画像表示装置は、典型的に、画像表示セル及び偏光板を有する。画像表示セルには、典型的に、液晶セル又は有機ELセルが用いられる。画像表示セルとして液晶セルを用いた画像表示装置の代表的な模式図を図1に示す。
液晶表示装置(1)は、光源(2)、液晶セル(4)、及び機能層としてタッチパネル(6)を有する。ここで、本書において、液晶表示装置の画像が表示される側(ヒトが画像を視認する側)を「視認側」と呼び、視認側と反対側(即ち、液晶表示装置において、通常、バックライト光源と呼ばれる光源が設定される側)を「光源側」と称する。なお、図1では、右側が視認側であり、左側が光源側である。
液晶セル(4)の光源側及び視認側の両方にはそれぞれ偏光板(光源側偏光板(3)及び視認側偏光板(5))が設けられている。各偏光板(3,5)は、典型的に、偏光子(7,8)と呼ばれるフィルムの両側に偏光子保護フィルム(9a,9b,10a,10b)が積層された構造を有する。図1の画像表示装置(1)には、視認側偏光板(5)より視認側に、機能層としてタッチパネル(6)が設けられている。図1に示すタッチパネルは、抵抗膜式のタッチパネルである。タッチパネル(6)は、2枚の透明導電性フィルム(11,12)がスペーサー(13)を介して配置された構造を有する。透明導電性フィルム(11,12)は、基材フィルム(11a,12a)と透明導電層(11b,12b)とを積層したものである。また、タッチパネル(6)の光源側及び視認側には、接着層を介して、透明基体である飛散防止フィルム(14,15)が設けられている。
なお、図1においては、視認側偏光板(5)の視認側に設ける機能層としてタッチパネル(6)を記載したが、タッチパネルに限定されるものではなく、フィルムを有する層であればどのような層であってもよい。また、タッチパネルとして、抵抗膜式のタッチパネルを記載したが、投影型静電容量式等の他の方式のタッチパネルを使用することも可能である。図1のタッチパネルは、透明導電性フィルムを2枚有する構造であるが、タッチパネルの構造はこれに限定されず、例えば、透明導電性フィルム及び/又は飛散防止フィルムの数は1枚であってもよい。液晶表示装置(1)において、飛散防止フィルムは、タッチパネル(6)の両側に必ず配置しなければならないわけではなく、どちらか一方に配置した構成でもよいし、又は両側に飛散防止フィルムを配置しない構成でもよい。飛散防止フィルムは、接着層を介してタッチパネル上に配置されてもよく、接着層を介さずにタッチパネル上に配置されても良い。
<配向フィルムの位置関係>
画像表示装置には、種々の目的で配向フィルムが使用され得る。尚、本書において、配向フィルムとは、複屈折性を有する高分子フィルムのことを意味する。画像表示装置は、視認性を改善するという観点から、視認側偏光子より視認側に少なくとも2枚の配向フィルムを備え、各配向フィルムのリタデーションの値を合計した値が3000nm以上30000nm以下であることが好ましい。図1の液晶表示装置において、配向フィルムは、典型的に、液晶セル(4)より視認側にある偏光子(8)(以下、「視認側偏光子」と称する)の視認側にあるフィルム、すなわち視認側偏光子(8)より視認側にある偏光子保護フィルム(10b)(以下、「視認側偏光子保護フィルム」と称する)、スペーサー(13)より光源側にある透明導電性フィルム(11)の基材フィルム(11a)(以下、「光源側基材フィルム」と称する)、スペーサー(13)より視認側にある透明導電性フィルム(12)の基材フィルム(12a)(以下、「視認側基材フィルム」と称する)、視認側偏光子保護フィルム(10b)と光源側基材フィルム(11a)との間にある飛散防止フィルム(14)(以下、「光源側飛散防止フィルム」と称する)及び視認側基材フィルム(12a)より視認側にある飛散防止フィルム(15)(以下、「視認側飛散防止フィルム」と称する)に使用され得る。
画像表示装置は、偏光子より視認側に少なくとも2枚の配向フィルムを備え、少なくとも2枚の配向フィルムのリタデーションの合計値は3000nm以上30000nm以下であることが好ましい。そして、少なくとも2枚の配向フィルムのうち2枚の配向フィルムは、視認側偏光子保護フィルム(10b)、及び光源側飛散防止フィルム(14)又は視認側飛散防止フィルム(15)であることが好ましい。画像表示装置が有する配向フィルムの数は、上記視認側偏光子保護フィルム(10b)及び飛散防止フィルム(14,15)を含めた配向フィルムのリタデーションの合計値が3000nm以上30000nm以下である限り特に制限されず、例えば、2枚以上、3枚以上、4枚以上、5枚以上、6枚以上、7枚以上とすることができる。図1の液晶表示装置における、偏光子保護フィルム及び基材フィルムを含めた2枚〜5枚の配向フィルムの配置は、例えば、以下のとおりである。
2枚:視認側偏光子保護フィルム(10b)及び光源側飛散防止フィルム(14);視認側偏光子保護フィルム(10b)及び視認側飛散防止フィルム(15)
