JP6180152B2 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP6180152B2
JP6180152B2 JP2013072341A JP2013072341A JP6180152B2 JP 6180152 B2 JP6180152 B2 JP 6180152B2 JP 2013072341 A JP2013072341 A JP 2013072341A JP 2013072341 A JP2013072341 A JP 2013072341A JP 6180152 B2 JP6180152 B2 JP 6180152B2
Authority
JP
Japan
Prior art keywords
heat exchanger
low
temperature
temperature regenerator
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013072341A
Other languages
Japanese (ja)
Other versions
JP2014196861A (en
Inventor
慶一郎 川瀬
慶一郎 川瀬
哲司 野副
哲司 野副
山本 和則
和則 山本
良和 小齋
良和 小齋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Thermal Engineering Co Ltd
Original Assignee
Kawasaki Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Thermal Engineering Co Ltd filed Critical Kawasaki Thermal Engineering Co Ltd
Priority to JP2013072341A priority Critical patent/JP6180152B2/en
Publication of JP2014196861A publication Critical patent/JP2014196861A/en
Application granted granted Critical
Publication of JP6180152B2 publication Critical patent/JP6180152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は吸収式冷凍機に係り、詳しくは、省エネを図るべく系内に設置した排熱回収器のより一層の小型化を可能にし、排熱回収器内伝熱面積の減少、吸収液の熱回収器内偏流の発生を抑えて、局部加熱による吸収液の晶析の回避を実現しようとする吸収式冷凍機に関するものである。  The present invention relates to an absorption refrigeration machine, and more specifically, enables further miniaturization of an exhaust heat recovery unit installed in the system to save energy, reduces the heat transfer area in the exhaust heat recovery unit, and reduces the absorption liquid. The present invention relates to an absorption refrigerator that suppresses the occurrence of drift in a heat recovery unit and avoids crystallization of an absorbing solution by local heating.

吸収式冷凍機では、機内を循環する吸収液、例えば臭化リチウム水溶液の濃度変化により冷水や温水を取り出すことができる。二重効用機は、その主たる構成が三重効用機と重なる図36に示されるように、ほぼ真空に近い容器をなす蒸発器31と吸収器5、それらより少し圧力の高い容器の低温再生器2や凝縮器3、例えばバーナにより都市ガス等を燃焼させて熱エネルギを得る大気圧に近い内圧の容器をなす高温再生器8からなっている。なお、本明細書においてはJISB8622の記載に則り、吸収式冷凍機は、「・・・冷凍サイクルを構成し、水の冷却又は加熱を行う吸収冷凍機,吸収冷温水機及び吸収ヒートポンプ・・・」に属するものをいうと解釈し、吸収冷温水機や吸収ヒートポンプなる用語は表示しないことにした。  In the absorption refrigerator, cold water and hot water can be taken out by changing the concentration of an absorption liquid circulating in the apparatus, for example, a lithium bromide aqueous solution. As shown in FIG. 36, the main structure of the double effect machine overlaps with the triple effect machine, as shown in FIG. 36, the evaporator 31 and the absorber 5, which form a container almost close to a vacuum, and the low temperature regenerator 2 of a container having a slightly higher pressure than those. And a condenser 3, for example, a high temperature regenerator 8 that forms a container having an internal pressure close to atmospheric pressure to obtain heat energy by burning city gas or the like with a burner. In this specification, in accordance with the description of JISB8622, the absorption refrigerator is "... an absorption refrigerator, an absorption chiller / heater and an absorption heat pump that constitutes a refrigeration cycle and cools or heats water ... The term “absorption chiller / heater” or “absorption heat pump” is not displayed.

蒸発器31では、高真空下で蒸発器管31pの外面に流下させた冷媒液31wによって蒸発潜熱が奪われ、蒸発器管を流れる冷水32が冷却される。吸収器5では、蒸発器31で発生した冷媒蒸気31sを吸収器管5pを流れる冷却水33wで冷却することにより、吸収液に吸収させると共に容器内を高い真空に保持する。この図は三重効用機で描かれているが、差し当たって一点鎖線の管路を追記した二重効用機であるとみなし、以下説明を続ける。低温再生器2では、高温再生器8で発生させた冷媒蒸気34を低温再生器管2pに流してその潜熱で吸収液35mを加熱濃縮し、冷媒蒸気36sを発生させる。高温再生器8では、吸収液35nを加熱濃縮して冷媒蒸気34を発生させる。凝縮器3では低温再生器2で蒸発した冷媒蒸気36sが凝縮器管3pを流れる冷却水33wで冷却され、凝縮液化する。なお、図示しない冷却水ポンプで圧送され吸収器管5pを経て凝縮器管3pを流通した冷却水33wは、図示しない冷却塔で冷却した後に循環される。  In the evaporator 31, the latent heat of evaporation is taken away by the refrigerant liquid 31w that has flowed down to the outer surface of the evaporator pipe 31p under high vacuum, and the cold water 32 flowing through the evaporator pipe is cooled. In the absorber 5, the refrigerant vapor 31s generated in the evaporator 31 is cooled by the cooling water 33w flowing through the absorber pipe 5p, so that it is absorbed by the absorbing liquid and the interior of the container is kept at a high vacuum. This figure is drawn with a triple effect machine, but for the time being, it is assumed that it is a double effect machine with a one-dot chain line added, and the explanation will be continued. In the low temperature regenerator 2, the refrigerant vapor 34 generated in the high temperature regenerator 8 is caused to flow to the low temperature regenerator pipe 2p, and the absorption liquid 35m is heated and concentrated by the latent heat to generate refrigerant vapor 36s. In the high temperature regenerator 8, the absorbing liquid 35n is heated and concentrated to generate the refrigerant vapor 34. In the condenser 3, the refrigerant vapor 36s evaporated in the low temperature regenerator 2 is cooled by the cooling water 33w flowing through the condenser pipe 3p, and is condensed and liquefied. The cooling water 33w that has been pumped by a cooling water pump (not shown) and circulated through the condenser pipe 3p via the absorber pipe 5p is circulated after being cooled by a cooling tower (not shown).

このような吸収式冷凍機では、冷房運転のみならず、図示しない冷暖切換弁を開いて高温再生器8で蒸発した冷媒蒸気34を蒸発器31へ送り、低温再生器2でも冷媒蒸気36sが発生していればそれも併せて送り、蒸発器管31pを流れる温水を加熱すれば、暖房運転を行うこともできる。冷房・暖房のいずれの場合も、冷水または温水の温度制御にあたって、一般に冷温水出口温度tを基にして高温再生器8における加熱量が図示しない燃料制御弁で調整される。なお、吸収液は、系内で発生した冷媒蒸気によって温水が生成される間に、冷房時と同じ濃度変化をとり、ほぼ同等の経路をたどって循環する。  In such an absorption refrigerator, not only cooling operation but also a cooling / heating switching valve (not shown) is opened and the refrigerant vapor 34 evaporated in the high temperature regenerator 8 is sent to the evaporator 31, and the refrigerant vapor 36 s is also generated in the low temperature regenerator 2. If it does, it will also send and heating operation can also be performed if the warm water which flows through the evaporator pipe | tube 31p is heated. In both cases of cooling and heating, in controlling the temperature of cold water or hot water, the heating amount in the high-temperature regenerator 8 is generally adjusted by a fuel control valve (not shown) based on the cold / hot water outlet temperature t. In addition, while warm water is produced | generated by the refrigerant | coolant vapor | steam which generate | occur | produced in the system, absorption liquid takes the same density | concentration change as the time of cooling, and circulates along the substantially equivalent path | route.

このような吸収式冷凍機においては二重効用もしくは三重効用の原理に基づぎ省エネ化が進められるが、その系内での熱交換効率の向上を図るため、図36に示すように、低温熱交換器4、中温熱交換器22や高温熱交換器9が設置される。この高温熱交換器は高温再生器8に向かう吸収液35nを予熱するもので、その熱源として高温再生器8から導出された高温の吸収液8bが使用される。  In such an absorption refrigerator, energy saving is promoted based on the principle of double effect or triple effect, but in order to improve the heat exchange efficiency in the system, as shown in FIG. The heat exchanger 4, the intermediate temperature heat exchanger 22, and the high temperature heat exchanger 9 are installed. This high temperature heat exchanger preheats the absorbing liquid 35n toward the high temperature regenerator 8, and the high temperature absorbing liquid 8b derived from the high temperature regenerator 8 is used as the heat source.

中温熱交換器22は中温再生器21に向かう吸収液37aを予熱するもので、図示の例では中温再生器21から導出された吸収液37bおよび高温熱交換器9を出た吸収液8bが低温熱交換器4を経て吸収器5へ戻される途中で熱源として利用される。低温熱交換器4は低温再生器2に向かう吸収液5aを予熱するもので、図示の例では低温再生器2から導出された吸収液2n、および中温熱交換器22から導出された吸収液を含んで中温熱交換器22を経た吸収液22aが吸収器5へ戻される途中で熱源として利用されている。  The intermediate temperature heat exchanger 22 preheats the absorption liquid 37a toward the intermediate temperature regenerator 21, and in the illustrated example, the absorption liquid 37b derived from the intermediate temperature regenerator 21 and the absorption liquid 8b exiting the high temperature heat exchanger 9 are low in temperature. It is used as a heat source on the way to the absorber 5 through the heat exchanger 4. The low temperature heat exchanger 4 preheats the absorption liquid 5a toward the low temperature regenerator 2, and in the illustrated example, the absorption liquid 2n derived from the low temperature regenerator 2 and the absorption liquid derived from the intermediate temperature heat exchanger 22 are used. The absorbing liquid 22a that has passed through the intermediate temperature heat exchanger 22 is used as a heat source while being returned to the absorber 5.

ところで、中温再生器21や高温再生器8に送給される吸収液をより一層加熱して、再生器における加熱負荷の軽減が図られることが多い。図36は特開2003−214720において提案された三重効用機を表すが、排ガス熱交換器38が中温熱交換器22と並列に設けられている。なお、図中に一点鎖線で追記した39も排ガス熱交換器であるが、排ガス熱交換器38に代えて設けられたものであって、これは高温熱交換器9と並列となっている。このような例は特開2004−125314に開示されている。  By the way, it is often possible to further reduce the heating load in the regenerator by further heating the absorption liquid supplied to the intermediate temperature regenerator 21 and the high temperature regenerator 8. FIG. 36 shows a triple effect machine proposed in Japanese Patent Laid-Open No. 2003-214720, in which an exhaust gas heat exchanger 38 is provided in parallel with the intermediate temperature heat exchanger 22. In addition, although 39 added with the dashed-dotted line in the figure is also an exhaust gas heat exchanger, it replaces with the exhaust gas heat exchanger 38, and this is parallel with the high temperature heat exchanger 9. FIG. Such an example is disclosed in Japanese Patent Application Laid-Open No. 2004-125314.

図36のようなサイクルフローにあって、冷房運転時に排熱回収器としての排ガス熱交換器へ吸収液(稀液)を多く流すと排ガス熱交換器からの稀液温度が低下し、さらには、中温熱交換器もしくは高温熱交換器での交換熱量も減少するため、排ガスからの回収熱量を性能向上に効率よく反映することができなくなる。それゆえ、排ガス熱交換器への吸収液量を少なくし、かつ排ガスからの回収熱量を多くするために排ガス温度を下げなければならない。このようなことから排ガス熱交換器は必然的に大きくなり、また、ハイフィンチューブまたはプレートフィンチューブの採用は伝熱効率の向上に寄与するものの、生産に多大な設備と製作ノウハウが必要となって、製作費高騰の一因となる。さらに、排ガス熱回収器の大型化は器内溶液の偏流を惹起し、局部加熱による溶液の晶析リスクも増してしまう。  In the cycle flow as shown in FIG. 36, if a large amount of absorbing liquid (diluted liquid) is flowed to the exhaust gas heat exchanger as the exhaust heat recovery unit during the cooling operation, the temperature of the diluted liquid from the exhaust gas heat exchanger decreases, The amount of heat exchanged in the intermediate temperature heat exchanger or the high temperature heat exchanger is also reduced, so that the amount of heat recovered from the exhaust gas cannot be efficiently reflected in the performance improvement. Therefore, the exhaust gas temperature must be lowered in order to reduce the amount of liquid absorbed into the exhaust gas heat exchanger and increase the amount of heat recovered from the exhaust gas. For this reason, exhaust gas heat exchangers are inevitably large, and the use of high fin tubes or plate fin tubes contributes to the improvement of heat transfer efficiency. It contributes to the rising production costs. Furthermore, an increase in the size of the exhaust gas heat recovery device causes a drift of the solution in the vessel, and increases the risk of crystallization of the solution due to local heating.

ところで、吸収式冷凍機は部分負荷運転で使用されることが多い。この部分負荷運転時には負荷率とともに排ガス熱交換器の低温側流体である溶液温度も低くなり、その結果、排ガスが結露する温度にまで低下することになる。この排ガスドレン水による腐食の観点から伝熱チューブの母管にステンレス鋼を採用するのが好ましいが、ステンレス鋼を用いた場合は応力腐食割れの懸念があり、耐蝕性の高い材料の選定が必要でコストアップをきたす。  By the way, absorption refrigerators are often used in partial load operation. During this partial load operation, the temperature of the solution, which is the low temperature side fluid of the exhaust gas heat exchanger, is lowered along with the load factor, and as a result, the temperature is lowered to a temperature at which the exhaust gas is condensed. From the viewpoint of corrosion due to exhaust gas drain water, it is preferable to use stainless steel for the heat transfer tube. However, if stainless steel is used, there is a concern of stress corrosion cracking, and it is necessary to select a material with high corrosion resistance. Will increase costs.

ちなみに、吸収液ポンプをインバータ制御し、さらに低温再生器側へ流れる管路に流量調節機構を持たせるなどした場合、きめ細かい循環量制御が可能となって部分負荷効率向上に寄与することが知られている。しかし、中温再生器もしくは高温再生器側への管路は中温熱交換器と排ガス熱交換器とが並列であり、または高温熱交換器と排ガス熱交換器とが並列であって、分岐されて2系統流通形態とされる。そのため、中温再生器または高温再生器へ流れる管路において、排ガス熱交換器と中温熱交換器または高温熱交換器への分配比は管路抵抗の違いに則した分配比にならざるを得ない。なお、部分負荷運転時は吸収液の循環量が低下するから排ガス熱交換器内の流速も落ち、伝熱性能が著しく低下する傾向となる。上記したごとくの並列配置は排ガス熱交換器への送給量をさらに減らし、流速の一層の低下をきたす結果、伝熱性能は一段と落ちることになる。  By the way, it is known that if the absorption pump is controlled by an inverter and a flow rate adjusting mechanism is added to the pipe that flows to the low-temperature regenerator, fine circulation control is possible, contributing to improved partial load efficiency. ing. However, the pipe to the medium-temperature regenerator or high-temperature regenerator side has a medium-temperature heat exchanger and exhaust gas heat exchanger in parallel, or a high-temperature heat exchanger and exhaust gas heat exchanger in parallel and branched. A two-line distribution form is assumed. Therefore, in the pipe flowing to the medium temperature regenerator or the high temperature regenerator, the distribution ratio between the exhaust gas heat exchanger and the medium temperature heat exchanger or the high temperature heat exchanger must be a distribution ratio according to the difference in the pipe resistance. . Note that, during the partial load operation, the circulation amount of the absorbing liquid decreases, so the flow rate in the exhaust gas heat exchanger also decreases, and the heat transfer performance tends to be remarkably reduced. As described above, the parallel arrangement further reduces the amount of feed to the exhaust gas heat exchanger and further reduces the flow velocity, resulting in a further decrease in heat transfer performance.

