が用いられている(例えば、特許文献1参照)。   In the die bonder, it is necessary to press the semiconductor die against the circuit board in a state where the position of the semiconductor die attracted by the bonding tool is matched with the bonding position of the circuit board. For this reason, when the semiconductor die is transferred by the bonding tool, an image of the back surface of the semiconductor die attracted by the bonding tool is acquired, and the relative position of the semiconductor die and the circuit board is aligned based on the alignment mark on the back surface of the semiconductor die. The method is used (for example, refer patent document 1).

しかし、特許文献1に記載された方法では、画像を取得する際に半導体ダイの移送を一時停止する必要があり、タクトタイムが長くなってしまうという問題があった。そこで、半導体ダイの移載ヘッドにL字状の連接部材を介してミラーと矩形状の貫通穴を有する基準部材を固定し、移載ヘッドにより半導体ダイを搬送する際に、搬送を一時停止することなく、半導体ダイを撮像した第1画像データと基準部品を撮像した第2画像データとを取得し、この2つの画像データを重ね合わせて、基準部品に対する半導体ダイの位置を検出し、検出結果に応じて半導体ダイの回路基板に搭載する位置を補正する方法が提案されている(例えば、特許文献2参照)。   However, in the method described in Patent Document 1, it is necessary to temporarily stop the transfer of the semiconductor die when acquiring an image, and there is a problem that the tact time becomes long. Therefore, a reference member having a mirror and a rectangular through hole is fixed to the transfer head of the semiconductor die via an L-shaped connecting member, and when the semiconductor die is transferred by the transfer head, the transfer is temporarily stopped. The first image data obtained by imaging the semiconductor die and the second image data obtained by imaging the reference component are obtained, and the position of the semiconductor die with respect to the reference component is detected by superimposing the two image data. A method of correcting the position of the semiconductor die mounted on the circuit board in response to the above has been proposed (see, for example, Patent Document 2).

特開2010−40738号公報JP 2010-40738 A 特開2007−115851号公報JP 2007-115851 A

ところで、特許文献2に記載された従来技術では、基準部材をボンディングに支障のない位置に配置することが必要となることから基準部材からカメラまでの光路と移載ヘッドの先端に吸着された半導体ダイまでの光路とを別の光路とすることが必要となる。一方、基準部材の画像と移載ヘッドの先端に吸着された半導体ダイの画像とを同時に撮像するためには2つの光路を一つにまとめるように光路を構成することが必要となる。また、基準部材からカメラまでの光路長と半導体ダイの表面からカメラまでの光路長とを等しくして基準部材と半導体ダイとの画像のピントが合うようにすることが必要となる。このため、光学系にハーフミラーやプリズムを多用することが必要となり、光学系の構成が複雑になってしまうという問題があった。   By the way, in the prior art described in Patent Document 2, since it is necessary to arrange the reference member at a position that does not hinder bonding, the semiconductor adsorbed on the optical path from the reference member to the camera and the tip of the transfer head It is necessary to make the optical path to the die a different optical path. On the other hand, in order to simultaneously capture the image of the reference member and the image of the semiconductor die attracted to the tip of the transfer head, it is necessary to configure the optical path so that the two optical paths are combined into one. It is also necessary to make the optical path length from the reference member to the camera equal to the optical path length from the surface of the semiconductor die to the camera so that the image of the reference member and the semiconductor die is in focus. For this reason, it is necessary to use many half mirrors and prisms in the optical system, and there is a problem that the configuration of the optical system becomes complicated.

また、特許文献2に記載された従来技術は、基準部材を連接部材によって移載ヘッドに取り付けていることから、移載ヘッドの往復移動によって基準部品が振動し、これによる検出誤差によって半導体ダイの位置ずれが生じる場合があるという問題があった(特許文献2、段落0096参照)。   Further, in the prior art described in Patent Document 2, since the reference member is attached to the transfer head by the connecting member, the reference component vibrates due to the reciprocating movement of the transfer head, and the detection error caused by this causes the detection of the semiconductor die. There has been a problem that misalignment may occur (see Patent Document 2, paragraph 0096).

そこで、本発明は、簡便な構成で効果的にボンディングツールと半導体ダイとの位置ずれを検出することを目的とする。   Accordingly, an object of the present invention is to detect a positional deviation between a bonding tool and a semiconductor die effectively with a simple configuration.

本発明のダイボンダは、先端に半導体ダイを吸着する吸着面と、先端の吸着面よりも太い根元と、吸着面と根元とをつなぎ、長手方向中心線に対して傾斜した傾斜面とを有するボンディングツールと、吸着面と略平行な反射面を有し、根元を把持する把持部と、吸着面の下方に配置され、吸着面に投光する光源と、吸着面の下方に配置され、傾斜面の黒い円形の画像と、傾斜面の円形の画像の外周に隣接する反射面の白いリング状の画像と、傾斜面の円形の画像の中に位置する半導体ダイの下面の白い画像とを同一視野で撮像するカメラと、カメラが撮像した傾斜面の黒い円形の画像と、傾斜面の円形の画像の外周に隣接する反射面の白いリング状の画像と、傾斜面の円形の画像の中に位置する半導体ダイの下面の白い画像とを含む撮像画像に対して画像処理をする画像処理部と、を備え、画像処理部は、カメラが撮像した撮像画像に対し、傾斜面の外周に対する第1の外形基準線及び半導体ダイの縁に対応する第2の外形基準線を設定する外形設定手段を有することを特徴とする。 The die bonder of the present invention is a bonding having an adsorption surface for adsorbing a semiconductor die at the tip, a base thicker than the adsorption surface at the tip, and an inclined surface connecting the adsorption surface and the root and inclined with respect to the longitudinal center line. has a tool, substantially parallel reflecting surfaces and suction surfaces, a grip portion for gripping the root source is disposed below the suction surface, a light source for projecting the suction surface is located below the suction surface, inclined The black circular image of the surface, the white ring-shaped image of the reflecting surface adjacent to the outer periphery of the circular image of the inclined surface, and the white image of the lower surface of the semiconductor die located in the circular image of the inclined surface are the same A camera that captures the field of view, a black circular image of the inclined surface captured by the camera, a white ring-shaped image of the reflective surface adjacent to the outer periphery of the circular image of the inclined surface, and a circular image of the inclined surface captured image including a lower surface white image of the semiconductor die located An image processing unit that performs image processing on the image, and the image processing unit has a second corresponding to the first outer shape reference line and the edge of the semiconductor die with respect to the outer periphery of the inclined surface with respect to the captured image captured by the camera. It has an outline setting means for setting an outline reference line.

本発明のダイボンダにおいて、画像処理部は、第1の外形基準線における第1の中心座標及び第2の外形基準線における第2の中心座標を算出し、第1及び第2の中心座標の差分に基づいてボンディングツールに対する半導体ダイのずれ量を検出するずれ量検出手段と、を備えることとしても好適である。 In the die bonder of the present invention , the image processing unit calculates the first center coordinate on the first outer shape reference line and the second center coordinate on the second outer shape reference line, and the difference between the first and second center coordinates. And a deviation amount detecting means for detecting the deviation amount of the semiconductor die with respect to the bonding tool .

本発明のダイボンダにおいて、画像処理部は、第1の外形基準線と、第2の外形基準線との角度差を算出し、角度差に基づいてボンディングツールに対する半導体ダイの回転方向のずれ量を検出する回転量検出手段と、を備えることとしても好適である。 In the die bonder of the present invention, the image processing unit calculates an angle difference between the first outer shape reference line and the second outer shape reference line, and calculates a deviation amount of the rotation direction of the semiconductor die with respect to the bonding tool based on the angle difference. It is also preferable to include rotation amount detection means for detecting .

本発明のダイボンダにおいて、カメラは、傾斜面及び反射面よりも半導体ダイの下面に合焦する焦点深度を有することとしても好適である。 In the die bonder of the present invention, the camera is also preferable to have a depth of focus that focuses on the lower surface of the semiconductor die rather than the inclined surface and the reflective surface .

本発明のダイボンダにおいて、外形設定手段は、予め定めた二値化閾値を用いて傾斜面の外周に対する第1の外形基準線及び半導体ダイの縁に対応する第2の外形基準線を設定することとしても好適である。 In the die bonder of the present invention , the outer shape setting means sets a first outer shape reference line corresponding to the outer periphery of the inclined surface and a second outer shape reference line corresponding to the edge of the semiconductor die using a predetermined binarization threshold. It is also suitable.

