JP6179378B2 - Exhaust purification device - Google Patents

Exhaust purification device Download PDF

Info

Publication number
JP6179378B2
JP6179378B2 JP2013252997A JP2013252997A JP6179378B2 JP 6179378 B2 JP6179378 B2 JP 6179378B2 JP 2013252997 A JP2013252997 A JP 2013252997A JP 2013252997 A JP2013252997 A JP 2013252997A JP 6179378 B2 JP6179378 B2 JP 6179378B2
Authority
JP
Japan
Prior art keywords
amount
urea water
reducing agent
adsorption amount
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013252997A
Other languages
Japanese (ja)
Other versions
JP2015110921A (en
Inventor
正 内山
正 内山
英和 藤江
英和 藤江
直人 村澤
直人 村澤
哲史 塙
哲史 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2013252997A priority Critical patent/JP6179378B2/en
Publication of JP2015110921A publication Critical patent/JP2015110921A/en
Application granted granted Critical
Publication of JP6179378B2 publication Critical patent/JP6179378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、排気浄化装置に関し、特に、排気中の窒素化合物を還元浄化する排気浄化触媒を備えた排気浄化装置に関する。   The present invention relates to an exhaust purification device, and more particularly to an exhaust purification device including an exhaust purification catalyst that reduces and purifies nitrogen compounds in exhaust gas.

ディーゼルエンジン等の排気系に設けられる排気浄化触媒として、尿素水から加水分解されて生成されるアンモニア(NH3)を還元剤として排気中の窒素化合物(NOx)を選択的に還元浄化する選択的還元触媒(Selective Catalytic Reduction:SCR)が知られている。 As an exhaust purification catalyst provided in an exhaust system of a diesel engine or the like, selective reduction and purification of nitrogen compounds (NOx) in exhaust gas using ammonia (NH 3 ) hydrolyzed from urea water as a reducing agent Reduction catalysts (Selective Catalytic Reduction: SCR) are known.

尿素水噴射量が過多となり、SCRのNH3吸着能力を超えると、余剰のNH3がSCRからスリップして大気に放出されるため好ましくない。そのため、SCRに供給されるNH3量と、SCR出口に設けられたNH3センサの検出値との差に基づいて、SCR内のNH3吸着量を推定すると共に、推定したNH3吸着量に応じて尿素水噴射量を適宜調整する技術が知られている(例えば、特許文献1参照)。 If the urea water injection amount becomes excessive and exceeds the NH 3 adsorption capacity of the SCR, excess NH 3 slips from the SCR and is released to the atmosphere, which is not preferable. Therefore, the NH 3 adsorption amount in the SCR is estimated based on the difference between the NH 3 amount supplied to the SCR and the detection value of the NH 3 sensor provided at the SCR outlet, and the estimated NH 3 adsorption amount is A technique for appropriately adjusting the urea water injection amount accordingly is known (see, for example, Patent Document 1).

特開2003−293737号公報JP 2003-293737 A

ところで、NH3センサ等はSCRの内部に直接的に設けることができないため、SCR内のNH3吸着量を正確に把握できない課題がある。そのため、NH3センサのセンサ値又は、NOxセンサのセンサ値からNH3吸着量を推定する技術では、SCR内の化学反応遅れやセンサの応答遅れ、NOxセンサとNOx及びNH3との反応により、実際のNH3吸着量に応じた尿素水噴射量の最適な制御を運転領域によってはできない可能性がある。 However, NH 3 sensor, etc. can not be provided directly in the interior in SCR, there is NH 3 challenges can not be accurately grasped adsorption amount in SCR. Therefore, the sensor value of the NH 3 sensor or, in the technique of estimating the adsorbed NH 3 amount from the sensor value of the NOx sensor, the response of a chemical reaction delay or sensor in the SCR delay, by reaction of the NOx sensor and the NOx and NH 3, There is a possibility that optimum control of the urea water injection amount according to the actual NH 3 adsorption amount cannot be performed depending on the operation region.

本発明の目的は、SCRのNH3吸着量を高精度に検出して、尿素水噴射量の最適化を図ることにある。 An object of the present invention is to detect the NH 3 adsorption amount of the SCR with high accuracy and to optimize the urea water injection amount.

