JP2015110922A - Exhaust emission control system - Google Patents

Exhaust emission control system Download PDF

Info

Publication number
JP2015110922A
JP2015110922A JP2013252998A JP2013252998A JP2015110922A JP 2015110922 A JP2015110922 A JP 2015110922A JP 2013252998 A JP2013252998 A JP 2013252998A JP 2013252998 A JP2013252998 A JP 2013252998A JP 2015110922 A JP2015110922 A JP 2015110922A
Authority
JP
Japan
Prior art keywords
scr
urea water
internal temperature
injection amount
reduction catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013252998A
Other languages
Japanese (ja)
Inventor
直人 村澤
Naoto Murasawa
直人 村澤
英和 藤江
Hidekazu Fujie
英和 藤江
正 内山
Tadashi Uchiyama
正 内山
哲史 塙
Tetsushi Hanawa
哲史 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2013252998A priority Critical patent/JP2015110922A/en
Publication of JP2015110922A publication Critical patent/JP2015110922A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control system which precisely controls a urea water injection amount to an optimum injection amount on the basis of a deterioration degree of an SCR.SOLUTION: An exhaust emission control system includes an SCR 22 which is provided in an exhaust system of an engine 10 and reductively purifies NOx contained in the exhaust gas with ammonia produced from urea water being used as a reductant agent; a urea water injection device 21 which injects the urea water to the SCR 22; an electrode 27 which detects the electrostatic capacitance of the SCR 22; an SCR internal temperature calculation unit 51 which calculates the internal temperature of the SCR 22 on the basis of the electrostatic capacitance input from the electrode 27; an SCR deterioration degree calculation unit 52 which calculates a deterioration degree of the SCR 22 on the basis of the internal temperature input from the SCR internal temperature calculation unit 51; a urea water injection control unit 53 which controls the injection of the urea water from the urea water injection device 21 on the basis of a predetermined reference injection amount; and an injection amount correction unit 54 which corrects the reference injection amount on the basis of the deterioration degree input from the SCR internal temperature calculation unit 52.

Description

本発明は、排気浄化装置に関し、特に、排気中の窒素化合物を還元浄化する排気浄化触媒を備えた排気浄化装置に関する。   The present invention relates to an exhaust purification device, and more particularly to an exhaust purification device including an exhaust purification catalyst that reduces and purifies nitrogen compounds in exhaust gas.

ディーゼルエンジン等の排気系に設けられる排気浄化触媒として、尿素水から加水分解されて生成されるアンモニア(NH3)を還元剤として排気中の窒素化合物(NOx)を選択的に還元浄化する選択的還元触媒(Selective Catalytic Reduction:SCR)が知られている。 As an exhaust purification catalyst provided in an exhaust system of a diesel engine or the like, selective reduction and purification of nitrogen compounds (NOx) in exhaust gas using ammonia (NH 3 ) hydrolyzed from urea water as a reducing agent Reduction catalysts (Selective Catalytic Reduction: SCR) are known.

一般的に、SCRのNH3吸着量やNOx浄化性能は、SCRの内部温度に依存して変化する。そのため、尿素水噴射量を最適に制御するには、SCRの内部温度を正確に把握することが重要となる。 In general, the NH 3 adsorption amount and NOx purification performance of the SCR vary depending on the internal temperature of the SCR. Therefore, in order to optimally control the urea water injection amount, it is important to accurately grasp the internal temperature of the SCR.

尿素水噴射量をSCR温度に基づいて制御する技術として、例えば、SCRの前後に配置した排気温度センサの検出値からSCRの内部温度を推定し、推定した内部温度に応じて尿素水噴射量を適宜調整する手法が知られている(例えば、特許文献1参照)。   As a technique for controlling the urea water injection amount based on the SCR temperature, for example, the internal temperature of the SCR is estimated from the detected values of the exhaust temperature sensors arranged before and after the SCR, and the urea water injection amount is set according to the estimated internal temperature. A technique for appropriately adjusting is known (for example, see Patent Document 1).