本発明は、簡便な構成で効果的にボンディングツールと半導体ダイとの位置ずれを検出することができるという効果を奏する。   The present invention has an effect that a positional deviation between a bonding tool and a semiconductor die can be detected effectively with a simple configuration.

本発明の実施形態におけるダイボンダの制御システムの構成を示す系統図である。It is a distribution diagram showing the composition of the control system of the die bonder in the embodiment of the present invention. 本発明の実施形態におけるダイボンダのボンディングツールとシャンクとの詳細を示す説明図である。It is explanatory drawing which shows the detail of the bonding tool and shank of the die bonder in embodiment of this invention. 本発明の実施形態におけるダイボンダの動作を示す説明図である。It is explanatory drawing which shows operation | movement of the die bonder in embodiment of this invention. 本発明の実施形態におけるダイボンダのボンディングツールとシャンクの構造と、カメラによって捉えた画像を示す説明図である。It is explanatory drawing which shows the structure of the bonding tool and shank of the die bonder in embodiment of this invention, and the image caught with the camera. 図4に示す画像を二値化処理する工程を示す説明図である。It is explanatory drawing which shows the process of binarizing the image shown in FIG. 図4に示す画像を二値化処理した画像を示す説明図である。It is explanatory drawing which shows the image which binarized the image shown in FIG. 本発明の他の実施形態におけるダイボンダのボンディングツールとリングの構造と、カメラによって捉えた画像を示す説明図である。It is explanatory drawing which shows the structure of the bonding tool and ring of the die bonder in other embodiment of this invention, and the image caught with the camera. 本発明の他の実施形態におけるダイボンダのボンディングツールの構造と、カメラによって捉えた画像を示す説明図である。It is explanatory drawing which shows the structure of the bonding tool of the die bonder in other embodiment of this invention, and the image caught with the camera.

以下、図面を参照しながら本発明の実施形態について説明する。図1に示すように、本発明のダイボンダ10は、シャンク20を介してボンディングツール24が取り付けられるボンディングヘッド15と、ボンディングヘッド15をY方向にガイドするガイドレール11と、ボンディングヘッド15をY方向に移動させるY方向移動機構13と、ガイドレール11とボンディングヘッド15とをX方向に移動させるX方向移動機構12と、ボンディングヘッド15の下側に設けられたカメラ32と、光源であるストロボ34と、カメラ32とストロボ34とが接続される画像処理部40と、X、Y方向移動機構12,13が接続される制御部50を備えている。ボンディングツール24は、先端に半導体ダイ30を吸着する吸着面27を有し、ストロボ34は発光した光をボンディングツール24の方向に向ける反射鏡35を備えている。ボンディングヘッド15は、内部にボンディングツール24をZ方向に移動するZ方向移動機構16と、ボンディングツール24をθ方向に回転移動するθ方向移動機構17とを備えており、各移動機構16,17はそれぞれ制御部50に接続されている。制御部50は、このX,Y,Z,θ方向の各移動機構12,13,16,17を動作させることによって、ボンディングツール24をX,Y,Z,θの各方向に移動させるように構成されている。なお、図1の中の座標軸に示すように、紙面に水平方向がY方向、紙面の上下方向がZ方向、紙面に垂直方向がX方向、Z軸周りの回転方向がθ方向である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, a die bonder 10 of the present invention includes a bonding head 15 to which a bonding tool 24 is attached via a shank 20, a guide rail 11 for guiding the bonding head 15 in the Y direction, and the bonding head 15 in the Y direction. A Y-direction moving mechanism 13 for moving the guide rail 11 and the bonding head 15 in the X direction, a camera 32 provided below the bonding head 15, and a strobe 34 as a light source. An image processing unit 40 to which the camera 32 and the strobe 34 are connected, and a control unit 50 to which the X and Y direction moving mechanisms 12 and 13 are connected. The bonding tool 24 has an adsorption surface 27 that adsorbs the semiconductor die 30 at the tip, and the strobe 34 includes a reflecting mirror 35 that directs emitted light toward the bonding tool 24. The bonding head 15 includes a Z-direction moving mechanism 16 that moves the bonding tool 24 in the Z direction and a θ-direction moving mechanism 17 that rotates the bonding tool 24 in the θ direction. Are respectively connected to the control unit 50. The controller 50 moves the bonding tool 24 in the X, Y, Z, and θ directions by operating the moving mechanisms 12, 13, 16, and 17 in the X, Y, Z, and θ directions. It is configured. 1, the horizontal direction on the paper is the Y direction, the vertical direction of the paper is the Z direction, the vertical direction to the paper is the X direction, and the rotation direction around the Z axis is the θ direction.

図1に示すように、画像処理部40は、内部に信号、データの処理を行うCPU41と、データやプログラムを記憶するメモリ42とを備えるコンピュータである。メモリ42は後で説明する画像取得プログラム43、相対位置検出プログラム44、制御データ45を内部に格納している。また、画像処理部40は、カメラ32、ストロボ34との接続を行うカメラインターフェース47、ストロボインターフェース48とを備えている。また、画像処理部40は、他のコンピュータである制御部50との間でデータ通信を行うためのデータバスインターフェース46を備えている。CPU41、メモリ42、各インターフェース47,48とデータバスインターフェース46とは画像処理部40内部のデータバス49によって接続されている。   As shown in FIG. 1, the image processing unit 40 is a computer that includes a CPU 41 that internally processes signals and data, and a memory 42 that stores data and programs. The memory 42 stores therein an image acquisition program 43, a relative position detection program 44, and control data 45 described later. Further, the image processing unit 40 includes a camera interface 47 and a strobe interface 48 for connecting to the camera 32 and the strobe 34. Further, the image processing unit 40 includes a data bus interface 46 for performing data communication with the control unit 50 which is another computer. The CPU 41, the memory 42, the interfaces 47 and 48, and the data bus interface 46 are connected by a data bus 49 inside the image processing unit 40.

図1に示すように、制御部50は、画像処理部40と同様、内部に信号、データの処理を行うCPU51と、データやプログラムを記憶するメモリ52とを備えるコンピュータであり、データバスインターフェース56と通信ライン60、画像処理部40のデータバスインターフェース46を介して画像処理部40のCPU41、メモリ42と接続されている。メモリ52は後で説明する位置制御プログラム53、補正プログラム54、制御データ55を内部に格納している。また、制御部50は、X,Y,Z,θ方向の各移動機構12,13,16,17との接続を行う移動機構インターフェース57を備えている。CPU51、メモリ52、移動機構インターフェース57とデータバスインターフェース56とは制御部50内部のデータバス59によって接続されている。   As shown in FIG. 1, like the image processing unit 40, the control unit 50 is a computer that includes a CPU 51 that internally processes signals and data, and a memory 52 that stores data and programs, and a data bus interface 56. Are connected to the CPU 41 and the memory 42 of the image processing unit 40 via the communication line 60 and the data bus interface 46 of the image processing unit 40. The memory 52 stores therein a position control program 53, a correction program 54, and control data 55, which will be described later. In addition, the control unit 50 includes a moving mechanism interface 57 for connecting to the moving mechanisms 12, 13, 16, and 17 in the X, Y, Z, and θ directions. The CPU 51, the memory 52, the moving mechanism interface 57 and the data bus interface 56 are connected by a data bus 59 inside the control unit 50.

本実施形態のダイボンダ10のX,Y,Z,θの各移動機構12,13,16,17は、それぞれ、ボンディングツール24の先端のX,Y,Z,θの各方向の位置を示す信号を出力するように構成されており、制御部50は、各移動機構12,13,16,17の信号からボンディングツール24の先端のX,Y,Z,θの各方向の位置を取得する。   The X, Y, Z, and θ moving mechanisms 12, 13, 16, and 17 of the die bonder 10 of the present embodiment are signals indicating the positions of the tip of the bonding tool 24 in the X, Y, Z, and θ directions, respectively. The control unit 50 obtains the position in the X, Y, Z, and θ directions of the tip of the bonding tool 24 from the signals of the moving mechanisms 12, 13, 16, and 17.