上述の目的を達成するため、本発明の排気浄化装置は、内燃機関の排気系に設けられ、尿素水から生成されるアンモニアを還元剤として排気中に含まれる窒素化合物を還元浄化する選択的還元触媒と、前記選択的還元触媒に尿素水を噴射する尿素水噴射手段と、前記選択的還元触媒の静電容量を検出する静電容量検出手段と、前記静電容量検出手段から入力される静電容量に基づいて、前記選択的還元触媒の還元剤吸着量を演算する還元剤吸着量演算手段と、少なくとも前記内燃機関の運転状態に応じて設定される所定の基準噴射量に基づいて、前記尿素水噴射手段の尿素水噴射を制御する噴射制御手段と、前記還元剤吸着量演算手段から入力される還元剤吸着量に基づいて、前記基準噴射量を補正する噴射量補正手段とを備えることを特徴とする。   In order to achieve the above-described object, an exhaust purification apparatus of the present invention is provided in an exhaust system of an internal combustion engine, and selectively reduces and purifies nitrogen compounds contained in exhaust using ammonia generated from urea water as a reducing agent. A catalyst, urea water injection means for injecting urea water to the selective reduction catalyst, electrostatic capacity detection means for detecting electrostatic capacity of the selective reduction catalyst, and static electricity input from the electrostatic capacity detection means Based on the electric capacity, the reducing agent adsorption amount calculating means for calculating the reducing agent adsorption amount of the selective reduction catalyst, and at least based on a predetermined reference injection amount set according to the operating state of the internal combustion engine, An injection control unit that controls urea water injection of the urea water injection unit, and an injection amount correction unit that corrects the reference injection amount based on the reducing agent adsorption amount input from the reducing agent adsorption amount calculation unit. Features To.

また、前記静電容量検出手段から入力される静電容量に基づいて、前記選択的還元触媒の内部温度を演算する内部温度演算手段をさらに備え、前記噴射量補正手段が、前記還元剤吸着量演算手段から入力される還元剤吸着量と、前記内部温度演算手段から入力される内部温度に応じた前記選択的還元触媒の還元剤吸着可能量との差に基づいて、前記基準噴射量を補正するものでもよい。   The apparatus further comprises an internal temperature calculating means for calculating an internal temperature of the selective reduction catalyst based on the capacitance input from the capacitance detecting means, and the injection amount correcting means includes the reducing agent adsorption amount. The reference injection amount is corrected based on the difference between the reducing agent adsorption amount input from the calculating means and the reductant adsorbable amount of the selective reduction catalyst according to the internal temperature input from the internal temperature calculating means. You may do it.

また、前記静電容量検出手段が、前記選択的還元触媒内に一個以上の隔壁を挟んで対向配置されてコンデンサを形成する少なくとも一対の電極で構成されてもよい。   Further, the capacitance detection means may be composed of at least a pair of electrodes that are disposed opposite to each other with one or more partition walls in the selective reduction catalyst to form a capacitor.

本発明の排気浄化装置によれば、SCRのNH3吸着量を高精度に検出することが可能となり、尿素水噴射量の最適化を図ることができる。 According to the exhaust emission control device of the present invention, the NH 3 adsorption amount of the SCR can be detected with high accuracy, and the urea water injection amount can be optimized.

本発明の一実施形態に係る内燃機関の排気浄化装置を示す模式的な全体構成図である。1 is a schematic overall configuration diagram showing an exhaust emission control device for an internal combustion engine according to an embodiment of the present invention. 本実施形態のECUを示す機能ブロック図である。It is a functional block diagram which shows ECU of this embodiment. 本実施形態の静電容量・温度特性マップの一例を示す図である。It is a figure which shows an example of the electrostatic capacitance and temperature characteristic map of this embodiment. 本実施形態の静電容量・NH3吸着量マップの一例を示す図である。Is a diagram illustrating an example of a capacitance · NH 3 adsorption amount map in the present embodiment. 本実施形態のNH3目標吸着量マップの一例を示す図である。It is a diagram illustrating an example of the NH 3 target adsorption amount map in the present embodiment. 本実施形態の制御内容を示すフローチャートである。It is a flowchart which shows the control content of this embodiment.