このような状況下で冷却水温度の急激な変動や燃焼量の変化により生じる圧力変動および温度変動で循環量のバランスが崩れると、その影響で溶液がフラッシュし始め循環量がハンチングしたり不安定な流動となりがちである。特に、溶液濃度が薄く胴内圧力が低くなる暖房運転時においては溶液の飽和温度が低く、高温再生器ラインでは高温熱交換器と排ガス熱交換器のいずれでもフラッシュをきたす傾向となる。  Under such circumstances, if the balance of the circulation rate is lost due to pressure fluctuations and temperature fluctuations caused by sudden fluctuations in the coolant temperature or changes in the combustion amount, the solution starts to flash due to this effect, and the circulation rate hunts or becomes unstable. It tends to be a natural flow. In particular, during the heating operation in which the solution concentration is low and the in-cylinder pressure is low, the saturation temperature of the solution is low, and in the high-temperature regenerator line, both the high-temperature heat exchanger and the exhaust gas heat exchanger tend to flash.

特開2003−214720JP 2003-214720 A 特開2004−125314JP 2004-125314 A

本発明は上記の幾つかの問題に鑑みなされたもので、その目的は、伝熱面積の低減を企図すべく排熱回収器の小型化を目指して器内溶液の偏流を起こしにくくし、局部加熱による溶液の晶析化傾向を低下させるとともに、部分負荷運転時における排ガスの結露に基づくドレン水腐食を可及的に回避すること、同じく部分負荷運転においての循環量低下ならびに並列管路による分岐流に起因した排ガス熱交換器での伝熱性能の低下を抑止できるようにすること、中温熱交換器と排熱回収器、また高温熱交換器と排熱回収器への吸収液分配比を生じさせず、管路抵抗に支配されない流れを達成すること、それぞれの再生器ラインにおける圧力変動や温度変動での循環量アンバランスをきたしても、溶液のフラッシュを防ぎ、液量のハンチングを避けることを実現しようとした吸収式冷凍機を提供することである。  The present invention has been made in view of the above-mentioned several problems, and its purpose is to make it difficult to cause a drift of the solution in the container in order to reduce the size of the exhaust heat recovery device in order to reduce the heat transfer area. Reduces the crystallization tendency of the solution due to heating, avoids drain water corrosion due to dew condensation of exhaust gas during partial load operation as much as possible, also reduces the circulation rate during partial load operation and branches by parallel pipes The heat transfer performance in the exhaust gas heat exchanger due to the flow can be suppressed, and the absorption liquid distribution ratio to the medium temperature heat exchanger and exhaust heat recovery unit, and the high temperature heat exchanger and exhaust heat recovery device To achieve a flow that is not controlled by pipe resistance, and to prevent the flushing of the solution and avoid the hunting of the fluid even if the circulation amount is unbalanced due to pressure fluctuation or temperature fluctuation in each regenerator line. It is to provide an absorption chiller an attempt is made to realize the Rukoto.

本発明は、吸収器、低温再生器、高温再生器、凝縮器、蒸発器、吸収器からの吸収液を低温再生器へ送る前に加熱する低温熱交換器、高温再生器へ向かう吸収液を加熱する高温熱交換器、排熱を利用して吸収液を加熱する排熱回収器とを備え、吸収液を加熱して発生させた冷媒蒸気の凝縮液を蒸発器内の蒸発器管に散布し、その伝熱面における凝縮液の気化により蒸発器管内で冷水を得る冷房運転にあっては、冷媒蒸気を発生させることにより生じた吸収液を高温再生器へ向かう吸収液と高温熱交換器で熱交換させ、さらに低温熱交換器も経た後、冷水を得る際に生じた冷媒蒸気を吸収させて吸収器ならびにそれと連なる蒸発器を高真空にするようにしている二重効用吸収式冷凍機に適用される。その特徴とするところは、例えば図2を参照して、吸収器5から導出された吸収液が低温熱交換器4へ向かう管路にあってその低温熱交換器4の上流に分岐管6が枝設される。低温再生器2で生成されて凝縮器3へ向かう冷媒ドレンの保有熱を利用し、低温熱交換器4へ向かっていた吸収液のうち分岐管6をたどる吸収液を加熱して低温再生器2へ送出する低温再生器用冷媒ドレン熱交換器1が設けられる。そして、排熱回収器7には低温再生器2から送出さ れた吸収液のうち低温熱交換器4での加熱源として循環される量を除いた液量が送給され 、その排熱回収器7は吸収液が高温再生器8に向かう流れの高温熱交換器の上流側管路に設置され、その高温熱交換器9とは直列に接続されていることである。The present invention includes an absorber, a low temperature regenerator, a high temperature regenerator, a condenser, an evaporator, a low temperature heat exchanger that heats the absorption liquid from the absorber before sending it to the low temperature regenerator, Equipped with a high-temperature heat exchanger that heats and an exhaust heat recovery unit that heats the absorbing liquid using exhaust heat, and condensates the refrigerant vapor generated by heating the absorbing liquid to the evaporator pipe in the evaporator In the cooling operation in which cold water is obtained in the evaporator tube by vaporizing the condensate on the heat transfer surface, the absorption liquid generated by generating the refrigerant vapor and the high temperature heat exchanger are directed to the high temperature regenerator. The double-effect absorption chiller that absorbs the refrigerant vapor generated when cold water is obtained after passing through heat exchange with a low-temperature heat exchanger and places the absorber and the evaporator connected to it in a high vacuum Applies to For example, referring to FIG. 2, the feature is that the absorption liquid led out from the absorber 5 is in a pipe line toward the low temperature heat exchanger 4, and the branch pipe 6 is upstream of the low temperature heat exchanger 4. Branched. Using the retained heat of the refrigerant drain that is generated in the low temperature regenerator 2 and goes to the condenser 3, the low temperature regenerator 2 is heated by heating the absorption liquid that follows the branch pipe 6 among the absorption liquid that has been directed to the low temperature heat exchanger 4. A refrigerant drain heat exchanger 1 for a low-temperature regenerator that is fed to is provided. The liquid amount excluding the amount to be circulated as a heating source in the low temperature heat exchanger 4 of the absorbent solution delivered from the low-temperature regenerator 2 to the exhaust heat recovery device 7 is fed, its waste heat The recovery unit 7 is installed in the upstream line of the high-temperature heat exchanger 9 in which the absorption liquid flows toward the high-temperature regenerator 8, and is connected in series with the high-temperature heat exchanger 9.

例えば図に示すように、三重効用吸収冷凍機においても、吸収器5から導出された吸収液が低温熱交換器4へ向かう管路にあってその低温熱交換器4の上流に分岐管6が枝設される。低温再生器2で生成されて凝縮器3へ向かう冷媒ドレンの保有熱を利用し、分岐管6をたどる吸収液を加熱して低温再生器2へ送出する低温再生器用冷媒ドレン熱交換器1が設けられる。そして、排熱回収器15には低温熱交換器4を流通した吸収液のうち低 温再生器2へ送出された量を除いた液量が送給され、排熱回収器15は吸収液が中温再生器21向かう流れの中温熱交換器22の上流側管路に設置され、その中熱交換器22とは直列に接続される。For example, as shown in FIG. 7 , also in the triple effect absorption refrigerator, the absorption liquid led out from the absorber 5 is in a pipe line toward the low temperature heat exchanger 4, and the branch pipe 6 is upstream of the low temperature heat exchanger 4. Is branched. A refrigerant drain heat exchanger 1 for a low-temperature regenerator that heats the absorption liquid that is generated in the low-temperature regenerator 2 and that flows to the condenser 3 and heats the absorption liquid that follows the branch pipe 6 and sends it to the low-temperature regenerator 2. Provided. Then, the exhaust heat recovery device 15 is liquid volume delivered excluding the amount sent to the low temperature regenerator 2 of the absorbing liquid that has circulated the low temperature heat exchanger 4, exhaust heat recovery device 15 is absorbing liquid It is installed in the middle temperature upstream conduit in the flow towards the regenerator 21 heat exchanger 22, the temperature heat exchanger 22 in the their being connected in series.

さらに三重効用吸収冷凍機において、例えば図4に示すように、排熱回収器7には低温 熱交換器4を流通した吸収液のうち低温再生器2へ送出された量を除いた液量からさらに 中温熱交換器22から中温再生器21へ送出された量を除いた液が送給され、排熱回収器7は吸収液が高温再生器8向かう流れの高温熱交換器9の直前の上流側管路に設置され、高温熱交換器9とは直列に接続されている。In addition triple effect absorption refrigerating machine, for example, as shown in FIG. 4, the liquid amount excluding the amount that is sent to the low-temperature regenerator 2 of the absorbing liquid that has circulated cold heat exchanger 4 in the exhaust heat recovery device 7 is liquid volume delivered excluding the amount sent from the medium-temperature heat exchanger 22 to the intermediate temperature regenerator 21 further immediately before the exhaust heat recovery device 7 flow absorbing liquid toward the high-temperature regenerator 8 is a high temperature heat exchanger 9 Is connected to the high-temperature heat exchanger 9 in series.

高温再生器8はガス焚き式であり、排熱回収器は高温再生器8排ガスを流通させる排ガス熱交換器7としておく。  The high temperature regenerator 8 is a gas-fired type, and the exhaust heat recovery unit is an exhaust gas heat exchanger 7 through which the high temperature regenerator 8 exhaust gas is circulated.

例えば図1や図16に示されるように、低温熱交換器4を流通した吸収液と低温再生器用冷媒ドレン熱交換器1を流通した吸収液とが混合して低温再生器2へ向かう管路には、系外発生廃熱を導入して吸収液を加熱し、その吸収液を低温再生器2へ送出する系外廃熱利用熱交換器11が介在される構成としてもよい。  For example, as shown in FIG. 1 and FIG. 16, a pipe line that goes to the low-temperature regenerator 2 by mixing the absorption liquid flowing through the low-temperature heat exchanger 4 and the absorption liquid flowing through the low-temperature regenerator refrigerant drain heat exchanger 1. Alternatively, the system may be configured to include an external waste heat utilization heat exchanger 11 that introduces waste heat generated outside the system, heats the absorption liquid, and sends the absorption liquid to the low-temperature regenerator 2.

本発明によれば、低温再生器で生成されて後に凝縮器へ向かう冷媒ドレンの保有する熱エネルギを利用し、低温熱交換器の上流に設けた分岐管をたどる吸収液を加熱して低温再生器へ送出する低温再生器用冷媒ドレン熱交換器が設けられているので、低温再生器へは低温熱交換器で加熱した吸収液と低温再生器用冷媒ドレン熱交換器で加熱した吸収液を送給することができる。すなわち、冷媒ドレン熱交換器が設けられているから低温再生器入口の溶液温度が高くなり、それだけ低温再生器での吸収液加熱に必要となる熱量を減少することができる。低温再生器の加熱源は高温再生器からの冷媒蒸気であるため、低温再生器での加熱熱量の減少は高温再生器での冷媒蒸気発生負担を軽減する。  According to the present invention, low-temperature regeneration is performed by heating the absorption liquid that follows the branch pipe provided upstream of the low-temperature heat exchanger by using the thermal energy of the refrigerant drain that is generated in the low-temperature regenerator and then goes to the condenser. Since the refrigerant drain heat exchanger for low-temperature regenerators to be sent to the regenerator is provided, the absorption liquid heated by the low-temperature regenerator and the absorption liquid heated by the refrigerant drain heat exchanger for low-temperature regenerators are sent to the low-temperature regenerator. can do. That is, since the refrigerant drain heat exchanger is provided, the solution temperature at the inlet of the low-temperature regenerator increases, and the amount of heat required for heating the absorption liquid in the low-temperature regenerator can be reduced accordingly. Since the heating source of the low-temperature regenerator is the refrigerant vapor from the high-temperature regenerator, the reduction in the amount of heating heat in the low-temperature regenerator reduces the burden of generating the refrigerant vapor in the high-temperature regenerator.

また、排熱回収器を温度レベルの低い高温熱交換器の手前に配置して高温熱交換器と直列にしたことにより、排熱回収器における伝熱効率が著しく向上する。ましてや、高温熱交換器での流通量と同じ流通量となる排熱回収器では管内レイノルズ数が増大し、伝熱面における熱伝達率の向上も図られる。少なくともこの二点が相乗して、排熱回収器のより一層の小型化が促進される。特殊加工が必要で、特殊材料の採用や腐食対策も課せられる高価な伝熱管の導入数量を減少させることにもなり、排熱回収器の製作コストの低減がおおいに図られる。  Further, the heat transfer efficiency in the exhaust heat recovery device is remarkably improved by arranging the exhaust heat recovery device in front of the high temperature heat exchanger having a low temperature level and in series with the high temperature heat exchanger. In addition, the exhaust heat recovery unit having the same flow rate as the flow rate in the high-temperature heat exchanger increases the Reynolds number in the pipe and improves the heat transfer coefficient on the heat transfer surface. At least these two points work together to promote further downsizing of the exhaust heat recovery device. Special processing is required, and the number of expensive heat transfer tubes that require special materials and measures against corrosion are also reduced. This greatly reduces the manufacturing cost of the exhaust heat recovery unit.

伝熱面積の低減を企図すべく排熱回収器の小型化を目指して器内溶液の偏流を惹起させにくくし、局部加熱による溶液晶析の可能性を低下させる。部分負荷運転時における排ガスの結露に基づくドレン水腐食を可及的に回避できる。さらに、その部分負荷状態にあっては、循環液量の減少ならびに分岐流発生の回避により、排ガス熱交換器での伝熱性能の低下が防止される。高温熱交換器と排熱回収器への吸収液分配比を生じさせることがなくなるから、管路抵抗に支配されない流れが達成される。圧力変動や温度変動により循環量にバランス崩れが生じても、溶液がフラッシュすることや、液量のハンチング発生を回避しておくことができる。  In order to reduce the heat transfer area, aiming at miniaturization of the exhaust heat recovery device, it is difficult to cause the drift of the solution in the vessel, and the possibility of liquid crystal deposition by local heating is reduced. Drain water corrosion based on dew condensation of exhaust gas during partial load operation can be avoided as much as possible. Furthermore, in the partial load state, a reduction in the heat transfer performance in the exhaust gas heat exchanger is prevented by reducing the amount of circulating fluid and avoiding the generation of branch flow. Since the absorption liquid distribution ratio to the high temperature heat exchanger and the exhaust heat recovery unit is not generated, a flow that is not controlled by the pipe resistance is achieved. Even if the balance is lost due to pressure fluctuations or temperature fluctuations, it is possible to prevent the solution from flushing and the occurrence of liquid quantity hunting.

高温熱交換器には、低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液のうちの一部、すなわち低温再生器へ送出された量を除く液量が送給されるようにしておくら、排熱回収器には低温再生器用冷媒ドレン熱交換器だけを流通した吸収液の一部も混在させて送給されることになり、排熱回収器における吸収液加熱効果が向上して、高温熱交換器における熱交換負荷を軽減することができる。高温再生器からの循環液量もしくは液温が抑えられれば、高温再生器における加熱も抑制でき燃料消費も節減される。In the high-temperature heat exchanger, a part of the mixed liquid of the absorbent flowing through the low-temperature heat exchanger and the absorbent flowing through the refrigerant drain heat exchanger for the low-temperature regenerator, that is, the amount sent to the low-temperature regenerator or liquid volume left so as to be fed, et al except, will be a part of the absorbing liquid which has flowed through only the low-temperature regenerator refrigerant drain heat exchanger is fed by mixed in the exhaust heat recovery device, The absorption liquid heating effect in the exhaust heat recovery device is improved, and the heat exchange load in the high temperature heat exchanger can be reduced. If the amount of circulating fluid or the liquid temperature from the high-temperature regenerator is suppressed, heating in the high-temperature regenerator can be suppressed and fuel consumption can be reduced.