図2に示すように、ボンディングツール24は、半導体ダイ30を吸着する先端の吸着面27と、先端の吸着面27よりも太い根元25と、吸着面27と根元25とをつなぎ、長手方向中心線90に対して傾斜した傾斜面である傾斜曲面26と、を有している。先端の吸着面27は半導体ダイ30の大きさと略同様の大きさで、ボンディングツール24の長手方向中心線90に対して垂直な平面となっている。このため、吸着面27に吸着された半導体ダイ30の裏面もボンディングツール24の長手方向中心線90に対して垂直な平面となる。   As shown in FIG. 2, the bonding tool 24 connects the tip suction surface 27 that sucks the semiconductor die 30, the root 25 that is thicker than the tip suction surface 27, and the suction surface 27 and the root 25. And an inclined curved surface 26 that is an inclined surface inclined with respect to the line 90. The suction surface 27 at the tip is substantially the same size as the semiconductor die 30 and is a plane perpendicular to the longitudinal center line 90 of the bonding tool 24. For this reason, the back surface of the semiconductor die 30 attracted to the attracting surface 27 is also a plane perpendicular to the longitudinal center line 90 of the bonding tool 24.

ボンディングツール24の根元25は先端の吸着面27よりも太く、シャンク20に固定される円柱形であり、傾斜曲面26は、吸着面27から根元25に向かって漏斗状に広がる曲面である。また、シャンク20は、内周側にボンディングツール24の根元25の外周面が嵌合する円筒形となっており、その下側あるいは吸着面27の側の端面21は、ボンディングツール24の長手方向あるいはボンディングツール24の長手方向中心線90に垂直な平面で、その表面が鏡面仕上げされている。シャンク20はボンディングツール24と嵌合しているので、ボンディングツール24との間で相対的に移動せず、根元25に隣接する位置に配置されている。   The base 25 of the bonding tool 24 is thicker than the suction surface 27 at the tip and is a cylindrical shape fixed to the shank 20, and the inclined curved surface 26 is a curved surface that spreads in a funnel shape from the suction surface 27 toward the root 25. Further, the shank 20 has a cylindrical shape in which the outer peripheral surface of the base 25 of the bonding tool 24 is fitted on the inner peripheral side, and the end surface 21 on the lower side or the suction surface 27 side is in the longitudinal direction of the bonding tool 24. Alternatively, the surface of the bonding tool 24 is a plane perpendicular to the longitudinal center line 90 and the surface thereof is mirror-finished. Since the shank 20 is engaged with the bonding tool 24, the shank 20 does not move relative to the bonding tool 24 and is disposed at a position adjacent to the root 25.

図2に示すように、カメラ32は、ボンディングツール24が真上の所定の位置に移動してきた際にボンディングツール24に吸着された半導体ダイ30の裏面(Z方向下側の面)にピントが合うような位置に配置され、半導体ダイ30の裏面のシャープな画像を取得できるように調整されている。つまり、カメラ32は、カメラ32のレンズと半導体ダイ30の裏面との光路長L1がカメラ32のレンズの焦点距離となるように調整されている。   As shown in FIG. 2, the camera 32 is focused on the back surface (the lower surface in the Z direction) of the semiconductor die 30 adsorbed by the bonding tool 24 when the bonding tool 24 moves to a predetermined position directly above. It is arranged so as to fit, and is adjusted so that a sharp image of the back surface of the semiconductor die 30 can be acquired. That is, the camera 32 is adjusted so that the optical path length L1 between the lens of the camera 32 and the back surface of the semiconductor die 30 becomes the focal length of the lens of the camera 32.

一方、図2に示すように、ボンディングツール24の傾斜曲面26、シャンク20の端面21は半導体ダイ30を吸着する吸着面27から長手方向に離間して配置され、カメラ32のレンズからボンディングツール24の傾斜曲面26、シャンク20の端面21までの光路長は光路長L2,L3となっている。一方、カメラ32のレンズの焦点深度Dは半導体ダイ30の厚さよりも少し長い程度であるので、各光路長L2,L3はそれぞれ光路長L1に焦点深度Dを加えた長さよりも長くなっている。このため、カメラ32によって半導体ダイ30の裏面の画像とボンディングツール24の傾斜曲面26の画像とシャンク20の端面21の画像とを同時に取得する場合、ボンディングツール24の傾斜曲面26とシャンク20の端面21はピントが合っていない状態となり、取得する傾斜曲面26の画像と端面21の画像とは、多少ぼけた画像となる。   On the other hand, as shown in FIG. 2, the inclined curved surface 26 of the bonding tool 24 and the end surface 21 of the shank 20 are arranged apart from the suction surface 27 that sucks the semiconductor die 30 in the longitudinal direction. The optical path lengths to the inclined curved surface 26 and the end surface 21 of the shank 20 are optical path lengths L2 and L3. On the other hand, since the focal depth D of the lens of the camera 32 is slightly longer than the thickness of the semiconductor die 30, the optical path lengths L2 and L3 are longer than the length obtained by adding the focal depth D to the optical path length L1, respectively. . For this reason, when the image of the back surface of the semiconductor die 30, the image of the inclined curved surface 26 of the bonding tool 24, and the image of the end surface 21 of the shank 20 are simultaneously acquired by the camera 32, the inclined curved surface 26 of the bonding tool 24 and the end surface of the shank 20. 21 is in an out-of-focus state, and the acquired image of the inclined curved surface 26 and the image of the end surface 21 are slightly blurred images.

次に、本実施形態のダイボンダ10の動作について説明する。図3に示すように、ダイボンダ10の制御部50は位置制御プログラム53を実行してX,Y,Z,θ方向の各移動機構12,13,16,17を駆動してピックアップステージ36の上に置かれているダイシング済みのウエハの上にボンディングツール24を移動させ、ボンディングツール24の先端の吸着面27に半導体ダイ30を吸着する。そして、図3に示す軌跡38のようにボンディングヘッド15をボンディングステージ37の上に移動させ、ボンディングヘッド15をボンディングステージ37の上に吸着固定させた回路基板の上に降下させ、半導体ダイ30を回路基板の上にボンディングする。これが、ダイボンダ10の基本動作である。   Next, the operation of the die bonder 10 of this embodiment will be described. As shown in FIG. 3, the control unit 50 of the die bonder 10 executes a position control program 53 to drive the moving mechanisms 12, 13, 16, 17 in the X, Y, Z, and θ directions to move the top of the pickup stage 36. The bonding tool 24 is moved onto the diced wafer placed on the semiconductor wafer 30 and the semiconductor die 30 is sucked onto the suction surface 27 at the tip of the bonding tool 24. Then, the bonding head 15 is moved onto the bonding stage 37 as shown by a locus 38 shown in FIG. 3, the bonding head 15 is lowered onto the circuit board that is sucked and fixed onto the bonding stage 37, and the semiconductor die 30 is moved. Bond on the circuit board. This is the basic operation of the die bonder 10.

制御部50のCPU51は、位置制御プログラム53を実行し、ボンディングツール24をピックアップステージ36からボンディングステージ37に移動させる間、X,Y,Z,θの各移動機構12,13,16,17の信号からボンディングツール24の先端のX,Y,Z,θの各方向の位置を検出し、図2に示すように、ボンディングツール24がカメラ32の真上の所定の位置に来て、カメラ32レンズの中心位置にボンディングツール24の長手方向中心線90が合った状態となったらストロボ34を発光させるトリガ信号を出力する。このトリガ信号は、データバスインターフェース56,46、通信ライン60により画像処理部40に伝達される。なお、所定の位置は、予め位置制御プログラム53の中に設定されている位置である。   The CPU 51 of the control unit 50 executes the position control program 53 and moves the bonding tools 24 from the pickup stage 36 to the bonding stage 37 while the X, Y, Z, and θ moving mechanisms 12, 13, 16, and 17 are moved. The position of each of the X, Y, Z, and θ directions of the tip of the bonding tool 24 is detected from the signal, and the bonding tool 24 comes to a predetermined position directly above the camera 32 as shown in FIG. When the longitudinal center line 90 of the bonding tool 24 is aligned with the center position of the lens, a trigger signal for causing the strobe 34 to emit light is output. This trigger signal is transmitted to the image processing unit 40 through the data bus interfaces 56 and 46 and the communication line 60. The predetermined position is a position set in the position control program 53 in advance.

画像処理部40のCPU41はこのトリガ信号が入力されたら、画像取得プログラム43を実行する。CPU41は、ストロボ34を発光させる指令を出力する。この指令により、ストロボインターフェース48から発光信号がストロボ34に出力され、ストロボ34が発光する。また、画像処理部40は、トリガ信号が入力されたら、ストロボ34の発光と同期させてカメラインターフェース47を通してカメラ32からの画像の取り込みを行う。そして、取り込んだ画像は、画像処理部40のメモリ42に格納される。なお、画像の取り込みは、ボンディングツール24を移動させながら(移動を停止させずに)行う。   When this trigger signal is input, the CPU 41 of the image processing unit 40 executes the image acquisition program 43. The CPU 41 outputs a command for causing the strobe 34 to emit light. In response to this command, a flash signal is output from the flash interface 48 to the flash 34, and the flash 34 emits light. Further, when the trigger signal is input, the image processing unit 40 captures an image from the camera 32 through the camera interface 47 in synchronization with the light emission of the strobe 34. The captured image is stored in the memory 42 of the image processing unit 40. Note that the image is captured while the bonding tool 24 is moved (without stopping the movement).