以下、添付図面に基づいて、本発明の一実施形態に係る排気浄化装置を説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。   Hereinafter, an exhaust emission control device according to an embodiment of the present invention will be described with reference to the accompanying drawings. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

図1に示すように、ディーゼルエンジン(以下、単にエンジンという)10には、吸気マニホールド10aと排気マニホールド10bとが設けられている。吸気マニホールド10aには新気を導入する吸気通路11が接続され、排気マニホールド10bには排気を大気に放出する排気通路12が接続されている。   As shown in FIG. 1, a diesel engine (hereinafter simply referred to as an engine) 10 is provided with an intake manifold 10a and an exhaust manifold 10b. An intake passage 11 for introducing fresh air is connected to the intake manifold 10a, and an exhaust passage 12 for releasing exhaust gas to the atmosphere is connected to the exhaust manifold 10b.

吸気通路11には、吸気上流側から順に、エアクリーナ13、過給機15のコンプレッサ15a、インタークーラ17等が設けられている。排気通路12には、排気上流側から順に、過給機15のタービン15b、排気後処理装置20等が設けられている。なお、図1中において、符号18はエンジン回転数センサ、符号19はアクセル開度センサを示している。   In the intake passage 11, an air cleaner 13, a compressor 15 a of the supercharger 15, an intercooler 17 and the like are provided in order from the intake upstream side. In the exhaust passage 12, a turbine 15 b of the supercharger 15, an exhaust aftertreatment device 20, and the like are provided in order from the exhaust upstream side. In FIG. 1, reference numeral 18 denotes an engine speed sensor, and reference numeral 19 denotes an accelerator opening sensor.

排気後処理装置20は、排気上流側から順に、尿素水噴射装置21と、ケース20a内に収容されたSCR22とを備えて構成されている。   The exhaust aftertreatment device 20 includes, in order from the exhaust upstream side, a urea water injection device 21 and an SCR 22 accommodated in the case 20a.

尿素水噴射装置21は、本発明の尿素水噴射手段の一例であって、電子制御ユニット(以下、ECU)50から入力される指示信号に応じて、SCR22よりも上流側の排気通路12内に、図示しない尿素水タンク内の尿素水を噴射する。噴射された尿素水は排気熱により加水分解されてNH3に生成され、下流側のSCR22に還元剤として供給される。 The urea water injection device 21 is an example of the urea water injection means of the present invention, and enters the exhaust passage 12 upstream of the SCR 22 in response to an instruction signal input from an electronic control unit (hereinafter, ECU) 50. Then, urea water in a urea water tank (not shown) is injected. The injected urea water is hydrolyzed by exhaust heat to generate NH 3 and is supplied as a reducing agent to the downstream SCR 22.

SCR22は、例えば、ハニカム構造体等のセラミック製担体表面にゼオライト等を担持して形成されており、多孔質性の隔壁で区画された多数のセルを備えて構成されている。SCR22は、還元剤として供給されるNH3を吸着すると共に、吸着したNH3で通過する排気ガス中からNOxを選択的に還元浄化する。 The SCR 22 is formed, for example, by supporting zeolite or the like on the surface of a ceramic carrier such as a honeycomb structure, and includes a large number of cells partitioned by porous partition walls. The SCR 22 adsorbs NH 3 supplied as a reducing agent and selectively reduces and purifies NOx from exhaust gas passing through the adsorbed NH 3 .

また、本実施形態のSCR22には、少なくとも一個以上の隔壁を挟んで対向配置されてコンデンサを形成する複数本の電極27が設けられている。これら複数本の電極27は、本発明の静電容量検出手段の一例として好ましい。   In addition, the SCR 22 of the present embodiment is provided with a plurality of electrodes 27 that are arranged to face each other with at least one partition wall therebetween to form a capacitor. The plurality of electrodes 27 are preferable as an example of the capacitance detection means of the present invention.

ECU50は、エンジン10や尿素水噴射装置21等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備えて構成されている。   The ECU 50 performs various controls of the engine 10, the urea water injection device 21, and the like, and includes a known CPU, ROM, RAM, input port, output port, and the like.

また、ECU50は、図2に示すように、SCR内部温度演算部51と、NH3吸着量演算部52と、尿素水噴射制御部53と、噴射量補正部54とを一部の機能要素として有する。これら各機能要素は、一体のハードウェアであるECU50に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。 Further, as shown in FIG. 2, the ECU 50 uses the SCR internal temperature calculation unit 51, the NH 3 adsorption amount calculation unit 52, the urea water injection control unit 53, and the injection amount correction unit 54 as some functional elements. Have. Each of these functional elements will be described as being included in the ECU 50 which is an integral hardware, but any one of these may be provided in separate hardware.