請求項2や請求項3の三重効用吸収式冷凍機においても、二重効用機以上に、省エネを図るべく系内に設置した排熱回収器のより一層の小型化を可能にし、排熱回収器内伝熱面積の低減、吸収液の排熱回収器内偏流発生を抑止して、局部加熱による吸収液の晶析が抑制される。もちろん、二重効用機の場合と同様に、低温再生器用冷媒ドレン熱交換器により低温再生器入口の溶液温度を高くでき、低温再生器の加熱源は高温再生器から中温再生器を経た冷媒蒸気であるため、低温再生器での加熱熱量の減少は高温再生器での冷媒蒸気発生負担を軽減する。また、対数平均温度差を大きく取れたり、管内レイノルズ数を向上させるとになるから、伝熱面における熱伝達率の向上も図られて排熱回収器の小型化や低廉化が図られる。 Even in the triple effect absorption refrigerator of claim 2 or claim 3, it is possible to further reduce the size of the exhaust heat recovery unit installed in the system to save energy more than the double effect machine, and recover the exhaust heat. Reduction of the heat transfer area in the chamber and generation of drift in the exhaust heat recovery chamber of the absorption liquid are suppressed, and crystallization of the absorption liquid due to local heating is suppressed. Of course, as in the case of a double effect machine, the refrigerant drain heat exchanger for the low temperature regenerator can increase the solution temperature at the inlet of the low temperature regenerator, and the heating source of the low temperature regenerator is the refrigerant vapor that has passed from the high temperature regenerator through the medium temperature regenerator. Therefore, a reduction in the amount of heating heat in the low temperature regenerator reduces the burden of generating refrigerant vapor in the high temperature regenerator. In addition, since the logarithmic average temperature difference can be increased or the Reynolds number in the pipe can be improved, the heat transfer rate on the heat transfer surface can be improved, and the exhaust heat recovery device can be reduced in size and cost.

排熱回収器が中温熱交換器の上流側管路に設置され、中温熱交換器と直列に接続される 場合にあっては、伝熱面積の低減を企図すべく排熱回収器の小型化を目指して器内溶液の偏流を惹起させにくくし、局部加熱による溶液の晶析の可能性を低下させる。部分負荷運転時における排ガスの結露に基づくドレン水腐食を可及的に回避することができる。中温熱交換器と排熱回収器への吸収液分配比を生じさせず、管路抵抗に支配されない流れを達成でき、液量のハンチングを回避できる。 Exhaust heat recovery device is disposed on the upstream side pipe passage of the medium temperature heat exchanger, in a case which is connected in series with the medium-temperature heat exchanger, the miniaturization of exhaust heat recovery system in order to contemplate the reduction of heat transfer area In order to reduce the possibility of crystallization of the solution due to local heating, it is difficult to cause the drift of the solution in the vessel. Drain water corrosion based on dew condensation of exhaust gas during partial load operation can be avoided as much as possible. The absorption liquid distribution ratio to the intermediate temperature heat exchanger and the exhaust heat recovery unit is not generated, a flow that is not controlled by the pipe resistance can be achieved, and the hunting of the liquid amount can be avoided.

排熱回収器が高温熱交換器の上流側管路に設置され、高温熱交換器と直列に接続される 場合にあっても、伝熱面積の低減を企図すべく排熱回収器の小型化を目指して器内溶液の偏流を惹起させにくくし、局部加熱による溶液の晶析の可能性を低下させる。部分負荷運転時における排ガスの結露に基づくドレン水腐食を可及的に回避することができる。温熱交換器と排熱回収器への吸収液分配比を生じさせず、管路抵抗に支配されない流れを達成でき、液量のハンチングを回避できる。 Exhaust heat recovery device is disposed on the upstream side pipe of the high temperature heat exchanger, even when it is connected in series with the high temperature heat exchanger, the miniaturization of exhaust heat recovery system in order to contemplate the reduction of heat transfer area In order to reduce the possibility of crystallization of the solution due to local heating, it is difficult to cause the drift of the solution in the vessel. Drain water corrosion based on dew condensation of exhaust gas during partial load operation can be avoided as much as possible. Absorption liquid distribution ratio between the high- temperature heat exchanger and the exhaust heat recovery unit is not generated, a flow that is not controlled by pipe resistance can be achieved, and liquid amount hunting can be avoided.

高温再生器をガス焚き式としておけば、排熱回収器には燃焼の際に発生する排ガスを導入して、その保有熱エネルギを回収利用することができる。  If the high-temperature regenerator is a gas-fired type, the exhaust heat generated during combustion can be introduced into the exhaust heat recovery device, and the retained heat energy can be recovered and utilized.

低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液を系外発生廃熱により加熱し、その吸収液を低温再生器へ送出する系外廃熱利用熱交換器が設けられていれば、吸収液温度を系外エネルギによっても高めた状態で低温再生器に送給でき、低温再生器での冷媒ドレンによる加熱を軽減することができる。ひいては、高温再生器における冷媒蒸気の発生負荷も少なくなる。  External waste that heats the mixed liquid of the absorbent that has passed through the low-temperature heat exchanger and the absorbent that has passed through the refrigerant drain heat exchanger for the low-temperature regenerator by the waste heat generated outside the system, and sends the absorbed liquid to the low-temperature regenerator If the heat-utilizing heat exchanger is provided, the absorption liquid temperature can be supplied to the low-temperature regenerator in a state where the absorption liquid temperature is also increased by the external energy, and heating by the refrigerant drain in the low-temperature regenerator can be reduced. As a result, the generation load of the refrigerant vapor in the high-temperature regenerator is also reduced.