ストロボ34が発光するとストロボ34からの光は、図4(a)に示す矢印71,73,75のようにボンディングツール24の吸着面27の側からボンディングツール24の傾斜曲面26、半導体ダイ30の裏面、シャンク20の端面21に入射する。シャンク20の端面21に入射した光の一部は、図4に示す矢印72のように、ボンディングツール24の長手方向あるいは、ボンディングツール24の長手方向中心線90に沿った方向(Z方向マイナス側)に向かって反射され、図2に示したように、ボンディングツール24の下側(吸着面27側)のカメラ32に入射する。従って、本実施形態では、シャンク20は反射体であり、シャンク20の端面21は反射面である。また、半導体ダイ30の裏面あるいは下側の面(Z方向マイナス側の面)に入射した光の一部は、図4(a)に示す矢印75のように、ボンディングツール24の長手方向あるいは、ボンディングツール24の長手方向中心線90に沿った方向(Z方向マイナス側)に向かって反射され、ボンディングツール24の下側(吸着面27側)のカメラ32に入射する。   When the stroboscope 34 emits light, light from the stroboscope 34 from the suction surface 27 side of the bonding tool 24 as shown by arrows 71, 73, 75 shown in FIG. The light enters the back surface, the end surface 21 of the shank 20. A part of the light incident on the end face 21 of the shank 20 is in the longitudinal direction of the bonding tool 24 or in the direction along the longitudinal center line 90 of the bonding tool 24 (Z direction minus side) as indicated by an arrow 72 shown in FIG. ) And enters the camera 32 below the bonding tool 24 (on the suction surface 27 side), as shown in FIG. Therefore, in this embodiment, the shank 20 is a reflector, and the end surface 21 of the shank 20 is a reflecting surface. Further, a part of the light incident on the back surface or the lower surface (the surface on the negative side in the Z direction) of the semiconductor die 30 is, as indicated by an arrow 75 shown in FIG. The light is reflected in the direction along the longitudinal center line 90 of the bonding tool 24 (minus side in the Z direction) and enters the camera 32 on the lower side of the bonding tool 24 (on the suction surface 27 side).

一方、図4の矢印73に示すようにボンディングツール24の傾斜曲面26に入射した光は、図4(a)に示す矢印74のように、水平方向などボンディングツール24の長手方向と異なる方向あるいはボンディングツール24の長手方向中心線90に沿った方向と異なる方向に向かって反射される。   On the other hand, the light incident on the inclined curved surface 26 of the bonding tool 24 as shown by an arrow 73 in FIG. 4 is a direction different from the longitudinal direction of the bonding tool 24 such as the horizontal direction or the arrow 74 shown in FIG. The light is reflected in a direction different from the direction along the longitudinal center line 90 of the bonding tool 24.

すると、図4(b)に示すように、カメラ32の視野33には、ストロボ34からの光がカメラ32に向かって反射する端面21の明度の高い(白い)リング状の画像81(反射体の画像)と、ストロボ34からの光がカメラ32に向かって反射しないボンディングツール24の傾斜曲面26の明度の低い(黒あるいはグレー)円形の画像82と、円形の画像82の中に位置するストロボ34からの光がカメラ32に向かって反射する半導体ダイ30の裏面の明度の高い(白い)四角い画像84と、が捉えられる。画像処理部40は、カメラ32によって、この3つの画像81,82,84を同時に取得し、メモリ42に格納する。なお、図4(b)に破線で示すボンディングツール24の先端の画像83は、半導体ダイ30の画像に隠れてカメラ32には捉えられない。   Then, as shown in FIG. 4B, in the visual field 33 of the camera 32, the lightness (white) ring-shaped image 81 (reflector) of the end face 21 where the light from the strobe 34 reflects toward the camera 32 is reflected. ), A low-lightness (black or gray) circular image 82 of the inclined curved surface 26 of the bonding tool 24 in which the light from the strobe 34 does not reflect toward the camera 32, and a strobe located in the circular image 82. A high-lightness (white) square image 84 of the back surface of the semiconductor die 30 in which light from 34 is reflected toward the camera 32 is captured. The image processing unit 40 simultaneously acquires these three images 81, 82, and 84 by the camera 32 and stores them in the memory 42. Note that an image 83 of the tip of the bonding tool 24 indicated by a broken line in FIG. 4B is hidden behind the image of the semiconductor die 30 and cannot be captured by the camera 32.

先に説明したように、カメラ32のピントは、半導体ダイ30の裏面に合うように調整されているので、半導体ダイ30の裏面の画像84はシャープな画像である。しかし、シャンク20の端面21、ボンディングツール24の傾斜曲面26は、半導体ダイ30の裏面からカメラ32の焦点深度Dよりも大きくZ方向にずれていることから、端面21の明度の高い(白い)リング状の画像81と、傾斜曲面26の明度の低い(黒あるいはグレー)円形の画像82はぼやけた画像となっている。   As described above, since the focus of the camera 32 is adjusted to match the back surface of the semiconductor die 30, the image 84 on the back surface of the semiconductor die 30 is a sharp image. However, since the end surface 21 of the shank 20 and the inclined curved surface 26 of the bonding tool 24 are shifted in the Z direction from the back surface of the semiconductor die 30 to be larger than the focal depth D of the camera 32, the brightness of the end surface 21 is high (white). The ring-shaped image 81 and the low-intensity (black or gray) circular image 82 of the inclined curved surface 26 are blurred images.

画像処理部40のCPU41は、相対位置検出プログラム44を実行する。以下の説明では、画像の明度は、256階調(明度0〜明度255)として説明する。カメラ32によって取得した画像は、図5(a)に示すように、端面21の明度255のリング状の画像81(反射体の画像)と、ボンディングツール24の傾斜曲面26の明度0の円形の画像82(傾斜面の画像)と、半導体ダイ30の裏面の明度255の四角い画像84を含んでいる。先に説明したように、リング状の画像81と、円形の画像82とはカメラ32のピントがずれているので、ぼやけた画像となっている。このため、図5(a)に示す様に、画像81の明度は外周部では、線aで示す様に明度255であるが、円形の画像82に近づくにつれてピンボケのために黒い画像82の一部が混ざりこみ、線bに示す様に少しずつ明度が低下してくる。そして、画像82の領域の中に入ると、急速に明度が低下し、画像82の内部領域では、明度は0近傍となる。そして、線cで示す様に、明度0の状態は、半導体ダイ30の裏面の画像84まで続く。カメラ32のピントは半導体ダイ30の裏面に合っているので、画像84はシャープな輪郭を持っている。また、半導体ダイ30の裏面はストロボ34の光を反射しているので明度は明度255となっている。従って、画像の明度は、線dに示す様に、画像84のエッジにおいて明度0から明度255までほぼ垂直に立ち上がる。そして、画像84の領域では線eに示す様に、明度255で一定となる。   The CPU 41 of the image processing unit 40 executes a relative position detection program 44. In the following description, the brightness of the image will be described as 256 gradations (brightness 0 to brightness 255). As shown in FIG. 5A, the image acquired by the camera 32 includes a ring-shaped image 81 (reflector image) with a lightness of 255 on the end face 21 and a circular lightness with a lightness of 0 on the inclined curved surface 26 of the bonding tool 24. An image 82 (an image of an inclined surface) and a square image 84 of lightness 255 on the back surface of the semiconductor die 30 are included. As described above, the ring-shaped image 81 and the circular image 82 are blurred because the camera 32 is out of focus. Therefore, as shown in FIG. 5 (a), the brightness of the image 81 is 255 at the outer peripheral portion as shown by the line a. However, as the circular image 82 approaches, the brightness of the black image 82 increases. The part is mixed and the brightness gradually decreases as shown by the line b. Then, when entering the area of the image 82, the brightness rapidly decreases, and in the inner area of the image 82, the brightness is close to zero. Then, as indicated by the line c, the state of lightness 0 continues to the image 84 on the back surface of the semiconductor die 30. Since the camera 32 is focused on the back surface of the semiconductor die 30, the image 84 has a sharp outline. Further, since the back surface of the semiconductor die 30 reflects the light of the strobe 34, the lightness is 255. Accordingly, the brightness of the image rises almost vertically from the brightness 0 to the brightness 255 at the edge of the image 84, as indicated by the line d. In the region of the image 84, the brightness is constant at 255 as indicated by the line e.