特開2003−293736号公報JP 2003-293736 A

ところで、排気温度センサは、SCRの内部に直接的に設けることができないため、SCR内部温度を正確に検出できない課題がある。また、SCRのNH3吸着量は、SCRの内部温度や劣化度合によって変化するため、尿素水噴射量を排気温度センサのセンサ値に基づいて制御する技術では、内部温度や劣化度合に応じた最適な噴射量を設定できない可能性がある。 By the way, since the exhaust temperature sensor cannot be provided directly inside the SCR, there is a problem that the internal temperature of the SCR cannot be accurately detected. Further, since the NH 3 adsorption amount of the SCR changes depending on the internal temperature and the deterioration degree of the SCR, the technology for controlling the urea water injection amount based on the sensor value of the exhaust temperature sensor is optimal according to the internal temperature and the deterioration degree. May not be able to set the correct injection amount.

本発明の目的は、尿素水噴射量をSCRの劣化度合に応じた最適な噴射量で制御することにある。   An object of the present invention is to control the urea water injection amount with an optimal injection amount corresponding to the degree of deterioration of the SCR.

上述の目的を達成するため、本発明の排気浄化装置は、内燃機関の排気系に設けられ、尿素水から生成されるアンモニアを還元剤として排気中に含まれる窒素化合物を還元浄化する選択的還元触媒と、前記選択的還元触媒に尿素水を噴射する尿素水噴射手段と、前記選択的還元触媒の静電容量を検出する静電容量検出手段と、前記静電容量検出手段から入力される静電容量に基づいて、前記選択的還元触媒の内部温度を演算する内部温度演算手段と、前記内部温度演算手段から入力される内部温度に基づいて、前記選択的還元触媒の劣化状態を推定する劣化状態推定手段と、少なくとも前記内燃機関の運転状態に応じて設定される所定の基準噴射量に基づいて、前記尿素水噴射手段の尿素水噴射を制御する噴射制御手段と、前記劣化状態推定手段から入力される前記選択的還元触媒の劣化状態に応じて前記基準噴射量を補正する噴射量補正手段とを備えることを特徴とする。   In order to achieve the above-described object, an exhaust purification apparatus of the present invention is provided in an exhaust system of an internal combustion engine, and selectively reduces and purifies nitrogen compounds contained in exhaust using ammonia generated from urea water as a reducing agent. A catalyst, urea water injection means for injecting urea water to the selective reduction catalyst, electrostatic capacity detection means for detecting electrostatic capacity of the selective reduction catalyst, and static electricity input from the electrostatic capacity detection means An internal temperature calculation means for calculating the internal temperature of the selective reduction catalyst based on the electric capacity, and a deterioration for estimating the deterioration state of the selective reduction catalyst based on the internal temperature input from the internal temperature calculation means State estimation means, injection control means for controlling urea water injection of the urea water injection means based on at least a predetermined reference injection amount set according to the operating state of the internal combustion engine, and the deterioration state estimation Characterized in that it comprises a injection amount correction means for correcting the reference injection amount in accordance with the deterioration state of the selective reduction catalyst that is input from the stage.

また、前記噴射量補正手段は、前記劣化状態推定手段から入力される劣化状態に基づいて、前記選択的還元触媒の還元剤吸着能力を求めると共に、当該還元剤吸着能力に応じた噴射補正量で前記基準噴射量を補正するものでもよい。   The injection amount correction means obtains the reducing agent adsorption capacity of the selective reduction catalyst based on the deterioration state input from the deterioration state estimation means, and uses an injection correction amount corresponding to the reducing agent adsorption capacity. The reference injection amount may be corrected.

また、前記静電容量検出手段が、前記選択的還元触媒内に一個以上の隔壁を挟んで対向配置されてコンデンサを形成する少なくとも一対の電極で構成されてもよい。   Further, the capacitance detection means may be composed of at least a pair of electrodes that are disposed opposite to each other with one or more partition walls in the selective reduction catalyst to form a capacitor.

本発明の排気浄化装置によれば、尿素水噴射量をSCRの劣化度合に応じた最適な噴射量で制御することができる。   According to the exhaust emission control device of the present invention, the urea water injection amount can be controlled with an optimal injection amount corresponding to the degree of deterioration of the SCR.

本発明の一実施形態に係る排気浄化装置を示す模式的な全体構成図である。It is a typical whole lineblock diagram showing the exhaust-air-purification device concerning one embodiment of the present invention. 本実施形態のECUを示す機能ブロック図である。It is a functional block diagram which shows ECU of this embodiment. 本実施形態の静電容量・温度特性マップの一例を示す図である。It is a figure which shows an example of the electrostatic capacitance and temperature characteristic map of this embodiment. 本実施形態のNH3吸着可能量マップの一例を示す図である。Is a diagram illustrating an example of the NH 3 adsorption capacity map of the present embodiment. 本実施形態の制御内容を示すフローチャートである。It is a flowchart which shows the control content of this embodiment. 実際の排気温度変化に対する電極間の静電容量と排気温度センサのセンサ値とを比較した図である。It is the figure which compared the electrostatic capacitance between electrodes with respect to an actual exhaust temperature change, and the sensor value of an exhaust temperature sensor.