収器から低温熱交換器を流通した吸収液のうち低温再生器へ送出された量を除く液量が送給される高温熱交換器を具備した二重効用吸収式冷凍機のサイクルフロー図。Cycle flow chart of a double effect absorption refrigerating machine provided with the high-temperature heat exchanger liquid amount excluding the amount that is sent to the low-temperature regenerator is fed out of the absorption liquid has flowed through the low temperature heat exchanger from the intake Osamuki . 本発明の請求項1に係る吸収冷凍機であって、吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液が低温再生器へ送給され、低温再生器から送出された吸収液の一部が送給される高温熱交換器を具備している二重効用吸収式冷凍機のサイクルフロー図。 In the absorption refrigerator according to claim 1 of the present invention, the mixed liquid of the absorption liquid that has flowed from the absorber through the low-temperature heat exchanger and the absorption liquid that has flowed through the refrigerant drain heat exchanger for the low-temperature regenerator to the low-temperature regenerator. The cycle flow figure of the double effect absorption refrigerating machine which comprises the high temperature heat exchanger with which a part of absorption liquid sent and sent from a low-temperature regenerator is sent. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液のうち、低温再生器へ送出された量を除く液量が送給される高温熱交換器を具備し、排ガス熱交換器には低温再生器用冷媒ドレン熱交換器だけを流通した吸収液の一部も混在して送給されるようにした二重効用吸収式冷凍機のサイクルフロー図。Out of the mixed liquid of the absorbent that has passed through the low-temperature heat exchanger from the absorber and the absorbent that has passed through the refrigerant drain heat exchanger for the low-temperature regenerator, the amount of liquid excluding the amount sent to the low-temperature regenerator is delivered. A double-effect absorption chiller equipped with a high-temperature heat exchanger, and the exhaust gas heat exchanger is also supplied with a part of the absorption liquid flowing only through the refrigerant drain heat exchanger for low-temperature regenerators. Cycle flow diagram. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換 器を流通した吸収液との混合液が低温再生器へ送出され、吸収器から低温熱交換器を流通した吸収液のうち低温再生器へ送出された量および中温再生器へ送出された量を除く液量が送給される高温熱交換器を具備した三重効用吸収式冷凍機のサイクルフロー図。 Absorbed liquid that has passed through the low-temperature heat exchanger from the absorber is sent to the low-temperature regenerator after the mixed liquid of the absorbent that has passed through the low-temperature heat exchanger from the absorber and the absorbent that has passed through the refrigerant drain heat exchanger for the low-temperature regenerator. The cycle flow figure of the triple effect absorption refrigerating machine provided with the high temperature heat exchanger to which the liquid quantity except the quantity sent to the low temperature regenerator and the quantity sent to the medium temperature regenerator is fed. 吸収器から低温熱交換器を流通した吸収液のうち低温再生器へ送出された量および中温再生器へ送出された量を除く液量が送給される高温熱交換器を具備した三重効用吸収式冷凍機のサイクルフロー図。Triple effect absorption with a high-temperature heat exchanger to which the amount of liquid excluding the amount sent to the low-temperature regenerator and the amount sent to the medium-temperature regenerator out of the absorbent flowing through the low-temperature heat exchanger from the absorber Cycle flow diagram of a type refrigerator. 吸収器から低温熱交換器を流通した吸収液のうち低温再生器へ送出された量を除く液量が送給される中温熱交換器を具備した三重効用吸収式冷凍機のサイクルフロー図。The cycle flow figure of the triple effect absorption refrigerating machine which comprised the intermediate temperature heat exchanger to which the liquid quantity except the quantity sent to the low temperature regenerator is sent among the absorption liquid which distribute | circulated the low temperature heat exchanger from the absorber. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換 器を流通した吸収液との混合液が低温再生器へ送出され、吸収器から低温熱交換器を流通した吸収液のうち低温再生器へ送出された量を除く液量が送給される中温熱交換器を具備した三重効用吸収式冷凍機のサイクルフロー図。 Absorbed liquid that has passed through the low-temperature heat exchanger from the absorber is sent to the low-temperature regenerator after the mixed liquid of the absorbent that has passed through the low-temperature heat exchanger from the absorber and the absorbent that has passed through the refrigerant drain heat exchanger for the low-temperature regenerator. The cycle flow figure of the triple effect absorption refrigerating machine which comprised the intermediate temperature heat exchanger to which the liquid quantity except the quantity sent to the low-temperature regenerator is sent. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液が低温再生器へ送出され、低温再生器から流出する吸収液の一部から中温熱交換器へ送出された量を除く液量が送給される高温熱交換器を具備した三重効用吸収式冷凍機のサイクルフロー図。From the absorber, a mixture of the absorption liquid that has passed through the low-temperature heat exchanger and the absorption liquid that has passed through the refrigerant drain heat exchanger for the low-temperature regenerator is sent to the low-temperature regenerator and from a part of the absorption liquid that flows out of the low-temperature regenerator The cycle flow figure of the triple effect absorption refrigerating machine which equipped with the high temperature heat exchanger with which the liquid quantity except the quantity sent to the intermediate temperature heat exchanger was sent. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液が低温再生器へ送出され、低温再生器から流出する吸収液の一部が送給される中温熱交換器を具備している三重効用吸収式冷凍機のサイクルフロー図。A mixture of the absorption liquid flowing through the low-temperature heat exchanger from the absorber and the absorption liquid flowing through the refrigerant drain heat exchanger for the low-temperature regenerator is sent to the low-temperature regenerator, and part of the absorption liquid flowing out from the low-temperature regenerator The cycle flow figure of the triple effect absorption refrigerating machine which comprises the intermediate temperature heat exchanger supplied. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液が低温再生器へ送出され、低温再生器から流出する吸収液の一部が送給される中温熱交換器を具備している三重効用吸収式冷凍機のサイクルフロー図。A mixture of the absorption liquid flowing through the low-temperature heat exchanger from the absorber and the absorption liquid flowing through the refrigerant drain heat exchanger for the low-temperature regenerator is sent to the low-temperature regenerator, and part of the absorption liquid flowing out from the low-temperature regenerator The cycle flow figure of the triple effect absorption refrigerating machine which comprises the intermediate temperature heat exchanger supplied. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液が低温再生器へ送出され、低温再生器から流出する吸収液の一部が中温再生器へ送出され、中温再生器から流出する吸収液の一部が送給される高温熱交換器を具備した三重効用吸収式冷凍機のサイクルフロー図。A mixture of the absorption liquid flowing through the low-temperature heat exchanger from the absorber and the absorption liquid flowing through the refrigerant drain heat exchanger for the low-temperature regenerator is sent to the low-temperature regenerator, and part of the absorption liquid flowing out from the low-temperature regenerator The cycle flow figure of the triple effect absorption refrigerating machine provided with the high temperature heat exchanger with which a part of absorption liquid sent out to an intermediate temperature regenerator and flowing out from an intermediate temperature regenerator is sent. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液のうち、低温再生器へ送出された量を除く液量が中温再生器へ送出され、中温再生器から流出する吸収液の一部が送給される高温熱交換器を具備した三重効用吸収式冷凍機のサイクルフロー図。Out of the mixed liquid of the absorption liquid that has flowed from the absorber through the low-temperature heat exchanger and the absorption liquid that has flowed through the refrigerant drain heat exchanger for the low-temperature regenerator, the liquid amount excluding the amount sent to the low-temperature regenerator goes to the medium-temperature regenerator The cycle flow figure of the triple effect absorption refrigerating machine provided with the high temperature heat exchanger with which a part of absorption liquid which is sent out and flows out from an intermediate temperature regenerator is sent. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液のうち、低温再生器へ送出された量および中温再生器へ送出された量を除く液量が送給される高温熱交換器を具備し、排ガス熱交換器は低温再生器用冷媒ドレン熱交換器だけを流通した吸収液の一部も混在して送給されるようになっているた三重効用吸収式冷凍機のサイクルフロー図。Out of the mixed liquid of the absorption liquid flowing through the low-temperature heat exchanger from the absorber and the absorption liquid flowing through the refrigerant drain heat exchanger for the low-temperature regenerator, the amount sent to the low-temperature regenerator and the amount sent to the medium-temperature regenerator It is equipped with a high-temperature heat exchanger to which the amount of liquid excluding the refrigerant is fed, and the exhaust gas heat exchanger is also fed with a part of the absorption liquid that has circulated only through the refrigerant drain heat exchanger for low-temperature regenerators. Fig. 3 is a cycle flow diagram of a triple effect absorption refrigerator. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液のうち、低温再生器へ送出された量を除く液量が送給される中温熱交換器を具備し、排ガス熱交換器は低温再生器用冷媒ドレン熱交換器だけを流通した吸収液の一部も混在して中温熱交換器に送給されるようになっている三重効用吸収式冷凍機のサイクルフロー図。Out of the mixed liquid of the absorbent that has passed through the low-temperature heat exchanger from the absorber and the absorbent that has passed through the refrigerant drain heat exchanger for the low-temperature regenerator, the amount of liquid excluding the amount sent to the low-temperature regenerator is delivered. A triple-effect system that has an intermediate temperature heat exchanger, and the exhaust gas heat exchanger is fed to the intermediate temperature heat exchanger with a part of the absorbent flowing through only the refrigerant drain heat exchanger for the low temperature regenerator. Cycle flow diagram of absorption refrigerator. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液のうち、低温再生器へ送出された量を除く液量が送給される中温熱交換器を具備し、排ガス熱交換器には低温再生器用冷媒ドレン熱交換器だけを流通した吸収液の一部も混在して送給されるようになっている三重効用吸収式冷凍機のサイクルフロー図。Out of the mixed liquid of the absorbent that has passed through the low-temperature heat exchanger from the absorber and the absorbent that has passed through the refrigerant drain heat exchanger for the low-temperature regenerator, the amount of liquid excluding the amount sent to the low-temperature regenerator is delivered. Triple effect absorption refrigeration machine equipped with an intermediate temperature heat exchanger, and the exhaust gas heat exchanger is also supplied with a part of the absorption liquid flowing only through the refrigerant drain heat exchanger for the low temperature regenerator Cycle flow diagram. 吸収器から低温熱交換器を流通した吸収液のうち低温再生器へ送出された量および中温再生器へ送出された量を除く液量が送給される高温熱交換器を具備した三重効用吸収式冷凍機のサイクルフロー図。Triple effect absorption with a high-temperature heat exchanger to which the amount of liquid excluding the amount sent to the low-temperature regenerator and the amount sent to the medium-temperature regenerator out of the absorbent flowing through the low-temperature heat exchanger from the absorber Cycle flow diagram of a type refrigerator. 吸収器から低温熱交換器を流通した吸収液のうち低温再生器へ送出された量および中温再生器へ送出された量を除く液量が送給される高温熱交換器を具備した三重効用吸収式冷凍機のサイクルフロー図。Triple effect absorption with a high-temperature heat exchanger to which the amount of liquid excluding the amount sent to the low-temperature regenerator and the amount sent to the medium-temperature regenerator out of the absorbent flowing through the low-temperature heat exchanger from the absorber Cycle flow diagram of a type refrigerator. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液のうち、低温再生器へ送出された量および中温再生器へ送出された量を除く液量が送給される高温熱交換器を具備し、排ガス熱交換器は低温再生器用冷媒ドレン熱交換器だけを流通した吸収液の一部も混在して送給されるようになっているた三重効用吸収式冷凍機のサイクルフロー図。Out of the mixed liquid of the absorption liquid flowing through the low-temperature heat exchanger from the absorber and the absorption liquid flowing through the refrigerant drain heat exchanger for the low-temperature regenerator, the amount sent to the low-temperature regenerator and the amount sent to the medium-temperature regenerator It is equipped with a high-temperature heat exchanger to which the amount of liquid excluding the refrigerant is fed, and the exhaust gas heat exchanger is also fed with a part of the absorption liquid that has circulated only through the refrigerant drain heat exchanger for low-temperature regenerators. Fig. 3 is a cycle flow diagram of a triple effect absorption refrigerator. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液のうち、低温再生器へ送出された量および中温再生器へ送出された量を除く液量が送給される高温熱交換器を具備し、排ガス熱交換器は低温再生器用冷媒ドレン熱交換器だけを流通した吸収液の一部も混在して送給されるようになっているた三重効用吸収式冷凍機のサイクルフロー図。Out of the mixed liquid of the absorption liquid flowing through the low-temperature heat exchanger from the absorber and the absorption liquid flowing through the refrigerant drain heat exchanger for the low-temperature regenerator, the amount sent to the low-temperature regenerator and the amount sent to the medium-temperature regenerator It is equipped with a high-temperature heat exchanger to which the amount of liquid excluding the refrigerant is fed, and the exhaust gas heat exchanger is also fed with a part of the absorption liquid that has circulated only through the refrigerant drain heat exchanger for low-temperature regenerators. Fig. 3 is a cycle flow diagram of a triple effect absorption refrigerator. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液が低温再生器へ送出され、低温再生器から流出する吸収液の一部が中温再生器へ送出され、中温再生器から流出する吸収液の一部が送給される高温熱交換器を具備した三重効用吸収式冷凍機のサイクルフロー図。A mixture of the absorption liquid flowing through the low-temperature heat exchanger from the absorber and the absorption liquid flowing through the refrigerant drain heat exchanger for the low-temperature regenerator is sent to the low-temperature regenerator, and part of the absorption liquid flowing out from the low-temperature regenerator The cycle flow figure of the triple effect absorption refrigerating machine provided with the high temperature heat exchanger with which a part of absorption liquid sent out to an intermediate temperature regenerator and flowing out from an intermediate temperature regenerator is sent. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液が低温再生器へ送出され、低温再生器から流出する吸収液の一部から中温熱交換器へ送出された量を除く液量が送給される高温熱交換器を具備した三重効用吸収式冷凍機のサイクルフロー図。From the absorber, a mixture of the absorption liquid that has passed through the low-temperature heat exchanger and the absorption liquid that has passed through the refrigerant drain heat exchanger for the low-temperature regenerator is sent to the low-temperature regenerator and from a part of the absorption liquid that flows out of the low-temperature regenerator The cycle flow figure of the triple effect absorption refrigerating machine which equipped with the high temperature heat exchanger with which the liquid quantity except the quantity sent to the intermediate temperature heat exchanger was sent. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液のうち、低温再生器へ送出された量を除く液量が中温再生器へ送出され、中温再生器から流出する吸収液の一部が送給される高温熱交換器を具備した三重効用吸収式冷凍機のサイクルフロー図。Out of the mixed liquid of the absorption liquid that has flowed from the absorber through the low-temperature heat exchanger and the absorption liquid that has flowed through the refrigerant drain heat exchanger for the low-temperature regenerator, the liquid amount excluding the amount sent to the low-temperature regenerator goes to the medium-temperature regenerator The cycle flow figure of the triple effect absorption refrigerating machine provided with the high temperature heat exchanger with which a part of absorption liquid which is sent out and flows out from an intermediate temperature regenerator is sent. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液のうち、低温再生器へ送出された量および中温再生器へ送出された量を除く液量が送給される高温熱交換器を具備した三重効用吸収式冷凍機のサイクルフロー図。Out of the mixed liquid of the absorption liquid flowing through the low-temperature heat exchanger from the absorber and the absorption liquid flowing through the refrigerant drain heat exchanger for the low-temperature regenerator, the amount sent to the low-temperature regenerator and the amount sent to the medium-temperature regenerator The cycle flow figure of the triple effect absorption refrigerating machine which equipped with the high temperature heat exchanger with which the liquid quantity except for is supplied. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液のうち、低温再生器へ送出された量および中温再生器へ送出された量を除く液量が送給される高温熱交換器を具備した三重効用吸収式冷凍機のサイクルフロー図。Out of the mixed liquid of the absorption liquid flowing through the low-temperature heat exchanger from the absorber and the absorption liquid flowing through the refrigerant drain heat exchanger for the low-temperature regenerator, the amount sent to the low-temperature regenerator and the amount sent to the medium-temperature regenerator The cycle flow figure of the triple effect absorption refrigerating machine which equipped with the high temperature heat exchanger with which the liquid quantity except for is supplied. 中温熱交換器を流通した吸収液と中温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液のうち、中温再生器へ送出された量を除く液量が送給される高温熱交換器を具備し、排ガス熱交換器には中温再生器用冷媒ドレン熱交換器だけを流通した吸収液の一部も混在して送給されるようになっている三重効用吸収式冷凍機のサイクルフロー図。High-temperature heat exchange in which the amount of liquid excluding the amount sent to the intermediate-temperature regenerator is supplied from the mixed liquid of the absorption liquid distributed through the intermediate-temperature heat exchanger and the absorption liquid distributed through the refrigerant drain heat exchanger for the intermediate-temperature regenerator Cycle flow of a triple effect absorption refrigeration machine in which the exhaust gas heat exchanger is supplied with a part of the absorption liquid that has passed through only the refrigerant drain heat exchanger for the medium temperature regenerator. Figure. 吸収器から低温熱交換器を流通した吸収液のうち低温再生器へ送出された量を除く液量が送給される中温熱交換器を具備した三重効用吸収式冷凍機のサイクルフロー図。The cycle flow figure of the triple effect absorption refrigerating machine which comprised the intermediate temperature heat exchanger to which the liquid quantity except the quantity sent to the low temperature regenerator is sent among the absorption liquid which distribute | circulated the low temperature heat exchanger from the absorber. 吸収器から低温熱交換器を流通した吸収液のうち低温再生器へ送出された量を除く液量が送給される中温熱交換器を具備した三重効用吸収式冷凍機のサイクルフロー図。The cycle flow figure of the triple effect absorption refrigerating machine which comprised the intermediate temperature heat exchanger to which the liquid quantity except the quantity sent to the low temperature regenerator is sent among the absorption liquid which distribute | circulated the low temperature heat exchanger from the absorber. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液が低温再生器へ送出され、低温再生器から流出する吸収液の一部が送給される中温熱交換器を具備している三重効用吸収式冷凍機のサイクルフロー図。A mixture of the absorption liquid flowing through the low-temperature heat exchanger from the absorber and the absorption liquid flowing through the refrigerant drain heat exchanger for the low-temperature regenerator is sent to the low-temperature regenerator, and part of the absorption liquid flowing out from the low-temperature regenerator The cycle flow figure of the triple effect absorption refrigerating machine which comprises the intermediate temperature heat exchanger supplied. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液が低温再生器へ送出され、低温再生器から流出する吸収液の一部が送給される中温熱交換器を具備している三重効用吸収式冷凍機のサイクルフロー図。A mixture of the absorption liquid flowing through the low-temperature heat exchanger from the absorber and the absorption liquid flowing through the refrigerant drain heat exchanger for the low-temperature regenerator is sent to the low-temperature regenerator, and part of the absorption liquid flowing out from the low-temperature regenerator The cycle flow figure of the triple effect absorption refrigerating machine which comprises the intermediate temperature heat exchanger supplied. 吸収器から低温熱交換器を流通した吸収液のうち低温再生器へ送出された量および中温再生器用冷媒ドレン熱交換器に送出される量を除く液量が送給される中温熱交換器を具備した三重効用吸収式冷凍機のサイクルフロー図。An intermediate temperature heat exchanger to which the amount of liquid excluding the amount sent from the absorber to the low temperature regenerator and the amount sent to the refrigerant drain heat exchanger for the intermediate temperature regenerator is supplied. The cycle flow figure of the equipped triple effect absorption refrigerator. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液のうち、低温再生器へ送出された量を除く液量が送給される中温熱交換器を具備し、排ガス熱交換器は低温再生器用冷媒ドレン熱交換器だけを流通した吸収液の一部も混在して中温熱交換器に送給されるようになっている三重効用吸収式冷凍機のサイクルフロー図。Out of the mixed liquid of the absorbent that has passed through the low-temperature heat exchanger from the absorber and the absorbent that has passed through the refrigerant drain heat exchanger for the low-temperature regenerator, the amount of liquid excluding the amount sent to the low-temperature regenerator is delivered. A triple-effect system that has an intermediate temperature heat exchanger, and the exhaust gas heat exchanger is fed to the intermediate temperature heat exchanger with a part of the absorbent flowing through only the refrigerant drain heat exchanger for the low temperature regenerator. Cycle flow diagram of absorption refrigerator. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液のうち、低温再生器へ送出された量を除く液量が送給される中温熱交換器を具備し、排ガス熱交換器は低温再生器用冷媒ドレン熱交換器だけを流通した吸収液の一部も混在して中温熱交換器に送給されるようになっている三重効用吸収式冷凍機のサイクルフロー図。Out of the mixed liquid of the absorbent that has passed through the low-temperature heat exchanger from the absorber and the absorbent that has passed through the refrigerant drain heat exchanger for the low-temperature regenerator, the amount of liquid excluding the amount sent to the low-temperature regenerator is delivered. A triple-effect system that has an intermediate temperature heat exchanger, and the exhaust gas heat exchanger is fed to the intermediate temperature heat exchanger with a part of the absorbent flowing through only the refrigerant drain heat exchanger for the low temperature regenerator. Cycle flow diagram of absorption refrigerator. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液のうち、低温再生器へ送出された量を除く液量が送給される中温熱交換器を具備し、排ガス熱交換器には低温再生器用冷媒ドレン熱交換器だけを流通した吸収液の一部も混在して送給されるようになっている三重効用吸収式冷凍機のサイクルフロー図。Out of the mixed liquid of the absorbent that has passed through the low-temperature heat exchanger from the absorber and the absorbent that has passed through the refrigerant drain heat exchanger for the low-temperature regenerator, the amount of liquid excluding the amount sent to the low-temperature regenerator is delivered. Triple effect absorption refrigeration machine equipped with an intermediate temperature heat exchanger, and the exhaust gas heat exchanger is also supplied with a part of the absorption liquid flowing only through the refrigerant drain heat exchanger for the low temperature regenerator Cycle flow diagram. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液のうち、低温再生器へ送出された量を除く液量が送給される中温熱交換器を具備し、排ガス熱交換器には低温再生器用冷媒ドレン熱交換器だけを流通した吸収液の一部も混在して送給されるようになっている三重効用吸収式冷凍機のサイクルフロー図。Out of the mixed liquid of the absorbent that has passed through the low-temperature heat exchanger from the absorber and the absorbent that has passed through the refrigerant drain heat exchanger for the low-temperature regenerator, the amount of liquid excluding the amount sent to the low-temperature regenerator is delivered. Triple effect absorption refrigeration machine equipped with an intermediate temperature heat exchanger, and the exhaust gas heat exchanger is also supplied with a part of the absorption liquid flowing only through the refrigerant drain heat exchanger for the low temperature regenerator Cycle flow diagram. 吸収器から低温熱交換器を流通した吸収液と低温再生器用冷媒ドレン熱交換器を流通した吸収液との混合液のうち、低温再生器へ送出された量を除く液量が送給される中温熱交換器を具備し、排ガス熱交換器には低温再生器用冷媒ドレン熱交換器だけを流通した吸収液の一部も混在して送給されるようになっている三重効用吸収式冷凍機のサイクルフロー図。Out of the mixed liquid of the absorbent that has passed through the low-temperature heat exchanger from the absorber and the absorbent that has passed through the refrigerant drain heat exchanger for the low-temperature regenerator, the amount of liquid excluding the amount sent to the low-temperature regenerator is delivered. Triple effect absorption refrigeration machine equipped with an intermediate temperature heat exchanger, and the exhaust gas heat exchanger is also supplied with a part of the absorption liquid flowing only through the refrigerant drain heat exchanger for the low temperature regenerator Cycle flow diagram. 排ガス熱交換器が設置された先行技術としての吸収式冷凍機のサイクルフロー図。The cycle flow figure of the absorption refrigerating machine as a prior art in which the exhaust gas heat exchanger was installed.

以下に、本発明に係る吸収式冷凍機を、具体的なサイクルフローをもとに詳細に説明する。二重効用機も三重効用機においても、排熱回収器すなわち例えば排ガス熱交換器のより一層の小型化により省エネを図り、排ガス熱交換器内伝熱面積の低減、吸収液の排ガス熱交換器内偏流の発生抑制、局部加熱による吸収液の晶析回避を目したものである。まずは、二重効用吸収式冷凍機について述べる。その冷凍機全体についての構成は図36のところで触れたので、ここでは同じ符号を付して説明を省く。なお、稀液ポンプ13や冷媒ポンプ14を除いたポンプの存否は機種により異なることが多いので、その表記は極力省くことにした。  Below, the absorption refrigerator which concerns on this invention is demonstrated in detail based on a specific cycle flow. In both double-effect and triple-effect machines, energy saving is achieved by further reducing the size of the exhaust heat recovery unit, for example, the exhaust gas heat exchanger, reducing the heat transfer area in the exhaust gas heat exchanger, and the exhaust gas heat exchanger for absorbing liquid It aims at suppressing the occurrence of internal drift and avoiding crystallization of the absorbing solution by local heating. First, a dual effect absorption refrigerator will be described. Since the configuration of the entire refrigerator has been described with reference to FIG. 36, the same reference numerals are given here and description thereof is omitted. Since the presence or absence of pumps excluding the rare liquid pump 13 and the refrigerant pump 14 often varies depending on the model, the description is omitted as much as possible.

本発明においては、まず図1および図2に示すように冷媒ドレン熱交換器1が導入される。これは低温再生器2で生成された後に凝縮器3へ向かう冷媒ドレンの保有熱を利用し、低温熱交換器4へ向かう吸収液の一部を分流させて加熱した後に低温再生器2へ送出するものである。そのため、吸収器5から導出された吸収液が低温熱交換器4へ向かう管路の低温熱交換器直前の上流側に分岐管6が枝設され、冷媒ドレン熱交換器1はその分岐管をたどる吸収液を加熱できるようにしている。なお、この冷媒ドレン熱交換器は低温再生器用であって、図16以降で述べる中温再生器用の冷媒ドレン熱交換器と区別するために低温再生器用冷媒ドレン熱交換器と呼称するものの、以下の説明にあっては多くの場合、冷媒ドレン熱交換器と略称する。In the present invention, a refrigerant drain heat exchanger 1 is first introduced as shown in FIGS . This uses the retained heat of the refrigerant drain that is generated in the low-temperature regenerator 2 and then goes to the condenser 3, and after a part of the absorption liquid that goes to the low-temperature heat exchanger 4 is divided and heated, it is sent to the low-temperature regenerator 2. To do. For this reason, a branch pipe 6 is provided on the upstream side immediately before the low-temperature heat exchanger in the pipe line where the absorbing liquid derived from the absorber 5 is directed to the low-temperature heat exchanger 4, and the refrigerant drain heat exchanger 1 is connected to the branch pipe. The absorption liquid to be traced can be heated. This refrigerant drain heat exchanger is for a low temperature regenerator, and is referred to as a low temperature regenerator refrigerant drain heat exchanger in order to distinguish it from a refrigerant drain heat exchanger for a medium temperature regenerator described in FIG. In the description, it is often abbreviated as a refrigerant drain heat exchanger.