図5(a)に示す様に、画像処理部40のCPU41は、予めセットしておいた二値化閾値を用いて、図5(b)に示す様に、画像82の丸い外形基準線91と、画像84の四角い外形基準線92とを取得する。二値化閾値は、ストロボ34の光の状態、撮影位置などの条件が基準条件である場合に、ボンディングツール24の根元25の外形とほぼ同一の直径の円形の線が画像82の丸い外形基準線91として取得できるように予め試験などで決めておくものである。画像81と画像82は同心に配置されているボンディングツール24の傾斜曲面26とシャンク20の端面21の画像であるので、図5に線aから線eで示す各領域の明度の変化は、ボンディングツール24の長手方向中心線の周りに対象となる。従って、ストロボ34の光の状態、撮影位置などの条件が基準条件とずれた場合でも画像81と画像82との間の明度の変化曲線は、図5(a)の一点鎖線b´の様に左右対象(ボンディングツール24の長手方向中心線の周りに対象)となるので、図5(b)に示す二値化閾値を用いて取得する丸い外形基準線91´は、ボンディングツール24の根元25の外形よりも小さい直径のボンディングツール24の外形と同心円となる。このため、ストロボ34の光の状態、撮影位置などの条件が基準条件とずれた場合でも丸い外形基準線91、91´の中心はいずれもボンディングツール24の長手方向中心線の位置と一致する。   As shown in FIG. 5A, the CPU 41 of the image processing unit 40 uses a preset binarization threshold value, as shown in FIG. And the square outline reference line 92 of the image 84 are acquired. The binarization threshold is such that a circular line having a diameter substantially the same as the outer shape of the root 25 of the bonding tool 24 is a round outer reference of the image 82 when conditions such as the light state of the strobe 34 and the photographing position are reference conditions. It is determined in advance by a test or the like so that it can be acquired as the line 91. Since the image 81 and the image 82 are images of the inclined curved surface 26 of the bonding tool 24 and the end surface 21 of the shank 20 arranged concentrically, the change in brightness of each region indicated by the line a to the line e in FIG. The object is around the longitudinal center line of the tool 24. Therefore, even when conditions such as the light state of the strobe 34 and the photographing position deviate from the reference conditions, the change curve of the brightness between the image 81 and the image 82 is as shown by the alternate long and short dash line b ′ in FIG. Since the left and right objects (objects around the center line in the longitudinal direction of the bonding tool 24), the round outline reference line 91 ′ acquired using the binarization threshold shown in FIG. 5B is the root 25 of the bonding tool 24. It becomes a concentric circle with the outer shape of the bonding tool 24 having a diameter smaller than the outer shape. For this reason, even when conditions such as the light state of the strobe 34 and the photographing position deviate from the reference conditions, the centers of the round outline reference lines 91 and 91 ′ coincide with the position of the longitudinal center line of the bonding tool 24.

なお、半導体ダイ30の裏面にはピントが合っており、画像84のエッジではほぼ垂直に明度が変化するので、ストロボ34の光の状態、撮影位置などの条件が基準条件とずれた場合でも画像84の四角い外形基準線92の大きさはほとんど変わらない。   Note that the back surface of the semiconductor die 30 is in focus, and the brightness changes almost vertically at the edge of the image 84. Therefore, even if the light condition of the strobe 34, the shooting position, etc. deviate from the reference condition, the image The size of 84 square outline reference lines 92 is almost the same.

つまり、本実施形態では、ストロボ34の光を反射している端面21のリング状の画像81は明度が高く、逆にストロボ34の光を反射していない傾斜曲面26の円形の画像82は明度が低く、その明度差が非常に大きくなっている。このため、端面21、傾斜曲面26のボンディングツール24の長手方向の位置が半導体ダイ30の裏面から焦点深度Dよりも離れており、シャープな画像を取得できなくとも、各画像81,82の明度差が大きいことを利用して、確実にボンディングツール24の外形と同心円の円形の外形基準線91を抽出できる。また、半導体ダイ30の裏面の画像84のシャープなエッジを利用して確実に四角い外形基準線92を抽出することができる。   That is, in the present embodiment, the ring-shaped image 81 of the end face 21 that reflects the light of the strobe 34 has high brightness, and conversely, the circular image 82 of the inclined curved surface 26 that does not reflect the light of the strobe 34 has lightness. Is low and the brightness difference is very large. Therefore, the longitudinal positions of the bonding tool 24 of the end surface 21 and the inclined curved surface 26 are separated from the back surface of the semiconductor die 30 by the depth of focus D, and the brightness of the images 81 and 82 can be obtained even if a sharp image cannot be acquired. By utilizing the large difference, it is possible to reliably extract the circular outer shape reference line 91 concentric with the outer shape of the bonding tool 24. In addition, the square outline reference line 92 can be reliably extracted using the sharp edge of the image 84 on the back surface of the semiconductor die 30.

図6に示すように、画像処理部40は、処理した画像から円形の外形基準線91の中心97の位置と、四角い外形基準線92の中心98の位置を検出し、円形の外形基準線91の中心97を通りカメラ32の視野33のX方向に向かうX方向基準線94と、円形の外形基準線91の中心97を通りカメラ32の視野33のY方向に向かうY方向基準線93とを設定する。また、画像処理部40は、四角い外形基準線92の中心98を通り四角い外形基準線92のX方向基準線94に近い辺に並行なX方向計測線96と四角い外形基準線92の中心98を通り四角い外形基準線92のY方向基準線93に近い辺に並行なY方向計測線95とを設定する。そして、画像処理部40は、円形の外形基準線91の中心97の位置と四角い外形基準線92の中心98の位置のX方向、Y方向それぞれのずれ量ΔX,ΔYを求める。また、画像処理部40は、X方向基準線94とX方向計測線96とのθ方向の角度差あるいはY方向基準線93とY方向計測線95とのθ方向の角度差から四角い外形基準線92のθ方向の回転角度ずれΔθを検出する。   As shown in FIG. 6, the image processing unit 40 detects the position of the center 97 of the circular outline reference line 91 and the position of the center 98 of the square outline reference line 92 from the processed image, and the circular outline reference line 91. An X-direction reference line 94 passing through the center 97 of the camera 32 and extending in the X direction of the field of view 33 of the camera 32, and a Y-direction reference line 93 passing through the center 97 of the circular outer shape reference line 91 and extending in the Y direction of the field of view 33 of the camera 32. Set. Further, the image processing unit 40 passes through the center 98 of the square outline reference line 92 and the X direction measurement line 96 and the center 98 of the square outline reference line 92 parallel to the side of the square outline reference line 92 close to the X direction reference line 94. A Y-direction measurement line 95 is set in parallel to a side of the street square outline reference line 92 close to the Y-direction reference line 93. Then, the image processing unit 40 obtains deviation amounts ΔX and ΔY in the X direction and the Y direction between the position of the center 97 of the circular outline reference line 91 and the position of the center 98 of the square outline reference line 92, respectively. The image processing unit 40 also calculates a square outline reference line from the angle difference in the θ direction between the X direction reference line 94 and the X direction measurement line 96 or the angle difference in the θ direction between the Y direction reference line 93 and the Y direction measurement line 95. The rotation angle deviation Δθ of 92 in the θ direction is detected.

先に説明したように、円形の外形基準線91は、ボンディングツール24と相対的に位置がずれないシャンク20の端面21の内側の外形線と同心円であり、かつ、ボンディングツール24の外形線と同心円でもあることから、円形の外形基準線91の中心97の位置は図4(a)に示すボンディングツール24の長手方向中心線90の中心位置であり、四角い外形基準線92は半導体ダイ30の外形のエッジであることから四角い外形基準線92の中心98は、半導体ダイ30の中心位置となる。従って、円形の外形基準線91と四角い外形基準線92とのX、Y方向の各ずれ量ΔX,ΔYは、ボンディングツール24の中心位置と半導体ダイ30の中心位置とのX、Y方向の各ずれ量となる。   As described above, the circular outer shape reference line 91 is concentric with the outer shape line inside the end surface 21 of the shank 20 that is not displaced relative to the bonding tool 24, and the outer shape line of the bonding tool 24 is Since it is also a concentric circle, the position of the center 97 of the circular outline reference line 91 is the center position of the longitudinal center line 90 of the bonding tool 24 shown in FIG. 4A, and the square outline reference line 92 is the position of the semiconductor die 30. Since it is an edge of the outer shape, the center 98 of the square outer reference line 92 is the center position of the semiconductor die 30. Therefore, the deviation amounts ΔX and ΔY in the X and Y directions between the circular outer shape reference line 91 and the square outer shape reference line 92 are the X and Y direction differences between the center position of the bonding tool 24 and the center position of the semiconductor die 30. It becomes the amount of deviation.