SCR内部温度演算部51は、本発明の内部温度演算手段の一例であって、電極27間の静電容量Cに基づいて、SCR22の内部温度TSCRを演算する。一般的に、電極27間の静電容量Cは、電極27間の媒体の誘電率ε、電極27の面積S、電極27間の距離dとする以下の数式1で表される。 The SCR internal temperature calculation unit 51 is an example of the internal temperature calculation means of the present invention, and calculates the internal temperature TSCR of the SCR 22 based on the capacitance C between the electrodes 27. In general, the capacitance C between the electrodes 27 is expressed by the following mathematical formula 1, where the dielectric constant ε of the medium between the electrodes 27, the area S of the electrodes 27, and the distance d between the electrodes 27.

Figure 0006179378
Figure 0006179378

数式1において、電極27の面積S及び距離dは一定であり、誘電率εが排気温度の影響を受けて変化すると、これに伴い静電容量Cも変化する。すなわち、電極27間の静電容量Cを検出すれば、SCR22の内部温度TSCRを演算することができる。 In Formula 1, the area S and the distance d of the electrode 27 are constant, and when the dielectric constant ε changes under the influence of the exhaust temperature, the capacitance C also changes accordingly. That is, if the electrostatic capacitance C between the electrodes 27 is detected, the internal temperature TSCR of the SCR 22 can be calculated.

ECU50には、予め実験等により求めた静電容量CとSCR内部温度Tとの関係を示す静電容量・温度特性マップ(例えば、図3参照)が記憶されている。SCR内部温度演算部51は、この静電容量・温度特性マップから電極27間の静電容量Cに対応する値を読み取ることで、SCR22の内部温度TSCRを演算する。なお、内部温度TSCRの演算はマップに限定されず、予め実験等により作成した近似式等から求めてもよい。 The ECU 50 stores a capacitance / temperature characteristic map (see, for example, FIG. 3) showing the relationship between the capacitance C and the SCR internal temperature T obtained in advance through experiments or the like. The SCR internal temperature calculation unit 51 calculates the internal temperature TSCR of the SCR 22 by reading a value corresponding to the capacitance C between the electrodes 27 from the capacitance / temperature characteristic map. Note that the calculation of the internal temperature TSCR is not limited to a map, and may be obtained from an approximate expression or the like created in advance through experiments or the like.

NH3吸着量演算部52は、本発明の還元剤吸着量演算手段の一例であって、電極27間の静電容量Cに基づいて、SCR22に吸着されているNH3実吸着量STNH3を演算する。NH3は誘電率εが高いため、SCR22内にNH3の吸着が進むと、電極27間の静電容量Cも増加する(数式1参照)。すなわち、電極27間の静電容量Cを検出すれば、SCR22のNH3実吸着量STNH3を演算することができる。 The NH 3 adsorption amount calculation unit 52 is an example of the reducing agent adsorption amount calculation means of the present invention. Based on the capacitance C between the electrodes 27, the NH 3 adsorption amount ST NH3 adsorbed on the SCR 22 is calculated. Calculate. Since NH 3 has a high dielectric constant ε, the capacitance C between the electrodes 27 increases as NH 3 adsorption proceeds in the SCR 22 (see Formula 1). That is, if the electrostatic capacitance C between the electrodes 27 is detected, the NH 3 actual adsorption amount ST NH3 of the SCR 22 can be calculated.

ECU50には、予め実験等により求めた静電容量CとNH3実吸着量との関係を示す静電容量・NH3吸着量マップ(例えば、図4参照)が記憶されている。NH3吸着量演算部52は、この静電容量・NH3吸着量マップから電極27間の静電容量Cに対応する値を読み取ることで、現在のNH3実吸着量STNH3を演算する。なお、NH3実吸着量STNH3の演算はマップに限定されず、予め実験等により作成した近似式等から求めてもよい。 The ECU 50 stores a capacitance / NH 3 adsorption amount map (see, for example, FIG. 4) that shows the relationship between the capacitance C and the NH 3 actual adsorption amount obtained in advance through experiments or the like. The NH 3 adsorption amount calculation unit 52 calculates the current NH 3 actual adsorption amount ST NH3 by reading a value corresponding to the capacitance C between the electrodes 27 from the capacitance / NH 3 adsorption amount map. Note that the calculation of the NH 3 actual adsorption amount ST NH3 is not limited to a map, and may be obtained from an approximate expression or the like created in advance by experiments or the like.