このような冷媒ドレン熱交換器1が設けられているサイクル管路に排熱回収器としての排ガス熱交換器7が設置されるが、これは吸収液が高温再生器8に向かう流れの高温熱交換器直前の上流側管路に位置され、高温熱交換器とは直列とされる。この例では、排ガス熱交換器7はガス焚き式高温再生器から排出される燃焼排ガス(高温再生器排ガス)の保有エネルギ回収を図って省エネするものであるが、油焚き式としたり、別途ボイラが設置されていれば、そのボイラ排ガスを導入するものであってもよく、また吸収冷凍機がコージェネレーションシステムを形成する場合には、エンジンやタービンの排ガス・排熱水を利用するものとすることもできる。  An exhaust gas heat exchanger 7 as an exhaust heat recovery unit is installed in a cycle line in which such a refrigerant drain heat exchanger 1 is provided. This is a high temperature heat generated by the flow of the absorbent toward the high temperature regenerator 8. It is located in the upstream line just before the exchanger and is in series with the high temperature heat exchanger. In this example, the exhaust gas heat exchanger 7 saves energy by recovering the stored energy of the combustion exhaust gas (high temperature regenerator exhaust gas) discharged from the gas-fired high temperature regenerator. If it is installed, the boiler exhaust gas may be introduced, and if the absorption chiller forms a cogeneration system, exhaust gas / heated water from the engine or turbine shall be used. You can also.

上記した高温熱交換器9には、図1の例にあっては、吸収器5から低温熱交換器4を流通した吸収液のうち低温再生器2へ送出された量を除く液量が送給される。排ガス熱交換器7には冷媒ドレン熱交換器1を流通した吸収液が送給されることはないが、上記のごとく排ガス熱交換器7と高温熱交換器9とは直列に接続されるので、図36のごとくの高温熱交換器9と排ガス熱交換器7への吸収液の分配ということはなく、管路抵抗に支配される分流を無くした一連の流れが達成される。それゆえ、温度レベルの低い高温熱交換器9の上流側に配置された排ガス熱交換器7における伝熱効率は高くなる。これは対数平均温度差が大きく取れていることによる結果と言える。In the example of FIG. 1 , the above-described high-temperature heat exchanger 9 is supplied with the amount of liquid excluding the amount sent from the absorber 5 to the low-temperature regenerator 2 out of the absorbent flowing through the low-temperature heat exchanger 4. Be paid. The exhaust liquid heat exchanger 7 is not supplied with the absorption liquid flowing through the refrigerant drain heat exchanger 1, but as described above, the exhaust gas heat exchanger 7 and the high-temperature heat exchanger 9 are connected in series. 36, there is no distribution of the absorption liquid to the high-temperature heat exchanger 9 and the exhaust gas heat exchanger 7 as shown in FIG. 36, and a series of flows that eliminates the shunt flow governed by the pipe resistance is achieved. Therefore, the heat transfer efficiency in the exhaust gas heat exchanger 7 disposed on the upstream side of the high temperature heat exchanger 9 having a low temperature level is increased. This can be said to be a result of a large logarithm average temperature difference.

もう少し詳しく述べると、上記のごとく直列の流れとしたことにより、排ガス熱交換器で加熱される熱量が同じであれば、すなわち排ガスを例えば200℃から100℃まで熱回収するという熱量が同じであれば、液量が増加するほど熱交換器出口温度は低下する。そのため、排ガス熱交換器においては必然的に対数平均温度差が大きくとれることになるのである。いま、Q=K×A×ΔTmとして考えると(ここで、Qは交換熱量、Kは総括伝熱係数、Aは伝熱面積、ΔTmは対数平均温度差である)、管内熱伝達率が向上することによりK値は上昇する傾向となり、ΔTmも溶液側出口温度の低下により大きくなる。つまり、必要な交換熱量Qを得るためにKとΔTmが増大すれば、必要な伝熱面積Aは少なくて済むことが分かる。  In more detail, if the amount of heat heated by the exhaust gas heat exchanger is the same because of the series flow as described above, that is, the amount of heat for recovering the exhaust gas from 200 ° C. to 100 ° C., for example, is the same. For example, the heat exchanger outlet temperature decreases as the liquid amount increases. Therefore, the exhaust gas heat exchanger inevitably has a large logarithmic average temperature difference. Considering that Q = K × A × ΔTm (where Q is the amount of exchange heat, K is the overall heat transfer coefficient, A is the heat transfer area, and ΔTm is the logarithm average temperature difference), the heat transfer coefficient in the pipe is improved. As a result, the K value tends to increase, and ΔTm also increases as the solution side outlet temperature decreases. That is, it can be understood that if K and ΔTm are increased in order to obtain the necessary exchange heat quantity Q, the necessary heat transfer area A can be reduced.

上記のごとく、高温熱交換器9での流通量と同じ液量が排ガス熱交換器7でも流量するわけであるが、これは排ガス熱交換器内レイノルズ数を増大させることになり、管内での活発な乱流の発生は伝熱面における熱伝達率を向上させる。大きい対数平均温度差と伝熱面熱伝達率の向上による相乗効果は伝熱管群の段数削減を可能にし、排ガス熱交換器の一層の小型化を促す。特殊加工が必要となるうえに、SUS等の特殊材料の採用や腐食対策も必要となる高価な伝熱管の導入量を少なくでき、排ガス熱交換器製作の低廉化に大きく寄与する。  As described above, the same amount of liquid as the circulation amount in the high-temperature heat exchanger 9 also flows in the exhaust gas heat exchanger 7, but this increases the Reynolds number in the exhaust gas heat exchanger, The generation of active turbulence improves the heat transfer coefficient at the heat transfer surface. The synergistic effect due to the large logarithmic average temperature difference and the improvement of the heat transfer surface heat transfer coefficient enables the number of heat transfer tube groups to be reduced, and promotes further downsizing of the exhaust gas heat exchanger. In addition to the need for special processing, the introduction of expensive heat transfer tubes that require the use of special materials such as SUS and countermeasures against corrosion can be reduced, greatly contributing to the cost reduction of exhaust gas heat exchanger production.

図2も排ガス熱交換器7に冷媒ドレン熱交換器1だけを流通した吸収液が送給されることはないが、低温熱交換器4を流通した吸収液と冷媒ドレン熱交換器1を流通した吸収液との混合液が低温再生器2へ送給され、その低温再生器から送出された吸収液のうち低温熱交換器4での加熱源として循環される吸収液を除いた液量が排ガス熱交換器7を経て高温熱交換器9に送給される点が上記の例と異なる。Although the absorbing liquid that has circulated only refrigerant drain heat exchanger 1 is not fed into the exhaust gas heat exchanger 7 in FIG. 2, the absorbent solution and the refrigerant drain heat exchanger 1 which has flowed through the low temperature heat exchanger 4 The amount of liquid excluding the absorption liquid circulated as a heating source in the low-temperature heat exchanger 4 out of the absorption liquid sent from the low-temperature regenerator to the mixed liquid with the distributed absorption liquid Is different from the above example in that is fed to the high temperature heat exchanger 9 through the exhaust gas heat exchanger 7 .

いずれのサイクルフローにおいても、低温再生器2で生成された後に凝縮器3へ向かう冷媒ドレンの保有熱を利用するものであるので、低温再生器2へは低温熱交換器4で加熱した吸収液と冷媒ドレン熱交換器1で加熱した吸収液が送給される。冷媒ドレン熱交換器は低温再生器入口の溶液温度を高くし、それだけ低温再生器での吸収液加熱に必要となる投入熱量が減少する。低温再生器2の加熱源は高温再生器8からの冷媒蒸気34であるため、高温再生器8での冷媒蒸気発生負担は軽減されることになる。  In any cycle flow, since the retained heat of the refrigerant drain that is generated by the low temperature regenerator 2 and goes to the condenser 3 is used, the absorption liquid heated by the low temperature heat exchanger 4 is supplied to the low temperature regenerator 2. And the absorption liquid heated with the refrigerant | coolant drain heat exchanger 1 is sent. The refrigerant drain heat exchanger increases the solution temperature at the inlet of the low-temperature regenerator, and the amount of input heat necessary for heating the absorption liquid in the low-temperature regenerator is accordingly reduced. Since the heat source of the low temperature regenerator 2 is the refrigerant vapor 34 from the high temperature regenerator 8, the burden of generating the refrigerant vapor in the high temperature regenerator 8 is reduced.

伝熱面積の低減を企図すべく排ガス熱交換器7の小型化を目指し、器内溶液の偏流を惹起させないようにしていることもあって、局部加熱による溶液晶析の可能性も激減する。部分負荷運転時における排ガスの結露によるドレン水腐食も、可及的に回避される。さらに、この部分負荷時にあってはインバータ制御に従うポンプ吐出量の低下すなわち吸収液の循環量の減少と、本発明に基づく排ガス熱交換器の高温熱交換器との直列化による分岐流発生の回避とがあいまって管内レイノルズ数の低下抑制が図られる。ひいては、排ガス熱交換器での伝熱性能の低下が抑えられることになる。たとえ、圧力変動や温度変動による循環量のアンバランスをきたしても、溶液がフラッシュしたり、液量のハンチング発生は自ずと抑えられる。ところで、上で触れたごとく管群段数の減少によるコンパクト化はガス側熱伝達率の低下をきたすことなく圧力損失の低減をもたらし、特にガス焚き式においては燃料配管の小口径化による装置の低廉化を導く。それゆえ、ユーザが低圧ガス供給区分とされるガス設備しか持たない場合も導入することができるようになる。すなわち、中間圧供給もしくはそれ以上の圧供給設備しか持たないユーザのみならず、ガス供給設備規模の大小を問うことなく吸収式冷凍機の導入が可能となる。これは、本発明に係る吸収式冷凍機が設置制限を取り払いやすくするという極めて実用的な利点も備えることを意味している。  In order to reduce the heat transfer area, the exhaust gas heat exchanger 7 is aimed to be miniaturized so as not to cause the drift of the solution in the vessel, and the possibility of liquid crystal deposition due to local heating is drastically reduced. Drain water corrosion due to condensation of exhaust gas during partial load operation is also avoided as much as possible. Furthermore, at the time of this partial load, the pump discharge rate according to the inverter control is reduced, that is, the absorption fluid circulation rate is reduced, and the generation of branch flow is avoided by serializing the exhaust gas heat exchanger according to the present invention with the high temperature heat exchanger. In combination with this, the reduction of the Reynolds number in the pipe is suppressed. As a result, a decrease in heat transfer performance in the exhaust gas heat exchanger is suppressed. Even if the circulation amount is unbalanced due to pressure fluctuations or temperature fluctuations, the solution is flushed or hunting of the liquid amount is naturally suppressed. By the way, as mentioned above, downsizing by reducing the number of tube group stages brings about a reduction in pressure loss without causing a decrease in the gas side heat transfer coefficient. Lead to Therefore, it is possible to introduce a case where the user has only gas equipment that is classified as a low-pressure gas supply section. That is, it is possible to introduce an absorption refrigeration machine not only for users who have only intermediate pressure supply or higher pressure supply facilities, but regardless of the size of the gas supply facilities. This means that the absorption refrigerator according to the present invention also has a very practical advantage of making it easier to remove installation restrictions.

図3は、冷媒ドレン熱交換器1だけを流通した吸収液の一部も混在させて排ガス熱交換器7に送給されるようにしたサイクルフローである。すなわち、高温熱交換器9には吸収器5から低温熱交換器4を流通した吸収液と冷媒ドレン熱交換器1を流通した吸収液との混合液のうち、低温再生器2へ送出された量を除く液量が送給される。このように冷媒ドレン熱交換器1を流通した吸収液は一部であるといえども、低温熱交換器4での加熱のみに頼らない吸収液が排ガス熱交換器7に導入されることは、排ガス熱交換器における吸収液加熱効果を向上させる。ひいては高温熱交換器9における熱交換負荷を軽減することができ、低温熱交換器4における高温再生器からの循環液量や液温を抑えられることにもなり、高温再生器における加熱低減は燃料消費量の節減にも寄与する。  FIG. 3 is a cycle flow in which a part of the absorbent that has circulated only through the refrigerant drain heat exchanger 1 is also mixed and fed to the exhaust gas heat exchanger 7. That is, the high-temperature heat exchanger 9 is sent from the absorber 5 to the low-temperature regenerator 2 out of the mixed liquid of the absorbent flowing through the low-temperature heat exchanger 4 and the absorbent flowing through the refrigerant drain heat exchanger 1. The amount of liquid excluding the amount is fed. Thus, even though the absorption liquid that has circulated through the refrigerant drain heat exchanger 1 is only a part, the absorption liquid that does not rely only on heating in the low-temperature heat exchanger 4 is introduced into the exhaust gas heat exchanger 7. Improve the absorption liquid heating effect in the exhaust gas heat exchanger. As a result, the heat exchange load in the high temperature heat exchanger 9 can be reduced, and the amount of circulating fluid and the liquid temperature from the high temperature regenerator in the low temperature heat exchanger 4 can be suppressed. Contributes to savings in consumption.

図1には図3や図2と違って、そのサイクルフローに系外廃熱利用熱交換器11が付設されている。これは、低温熱交換器4を流通した吸収液と冷媒ドレン熱交換器1を流通した吸収液とが混合して低温再生器2へ向かう管路に介在され、系外発生廃熱を導入して吸収液を加熱し、吸収液を低温再生器2へ送出する。吸収液を系外エネルギによっても温度を高めた状態で低温再生器2に送給でき、低温再生器2での冷媒ドレンによる加熱を軽減することにもなる。もちろん、高温再生器8における冷媒蒸気34の発生負荷も和らげられる。なお、この系外廃熱利用熱交換器11は必要に応じて設けられるものであるので、図2や図3では省かれているが、必要なら同様の要領で設ければよい。その熱源は各種の温熱流体やソーラエネルギといったものにしておくことができる。  Unlike FIG. 3 and FIG. 2, the heat exchanger 11 using an outside waste heat is attached to the cycle flow in FIG. This is because the absorption liquid flowing through the low-temperature heat exchanger 4 and the absorption liquid flowing through the refrigerant drain heat exchanger 1 are mixed and interposed in a pipe line toward the low-temperature regenerator 2 to introduce waste heat generated outside the system. The absorbent is heated to deliver the absorbent to the low temperature regenerator 2. The absorbing liquid can be supplied to the low-temperature regenerator 2 in a state where the temperature is also increased by the energy outside the system, and heating by the refrigerant drain in the low-temperature regenerator 2 is also reduced. Of course, the generation load of the refrigerant vapor 34 in the high temperature regenerator 8 is also reduced. The extraneous waste heat utilization heat exchanger 11 is provided as necessary, and is omitted in FIGS. 2 and 3, but may be provided in the same manner if necessary. The heat source can be various hot fluids or solar energy.