以下、添付図面に基づいて、本発明の一実施形態に係る排気浄化装置を説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。   Hereinafter, an exhaust emission control device according to an embodiment of the present invention will be described with reference to the accompanying drawings. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

図1に示すように、ディーゼルエンジン(以下、単にエンジンという)10には、吸気マニホールド10aと排気マニホールド10bとが設けられている。吸気マニホールド10aには新気を導入する吸気通路11が接続され、排気マニホールド10bには排気を大気に放出する排気通路12が接続されている。   As shown in FIG. 1, a diesel engine (hereinafter simply referred to as an engine) 10 is provided with an intake manifold 10a and an exhaust manifold 10b. An intake passage 11 for introducing fresh air is connected to the intake manifold 10a, and an exhaust passage 12 for releasing exhaust gas to the atmosphere is connected to the exhaust manifold 10b.

吸気通路11には、吸気上流側から順に、エアクリーナ13、過給機15のコンプレッサ15a、インタークーラ17等が設けられている。排気通路12には、排気上流側から順に、過給機15のタービン15b、排気後処理装置20等が設けられている。なお、図1中において、符号18はエンジン回転数センサ、符号19はアクセル開度センサを示している。   In the intake passage 11, an air cleaner 13, a compressor 15 a of the supercharger 15, an intercooler 17 and the like are provided in order from the intake upstream side. In the exhaust passage 12, a turbine 15 b of the supercharger 15, an exhaust aftertreatment device 20, and the like are provided in order from the exhaust upstream side. In FIG. 1, reference numeral 18 denotes an engine speed sensor, and reference numeral 19 denotes an accelerator opening sensor.

排気後処理装置20は、排気上流側から順に、尿素水噴射装置21と、ケース20a内に収容されたSCR22とを備えて構成されている。   The exhaust aftertreatment device 20 includes, in order from the exhaust upstream side, a urea water injection device 21 and an SCR 22 accommodated in the case 20a.

尿素水噴射装置21は、本発明の尿素水噴射手段の一例であって、電子制御ユニット(以下、ECU)50から入力される指示信号に応じて、SCR22よりも上流側の排気通路12内に、図示しない尿素水タンク内の尿素水を噴射する。噴射された尿素水は排気熱により加水分解されてNH3に生成され、下流側のSCR22に還元剤として供給される。 The urea water injection device 21 is an example of the urea water injection means of the present invention, and enters the exhaust passage 12 upstream of the SCR 22 in response to an instruction signal input from an electronic control unit (hereinafter, ECU) 50. Then, urea water in a urea water tank (not shown) is injected. The injected urea water is hydrolyzed by exhaust heat to generate NH 3 and is supplied as a reducing agent to the downstream SCR 22.

SCR22は、例えば、ハニカム構造体等のセラミック製担体表面にゼオライト等を担持して形成されており、多孔質性の隔壁で区画された多数のセルを備えて構成されている。SCR22は、還元剤として供給されるNH3を吸着すると共に、吸着したNH3で通過する排気ガス中からNOxを選択的に還元浄化する。 The SCR 22 is formed, for example, by supporting zeolite or the like on the surface of a ceramic carrier such as a honeycomb structure, and includes a large number of cells partitioned by porous partition walls. The SCR 22 adsorbs NH 3 supplied as a reducing agent and selectively reduces and purifies NOx from exhaust gas passing through the adsorbed NH 3 .

また、本実施形態のSCR22には、少なくとも一個以上の隔壁を挟んで対向配置されてコンデンサを形成する複数本の電極27が設けられている。これら複数本の電極27は、本発明の静電容量検出手段の一例として好ましい。   In addition, the SCR 22 of the present embodiment is provided with a plurality of electrodes 27 that are arranged to face each other with at least one partition wall therebetween to form a capacitor. The plurality of electrodes 27 are preferable as an example of the capacitance detection means of the present invention.

ECU50は、エンジン10や尿素水噴射装置21等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備えて構成されている。   The ECU 50 performs various controls of the engine 10, the urea water injection device 21, and the like, and includes a known CPU, ROM, RAM, input port, output port, and the like.