尿素水噴射制御部53は、本発明の噴射制御手段の一例であって、エンジン10の運転状態等に基づいて尿素水噴射装置21の尿素水噴射量を制御する。より詳しくは、尿素水噴射制御部53は、エンジン回転数Ne及びアクセル開度Qからエンジン10のNOx排出量を演算すると共に、このNOx排出量に応じて必要になる尿素水の基本噴射量INJU_stdを設定する。この基本噴射量INJU_stdは、後述する噴射量補正部54によって必要に応じて補正される。 The urea water injection control unit 53 is an example of the injection control means of the present invention, and controls the urea water injection amount of the urea water injection device 21 based on the operating state of the engine 10 and the like. More specifically, the urea water injection control unit 53 calculates the NOx discharge amount of the engine 10 from the engine speed Ne and the accelerator opening Q, and the urea water basic injection amount INJ that is required according to the NOx discharge amount. Set U_std . This basic injection amount INJ U_std is corrected as necessary by an injection amount correction unit 54 described later.

噴射量補正部54は、本発明の噴射量補正手段の一例であって、尿素水噴射制御部53で設定された基本噴射量INJU_stdを、SCR内部温度演算部51から入力される内部温度TSCR及び、NH3吸着量演算部52から入力されるNH3実吸着量STNH3に基づいて補正する。 The injection amount correction unit 54 is an example of the injection amount correction means of the present invention, and the basic injection amount INJ U_std set by the urea water injection control unit 53 is used as the internal temperature T input from the SCR internal temperature calculation unit 51. Correction is performed based on the SCR and the actual NH 3 adsorption amount ST NH3 input from the NH 3 adsorption amount calculation unit 52.

より詳しくは、ECU50には、予め実験等により作成したSCR22の内部温度TSCRとNH3吸着可能量(以下、目標吸着量STNH3_TAGという)との関係を示すNH3目標吸着量マップ(例えば、図5参照)が記憶されている。 More specifically, the ECU 50 has an NH 3 target adsorption amount map (for example, a relationship between the internal temperature T SCR of the SCR 22 and an NH 3 adsorption possible amount (hereinafter referred to as a target adsorption amount ST NH3_TAG ) created in advance by experiments or the like. (See FIG. 5).

噴射量補正部54は、NH3目標吸着量マップから、現在の内部温度TSCRに対応する目標吸着量STNH3_TAGと、現在のNH3実吸着量STNH3との吸着量偏差ΔSTNH3を読み取ると共に、この吸着量偏差ΔSTNH3に相当する噴射補正量ΔINJに基づいて、基本噴射量INJU_stdを増減補正する(INJU_exh=INJU_std+/−ΔINJ)。補正後の尿素水噴射は、尿素水噴射装置21のインジェクタ(不図示)に印加される各噴射の通電パルス幅を増減させるか、あるいは噴射回数を増減させることで実行される。 The injection amount correction unit 54 reads an adsorption amount deviation ΔST NH3 between the target adsorption amount ST NH3_TAG corresponding to the current internal temperature T SCR and the current NH 3 actual adsorption amount ST NH3 from the NH 3 target adsorption amount map. Based on the injection correction amount ΔINJ corresponding to this adsorption amount deviation ΔST NH3 , the basic injection amount INJ U_std is corrected to increase or decrease (INJ U_exh = INJ U_std +/− ΔINJ). The corrected urea water injection is executed by increasing or decreasing the energization pulse width of each injection applied to the injector (not shown) of the urea water injection device 21 or increasing or decreasing the number of injections.

次に、図6に基づいて、本実施形態の排気浄化装置による制御フローを説明する。なお、本制御はイグニッションキーのON操作と同時にスタートする。   Next, based on FIG. 6, the control flow by the exhaust emission control device of the present embodiment will be described. Note that this control starts simultaneously with the ON operation of the ignition key.

ステップ(以下、ステップを単にSと記載する)100では、エンジン回転数Ne及びアクセル開度Qから演算されるエンジン10のNOx排出量に応じて、尿素水の基本噴射量INJU_stdが設定される。 In step (hereinafter, step is simply referred to as S) 100, the basic injection amount INJ U_std of urea water is set according to the NOx emission amount of the engine 10 calculated from the engine speed Ne and the accelerator opening Q. .