次に、三重効用吸収冷凍機の場合を説明する。図4に示すように中温再生器21やこの中温再生器へ向かう吸収液を加熱する中温熱交換器22が付加され、場合によっては後述する図16に示す中温再生器用冷媒ドレン熱交換器23も設置される。いずれにしても前述した低温再生器用冷媒ドレン熱交換器1は依然として設けられており、低温熱交換器4の直前の分岐管6をたどる吸収液は加熱して低温再生器2へ送出される。排ガス熱交換器7は吸収液が高温再生器8に向かう流れの高温熱交換器直前の上流側管路に設置され、高温熱交換器9とは直列をなすか、後述する図6などでは、吸収液が中温熱交換器21に向かう流れの中温熱交換器22の直前の上流側管路に排ガス熱交換器15が設置され、中温熱交換器と直列をなす。これらの三重効用機においても図1で述べた系外廃熱利用熱交換器11を付設することができるので、図16ではそれを付加したサイクルフローとしている。もちろん、三重効用機の上記したおよび後で触れるいずれの図においても必要に応じて系外廃熱利用熱交換器を付設できるのは言うまでもない。系外廃熱利用熱交換器の存否は別にしても、この三重効用機の場合も、先に述べた二重効用機と同様の作用効果が発揮される。  Next, the case of a triple effect absorption refrigerator will be described. As shown in FIG. 4, an intermediate temperature regenerator 21 and an intermediate temperature heat exchanger 22 that heats the absorption liquid directed to the intermediate temperature regenerator are added. In some cases, a medium temperature regenerator refrigerant drain heat exchanger 23 shown in FIG. Installed. In any case, the refrigerant drain heat exchanger 1 for the low-temperature regenerator described above is still provided, and the absorption liquid that follows the branch pipe 6 immediately before the low-temperature heat exchanger 4 is heated and sent to the low-temperature regenerator 2. The exhaust gas heat exchanger 7 is installed in an upstream pipe line immediately before the high temperature heat exchanger in which the absorbent flows toward the high temperature regenerator 8, and is in series with the high temperature heat exchanger 9, or in FIG. The exhaust gas heat exchanger 15 is installed in the upstream pipe line immediately before the intermediate temperature heat exchanger 22 in which the absorption liquid flows toward the intermediate temperature heat exchanger 21, and is in series with the intermediate temperature heat exchanger. In these triple effect machines, the heat exchanger 11 utilizing the extraneous waste heat described with reference to FIG. 1 can be attached, and therefore, in FIG. 16, the cycle flow is added. Of course, it goes without saying that a heat exchanger using waste heat outside the system can be attached as necessary in any of the above-mentioned drawings of the triple effect machine and those to be mentioned later. Regardless of the presence or absence of a heat exchanger using waste heat outside the system, the effect similar to that of the double effect machine described above is also exhibited in the case of this triple effect machine.

少々繰り返しとなるが、その効果を述べる。低温再生器用冷媒ドレン熱交換器により低温再生器入口の溶液温度を高くでき、低温再生器の加熱源が高温再生器から中温再生器を経た冷媒蒸気であるため、低温再生器での加熱熱量の減少は高温再生器での冷媒蒸気発生負担を軽減する。また、対数平均温度差を大きく取ることができ、管内レイノルズ数を向上させることにもなるから、伝熱面における熱伝達率の向上も図られて排ガス熱交換器の小型化や低廉化が可能となる。省エネを図るべく系内に設置した排ガス熱交換器により一層の小型化が可能となると、排ガス熱交換器内伝熱面積の低減、吸収液の器内偏流発生が抑止され、局部加熱による吸収液晶析も著しく少ない。部分負荷運転時における排ガス結露に基づくドレン水腐食を可及的に回避することもできる。中温熱交換器と排ガス熱交換器への吸収液分配比を生じさせることもないから、管路抵抗に支配されない流れが達成され、液量のハンチング発生も可及的に少なくなる。  I will repeat it a little, but I will describe the effect. The refrigerant drain heat exchanger for the low temperature regenerator can increase the solution temperature at the inlet of the low temperature regenerator, and the heating source of the low temperature regenerator is the refrigerant vapor that has passed through the medium temperature regenerator from the high temperature regenerator. Reduction reduces the burden of refrigerant vapor generation in the high-temperature regenerator. In addition, since the logarithmic average temperature difference can be increased and the Reynolds number in the pipe can be improved, the heat transfer coefficient on the heat transfer surface can be improved, and the exhaust gas heat exchanger can be reduced in size and cost. It becomes. If the exhaust gas heat exchanger installed in the system to save energy can be further reduced in size, the heat transfer area in the exhaust gas heat exchanger will be reduced, the internal drift of the absorption liquid will be suppressed, and the absorption liquid crystal by local heating will be suppressed. There is also very little analysis. It is also possible to avoid drain water corrosion based on exhaust gas dew condensation during partial load operation as much as possible. Since the absorption liquid distribution ratio to the intermediate temperature heat exchanger and the exhaust gas heat exchanger is not generated, a flow that is not controlled by the pipe resistance is achieved, and the generation of liquid hunting is minimized.

まず、中温再生器用冷媒ドレン熱交換器23(例えば図16を参照)の設けられていない図4と図5から見る。これらのサイクルフローにおいては、高温熱交換器9へは、吸収器5から低温熱交換器4を流通した吸収液のうち低温再生器2へ送出された量および中温再生器21へ送出された量を除いた液量が送給される。冷媒ドレン熱交換器1だけを流通した吸収液は排ガス熱交換器7に送給されないが、冷媒ドレン熱交換器1による省エネ効果が発揮されることは述べるまでもない。なお、図4では排ガス熱交換器7を流通する吸収液が中温熱交換器22を流通していなく、図5では排ガス熱交換器7を流通する吸収液が中温熱交換器22を流通した後のものとなっている。  First, it sees from FIG. 4 and FIG. 5 in which the refrigerant | coolant drain heat exchanger 23 (for example, refer FIG. 16) for intermediate temperature regenerators is not provided. In these cycle flows, to the high temperature heat exchanger 9, the amount sent from the absorber 5 through the low temperature heat exchanger 4 to the low temperature regenerator 2 and the amount sent to the medium temperature regenerator 21. The amount of liquid excluding is delivered. Although the absorption liquid which circulated only through the refrigerant drain heat exchanger 1 is not fed to the exhaust gas heat exchanger 7, it goes without saying that the energy saving effect by the refrigerant drain heat exchanger 1 is exhibited. In FIG. 4, the absorption liquid flowing through the exhaust gas heat exchanger 7 does not flow through the intermediate temperature heat exchanger 22. In FIG. 5, the absorption liquid flowing through the exhaust gas heat exchanger 7 flows through the intermediate temperature heat exchanger 22. Has become.

ところで、図6や図7は、排ガス熱交換器15と直列をなすのが中温熱交換器22とされたものである。この排ガス熱交換器15には、吸収器5から低温熱交換器4を流通した吸収液のうち低温再生器2へ送出された量を除く液量が送給される。図6では、排ガス熱交換器15を流通した吸収液が中温熱交換器22と高温熱交換器9に並行して送出され、図7では、排ガス熱交換器15を流通した吸収液は中温熱交換器22を経て中温再生器21とそれに直列配置の高温熱交換器9に送出される。  6 and 7 show that the intermediate temperature heat exchanger 22 is in series with the exhaust gas heat exchanger 15. The exhaust gas heat exchanger 15 is supplied with an amount of liquid excluding the amount sent from the absorber 5 to the low-temperature regenerator 2 out of the absorbent flowing through the low-temperature heat exchanger 4. In FIG. 6, the absorption liquid that has flowed through the exhaust gas heat exchanger 15 is sent out in parallel to the intermediate temperature heat exchanger 22 and the high temperature heat exchanger 9, and in FIG. 7, the absorption liquid that has flowed through the exhaust gas heat exchanger 15 is medium temperature heat. It passes through the exchanger 22 and is sent to the intermediate temperature regenerator 21 and the high temperature heat exchanger 9 arranged in series therewith.

図8では、高温熱交換器9と直列をなす排ガス熱交換器7には、吸収器5から低温熱交換器4を流通した吸収液と冷媒ドレン熱交換器1を流通した吸収液との混合液が低温再生器2へ送出され、その低温再生器から流出する吸収液のうち低温熱交換器4での加熱源として循環される吸収液を除いた液量から、中温熱交換器22へ送出された量を除く液量が送給される。  In FIG. 8, the exhaust gas heat exchanger 7 in series with the high-temperature heat exchanger 9 includes a mixture of an absorption liquid flowing from the absorber 5 through the low-temperature heat exchanger 4 and an absorption liquid flowing through the refrigerant drain heat exchanger 1. The liquid is sent to the low temperature regenerator 2, and from the amount of liquid excluding the absorption liquid circulated as a heating source in the low temperature heat exchanger 4 from the absorbed liquid flowing out from the low temperature regenerator, the liquid is sent to the intermediate temperature heat exchanger 22. The amount of liquid excluding the measured amount is fed.

図9および図10の例では、排ガス熱交換器15と直列となるのは中温熱交換器22である。これらでは、吸収器5から低温熱交換器4を流通した吸収液と冷媒ドレン熱交換器1を流通した吸収液との混合液が低温再生器2へ送出され、その低温再生器2から流出する吸収液のうち低温熱交換器4での加熱源として循環される吸収液を除く液量が排ガス熱交換器15に送給される。  In the example of FIGS. 9 and 10, the intermediate temperature heat exchanger 22 is in series with the exhaust gas heat exchanger 15. In these, the mixed liquid of the absorption liquid that has flowed through the low-temperature heat exchanger 4 and the absorption liquid that has flowed through the refrigerant drain heat exchanger 1 is sent from the absorber 5 to the low-temperature regenerator 2 and flows out from the low-temperature regenerator 2. The amount of liquid excluding the absorbent that is circulated as a heating source in the low-temperature heat exchanger 4 is sent to the exhaust gas heat exchanger 15.

図11では、高温熱交換器9が排ガス熱交換器7と直列となっている。排ガス熱交換器へは、低温再生器2を流通した吸収液と冷媒ドレン熱交換器1を流通した吸収液との混合液が低温再生器2へ送出され、その低温再生器から流出する吸収液のうち低温熱交換器4での加熱源として循環される吸収液を除く液量が中温再生器21へ送出され、その中温再生器21から流出する吸収液のうち中温熱交換器22での加熱源として循環される吸収液を除いた液量が送給される構成となっている。  In FIG. 11, the high-temperature heat exchanger 9 is in series with the exhaust gas heat exchanger 7. To the exhaust gas heat exchanger, a mixed liquid of the absorption liquid flowing through the low-temperature regenerator 2 and the absorption liquid flowing through the refrigerant drain heat exchanger 1 is sent to the low-temperature regenerator 2 and flows out from the low-temperature regenerator. Among them, the amount of liquid excluding the absorption liquid circulated as a heating source in the low-temperature heat exchanger 4 is sent to the intermediate temperature regenerator 21, and the absorption liquid flowing out from the intermediate temperature regenerator 21 is heated in the intermediate temperature heat exchanger 22. The liquid quantity except the absorption liquid circulated as a source is supplied.

図12も高温熱交換器9と排ガス熱交換器7との直列構成を表しているが、それは、低温熱交換器4を流通した吸収液と冷媒ドレン熱交換器1を流通した吸収液との混合液のうち、低温再生器2へ送出された量を除く液量が中温再生器21へ送出され、その中温再生器21から流出する吸収液のうち中温熱交換器22での加熱源として循環される吸収液を除く液量が送給されるものである。  FIG. 12 also shows a series configuration of the high-temperature heat exchanger 9 and the exhaust gas heat exchanger 7, which is composed of the absorption liquid flowing through the low-temperature heat exchanger 4 and the absorption liquid flowing through the refrigerant drain heat exchanger 1. Of the mixed liquid, the liquid amount excluding the amount sent to the low temperature regenerator 2 is sent to the intermediate temperature regenerator 21 and circulates as a heating source in the intermediate temperature heat exchanger 22 among the absorbing liquid flowing out from the intermediate temperature regenerator 21. The amount of liquid excluding the absorbed liquid is fed.

図13も、排ガス熱交換器7は高温熱交換器9と直列構成になっている。それには、低温熱交換器4を流通した吸収液と冷媒ドレン熱交換器1を流通した吸収液との混合液のうち、低温再生器2へ送出された量および中温再生器21へ送出された量を除く液量が送給される。上記した図12をはじめ、図6、図7、図8、図9、図10、図11もそうであるが、低温再生器用冷媒ドレン熱交換器1だけを流通した吸収液が排ガス熱交換器7,15に送給されることはない。  Also in FIG. 13, the exhaust gas heat exchanger 7 is configured in series with the high temperature heat exchanger 9. For this purpose, of the mixed liquid of the absorbent flowing through the low temperature heat exchanger 4 and the absorbent flowing through the refrigerant drain heat exchanger 1, the amount sent to the low temperature regenerator 2 and the medium temperature regenerator 21 were sent. The amount of liquid excluding the amount is fed. 6, 7, 8, 9, 10, and 11 as well as FIG. 12 described above, the absorbed liquid that has circulated only through the refrigerant drain heat exchanger 1 for a low-temperature regenerator is an exhaust gas heat exchanger. 7 and 15 are not sent.

ところで、図14や図15は特筆すべきサイクルフローの例である。排ガス熱交換器15と直列となるのが中温熱交換器22となっていることによる。これは、低温熱交換器4を流通した吸収液と冷媒ドレン熱交換器1を流通した吸収液との混合液のうち、低温再生器2へ送出された量を除く液量が送給される。この場合は、冷媒ドレン熱交換器1だけを流通した吸収液の一部も混在して排ガス熱交換器15に送給される。これによって、排ガス熱交換器15における吸収液加熱効果が向上して、中温熱交換器22における熱交換負荷を軽減する。高温再生器8からの循環液量もしくは液温が抑えられれば、高温再生器8における加熱も節減でき燃料消費が抑制される。  By the way, FIG.14 and FIG.15 is an example of the cycle flow which should be mentioned specially. This is because the middle temperature heat exchanger 22 is in series with the exhaust gas heat exchanger 15. This is the amount of liquid excluding the amount sent to the low temperature regenerator 2 out of the mixed liquid of the absorbent flowing through the low temperature heat exchanger 4 and the absorbing liquid flowing through the refrigerant drain heat exchanger 1. . In this case, a part of the absorbent that has circulated only through the refrigerant drain heat exchanger 1 is also mixed and fed to the exhaust gas heat exchanger 15. Thereby, the absorption liquid heating effect in the exhaust gas heat exchanger 15 is improved, and the heat exchange load in the intermediate temperature heat exchanger 22 is reduced. If the circulating fluid amount or the liquid temperature from the high temperature regenerator 8 can be suppressed, heating in the high temperature regenerator 8 can be saved and fuel consumption can be suppressed.

次に、中温再生器用冷媒ドレン熱交換器23が設けられている図16や図17を見る。これらのサイクルフローにおいて、その冷媒ドレン熱交換器23は、吸収液が中温熱交換器22へ向かう管路にあって、その中温熱交換器22の上流に分岐管24が枝設され、中温再生器21で生成されて低温再生器用冷媒ドレン熱交換器1へ向かう冷媒ドレンの保有熱を利用し、中温熱交換器上流側枝設の分岐管24をたどる吸収液を加熱して中温再生器21へ送出するものである。言うまでもないが、中温再生器21へは中温熱交換器22で加熱された吸収液とこの中温再生器側に設置の冷媒ドレン熱交換器23で加熱された吸収液が送給され、中温再生器入口の溶液温度が高くなり、それだけ中温再生器での吸収液加熱に必要となる熱量を減らすことができる。中温再生器21の加熱源は高温再生器8からの冷媒蒸気であるため、中温再生器21での加熱熱量の減少は高温再生器での冷媒蒸気発生負担を軽減する。このようなことは、図18、図19、図20、図21、図22、図23、図24、図25の各サイクルフローについても当てはまる。  Next, FIG. 16 and FIG. 17 in which the refrigerant drain heat exchanger 23 for the intermediate temperature regenerator is provided will be seen. In these cycle flows, the refrigerant drain heat exchanger 23 is in a pipe line where the absorbing liquid is directed to the intermediate temperature heat exchanger 22, and a branch pipe 24 is provided upstream of the intermediate temperature heat exchanger 22, and the intermediate temperature regeneration is performed. Using the retained heat of the refrigerant drain that is generated in the condenser 21 and goes to the refrigerant drain heat exchanger 1 for the low-temperature regenerator, the absorption liquid that follows the branch pipe 24 provided on the upstream side of the intermediate-temperature heat exchanger is heated to the intermediate-temperature regenerator 21. To be sent. Needless to say, the intermediate temperature regenerator 21 is supplied with the absorption liquid heated by the intermediate temperature heat exchanger 22 and the absorption liquid heated by the refrigerant drain heat exchanger 23 installed on the intermediate temperature regenerator side. The solution temperature at the inlet becomes higher, and the amount of heat required for heating the absorbing solution in the intermediate temperature regenerator can be reduced accordingly. Since the heating source of the intermediate temperature regenerator 21 is the refrigerant vapor from the high temperature regenerator 8, the reduction in the amount of heating heat in the intermediate temperature regenerator 21 reduces the burden of generating refrigerant vapor in the high temperature regenerator. This also applies to the cycle flows of FIGS. 18, 19, 20, 21, 21, 22, 23, 24, and 25.