また、ECU50は、図2に示すように、SCR内部温度演算部51と、SCR劣化度合演算部52と、尿素水噴射制御部53と、噴射量補正部54とを一部の機能要素として有する。これら各機能要素は、一体のハードウェアであるECU50に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。   Further, as shown in FIG. 2, the ECU 50 includes an SCR internal temperature calculation unit 51, an SCR deterioration degree calculation unit 52, a urea water injection control unit 53, and an injection amount correction unit 54 as some functional elements. . Each of these functional elements will be described as being included in the ECU 50 which is an integral hardware, but any one of these may be provided in separate hardware.

SCR内部温度演算部51は、本発明の内部温度演算手段の一例であって、電極27間の静電容量Cに基づいて、SCR22の内部温度TSCRを演算する。一般的に、電極27間の静電容量Cは、電極27間の媒体の誘電率ε、電極27の面積S、電極27間の距離dとする以下の数式1で表される。 The SCR internal temperature calculation unit 51 is an example of the internal temperature calculation means of the present invention, and calculates the internal temperature TSCR of the SCR 22 based on the capacitance C between the electrodes 27. In general, the capacitance C between the electrodes 27 is expressed by the following mathematical formula 1, where the dielectric constant ε of the medium between the electrodes 27, the area S of the electrodes 27, and the distance d between the electrodes 27.

Figure 2015110922
Figure 2015110922

数式1において、電極27の面積S及び距離dは一定であり、誘電率εが排気温度の影響を受けて変化すると、これに伴い静電容量Cも変化する。すなわち、電極27間の静電容量Cを検出すれば、SCR22の内部温度TSCRを演算することができる。 In Formula 1, the area S and the distance d of the electrode 27 are constant, and when the dielectric constant ε changes under the influence of the exhaust temperature, the capacitance C also changes accordingly. That is, if the electrostatic capacitance C between the electrodes 27 is detected, the internal temperature TSCR of the SCR 22 can be calculated.

ECU50には、予め実験等により求めた静電容量CとSCR内部温度Tとの関係を示す静電容量・温度特性マップ(例えば、図3参照)が記憶されている。SCR内部温度演算部51は、この静電容量・温度特性マップから電極27間の静電容量Cに対応する値を読み取ることで、SCR22の内部温度TSCRを演算する。なお、内部温度TSCRの演算はマップに限定されず、予め実験等により作成した近似式等から求めてもよい。 The ECU 50 stores a capacitance / temperature characteristic map (see, for example, FIG. 3) showing the relationship between the capacitance C and the SCR internal temperature T obtained in advance through experiments or the like. The SCR internal temperature calculation unit 51 calculates the internal temperature TSCR of the SCR 22 by reading a value corresponding to the capacitance C between the electrodes 27 from the capacitance / temperature characteristic map. Note that the calculation of the internal temperature TSCR is not limited to a map, and may be obtained from an approximate expression or the like created in advance through experiments or the like.

SCR劣化度合演算部52は、本発明の劣化状態推定手段の一例であって、SCR内部温度演算部51から入力される内部温度TSCR(SCR22内の実反応熱)に基づいて、SCR22の劣化度合DEGLEVELを演算する。より詳しくは、ECU50には、予め実験等により求めた正常なSCR(例えば、新品)の基準反応熱が記憶されている。SCR劣化度合演算部52は、この基準反応熱と内部温度TSCRから求められる実反応熱とを比較することで、SCR22の劣化度合DEGLEVELを演算する。なお、劣化度合DEGLEVELは、予め実験等により作成したマップや近似式等から求めてもよい。 The SCR deterioration degree calculation unit 52 is an example of a deterioration state estimation unit of the present invention, and is based on the internal temperature T SCR (actual heat of reaction in the SCR 22) input from the SCR internal temperature calculation unit 51. Calculate degree DEG LEVEL . More specifically, the ECU 50 stores a normal SCR (for example, new) reference reaction heat obtained in advance through experiments or the like. The SCR deterioration degree calculation unit 52 calculates the deterioration degree DEG LEVEL of the SCR 22 by comparing the reference reaction heat with the actual reaction heat obtained from the internal temperature TSCR. Note that the degree of degradation DEG LEVEL may be obtained from a map, an approximate expression, or the like created in advance by experiments or the like.