S110では、電極27間の静電容量Cに基づいてSCR22の内部温度TSCRが演算され、さらに、S120では、電極27間の静電容量Cに基づいて、SCR22のNH3実吸着量STNH3が演算される。 In S110, the internal temperature TSCR of the SCR 22 is calculated based on the capacitance C between the electrodes 27. Further, in S120, the NH 3 actual adsorption amount ST NH3 of the SCR 22 is calculated based on the capacitance C between the electrodes 27. Is calculated.

S130では、NH3目標吸着量マップ(図5)から、S110で演算された内部温度TSCRに対応する目標吸着量STNH3_TAGと及び、S120で演算されたNH3実吸着量STNH3との吸着量偏差ΔSTNH3が演算される。 In S130, the NH 3 target adsorption amount map (FIG. 5), the target adsorption amount ST NH3_TAG corresponding to the calculated internal temperature T SCR and Oyobi in S110, the adsorption of NH 3 actual adsorption amount ST NH3 calculated in S120 A quantity deviation ΔST NH3 is calculated.

S140では、S130で演算された吸着量偏差ΔSTNH3が所定の閾値よりも多いか否かが判定される。吸着量偏差ΔSTNH3が所定の閾値よりも多い場合(Yes)は、S150に進み、吸着量偏差ΔSTNH3に相当する噴射補正量ΔINJに基づいて、基本噴射量INJU_stdが増減補正される(INJU_exh=INJU_std+/−ΔINJ)。さらに、S160では、補正後の噴射量INJU_exhに基づいて、尿素水噴射装置21の尿素水噴射が実行される。 In S140, it is determined whether or not the adsorption amount deviation ΔST NH3 calculated in S130 is larger than a predetermined threshold value. When the adsorption amount deviation ΔST NH3 is larger than the predetermined threshold (Yes), the process proceeds to S150, and the basic injection amount INJ U_std is increased or decreased based on the injection correction amount ΔINJ corresponding to the adsorption amount deviation ΔST NH3 (INJ U_exh = INJ U_std +/− ΔINJ). Further, in S160, the urea water injection of the urea water injection device 21 is executed based on the corrected injection amount INJ U_exh .

一方、S140で、吸着量偏差ΔSTNH3が所定の閾値未満の場合(No)は、S170に進み、補正を行うことなく、S100で設定した基本噴射量INJU_stdに基づいて尿素水噴射装置21の尿素水噴射が実行される。その後、上述のS100〜170の各制御ステップは、イグニッションキーのOFF操作まで繰り返し実行される。 On the other hand, if the adsorption amount deviation ΔST NH3 is less than the predetermined threshold value in S140 (No), the process proceeds to S170, and the correction of the urea water injector 21 is performed based on the basic injection amount INJ U_std set in S100 without correction. Urea water injection is executed. Thereafter, each control step of S100 to S170 described above is repeatedly executed until the ignition key is turned off.

次に、本実施形態に係る排気浄化装置による作用効果を説明する。   Next, functions and effects of the exhaust emission control device according to the present embodiment will be described.

従来、SCRのNH3スリップを抑制する技術として、SCRに供給されるNH3量と、SCR出口のNH3センサの検出値とを比較して、SCR内のNH3吸着量を推定すると共に、推定したNH3吸着量に応じて尿素水噴射量を調整する手法が知られている。しかしながら、NH3センサのセンサ値から推定する手法では、SCR内の実際のNH3吸着量を正確に把握できず、尿素水噴射量を最適に制御できない可能性がある。 Conventionally, as a technique for suppressing the NH 3 slip of the SCR, the amount of NH 3 supplied to the SCR and the detection value of the NH 3 sensor at the SCR outlet are compared to estimate the amount of NH 3 adsorption in the SCR, A technique for adjusting the urea water injection amount in accordance with the estimated NH 3 adsorption amount is known. However, in the method of estimating from the sensor value of the NH 3 sensor, the actual NH 3 adsorption amount in the SCR cannot be accurately grasped, and the urea water injection amount may not be optimally controlled.