同様に円形の外形基準線91の中心97を通りカメラ32の視野33のX方向に向かうX方向基準線94と、円形の外形基準線91の中心97を通りカメラ32の視野33のY方向に向かうY方向基準線93とは、ボンディングツール24の吸着面27の上の基準線であり、四角い外形基準線92の中心98を通り四角い外形基準線92のX方向基準線94に近い辺に並行なX方向計測線96と四角い外形基準線92の中心98を通り四角い外形基準線92のY方向基準線93に近い辺に並行なY方向計測線95は、ボンディングツール24の吸着面27の上の基準線に対する半導体ダイ30の傾斜角度を示す線となる。従って、X方向基準線94とX方向計測線96とのθ方向の角度差あるいはY方向基準線93とY方向計測線95とのθ方向の角度差から求められる四角い外形基準線92のθ方向の回転角度ずれΔθは、ボンディングツール24の吸着面27の上の基準軸に対する半導体ダイ30の傾斜角度となる。そして、ボンディングツール24の中心位置と半導体ダイ30の中心位置とのX、Y方向の各ずれ量と、ボンディングツール24の吸着面27の上の基準軸に対する半導体ダイ30の傾斜角度とは、ボンディングツール24と半導体ダイ30との相対位置である。   Similarly, an X-direction reference line 94 that passes through the center 97 of the circular outer shape reference line 91 and goes in the X direction of the visual field 33 of the camera 32, and passes through the center 97 of the circular outer shape reference line 91 in the Y direction of the visual field 33 of the camera 32. The heading Y-direction reference line 93 is a reference line on the suction surface 27 of the bonding tool 24, passes through the center 98 of the rectangular outer shape reference line 92, and is parallel to a side near the X-direction reference line 94 of the rectangular outer shape reference line 92. The Y-direction measurement line 95 passing through the center 98 of the square X-direction measurement line 96 and the square outline reference line 92 and parallel to the side close to the Y-direction reference line 93 of the square outline reference line 92 is on the suction surface 27 of the bonding tool 24. This is a line indicating the inclination angle of the semiconductor die 30 with respect to the reference line. Accordingly, the θ direction of the square outline reference line 92 obtained from the angle difference in the θ direction between the X direction reference line 94 and the X direction measurement line 96 or the angle difference in the θ direction between the Y direction reference line 93 and the Y direction measurement line 95. Is a tilt angle of the semiconductor die 30 with respect to the reference axis on the suction surface 27 of the bonding tool 24. The amount of deviation in the X and Y directions between the center position of the bonding tool 24 and the center position of the semiconductor die 30 and the inclination angle of the semiconductor die 30 with respect to the reference axis on the suction surface 27 of the bonding tool 24 are determined by bonding. The relative position between the tool 24 and the semiconductor die 30.

画像処理部40は、ボンディングツール24に対する半導体ダイ30のX,Y,θ方向の各ずれ量ΔX,ΔY,Δθを検出したら、そのデータをデータバスインターフェース46,56,通信ライン60を通して制御部50に送信する。制御部50のCPU51は、補正プログラム54を実行し、ボンディングツール24を図3に示すボンディングステージ37に移動するまでの間に各移動機構12,13,16,17によって検出するボンディングツール24の先端の位置を受信したX,Y,θ方向の各ずれ量ΔX,ΔY,Δθだけ補正し、ボンディングステージ37の上の回路基板に正確な位置、方向で半導体ダイ30をボンディングすることができる。   When the image processing unit 40 detects the deviation amounts ΔX, ΔY, Δθ of the semiconductor die 30 with respect to the bonding tool 24 in the X, Y, θ directions, the data is transmitted to the control unit 50 through the data bus interfaces 46, 56 and the communication line 60. Send to. The CPU 51 of the control unit 50 executes the correction program 54 and detects the tip of the bonding tool 24 detected by each moving mechanism 12, 13, 16, 17 until the bonding tool 24 is moved to the bonding stage 37 shown in FIG. 3. Thus, the semiconductor die 30 can be bonded to the circuit board on the bonding stage 37 at an accurate position and direction by correcting the received positions by X, Y, and θ shift amounts ΔX, ΔY, and Δθ.

以上、説明したように、本実施形態のダイボンダ10は、ボンディングツール24を把持しているシャンク20の端面21の画像81と、ボンディングツール24の傾斜曲面26の画像82との明度差、半導体ダイ30の裏面の画像84とボンディングツール24の傾斜曲面26の画像82との明度差を利用してボンディングツール24の長手方向中心線90の中心位置、半導体ダイ30の中心位置を検出するので、端面21、傾斜曲面26が半導体ダイ30の裏面から焦点深度Dよりも大きくずれており、各画像81,82がシャープでない場合でも確実にボンディングツール24と半導体ダイ30との相対位置を検出することができる。このため、シャンク20の端面21を鏡面仕上げして反射面とするという簡便な構成で、複雑な光学系を用いなくとも効果的に半導体ダイの位置ずれを検出することができる。また、シャンク20はボンディングツール24を把持するものであり、ボンディングツール24と相対的な移動が無いので、ボンディングツール24、シャンク20、半導体ダイ30の画像を取得する際にボンディングツール24の移動を停止する必要が無く、タクトタイムを短縮することができる。さらに、シャンク20はボンディングヘッド15から突出していないので、ボンディングヘッド15の移動により振動が発生することが無く、簡便な構成で、効果的に半導体ダイの位置ずれを検出することができる。   As described above, the die bonder 10 according to the present embodiment has a brightness difference between the image 81 of the end surface 21 of the shank 20 holding the bonding tool 24 and the image 82 of the inclined curved surface 26 of the bonding tool 24. Since the center position of the longitudinal center line 90 of the bonding tool 24 and the center position of the semiconductor die 30 are detected using the difference in brightness between the image 84 of the back surface 30 and the image 82 of the inclined curved surface 26 of the bonding tool 24, the end surface 21. The inclined curved surface 26 deviates from the back surface of the semiconductor die 30 more than the depth of focus D, and the relative position between the bonding tool 24 and the semiconductor die 30 can be reliably detected even when the images 81 and 82 are not sharp. it can. For this reason, it is possible to detect the positional deviation of the semiconductor die effectively without using a complicated optical system with a simple configuration in which the end surface 21 of the shank 20 is mirror-finished to be a reflecting surface. Further, since the shank 20 holds the bonding tool 24 and does not move relative to the bonding tool 24, the movement of the bonding tool 24 is performed when images of the bonding tool 24, the shank 20, and the semiconductor die 30 are acquired. There is no need to stop and the tact time can be shortened. Further, since the shank 20 does not protrude from the bonding head 15, no vibration is generated by the movement of the bonding head 15, and the semiconductor die position shift can be detected effectively with a simple configuration.

本実施形態では、ボンディングツール24の傾斜面は漏斗状の傾斜曲面26であるとして説明したが、傾斜面は、ボンディングツール24の長手方向中心線90に対して傾斜しており、ストロボ34からの光を長手方向中心線90に沿った方向に反射しないような面であればどのような形状であってもよく、例えば、吸着面27と根元25とを斜めにつなぐテーパ面であってもよい。   In the present embodiment, the inclined surface of the bonding tool 24 has been described as the funnel-shaped inclined curved surface 26, but the inclined surface is inclined with respect to the longitudinal center line 90 of the bonding tool 24, and from the strobe 34. Any shape may be used as long as it does not reflect light in the direction along the longitudinal center line 90. For example, it may be a tapered surface that obliquely connects the suction surface 27 and the root 25. .