尿素水噴射制御部53は、本発明の噴射制御手段の一例であって、エンジン10の運転状態等に基づいて尿素水噴射装置21の尿素水噴射量を制御する。より詳しくは、尿素水噴射制御部53は、エンジン回転数Ne及びアクセル開度Qからエンジン10のNOx排出量を演算すると共に、このNOx排出量に応じて必要になる尿素水の基本噴射量INJU_stdを設定する。この基本噴射量INJU_stdは、後述する噴射量補正部54によって必要に応じて補正される。 The urea water injection control unit 53 is an example of the injection control means of the present invention, and controls the urea water injection amount of the urea water injection device 21 based on the operating state of the engine 10 and the like. More specifically, the urea water injection control unit 53 calculates the NOx discharge amount of the engine 10 from the engine speed Ne and the accelerator opening Q, and the urea water basic injection amount INJ that is required according to the NOx discharge amount. Set U_std . This basic injection amount INJ U_std is corrected as necessary by an injection amount correction unit 54 described later.

噴射量補正部54は、本発明の噴射量補正手段の一例であって、尿素水噴射制御部53で設定された基本噴射量INJU_stdを、SCR内部温度演算部51から入力される内部温度TSCR及び、SCR劣化度合演算部52から入力される劣化度合DEGLEVELに基づいて補正する。 The injection amount correction unit 54 is an example of the injection amount correction means of the present invention, and the basic injection amount INJ U_std set by the urea water injection control unit 53 is used as the internal temperature T input from the SCR internal temperature calculation unit 51. Correction is performed based on the degradation degree DEG LEVEL input from the SCR and the SCR degradation degree calculation unit 52.

より詳しくは、ECU50には、予め実験等により作成した正常なSCR(例えば、新品)の内部温度TSCRとNH3吸着可能量(以下、基準吸着可能量STNH3_MAX)との関係を示すNH3吸着可能量マップ(例えば、図4参照)が記憶されている。さらに、このNH3吸着可能量マップ上には、各劣化度合毎の内部温度TSCRと劣化後のNH3吸着可能量(以下、劣化後吸着可能量STNH3_n)との関係も規定されている。 More specifically, the ECU 50, normal SCR (e.g., new) created in advance by experiments or the like NH 3 showing the internal temperature T SCR and NH 3 adsorption capacity (hereinafter, reference adsorption capacity ST NH3 - MAX) the relationship between A suckable amount map (for example, see FIG. 4) is stored. Furthermore, the relationship between the internal temperature T SCR for each degree of deterioration and the NH 3 adsorbable amount after deterioration (hereinafter referred to as the post-degradation adsorbable amount ST NH3_n ) is also defined on this NH 3 adsorbable amount map. .

噴射量補正部54は、NH3吸着可能量マップから、現在の内部温度TSCRに対応する基準吸着可能量STNH3_MAXと劣化後吸着可能量STNH3_nとの吸着量偏差ΔSTNH3を読み取ると共に、この吸着量偏差ΔSTNH3に相当する噴射補正量ΔINJに基づいて、基本噴射量INJU_stdを減少補正する(INJU_exh=INJU_std−ΔINJ)。補正後の尿素水噴射は、尿素水噴射装置21のインジェクタ(不図示)に印加される各噴射の通電パルス幅を短くするか、あるいは噴射回数を減らすことで実行される。 The injection amount correction unit 54 reads the adsorption amount deviation ΔST NH3 between the reference adsorbable amount ST NH3_MAX corresponding to the current internal temperature T SCR and the post-degradation adsorbable amount ST NH3_n from the NH 3 adsorbable amount map. Based on the injection correction amount ΔINJ corresponding to the adsorption amount deviation ΔST NH3 , the basic injection amount INJ U_std is corrected to decrease (INJ U_exh = INJ U_std− ΔINJ). The urea water injection after correction is executed by shortening the energization pulse width of each injection applied to the injector (not shown) of the urea water injection device 21 or reducing the number of injections.

次に、図5に基づいて、本実施形態の排気浄化装置による制御フローを説明する。なお、本制御はイグニッションキーのON操作と同時にスタートする。   Next, based on FIG. 5, the control flow by the exhaust emission control device of the present embodiment will be described. Note that this control starts simultaneously with the ON operation of the ignition key.

ステップ(以下、ステップを単にSと記載する)100では、エンジン回転数Ne及びアクセル開度Qから演算されるエンジン10のNOx排出量に応じて、尿素水の基本噴射量INJU_stdが設定される。 In step (hereinafter, step is simply referred to as S) 100, the basic injection amount INJ U_std of urea water is set according to the NOx emission amount of the engine 10 calculated from the engine speed Ne and the accelerator opening Q. .