これに対し、本実施形態の排気浄化装置では、電極27間の静電容量Cに基づいて、SCR22内のNH3実吸着量を直接的に演算すると共に、正確なNH3実吸着量とNH3目標吸着量(吸着可能量)との差に応じて、尿素水噴射量を補正するように構成されている。 On the other hand, in the exhaust purification apparatus of the present embodiment, the actual NH 3 adsorption amount in the SCR 22 is directly calculated based on the capacitance C between the electrodes 27, and the accurate NH 3 actual adsorption amount and NH 3 The urea water injection amount is corrected in accordance with the difference from the target adsorption amount (adsorbable amount).

したがって、本実施形態の排気浄化装置によれば、尿素水噴射量をSCR22のNH3実吸着量に応じて正確に制御することが可能となり、SCR22のNH3スリップを効果的に防止することができる。また、SCR22のNH3吸着量が目標値(吸着可能量)で効果的に維持されるため、NOxの還元浄化率を確実に向上することもできる。さらに、SCR22の下流側に余剰のNH3を酸化除去する酸化触媒等を配置する必要がなくなり、装置全体のコストや重量・サイズ等を効果的に低減することも可能になる。 Therefore, according to the exhaust gas purification apparatus of the present embodiment, it is possible to accurately control the urea water injection amount in accordance with the actual NH 3 adsorption amount of the SCR 22, and effectively prevent the NH 3 slip of the SCR 22. it can. In addition, since the NH 3 adsorption amount of the SCR 22 is effectively maintained at the target value (adsorbable amount), the NOx reduction and purification rate can be reliably improved. Furthermore, it is not necessary to arrange an oxidation catalyst or the like for oxidizing and removing excess NH 3 on the downstream side of the SCR 22, and the cost, weight, size, etc. of the entire apparatus can be effectively reduced.

なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。   In addition, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the meaning of this invention, it can change suitably and can implement.

例えば、電極27の本数は少なくとも一対以上であればよく、図示例に限定されるものではない。また、エンジン10はディーゼルエンジンに限定されず、ガソリンエンジン等の他の内燃機関にも広く適用することが可能である。   For example, the number of the electrodes 27 may be at least a pair, and is not limited to the illustrated example. Further, the engine 10 is not limited to a diesel engine, and can be widely applied to other internal combustion engines such as a gasoline engine.

10 エンジン
12 排気通路
18 エンジン回転数センサ
19 アクセル開度センサ
20 排気後処理装置
21 尿素水噴射装置
22 SCR
27 電極
50 ECU
51 SCR内部温度演算部
52 NH3吸着量演算部
53 尿素水噴射制御部
54 噴射量補正部
DESCRIPTION OF SYMBOLS 10 Engine 12 Exhaust passage 18 Engine speed sensor 19 Accelerator opening degree sensor 20 Exhaust after-treatment apparatus 21 Urea water injection apparatus 22 SCR
27 electrodes 50 ECU
51 SCR internal temperature calculation unit 52 NH 3 adsorption amount calculation unit 53 urea water injection control unit 54 injection amount correction unit

Claims (3)