図16と図17においては、吸収器5から低温熱交換器4を流通した吸収液のうち低温再生器2へ送出された量および中温再生器21へ送出された量を除いた液量が高温熱交換器9に送給される。低温再生器用冷媒ドレン熱交換器1だけを流通した吸収液は排ガス熱交換器7に送給されないが、低温再生器用冷媒ドレン熱交換器1による省エネ効果が発揮されることは述べるまでもない。なお、図16では排ガス熱交換器7を流通する吸収液が中温熱交換器22を流通していなく、図17では排ガス熱交換器7を流通する吸収液が中温熱交換器22を流通した後の吸収液となっている。  16 and 17, the amount of liquid excluding the amount sent to the low-temperature regenerator 2 and the amount sent to the intermediate-temperature regenerator 21 out of the absorbent flowing through the low-temperature heat exchanger 4 from the absorber 5 is high. It is fed to the heat exchanger 9. Although the absorption liquid which circulated only through the low-temperature regenerator refrigerant drain heat exchanger 1 is not fed to the exhaust gas heat exchanger 7, it goes without saying that the energy-saving effect of the low-temperature regenerator refrigerant drain heat exchanger 1 is exhibited. In FIG. 16, the absorption liquid flowing through the exhaust gas heat exchanger 7 does not flow through the intermediate temperature heat exchanger 22. In FIG. 17, the absorption liquid flowing through the exhaust gas heat exchanger 7 flows through the intermediate temperature heat exchanger 22. It is an absorption liquid.

図26と図27は、排ガス熱交換器15と直列をなす熱交換器が中温熱交換器22とされるものである。これらの排ガス熱交換器には、吸収器5から低温熱交換器4を流通した吸収液のうち低温再生器2へ送出された量を除く液量が送給される。図26では排ガス熱交換器15を流通した吸収液が中温熱交換器22と高温熱交換器9に並行して送出され、図27では、排ガス熱交換器15を流通した吸収液は中温熱交換器22を経て中温再生器21とそれに直列配置の高温熱交換器9に送出される。  In FIG. 26 and FIG. 27, the heat exchanger in series with the exhaust gas heat exchanger 15 is the intermediate temperature heat exchanger 22. These exhaust gas heat exchangers are supplied with an amount of liquid excluding the amount sent from the absorber 5 to the low-temperature regenerator 2 out of the absorbent flowing through the low-temperature heat exchanger 4. In FIG. 26, the absorption liquid flowing through the exhaust gas heat exchanger 15 is sent out in parallel to the intermediate temperature heat exchanger 22 and the high temperature heat exchanger 9, and in FIG. 27, the absorption liquid flowing through the exhaust gas heat exchanger 15 is intermediate temperature heat exchange. It is sent to the intermediate temperature regenerator 21 and the high temperature heat exchanger 9 arranged in series therewith through the vessel 22.

先に触れた図21では、排ガス熱交換器7と直列となる高温熱交換器9に、吸収器5から低温熱交換器4を流通した吸収液と低温再生器用冷媒ドレン熱交換器1を流通した吸収液との混合液が低温再生器2へ送出され、その低温再生器2から流出する吸収液のうち低温熱交換器4での加熱源として循環される吸収液を除く液量から、中温熱交換器22へ送出された量を除いた液量が送給される。  In FIG. 21 mentioned above, the refrigerant | coolant which distribute | circulated the low-temperature heat exchanger 4 from the absorber 5 and the refrigerant | coolant drain heat exchanger 1 for low-temperature regenerators distribute | circulate to the high-temperature heat exchanger 9 in series with the exhaust gas heat exchanger 7. The mixed liquid with the absorbed liquid is sent to the low-temperature regenerator 2, and the amount of liquid excluding the absorbed liquid circulated as a heating source in the low-temperature heat exchanger 4 out of the absorbed liquid flowing out from the low-temperature regenerator 2 The liquid amount excluding the amount sent to the heat exchanger 22 is fed.

図28や図29の例では、排ガス熱交換器15と直列となるのは中温熱交換器22である。これらの排ガス熱交換器には、吸収器5から低温熱交換器4を流通した吸収液と冷媒ドレン熱交換器1を流通した吸収液との混合液が低温再生器2へ送出され、その低温再生器2から流出する吸収液のうち低温熱交換器4での加熱源として循環される吸収液を除いた液量が送給される。  In the examples of FIGS. 28 and 29, the intermediate temperature heat exchanger 22 is in series with the exhaust gas heat exchanger 15. In these exhaust gas heat exchangers, a mixed liquid of the absorption liquid flowing through the low-temperature heat exchanger 4 and the absorption liquid flowing through the refrigerant drain heat exchanger 1 is sent from the absorber 5 to the low-temperature regenerator 2, and the low temperature The liquid amount excluding the absorption liquid circulated as a heating source in the low-temperature heat exchanger 4 out of the absorption liquid flowing out from the regenerator 2 is fed.

図18、図19、図23および図24も高温熱交換器9との直列構成となっている。それは、低温熱交換器4を流通した吸収液と低温再生器用冷媒ドレン熱交換器1を流通した吸収液との混合液のうち、低温再生器2へ送出された量および中温再生器21へ送出された量を除く液量が送給されている。  18, 19, 23, and 24 also have a series configuration with the high-temperature heat exchanger 9. That is, among the mixed liquid of the absorbent flowing through the low-temperature heat exchanger 4 and the absorbent flowing through the low-temperature regenerator refrigerant drain heat exchanger 1, the amount sent to the low-temperature regenerator 2 and the medium-temperature regenerator 21 The amount of liquid excluding the measured amount is being fed.

図20では高温熱交換器9が排ガス熱交換器7に直列となっているが、その排ガス熱交換器7には、低温熱交換器4を流通した吸収液と冷媒ドレン熱交換器1を流通した吸収液との混合液が低温再生器2へ送出され、その低温再生器2から流出する吸収液のうち低温熱交換器4での加熱源として循環される吸収液を除く液量が中温再生器21へ送出され、その中温再生器21から流出する吸収液のうち中温熱交換器22での加熱源として循環される吸収液を除いた液量が送給される構成となっている。  In FIG. 20, the high-temperature heat exchanger 9 is in series with the exhaust gas heat exchanger 7. In the exhaust gas heat exchanger 7, the absorption liquid and the refrigerant drain heat exchanger 1 that have circulated through the low-temperature heat exchanger 4 are circulated. The mixed liquid with the absorbed liquid is sent to the low-temperature regenerator 2, and the amount of liquid excluding the absorbed liquid circulated as a heating source in the low-temperature heat exchanger 4 out of the low-temperature regenerator 2 is recovered at the medium temperature. The amount of liquid excluding the absorption liquid circulated as a heating source in the intermediate temperature heat exchanger 22 out of the absorption liquid sent out to the vessel 21 and flowing out from the intermediate temperature regenerator 21 is supplied.

図22も高温熱交換器9との直列構成を表しているが、それは、低温熱交換器4を流通した吸収液と冷媒ドレン熱交換器1を流通した吸収液との混合液のうち、低温再生器2へ送出された量を除く液量が中温再生器21へ送出され、その中温再生器21から流出する吸収液のうち中温熱交換器22での加熱源として循環される吸収液を除いた液量が排ガス熱交換器7に送給されるものである。  FIG. 22 also shows a series configuration with the high-temperature heat exchanger 9, which is a low temperature of the mixed liquid of the absorbent flowing through the low-temperature heat exchanger 4 and the absorbent flowing through the refrigerant drain heat exchanger 1. The amount of liquid excluding the amount sent to the regenerator 2 is sent to the intermediate temperature regenerator 21, and the absorption liquid circulated as a heating source in the intermediate temperature heat exchanger 22 is removed from the absorption liquid flowing out from the intermediate temperature regenerator 21. The amount of liquid is fed to the exhaust gas heat exchanger 7.

図20と図22においては、中温熱交換器22を流通した吸収液と中温再生器用冷媒ドレン熱交換器23を流通した吸収液との混合液が中温再生器21へ送出され、その中温再生器21から流出する吸収液のうち中温熱交換器22での加熱源としての吸収液を除く液量が高温熱交換器9に送給されるようにもなっている。  20 and 22, a mixed liquid of the absorbing liquid flowing through the intermediate temperature heat exchanger 22 and the absorbing liquid flowing through the intermediate temperature regenerator refrigerant drain heat exchanger 23 is sent to the intermediate temperature regenerator 21, and the intermediate temperature regenerator The amount of liquid excluding the absorbing liquid as the heating source in the intermediate temperature heat exchanger 22 out of the absorbing liquid flowing out from the 21 is supplied to the high temperature heat exchanger 9.

図30は、低温熱交換器4を流通した吸収液のうち低温再生器2へ送出された量および中温再生器用冷媒ドレン熱交換器23に送出される量を除く液量が送給される中温熱交換器22が排ガス熱交換器15と直列になっている。以上述べた三重効用機のいずれのサイクルフローにおいても、排ガス熱交換器7,15へは低温再生器用冷媒ドレン熱交換器1だけを流通した吸収液は送給されなくなっている。  FIG. 30 shows that the amount of liquid excluding the amount sent to the low-temperature regenerator 2 and the amount sent to the refrigerant drain heat exchanger 23 for the medium-temperature regenerator among the absorbent flowing through the low-temperature heat exchanger 4 is being fed. The warm heat exchanger 22 is in series with the exhaust gas heat exchanger 15. In any cycle flow of the triple effect machine described above, the absorption liquid that has circulated only through the low-temperature regenerator refrigerant drain heat exchanger 1 is not supplied to the exhaust gas heat exchangers 7 and 15.

図31、図32、図33、図34、図35は注目すべきで、排ガス熱交換器15と直列とされているのは中温熱交換器22となっている。これは、低温熱交換器4を流通した吸収液と冷媒ドレン熱交換器1を流通した吸収液との混合液のうち、低温再生器2へ送出された量を除く液量が排ガス熱交換器15に送給されるようにしている。この場合、冷媒ドレン熱交換器1だけを流通した吸収液の一部も混在して排ガス熱交換器に送給される。これによって、排ガス熱交換器15における吸収液加熱効果が向上し、下流にある中温熱交換器22における熱交換負荷を軽減することができる。高温再生器8からの循環液量もしくは液温が抑えられれば、高温再生器における加熱も節減でき燃料消費も抑制される。  It should be noted that FIGS. 31, 32, 33, 34, and 35 are the intermediate temperature heat exchanger 22 in series with the exhaust gas heat exchanger 15. This is because the amount of liquid excluding the amount sent to the low-temperature regenerator 2 out of the mixed liquid of the absorbent flowing through the low-temperature heat exchanger 4 and the absorbent flowing through the refrigerant drain heat exchanger 1 is the exhaust gas heat exchanger. 15 is sent. In this case, a part of the absorption liquid flowing through only the refrigerant drain heat exchanger 1 is also mixed and fed to the exhaust gas heat exchanger. Thereby, the absorption liquid heating effect in the exhaust gas heat exchanger 15 is improved, and the heat exchange load in the intermediate temperature heat exchanger 22 located downstream can be reduced. If the amount or temperature of the circulating fluid from the high temperature regenerator 8 is suppressed, heating in the high temperature regenerator can be saved and fuel consumption can be suppressed.

図18や図25では、中温再生器用冷媒ドレン熱交換器23だけを流通した吸収液の一部も混在して高温熱交換器9に送給されるようになっている。その高温熱交換器9に直列の排ガス熱交換器7には、中温熱交換器22を流通した吸収液と中温再生器用冷媒ドレン熱交換器23を流通した吸収液との混合液のうち、中温再生器21へ送出された量を除く液量が送給される。中温再生器で生成された冷媒ドレンの保有熱を利用して高温熱交換器に高温の吸収液を送ることができる。中温再生器にも同様に高温の吸収液を送ることができる。これらのサイクルフローにおいても、中温再生器入口の溶液温度が高くなり、それだけ中温再生器21での吸収液加熱に必要となる熱量を減らすことができる。中温再生器21の加熱源は高温再生器8からの冷媒蒸気であるため、中温再生器での加熱熱量の減少は高温再生器での冷媒蒸気発生負担をおおいに軽減する。排ガス熱交換器7における吸収液加熱効果が向上して、中温熱交換器における熱交換負荷を軽減することになるから、高温再生器からの循環液量もしくは液温が抑えられ、高温再生器における加熱も節減でき燃料消費も抑制される。他方、高温再生器入口の溶液温度も高温熱交換器9を経てさらに高くなり、それだけ高温再生器8での吸収液加熱に必要となる熱量を減らすことができる。高温熱交換器9の加熱源は高温再生器からの戻りの高温濃液であるため、高温再生器での加熱の減少は高温再生器での燃料消費負担をおおいに軽減する。  In FIG. 18 and FIG. 25, a part of the absorbent that has circulated only through the refrigerant drain heat exchanger 23 for the medium temperature regenerator is also mixed and fed to the high temperature heat exchanger 9. The exhaust gas heat exchanger 7 in series with the high-temperature heat exchanger 9 has an intermediate temperature out of the mixed liquid of the absorbent that has passed through the intermediate-temperature heat exchanger 22 and the absorbent that has passed through the refrigerant drain heat exchanger 23 for the intermediate-temperature regenerator. The liquid amount excluding the amount sent to the regenerator 21 is fed. A high-temperature absorption liquid can be sent to the high-temperature heat exchanger using the retained heat of the refrigerant drain generated in the medium-temperature regenerator. Similarly, a high temperature absorbent can be sent to the medium temperature regenerator. Also in these cycle flows, the solution temperature at the inlet of the intermediate temperature regenerator becomes higher, and the amount of heat required for heating the absorption liquid in the intermediate temperature regenerator 21 can be reduced accordingly. Since the heating source of the intermediate temperature regenerator 21 is the refrigerant vapor from the high temperature regenerator 8, the reduction in the amount of heating heat in the intermediate temperature regenerator greatly reduces the burden of generating refrigerant vapor in the high temperature regenerator. Since the absorption liquid heating effect in the exhaust gas heat exchanger 7 is improved and the heat exchange load in the intermediate temperature heat exchanger is reduced, the amount of circulating fluid or the liquid temperature from the high temperature regenerator can be suppressed, and in the high temperature regenerator Heating can be saved and fuel consumption can be reduced. On the other hand, the solution temperature at the inlet of the high-temperature regenerator is further increased through the high-temperature heat exchanger 9, and the amount of heat required for heating the absorbent in the high-temperature regenerator 8 can be reduced accordingly. Since the heating source of the high-temperature heat exchanger 9 is the high-temperature concentrated liquid returned from the high-temperature regenerator, the reduction in heating in the high-temperature regenerator greatly reduces the fuel consumption burden in the high-temperature regenerator.

1…冷媒ドレン熱交換器、2…低温再生器、3…凝縮器、4…低温熱交換器、5…吸収器、6…低温熱交換器上流側枝設の分岐管、7,15…排熱回収器(排ガス熱交換器)、8…高温再生器、9…高温熱交換器、11…系外廃熱利用熱交換器、21…中温再生器、22…中温熱交換器、23…中温再生器用冷媒ドレン熱交換器、24…中温熱交換器直前枝設の分岐管、31…蒸発器、34…冷媒蒸気。  DESCRIPTION OF SYMBOLS 1 ... Refrigerant drain heat exchanger, 2 ... Low temperature regenerator, 3 ... Condenser, 4 ... Low temperature heat exchanger, 5 ... Absorber, 6 ... Branch pipe of upstream branch of low temperature heat exchanger, 7, 15 ... Waste heat Recovery unit (exhaust gas heat exchanger), 8 ... high temperature regenerator, 9 ... high temperature heat exchanger, 11 ... external waste heat utilization heat exchanger, 21 ... medium temperature regenerator, 22 ... medium temperature heat exchanger, 23 ... medium temperature regeneration Refrigerant drain heat exchanger for equipment, 24 ... Branch pipe just before the medium temperature heat exchanger, 31 ... Evaporator, 34 ... Refrigerant vapor.