S110では、電極27間の静電容量Cに基づいてSCR22の内部温度TSCRが演算され、さらに、S120では、S110で演算された内部温度TSCRに基づいて、SCR22の劣化度合DEGLEVELが演算される。 In S110, the internal temperature TSCR of the SCR 22 is calculated based on the capacitance C between the electrodes 27. Further, in S120, the degradation degree DEG LEVEL of the SCR 22 is calculated based on the internal temperature TSCR calculated in S110. Is done.

S130では、NH3吸着可能量マップ(図4)から、S110で演算された内部温度TSCRに対応する基準吸着可能量STNH3_MAX及び、S120で演算された劣化度合DEGLEVELに対応する劣化後吸着可能量STNH3_nが読み取られると共に、これら基準吸着可能量STNH3_MAXと劣化後吸着可能量STNH3_nとの吸着量偏差ΔSTNH3が演算される。 In S130, NH 3 adsorption capacity map (FIG. 4), the reference adsorption capacity ST NH3 - MAX and corresponding to the internal temperature T SCR calculated in S110, the post-adsorption deterioration corresponding to the deterioration degree the DEG LEVEL calculated in S120 The possible amount ST NH3_n is read, and an adsorption amount deviation ΔST NH3 between the reference adsorbable amount ST NH3_MAX and the post- degradable adsorbable amount ST NH3_n is calculated.

S140では、S130で演算された吸着量偏差ΔSTNH3が所定の閾値よりも多いか否かが判定される。吸着量偏差ΔSTNH3が所定の閾値よりも多い場合(Yes)は、S150に進み、吸着量偏差ΔSTNH3に相当する噴射補正量ΔINJに基づいて、基本噴射量INJU_stdが減少補正される(INJU_exh=INJU_std−ΔINJ)。さらに、S160では、補正後の噴射量INJU_exhに基づいて、尿素水噴射装置21の尿素水噴射が実行される。 In S140, it is determined whether or not the adsorption amount deviation ΔST NH3 calculated in S130 is larger than a predetermined threshold value. If the adsorption amount deviation ΔST NH3 is larger than the predetermined threshold (Yes), the process proceeds to S150, and the basic injection amount INJ U_std is corrected to decrease based on the injection correction amount ΔINJ corresponding to the adsorption amount deviation ΔST NH3 (INJ). U_exh = INJ U_std− ΔINJ). Further, in S160, the urea water injection of the urea water injection device 21 is executed based on the corrected injection amount INJ U_exh .

一方、S140で、吸着量偏差ΔSTNH3が所定の閾値未満の場合(No)は、S170に進み、補正を行うことなく、S100で設定した基本噴射量INJU_stdに基づいて尿素水噴射装置21の尿素水噴射が実行される。その後、上述のS100〜170の各制御ステップは、イグニッションキーのOFF操作まで繰り返し実行される。 On the other hand, if the adsorption amount deviation ΔST NH3 is less than the predetermined threshold value in S140 (No), the process proceeds to S170, and the correction of the urea water injector 21 is performed based on the basic injection amount INJ U_std set in S100 without correction. Urea water injection is executed. Thereafter, each control step of S100 to S170 described above is repeatedly executed until the ignition key is turned off.

次に、本実施形態に係る排気浄化装置による作用効果を説明する。   Next, functions and effects of the exhaust emission control device according to the present embodiment will be described.

図6に示すように、電極27間の静電容量Cは、排気温度(SCR内部温度)の変化に対して排気温度センサのセンサ値よりも速い応答性を示す特性がある。すなわち、SCR22内に直接的に配置した電極27間の静電容量Cを用いれば、SCR22の前後に設けた排気温度センサのセンサ値よりも、SCR22の内部温度TSCRを正確に検出することが可能になる。 As shown in FIG. 6, the capacitance C between the electrodes 27 has a characteristic that shows a faster response to a change in the exhaust temperature (SCR internal temperature) than the sensor value of the exhaust temperature sensor. That is, if the capacitance C between the electrodes 27 arranged directly in the SCR 22 is used, the internal temperature T SCR of the SCR 22 can be detected more accurately than the sensor value of the exhaust temperature sensor provided before and after the SCR 22. It becomes possible.