また、本実施形態では、ボンディングの動作中に位置ずれ量を検出し、その補正を行うこととして説明したが、本発明は、ボンディングの動作中の補正のみでなく、例えば、実製品のボンディングの前のトレーニングあるいはティーチングにおいて、予め位置ずれを測定しその結果によりボンディングツール24のオフセット量を設定する際にも適用することができる。その場合には、画像を取得する際にボンディングツール24の移動を停止させ、静止状態で撮像したボンディングツール24の傾斜曲面26、シャンク20、半導体ダイ30の各画像81,82,84とボンディングツール24の移動を停止せずに取得した各画像81,82,84を組み合わせてずれ量、オフセット量を設定するようにしてもよい。   In the present embodiment, the positional deviation amount is detected during the bonding operation and corrected. However, the present invention is not limited to the correction during the bonding operation. In the previous training or teaching, the present invention can also be applied to the case where the positional deviation is measured in advance and the offset amount of the bonding tool 24 is set based on the result. In that case, when the image is acquired, the movement of the bonding tool 24 is stopped, and the inclined curved surface 26 of the bonding tool 24, the shank 20, the images 81, 82, and 84 of the semiconductor die 30 taken in a stationary state and the bonding tool. The shift amount and the offset amount may be set by combining the images 81, 82, and 84 acquired without stopping the movement of 24.

また、本実施形態では、ボンディングツール24とボンディングツール24の吸着面27に吸着された半導体ダイ30との相対位置に基づいてボンディングツール24の位置を補正することとして説明したが、ボンディングツール24の長手方向中心線90の位置検出結果を利用して、ボンディングツール24とピックアップステージ36あるいはボンディングステージ37との間の相対位置を補正し、ダイボンダ10の温度変化によるピックアップ位置あるいはボンディング位置のずれ量を補正することとしてもよい。この場合、例えば、ボンディングツール24とピックアップステージ36あるいはボンディングステージ37との間の位置ずれの移動平均を求め、この移動平均値の変化の傾向に基づいてずれ量の補正方向を決定するようにしてもよい。   In the present embodiment, the position of the bonding tool 24 is corrected based on the relative position between the bonding tool 24 and the semiconductor die 30 sucked on the suction surface 27 of the bonding tool 24. Using the position detection result of the longitudinal center line 90, the relative position between the bonding tool 24 and the pickup stage 36 or the bonding stage 37 is corrected, and the deviation amount of the pickup position or the bonding position due to the temperature change of the die bonder 10 is corrected. It is good also as correcting. In this case, for example, a moving average of the positional deviation between the bonding tool 24 and the pickup stage 36 or the bonding stage 37 is obtained, and the correction direction of the deviation amount is determined based on the tendency of the change of the moving average value. Also good.

次に、図7、図8を参照して、本発明の他の実施形態について説明する。図1から図6を参照して説明した実施形態と同様の部分には同様の符号を付して説明は省略する。図7に示す実施形態は、図1から図6を参照して説明した実施形態のシャンク20の下側にボンディングツール24の根元25の外周に嵌って固定されるリング22を取り付けたものである。リング22の下側の端面23は鏡面仕上げされてストロボ34からの光を反射することができるように構成されている。本実施形態では、リング22が反射体であり、端面23が反射面で、リング22は根元25に隣接して配置されている。   Next, another embodiment of the present invention will be described with reference to FIGS. Parts similar to those of the embodiment described with reference to FIG. 1 to FIG. In the embodiment shown in FIG. 7, a ring 22 that is fitted and fixed to the outer periphery of the root 25 of the bonding tool 24 is attached to the lower side of the shank 20 of the embodiment described with reference to FIGS. 1 to 6. . The lower end surface 23 of the ring 22 is mirror-finished so that light from the strobe 34 can be reflected. In the present embodiment, the ring 22 is a reflector, the end surface 23 is a reflecting surface, and the ring 22 is disposed adjacent to the root 25.

図7(b)に示すように、本実施形態では、カメラ32は、少しぼけた明度の高い(白い)リング状のリング22の端面23の画像86と、少しぼけたボンディングツール24の傾斜曲面26の明度の低い(黒またはグレー)の画像82と、明度の高い(白い)半導体ダイ30の裏面の画像84とを取得し、端面23の画像86と傾斜曲面26画像82との円形の外形基準線91と、傾斜曲面26画像82と半導体ダイ30の裏面の画像84との四角い外形基準線92とを抽出し、ボンディングツール24と半導体ダイ30との相対位置を検出する。本実施形態の効果は先に図1から図6を参照して説明した実施形態と同様である。   As shown in FIG. 7B, in this embodiment, the camera 32 has a slightly blurred image 86 of the end surface 23 of the ring-shaped ring 22 with a high brightness (white) and a slightly curved surface of the bonding tool 24 slightly blurred. 26, a low brightness (black or gray) image 82 and a high brightness (white) backside image 84 of the semiconductor die 30 are obtained, and a circular outer shape of the image 86 of the end face 23 and the inclined curved surface 26 image 82 is obtained. A reference line 91, a square outline reference line 92 of the inclined curved surface 26 image 82 and the back surface image 84 of the semiconductor die 30 are extracted, and a relative position between the bonding tool 24 and the semiconductor die 30 is detected. The effect of this embodiment is the same as that of the embodiment described above with reference to FIGS.

図8(a)に示す他の実施形態は、ボンディングツール24の根元25を段つきとし、その段部28の下側の下面29を鏡面仕上げとしてストロボ34からの光を反射することができるようにしたものである。本実施形態では、ボンディングツール24の段部28が反射体であり、段部28の下面29が反射面で、下面29は根元25に隣接して配置されている。   In another embodiment shown in FIG. 8A, the base 25 of the bonding tool 24 is stepped, and the lower surface 29 below the stepped portion 28 is mirror-finished so that light from the strobe 34 can be reflected. It is a thing. In the present embodiment, the step portion 28 of the bonding tool 24 is a reflector, the lower surface 29 of the step portion 28 is a reflecting surface, and the lower surface 29 is disposed adjacent to the root 25.

図8(b)に示すように、本実施形態では、カメラ32は、少しぼけた明度の高い(白い)リング状の段部28の下面29の画像88と、少しぼけたボンディングツール24の傾斜曲面26の明度の低い(黒またはグレー)の画像82と、明度の高い(白い)半導体ダイ30の裏面の画像84とを取得し、下面29の画像88と傾斜曲面26画像82との円形の外形基準線91と、傾斜曲面26画像82と半導体ダイ30の裏面の画像84との四角い外形基準線92とを抽出し、ボンディングツール24と半導体ダイ30との相対位置を検出する。本実施形態の効果は先に図1から図6を参照して説明した実施形態と同様である。   As shown in FIG. 8B, in the present embodiment, the camera 32 has an image 88 of the lower surface 29 of the ring-shaped step portion 28 having a slightly blurred high brightness (white) and a slightly inclined tilt of the bonding tool 24. A low-lightness (black or gray) image 82 of the curved surface 26 and a high-lightness (white) image 84 of the back surface of the semiconductor die 30 are obtained. The outline reference line 91, the square outline reference line 92 of the inclined curved surface 26 image 82 and the back surface image 84 of the semiconductor die 30 are extracted, and the relative position between the bonding tool 24 and the semiconductor die 30 is detected. The effect of this embodiment is the same as that of the embodiment described above with reference to FIGS.

10 ダイボンダ、11 ガイドレール、12 X方向移動機構、13 Y方向移動機構、15 ボンディングヘッド、16 Z方向移動機構、17 θ方向移動機構、20 シャンク、21,23 端面、22 リング、24 ボンディングツール、25 根元、26 傾斜曲面、27 吸着面、28 段部、29 下面、30 半導体ダイ、32 カメラ、33 視野、34 ストロボ、35 反射鏡、36 ピックアップステージ、37 ボンディングステージ、38 軌跡、40 画像処理部、41,51 CPU、42,52 メモリ、43 画像取得プログラム、44 相対位置検出プログラム、45,55 制御データ、46,56 データバスインターフェース、47 カメラインターフェース、48 ストロボインターフェース、49,59 データバス、50 制御部、53 位置制御プログラム、54 補正プログラム、57 移動機構インターフェース、60 通信ライン、71〜76 矢印、81〜89 画像、90 長手方向中心線、91 円形の外形基準線、92 四角い外形基準線、93 Y方向基準線、94 X方向基準線、95 Y方向計測線、96 X方向計測線、97,98 中心、D 焦点深度、L1〜L3 光路長、ΔX,ΔY,Δθ ずれ量。   10 die bonder, 11 guide rail, 12 X direction moving mechanism, 13 Y direction moving mechanism, 15 bonding head, 16 Z direction moving mechanism, 17 θ direction moving mechanism, 20 shank, 21, 23 end face, 22 ring, 24 bonding tool, 25 root, 26 inclined curved surface, 27 suction surface, 28 steps, 29 bottom surface, 30 semiconductor die, 32 camera, 33 field of view, 34 strobe, 35 reflector, 36 pickup stage, 37 bonding stage, 38 locus, 40 image processing unit 41, 51 CPU, 42, 52 Memory, 43 Image acquisition program, 44 Relative position detection program, 45, 55 Control data, 46, 56 Data bus interface, 47 Camera interface, 48 Strobe interface, 49, 59 data Tabas, 50 control unit, 53 position control program, 54 correction program, 57 moving mechanism interface, 60 communication line, 71-76 arrow, 81-89 image, 90 longitudinal center line, 91 circular outline reference line, 92 square outline Reference line, 93 Y-direction reference line, 94 X-direction reference line, 95 Y-direction measurement line, 96 X-direction measurement line, 97, 98 center, D focal depth, L1-L3 optical path length, ΔX, ΔY, Δθ deviation amount.