Claims (5)

吸収器、低温再生器、高温再生器、凝縮器、蒸発器、前記吸収器からの吸収液を低温再生器へ送る前に加熱する低温熱交換器、前記高温再生器へ向かう吸収液を加熱する高温熱交換器、排熱を利用して吸収液を加熱する排熱回収器とを備え、吸収液を加熱して発生させた冷媒蒸気の凝縮液を蒸発器内の蒸発器管に散布し、その伝熱面における前記凝縮液の気化により蒸発器管内で冷水を得る冷房運転にあっては、冷媒蒸気を発生させることにより生じた吸収液を高温再生器へ向かう吸収液と前記高温熱交換器で熱交換させ、さらに低温熱交換器も経た後、冷水を得る際に生じた冷媒蒸気を吸収させて吸収器ならびにそれと連なる蒸発器を高真空にするようにしている二重効用吸収式冷凍機において、
吸収器から導出された吸収液が前記低温熱交換器へ向かう管路にあって該低温熱交換器の上流に分岐管が枝設され、前記低温再生器で生成されて凝縮器へ向かう冷媒ドレンの保有熱を利用し、低温熱交換器へ向かっていた吸収液のうち前記分岐管をたどる吸収液を加熱して前記低温再生器へ送出する低温再生器用冷媒ドレン熱交換器が設けられ、
前記排熱回収器には低温再生器から送出された吸収液のうち前記低温熱交換器での加熱 源として循環される量を除いた液量が送給され、該排熱回収器は吸収液が高温再生器に向かう流れの前記高温熱交換器の上流側管路に設置され、該高温熱交換器とは直列に接続されていることを特徴とする吸収式冷凍機。
Absorber, low-temperature regenerator, high-temperature regenerator, condenser, evaporator, low-temperature heat exchanger that heats the absorption liquid from the absorber before sending it to the low-temperature regenerator, and heats the absorption liquid toward the high-temperature regenerator It is equipped with a high-temperature heat exchanger, an exhaust heat recovery device that heats the absorbing liquid using exhaust heat, and the refrigerant vapor condensate generated by heating the absorbing liquid is sprayed on the evaporator pipe in the evaporator, In the cooling operation in which cold water is obtained in the evaporator tube by vaporizing the condensate on the heat transfer surface, the absorption liquid generated by generating the refrigerant vapor and the high temperature heat exchanger The double-effect absorption chiller that absorbs the refrigerant vapor generated when cold water is obtained after passing through heat exchange with a low-temperature heat exchanger and places the absorber and the evaporator connected to it in a high vacuum In
A refrigerant drain led out from the absorber is in a pipe line to the low-temperature heat exchanger, a branch pipe is provided upstream of the low-temperature heat exchanger, the refrigerant drain generated in the low-temperature regenerator and going to the condenser A refrigerant drain heat exchanger for a low-temperature regenerator that heats the absorption liquid that follows the branch pipe out of the absorption liquid that has been directed to the low-temperature heat exchanger and sends it to the low-temperature regenerator,
Wherein the exhaust heat recovery device is liquid volume delivered excluding the amount to be circulated as a heating source in the low temperature heat exchanger of the absorption liquid fed from the low-temperature regenerator, the exhaust heat recovery device is absorbing liquid Is installed in the upstream line of the high-temperature heat exchanger in a flow toward the high-temperature regenerator, and is connected in series with the high-temperature heat exchanger.
吸収器、低温再生器、中温再生器、高温再生器、凝縮器、蒸発器、前記吸収器からの吸収液を低温再生器へ送る前に加熱する低温熱交換器、前記中温再生器へ向かう吸収液を加熱する中温熱交換器、前記高温再生器へ向かう吸収液を加熱する高温熱交換器、排熱を利用して吸収液を加熱する排熱回収器とを備え、吸収液を加熱して発生させた冷媒蒸気の凝縮液を蒸発器内の蒸発器管に散布し、その伝熱面における前記凝縮液の気化により蒸発器管内で冷水を得る冷房運転にあっては、冷媒蒸気を発生させることにより生じた吸収液を11再生器へ向かう吸収液と前記高温熱交換器で熱交換させ、さらには少なくとも低温熱交換器も経た後、冷水を得る際に生じた冷媒蒸気を吸収させて吸収器ならびにそれと連なる蒸発器を高真空にするようにしている三重効用吸収式冷凍機において、
吸収器から導出された吸収液が前記低温熱交換器へ向かう管路にあって該低温熱交換器の上流に分岐管が枝設され、前記低温再生器で生成されて凝縮器へ向かう冷媒ドレンの保有熱を利用し、前記分岐管をたどる吸収液を加熱して前記低温再生器へ送出する低温再生器用冷媒ドレン熱交換器が設けられ、
前記排熱回収器には低温熱交換器を流通した吸収液のうち前記低温再生器へ送出された 量を除いた液量が送給され、該排熱回収器は吸収液が中温再生器に向かう流れの前記中温熱交換器の直前の上流側管路に設置され、該中熱交換器とは直列に接続されていることを特徴とする吸収式冷凍機。
Absorber, low temperature regenerator, medium temperature regenerator, high temperature regenerator, condenser, evaporator, low temperature heat exchanger that heats the absorption liquid from the absorber before sending it to the low temperature regenerator, absorption toward the medium temperature regenerator An intermediate temperature heat exchanger for heating the liquid, a high temperature heat exchanger for heating the absorption liquid toward the high temperature regenerator, and an exhaust heat recovery unit for heating the absorption liquid using exhaust heat, and heating the absorption liquid In the cooling operation in which the condensate of the generated refrigerant vapor is sprayed on the evaporator tube in the evaporator, and cold water is obtained in the evaporator tube by vaporizing the condensate on the heat transfer surface, the refrigerant vapor is generated. The absorption liquid generated by this is exchanged with the absorption liquid directed to the 11 regenerator with the high-temperature heat exchanger, and after passing through at least the low-temperature heat exchanger, the refrigerant vapor generated when cold water is obtained is absorbed and absorbed. So that the vacuum chamber and the evaporator In the triple effect absorption refrigerating machine is,
A refrigerant drain led out from the absorber is in a pipe line to the low-temperature heat exchanger, a branch pipe is provided upstream of the low-temperature heat exchanger, the refrigerant drain generated in the low-temperature regenerator and going to the condenser A refrigerant drain heat exchanger for a low-temperature regenerator that heats the absorption liquid that follows the branch pipe and sends it to the low-temperature regenerator is provided,
Wherein the exhaust heat recovery device liquid amount excluding the amount that is sent to the low-temperature regenerator of the absorption liquid has flowed through the low temperature heat exchanger is fed, the exhaust heat recovery device is temperature regenerator medium is absorbing liquid the heading is installed upstream pipe immediately before the previous SL in heat exchanger flows, the absorption chiller being characterized in that connected in series to the middle temperature heat exchanger.
吸収器、低温再生器、中温再生器、高温再生器、凝縮器、蒸発器、前記吸収器からの吸収液を低温再生器へ送る前に加熱する低温熱交換器、前記中温再生器へ向かう吸収液を加熱する中温熱交換器、前記高温再生器へ向かう吸収液を加熱する高温熱交換器、排熱を利用して吸収液を加熱する排熱回収器とを備え、吸収液を加熱して発生させた冷媒蒸気の凝縮液を蒸発器内の蒸発器管に散布し、その伝熱面における前記凝縮液の気化により蒸発器管内で冷水を得る冷房運転にあっては、冷媒蒸気を発生させることにより生じた吸収液を11再生器へ向かう吸収液と前記高温熱交換器で熱交換させ、さらには少なくとも低温熱交換器も経た後、冷水を得る際に生じた冷媒蒸気を吸収させて吸収器ならびにそれと連なる蒸発器を高真空にするようにしている三重効用吸収式冷凍機において、
吸収器から導出された吸収液が前記低温熱交換器へ向かう管路にあって該低温熱交換器の上流に分岐管が枝設され、前記低温再生器で生成されて凝縮器へ向かう冷媒ドレンの保有熱を利用し、前記分岐管をたどる吸収液を加熱して前記低温再生器へ送出する低温再生器用冷媒ドレン熱交換器が設けられ、
前記排熱回収器には低温熱交換器を流通した吸収液のうち前記低温再生器へ送出された 量を除いた液量からさらに中温熱交換器から中温再生器へ送出された量を除いた液が送給され、該排熱回収器は吸収液が高温再生器向かう流れの前記高温熱交換器の直前の上流側管路に設置され、該高温熱交換器とは直列に接続されていることを特徴とする吸収式冷凍機。
Absorber, low temperature regenerator, medium temperature regenerator, high temperature regenerator, condenser, evaporator, low temperature heat exchanger that heats the absorption liquid from the absorber before sending it to the low temperature regenerator, absorption toward the medium temperature regenerator An intermediate temperature heat exchanger for heating the liquid, a high temperature heat exchanger for heating the absorption liquid toward the high temperature regenerator, and an exhaust heat recovery unit for heating the absorption liquid using exhaust heat, and heating the absorption liquid In the cooling operation in which the condensate of the generated refrigerant vapor is sprayed on the evaporator tube in the evaporator, and cold water is obtained in the evaporator tube by vaporizing the condensate on the heat transfer surface, the refrigerant vapor is generated. The absorption liquid generated by this is exchanged with the absorption liquid directed to the 11 regenerator with the high-temperature heat exchanger, and after passing through at least the low-temperature heat exchanger, the refrigerant vapor generated when cold water is obtained is absorbed and absorbed. So that the vacuum chamber and the evaporator In the triple effect absorption refrigerating machine is,
A refrigerant drain led out from the absorber is in a pipe line to the low-temperature heat exchanger, a branch pipe is provided upstream of the low-temperature heat exchanger, the refrigerant drain generated in the low-temperature regenerator and going to the condenser A refrigerant drain heat exchanger for a low-temperature regenerator that heats the absorption liquid that follows the branch pipe and sends it to the low-temperature regenerator is provided,
In the exhaust heat recovery unit, the amount sent from the intermediate temperature heat exchanger to the intermediate temperature regenerator is further excluded from the amount of the liquid that has passed through the low temperature heat exchanger excluding the amount sent to the low temperature regenerator. liquid volume is fed, the exhaust heat recovery device is disposed on the upstream side pipe immediately before the high temperature heat exchanger flow absorbing liquid toward the high-temperature regenerator, the high-temperature heat exchanger are connected in series Absorption type refrigerator characterized by that.
前記高温再生器はガス焚き式であり、前記排熱回収器は高温再生器排ガスを流通させる排ガス熱交換器であることを特徴とする請求項1ないし請求項のいずれか一項に記載された吸収式冷凍機。The high-temperature regenerator is a type-fired gas, said exhaust heat recovery device is claimed in any one of claims 1 to 3, characterized in that exhaust gas heat exchanger for circulating the high-temperature regenerator flue gas Absorption refrigerator. 前記低温熱交換器を流通した吸収液と前記低温再生器用冷媒ドレン熱交換器を流通した吸収液とが混合して前記低温再生器へ向かう管路には、系外発生廃熱を導入して吸収液を加熱し、該吸収液を前記低温再生器へ送出する系外廃熱利用熱交換器が介在されていることを特徴とする請求項1ないし請求項のいずれか一項に記載された吸収式冷凍機。Absorption heat generated outside the system is introduced into a pipe line that is mixed with the absorption liquid that has flowed through the low-temperature heat exchanger and the absorption liquid that has flowed through the refrigerant drain heat exchanger for the low-temperature regenerator and goes to the low-temperature regenerator. the absorption liquid is heated, as claimed in any one of claims 1 to 4 out of the system for utilizing waste heat heat exchanger for delivering the absorbent solution to the low temperature generator is characterized in that it is interposed Absorption refrigerator.
JP2013072341A 2013-03-29 2013-03-29 Absorption refrigerator Active JP6180152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013072341A JP6180152B2 (en) 2013-03-29 2013-03-29 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013072341A JP6180152B2 (en) 2013-03-29 2013-03-29 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2014196861A JP2014196861A (en) 2014-10-16
JP6180152B2 true JP6180152B2 (en) 2017-08-16

Family

ID=52357768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013072341A Active JP6180152B2 (en) 2013-03-29 2013-03-29 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP6180152B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6632951B2 (en) * 2016-09-23 2020-01-22 株式会社日立製作所 Absorption refrigerator
CN106524575B (en) * 2016-11-15 2019-03-05 东南大学 A kind of solar energy dual-effect refrigeration and hot water association system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124849A (en) * 1975-04-23 1976-10-30 Ebara Corp Donble functional absorption refrigirator and its control method
JP3731132B2 (en) * 1996-03-21 2006-01-05 矢崎総業株式会社 Absorption refrigerator crystallization prevention method
JP3723373B2 (en) * 1999-03-03 2005-12-07 三洋電機株式会社 Waste heat input type absorption chiller / heater
JP3183401B2 (en) * 1999-04-21 2001-07-09 東京瓦斯株式会社 Combined cooling system
JP3578207B2 (en) * 2000-10-26 2004-10-20 川重冷熱工業株式会社 Steam heating type double effect absorption refrigerator / cooler / heater, power generation / cooling / heating / hot water supply system using the same, and system control method thereof
JP4283616B2 (en) * 2003-08-25 2009-06-24 川重冷熱工業株式会社 Triple effect absorption chiller / heater with exhaust heat recovery unit
JP4885467B2 (en) * 2005-03-25 2012-02-29 川重冷熱工業株式会社 Absorption heat pump
JP5646385B2 (en) * 2011-03-30 2014-12-24 三洋電機株式会社 Absorption refrigerator

Also Published As

Publication number Publication date
JP2014196861A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
KR101710072B1 (en) Triple effect absorption chiller using heat source
CN102914079A (en) Two-stage type hot water direct-fired single-double effect composite lithium bromide absorption refrigeration unit
CN203177524U (en) Heat exchange system with multi-section lithium bromide absorption-type unit
CN102914080A (en) Two-stage single-effect and double-effect lithium bromide absorption refrigerating unit with smoke and hot water afterburning
KR101702952B1 (en) Triple effect absorption chiller
CN102914081A (en) Two-section flue gas hot-water single/double-effect composite lithium bromide absorption type refrigerating unit
WO2002018849A1 (en) Absorption refrigerating machine
JP6180152B2 (en) Absorption refrigerator
CN105650929A (en) Two-section type smoke hot water type lithium bromide absorption type refrigerating unit with smoke heat exchanger
CN105972673B (en) A kind of relaying energy site type great temperature difference heat supply system and method
CN202915597U (en) Two-section flue gas hot-water single-effect and double-effect composite lithium bromide absorption type refrigerating unit
JP2000257976A (en) Absorption refrigerating machine
CN202915598U (en) Two-stage smoke and hot water afterburning single-effect and double-effect composite lithium bromide absorption refrigerating unit
KR101690303B1 (en) Triple effect absorption chiller
CN104180555A (en) Cool double-effect lithium bromide spray absorption type refrigeration cycle system
CN205403238U (en) Take gas gas heater's two -period form flue gas hot water type lithium bromide absorbed refrigeration machine
CN103822395A (en) Direct-fired lithium bromide absorbing typed cold and hot water unit for producing high temperature hot water
CN107388617A (en) Fume hot-water compound type lithium bromide absorption type refrigeration unit
EP1321728A1 (en) Absorption refrigerating machine
US10018383B2 (en) Triple effect absorption chiller
JP4315854B2 (en) Absorption refrigerator
CN205403239U (en) Take gas gas heater's two -period form flue gas hot water type lithium bromide absorbed refrigeration unit
WO2018150516A1 (en) Absorption refrigerator
CN217763970U (en) Waste heat source deep recovery type absorption refrigerating unit
JP2002098435A (en) Absorption freezer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170718

R150 Certificate of patent or registration of utility model

Ref document number: 6180152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150