内燃機関の排気系に設けられ、尿素水から生成されるアンモニアを還元剤として排気中に含まれる窒素化合物を還元浄化する選択的還元触媒と、
前記選択的還元触媒に尿素水を噴射する尿素水噴射手段と、
前記選択的還元触媒の静電容量を検出する静電容量検出手段と、
前記静電容量検出手段から入力される静電容量に基づいて、前記選択的還元触媒の還元剤吸着量を演算する還元剤吸着量演算手段と、
少なくとも前記内燃機関の運転状態に応じて設定される所定の基準噴射量に基づいて、前記尿素水噴射手段の尿素水噴射を制御する噴射制御手段と、
前記還元剤吸着量演算手段から入力される還元剤吸着量に基づいて、前記基準噴射量を補正する噴射量補正手段と、を備える
ことを特徴とする排気浄化装置。
A selective reduction catalyst that is provided in an exhaust system of an internal combustion engine and that reduces and purifies nitrogen compounds contained in the exhaust gas using ammonia generated from urea water as a reducing agent;
Urea water injection means for injecting urea water to the selective reduction catalyst;
A capacitance detecting means for detecting a capacitance of the selective reduction catalyst;
Reducing agent adsorption amount calculating means for calculating the reducing agent adsorption amount of the selective reduction catalyst based on the capacitance input from the capacitance detecting means;
Injection control means for controlling urea water injection of the urea water injection means based on at least a predetermined reference injection amount set in accordance with the operating state of the internal combustion engine;
An exhaust emission control device comprising: an injection amount correcting unit that corrects the reference injection amount based on a reducing agent adsorption amount input from the reducing agent adsorption amount calculating unit.
前記静電容量検出手段から入力される静電容量に基づいて、前記選択的還元触媒の内部温度を演算する内部温度演算手段をさらに備え、
前記噴射量補正手段が、前記還元剤吸着量演算手段から入力される還元剤吸着量と、前記内部温度演算手段から入力される内部温度に応じた前記選択的還元触媒の還元剤吸着可能量との差に基づいて、前記基準噴射量を補正する
請求項1に記載の排気浄化装置。
An internal temperature calculating means for calculating the internal temperature of the selective reduction catalyst based on the capacitance input from the capacitance detecting means;
The injection amount correction means includes a reducing agent adsorption amount input from the reducing agent adsorption amount calculation means, and a reducing agent adsorption possible amount of the selective reduction catalyst according to an internal temperature input from the internal temperature calculation means. The exhaust emission control device according to claim 1, wherein the reference injection amount is corrected based on a difference between the two.
前記静電容量検出手段が、前記選択的還元触媒内に一個以上の隔壁を挟んで対向配置されてコンデンサを形成する少なくとも一対の電極で構成される
請求項1又は2に記載の排気浄化装置。
3. The exhaust emission control device according to claim 1, wherein the capacitance detection unit includes at least a pair of electrodes that are disposed to face each other with one or more partition walls in the selective reduction catalyst to form a capacitor.
JP2013252997A 2013-12-06 2013-12-06 Exhaust purification device Active JP6179378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013252997A JP6179378B2 (en) 2013-12-06 2013-12-06 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013252997A JP6179378B2 (en) 2013-12-06 2013-12-06 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2015110921A JP2015110921A (en) 2015-06-18
JP6179378B2 true JP6179378B2 (en) 2017-08-16

Family

ID=53525912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013252997A Active JP6179378B2 (en) 2013-12-06 2013-12-06 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP6179378B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111120061B (en) * 2019-12-30 2021-10-15 广州城市职业学院 SCR system monitoring and fault diagnosis equipment and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3945291B2 (en) * 2002-04-04 2007-07-18 三菱ふそうトラック・バス株式会社 NOx purification device for internal combustion engine
JP2006305732A (en) * 2005-03-30 2006-11-09 Brother Ind Ltd Ink jet printer head
JP2008223495A (en) * 2007-03-08 2008-09-25 Ngk Insulators Ltd Temperature measurement honeycomb structure body
JP5428583B2 (en) * 2009-06-30 2014-02-26 いすゞ自動車株式会社 PM sensor
JP5553631B2 (en) * 2010-02-09 2014-07-16 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP2015110921A (en) 2015-06-18

Similar Documents

Publication Publication Date Title
JP5293811B2 (en) Engine exhaust purification system
EP2963261B1 (en) Exhaust purification device for internal combustion engine
WO2010079621A1 (en) Apparatus for determination of component passing through catalyst, and exhaust gas purification apparatus for internal combustion engine
JP6136351B2 (en) Exhaust gas purification device for internal combustion engine
WO2015122443A1 (en) Exhaust purification device and control method for exhaust purification device
US10174702B2 (en) Regeneration device for exhaust-gas purifying device
JP5251711B2 (en) Exhaust gas purification device for internal combustion engine
JP5910759B2 (en) Exhaust gas purification system for internal combustion engine
EP3135875B1 (en) Exhaust purifying system
JP6179377B2 (en) Exhaust purification device
JP2010249076A (en) Exhaust emission control device of internal combustion engine
US20150308320A1 (en) Exhaust gas purification system for internal combustion engine
JP6179378B2 (en) Exhaust purification device
JP6206065B2 (en) Exhaust purification system
JP6121974B2 (en) Exhaust gas purification device for internal combustion engine
JP2015110922A (en) Exhaust emission control system
JP2021050700A (en) Method and device for estimating n2o
JP2021046834A (en) Exhaust emission control device control apparatus, and control method
JP2020118080A (en) Estimation device and vehicle
JP2015059478A (en) Exhaust purification system of internal combustion engine
JP2015068815A (en) Detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170703

R150 Certificate of patent or registration of utility model

Ref document number: 6179378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150