Claims (5)

先端に半導体ダイを吸着する吸着面と、先端の前記吸着面よりも太い根元と、前記吸着面と前記根元とをつなぎ、長手方向中心線に対して傾斜した傾斜面とを有するボンディングツールと、
前記吸着面と略平行な反射面を有し、前記根元を把持する把持部と、
前記吸着面の下方に配置され、前記吸着面に投光する光源と、
前記吸着面の下方に配置され、前記傾斜面の黒い円形の画像と、前記傾斜面の円形の画像の外周に隣接する前記反射面の白いリング状の画像と、前記傾斜面の円形の画像の中に位置する前記半導体ダイの下面の白い画像とを同一視野で撮像するカメラと、
前記カメラが撮像した前記傾斜面の黒い円形の画像と、前記傾斜面の円形の画像の外周に隣接する前記反射面の白いリング状の画像と、前記傾斜面の円形の画像の中に位置する前記半導体ダイの下面の白い画像とを含む撮像画像に対して画像処理をする画像処理部と、を備え、
前記画像処理部は、前記カメラが撮像した前記撮像画像に対し、前記傾斜面の外周に対する第1の外形基準線及び前記半導体ダイの縁に対応する第2の外形基準線を設定する外形設定手段を有する、ダイボンダ。
A bonding tool having an adsorption surface for adsorbing a semiconductor die at the tip, a root thicker than the adsorption surface at the tip, and an inclined surface that connects the adsorption surface and the root and is inclined with respect to a longitudinal center line;
Have substantially parallel reflecting surface and the suction surface, and a gripping portion for gripping the root source,
A light source disposed below the suction surface and projecting on the suction surface;
A black circular image of the inclined surface, a white ring-shaped image of the reflecting surface adjacent to the outer periphery of the circular image of the inclined surface, and a circular image of the inclined surface, which are disposed below the suction surface. A camera that captures a white image of the lower surface of the semiconductor die located in the same field of view;
Located in the black circular image of the inclined surface captured by the camera, the white ring-shaped image of the reflecting surface adjacent to the outer periphery of the circular image of the inclined surface, and the circular image of the inclined surface An image processing unit that performs image processing on a captured image including a white image on a lower surface of the semiconductor die , and
Wherein the image processing unit, with respect to the captured image which the camera is captured, contour setting means for setting a second contour reference lines corresponding to the first outer reference line and the edge of the semiconductor die against the outer periphery of the inclined surface Having a die bonder.
請求項1に記載のダイボンダであって、
前記画像処理部は、
前記第1の外形基準線における第1の中心座標及び前記第2の外形基準線における第2の中心座標を算出し、前記第1及び第2の中心座標の差分に基づいて前記ボンディングツールに対する前記半導体ダイのずれ量を検出するずれ量検出手段と、を備えるダイボンダ。
The die bonder according to claim 1,
The image processing unit
A first center coordinate in the first outer shape reference line and a second center coordinate in the second outer shape reference line are calculated, and the bonding tool with respect to the bonding tool is calculated based on a difference between the first and second center coordinates. A die bonder comprising: a deviation amount detecting means for detecting a deviation amount of the semiconductor die.
請求項1に記載のダイボンダであって、
前記画像処理部は、
前記第1の外形基準線と、前記第2の外形基準線との角度差を算出し、前記角度差に基づいて前記ボンディングツールに対する前記半導体ダイの回転方向のずれ量を検出する回転量検出手段と、を備えるダイボンダ。
The die bonder according to claim 1,
The image processing unit
Rotation amount detection means for calculating an angle difference between the first outline reference line and the second outline reference line, and detecting a deviation amount of the semiconductor die in the rotation direction with respect to the bonding tool based on the angle difference. A die bonder comprising:
請求項1から3のいずれか1項に記載のダイボンダであって、
前記カメラは、前記傾斜面及び前記反射面よりも前記半導体ダイの下面に合焦する焦点深度を有するダイボンダ。
The die bonder according to any one of claims 1 to 3,
The camera is a die bonder having a depth of focus that focuses on the lower surface of the semiconductor die rather than the inclined surface and the reflecting surface.
請求項1から4のいずれか1項に記載のダイボンダであって、
前記外形設定手段は、予め定めた二値化閾値を用いて前記傾斜面の外周に対する前記第1の外形基準線及び前記半導体ダイの縁に対応する前記第2の外形基準線を設定するダイボンダ。
The die bonder according to any one of claims 1 to 4,
The contour setting means bonder for setting said second contour reference lines corresponding to the edge of the first outer reference line and the semiconductor die against the outer periphery of the inclined surface with a predetermined binarization threshold.
JP2016157074A 2016-08-10 2016-08-10 Die bonder Active JP6182248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016157074A JP6182248B2 (en) 2016-08-10 2016-08-10 Die bonder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016157074A JP6182248B2 (en) 2016-08-10 2016-08-10 Die bonder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012156409A Division JP6047723B2 (en) 2012-07-12 2012-07-12 Method of detecting relative position between die bonder and bonding tool and semiconductor die

Publications (2)

Publication Number Publication Date
JP2016189495A JP2016189495A (en) 2016-11-04
JP6182248B2 true JP6182248B2 (en) 2017-08-16

Family

ID=57240733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016157074A Active JP6182248B2 (en) 2016-08-10 2016-08-10 Die bonder

Country Status (1)

Country Link
JP (1) JP6182248B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824234B2 (en) * 1990-01-24 1996-03-06 松下電器産業株式会社 Electronic component suction device
JP2001313303A (en) * 2000-05-01 2001-11-09 Nidec Tosok Corp Die bonder

Also Published As

Publication number Publication date
JP2016189495A (en) 2016-11-04

Similar Documents

Publication Publication Date Title
KR100420272B1 (en) Method for measuring offset, method for detecting tool location, and a bonding apparatus
TWI655406B (en) Jointing device and method for detecting height of object
JP6461311B2 (en) Wire bonding apparatus and wire bonding method
JP6240866B2 (en) Method for estimating landing point position of bonding apparatus and bonding tool
JPWO2006082639A1 (en) Mark image processing method, program, and apparatus
JP2015190826A (en) Substrate inspection device
CN111279462B (en) Joining device
JP2007115851A (en) Method and device for inspecting position of semiconductor component, and manufacturing method of semiconductor device
CN111654242B (en) Method and system for detecting notch on solar wafer
JP5755502B2 (en) Position recognition camera and position recognition apparatus
WO2017126025A1 (en) Mounting apparatus and image processing method
JP4644294B2 (en) Bonding apparatus and bonding method
JP6182248B2 (en) Die bonder
JP6047723B2 (en) Method of detecting relative position between die bonder and bonding tool and semiconductor die
JP3933060B2 (en) Bonding wire inspection method
JP2014036068A (en) Die bonder, and method of detecting position of bonding tool
JP5907628B2 (en) Adsorption nozzle inspection device for component mounting machines
JP6422819B2 (en) Image recognition apparatus and image recognition method
CN116847959A (en) Welding device, welding system and processing device
TWI776694B (en) Automatic robot arm system and method of coordinating robot arm and computer vision thereof
WO2022107286A1 (en) Image processing device, mounting device, mounting system, image processing method, and mounting method
WO2022269912A1 (en) Recognition device and recognition method
KR20230020903A (en) Machining apparatus and vibration detecting method
KR20230120995A (en) Alignment method
JP2010278128A (en) Bonding device, and method of correcting offset amount of bonding device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170721

R150 Certificate of patent or registration of utility model

Ref document number: 6182248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250