本実施形態の排気浄化装置では、電極27間の静電容量Cから演算されるSCR22の内部温度TSCRに基づいてSCR22の劣化度合DEGLEVELを演算すると共に、この劣化度合DEGLEVELに応じたNH3吸着可能量に基づいて、尿素水噴射量を補正している。すなわち、SCR22の劣化度合DEGLEVELを考慮したNH3吸着可能量に基づいて尿素水噴射量を補正することで、SCR前後の排気温度センサから推定した内部温度のみを考慮する従来技術に比べ、尿素水噴射量の最適化が確実に図られるように構成されている。 NH in the exhaust gas purification apparatus of the present embodiment, while calculating the deterioration degree the DEG LEVEL of SCR22 based on the internal temperature T SCR of SCR22 which is calculated from the capacitance C between the electrodes 27, in accordance with the degree of deterioration the DEG LEVEL 3 The urea water injection amount is corrected based on the adsorbable amount. That is, by correcting the urea water injection amount based on the NH 3 adsorptionable amount considering the degradation level DEG LEVEL of the SCR 22, compared with the conventional technology considering only the internal temperature estimated from the exhaust temperature sensors before and after the SCR, The water injection amount is configured to be optimized with certainty.

したがって、本実施形態の排気浄化装置によれば、尿素水噴射量をSCR22の劣化度合に応じて最適に制御することが可能となり、SCR22のNOx浄化性能を効果的に向上することができる。また、尿素水噴射量の最適化が図られることで、SCR22からのNH3スリップを効果的に抑止することが可能になる。さらに、SCR22の下流側に余剰のNH3を酸化除去する酸化触媒等を配置する必要がなくなり、装置全体のコストや重量・サイズ等を効果的に低減することも可能になる。 Therefore, according to the exhaust gas purification apparatus of the present embodiment, the urea water injection amount can be optimally controlled according to the degree of deterioration of the SCR 22, and the NOx purification performance of the SCR 22 can be effectively improved. Further, by optimizing the urea water injection amount, NH 3 slip from the SCR 22 can be effectively suppressed. Furthermore, it is not necessary to arrange an oxidation catalyst or the like for oxidizing and removing excess NH 3 on the downstream side of the SCR 22, and the cost, weight, size, etc. of the entire apparatus can be effectively reduced.

なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。   In addition, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the meaning of this invention, it can change suitably and can implement.

例えば、電極27の本数は少なくとも一対以上であればよく、図示例に限定されるものではない。また、エンジン10はディーゼルエンジンに限定されず、ガソリンエンジン等の他の内燃機関にも広く適用することが可能である。   For example, the number of the electrodes 27 may be at least a pair, and is not limited to the illustrated example. Further, the engine 10 is not limited to a diesel engine, and can be widely applied to other internal combustion engines such as a gasoline engine.

10 エンジン
12 排気通路
18 エンジン回転数センサ
19 アクセル開度センサ
20 排気後処理装置
21 尿素水噴射装置
22 SCR
27 電極
50 ECU
51 SCR内部温度演算部
52 SCR劣化度合演算部
53 尿素水噴射制御部
54 噴射量補正部
DESCRIPTION OF SYMBOLS 10 Engine 12 Exhaust passage 18 Engine speed sensor 19 Accelerator opening degree sensor 20 Exhaust after-treatment apparatus 21 Urea water injection apparatus 22 SCR
27 electrodes 50 ECU
51 SCR internal temperature calculation unit 52 SCR deterioration degree calculation unit 53 urea water injection control unit 54 injection amount correction unit

Claims (3)

内燃機関の排気系に設けられ、尿素水から生成されるアンモニアを還元剤として排気中に含まれる窒素化合物を還元浄化する選択的還元触媒と、
前記選択的還元触媒に尿素水を噴射する尿素水噴射手段と、
前記選択的還元触媒の静電容量を検出する静電容量検出手段と、
前記静電容量検出手段から入力される静電容量に基づいて、前記選択的還元触媒の内部温度を演算する内部温度演算手段と、
前記内部温度演算手段から入力される内部温度に基づいて、前記選択的還元触媒の劣化状態を推定する劣化状態推定手段と、
少なくとも前記内燃機関の運転状態に応じて設定される所定の基準噴射量に基づいて、前記尿素水噴射手段の尿素水噴射を制御する噴射制御手段と、
前記劣化状態推定手段から入力される前記選択的還元触媒の劣化状態に応じて前記基準噴射量を補正する噴射量補正手段と、を備える
ことを特徴とする排気浄化装置。
A selective reduction catalyst that is provided in an exhaust system of an internal combustion engine and that reduces and purifies nitrogen compounds contained in the exhaust gas using ammonia generated from urea water as a reducing agent;
Urea water injection means for injecting urea water to the selective reduction catalyst;
A capacitance detecting means for detecting a capacitance of the selective reduction catalyst;
Internal temperature calculation means for calculating the internal temperature of the selective reduction catalyst based on the capacitance input from the capacitance detection means;
A deterioration state estimation means for estimating a deterioration state of the selective reduction catalyst based on the internal temperature input from the internal temperature calculation means;
Injection control means for controlling urea water injection of the urea water injection means based on at least a predetermined reference injection amount set in accordance with the operating state of the internal combustion engine;
An exhaust emission control device comprising: an injection amount correction unit that corrects the reference injection amount in accordance with a deterioration state of the selective reduction catalyst input from the deterioration state estimation unit.
前記噴射量補正手段は、前記劣化状態推定手段から入力される劣化状態に基づいて、前記選択的還元触媒の還元剤吸着能力を求めると共に、当該還元剤吸着能力に応じた噴射補正量で前記基準噴射量を補正する
請求項1に記載の排気浄化装置。
The injection amount correction means obtains the reducing agent adsorption capacity of the selective reduction catalyst based on the deterioration state input from the deterioration state estimation means, and uses the injection correction amount according to the reducing agent adsorption capacity as the reference. The exhaust emission control device according to claim 1, wherein the injection amount is corrected.
前記静電容量検出手段が、前記選択的還元触媒内に一個以上の隔壁を挟んで対向配置されてコンデンサを形成する少なくとも一対の電極で構成される
請求項1又は2に記載の排気浄化装置。
3. The exhaust emission control device according to claim 1, wherein the capacitance detection unit includes at least a pair of electrodes that are disposed to face each other with one or more partition walls in the selective reduction catalyst to form a capacitor.
JP2013252998A 2013-12-06 2013-12-06 Exhaust emission control system Pending JP2015110922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013252998A JP2015110922A (en) 2013-12-06 2013-12-06 Exhaust emission control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013252998A JP2015110922A (en) 2013-12-06 2013-12-06 Exhaust emission control system

Publications (1)

Publication Number Publication Date
JP2015110922A true JP2015110922A (en) 2015-06-18

Family

ID=53525913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013252998A Pending JP2015110922A (en) 2013-12-06 2013-12-06 Exhaust emission control system

Country Status (1)

Country Link
JP (1) JP2015110922A (en)

Similar Documents

Publication Publication Date Title
JP4692911B2 (en) NOx sensor output calibration apparatus and output calibration method
JP5293811B2 (en) Engine exhaust purification system
EP2559876B1 (en) Exhaust gas purification device, and control method for exhaust gas purification device
WO2010079621A1 (en) Apparatus for determination of component passing through catalyst, and exhaust gas purification apparatus for internal combustion engine
US10174702B2 (en) Regeneration device for exhaust-gas purifying device
WO2015122443A1 (en) Exhaust purification device and control method for exhaust purification device
JP5910759B2 (en) Exhaust gas purification system for internal combustion engine
JP5251711B2 (en) Exhaust gas purification device for internal combustion engine
JP6179377B2 (en) Exhaust purification device
JP6287539B2 (en) Exhaust purification system
WO2013179393A1 (en) Exhaust gas purification device for internal combustion engine
JP2016188604A (en) Exhaust emission control device
JP2010249076A (en) Exhaust emission control device of internal combustion engine
JP4453685B2 (en) Exhaust gas purification system for internal combustion engine
JP6206065B2 (en) Exhaust purification system
JP6179378B2 (en) Exhaust purification device
JP2013253540A (en) Exhaust cleaning system for internal combustion engine
US9568395B2 (en) NOx sensor control device
JP2015110922A (en) Exhaust emission control system
JP7106922B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device
JP2021050700A (en) Method and device for estimating n2o
JP2021046834A (en) Exhaust emission control device control apparatus, and control method
JP2020118080A (en) Estimation device and vehicle
JP2019167936A (en) Exhaust gas state estimation method for engine, catalyst abnormality determination method for engine, and catalyst abnormality determination device for engine
JP2019167938A (en) Exhaust gas state estimation method for engine, catalyst abnormality determination method for engine, and catalyst abnormality determination device for engine