3枚:視認側偏光子保護フィルム(10b)、光源側飛散防止フィルム(14)及び光源側基材フィルム(11a);視認側偏光子保護フィルム(10b)、光源側飛散防止フィルム(14)及び視認側基材フィルム(12a);視認側偏光子保護フィルム(10b)、光源側飛散防止フィルム(14)及び視認側飛散防止フィルム(15);視認側偏光子保護フィルム(10b)、光源側基材フィルム(11a)及び視認側飛散防止フィルム(15);視認側偏光子保護フィルム(10b)、視認側基材フィルム(12a)及び視認側飛散防止フィルム(15)
4枚:光源側基材フィルム(11a)、視認側基材フィルム(12a)、視認側偏光子保護フィルム(10b)及び光源側飛散防止フィルム(14);視認側偏光子保護フィルム(10b)、光源側飛散防止フィルム(14)、光源側基材フィルム(11a)及び視認側飛散防止フィルム(15);視認側偏光子保護フィルム(10b)、光源側飛散防止フィルム(14)、視認側基材フィルム(12a)及び視認側飛散防止フィルム(15);光源側基材フィルム(11a)、視認側基材フィルム(12a)、視認側偏光子保護フィルム(10b)及び視認側飛散防止フィルム(15)
5枚:光源側基材フィルム(11a)、視認側基材フィルム(12a)、視認側偏光子保護フィルム(10b)、光源側飛散防止フィルム(14)及び視認側飛散防止フィルム(15)
上記組合せは、画像表示装置がタッチパネルを備えた液晶表示装置である場合の単なる例示に過ぎず、他の構成及び組合せであっても良い。例えば、上記において、飛散防止フィルムは、画像表示装置に設けられ得る、任意の他の機能フィルムであり得る。また、本書において、単一の部材に複数の配向フィルム(フィルム群)が使用される場合、それらは1枚のフィルムとみなす。ここで、部材とは、例えば、偏光子保護フィルム、光源側飛散防止フィルム、光源側基材フィルム、視認側基材フィルム、視認側飛散防止フィルム等の機能的及び/又は目的の観点から別個の部材と判断されるものを意味する。
画像表示装置の視認側偏光子より視認側に設けられる少なくとも2枚の配向フィルムは、それらの配向フィルムのリタデーションの合計値が3000nm以上30000nm以下であることが虹斑を抑制するという観点から好ましい。リタデーションの合計値は、好ましくは4000nm以上、好ましくは5000nm以上、好ましくは8000nm以上である。一方、リタデーションの合計値の上限は、それ以上高くしたとしても更なる視認性の改善効果は実質的に得られず、またリタデーションの高さに応じては配向フィルムの厚みも上昇する傾向があるため、薄型化への要請に反し兼ねないという観点から、30000nm以下、好ましくは20000nm以下、好ましくは15000nm以下と設定されるが、更に高い値とすることも可能である。
前記少なくとも2枚の配向フィルムを構成する各配向フィルムのリタデーションの値は任意であり、例えば、50nm以上3000nm未満の範囲から適宜選択して設定することが出来る。好ましくは、配向フィルムのリタデーションの下限値は、100nm以上、250nm以上、500nm以上であり得る。また、好ましくは、配向フィルムのリタデーションの上限値は、3000nm以下、2750nm以下、2500nm以下、2250nm以下であり得る。画像表示装置が、2枚又は3枚以上の複数の配向フィルムを備える場合、それらの全てのリタデーションが各々50nm以上3000nm未満であることが好ましい。
上記のリタデーションを有する配向フィルムは、一軸延伸配向フィルムであっても、二軸延伸配向フィルムであってもよいが、フィルムの裂け易さを低減するという観点から、二軸延伸配向フィルムであることが好ましい。
上記少なくとも2枚の配向フィルムを構成する各配向フィルムのリタデーションの値は、互いに一致していても異なっていても良い。配向フィルムのリタデーションは、公知の手法に従って測定することができる。具体的には、2軸方向の屈折率と厚みを測定して求めることができる。また、商業的に入手可能な自動複屈折測定装置(例えば、KOBRA−21ADH:王子計測機器株式会社製)を用いて求めることもできる。
前記少なくとも2枚の配向フィルムは、虹斑を低減するという観点から、各配向フィルムの配向主軸が互いに平行になるように配置されることが好ましい。即ち、少なくとも2枚の配向フィルムの配向主軸同士が形成する角の角度(2枚の配向フィルムが同一平面上にあると仮定する)は、0度±15度以下、0度±10度以下、0度±8度以下、0度±6度以下、0度±5度以下、0度±4度以下、0度±3度以下、0度±2度以下、0度±1度以下、又は0度であることが好ましい。尚、本書において、「以下」という用語は、「±」の次の数値にのみかかることを意味する。即ち、前記「0度±15度以下」とは、0度を中心に上下15度の範囲の変動を許容することを意味する。
画像表示装置が3枚以上の配向フィルムを有する場合、それら全ての配向フィルムの配向主軸が互い平行である必用はなく、リタデーションの合計が3000nm以上となる少なくとも2枚の配向フィルムの配向主軸が互いに平行であることが好ましい。よって、例えば、画像表示装置が3枚の配向フィルムを備える場合、そのうちの2枚の配向フィルムの合計が3000nm以上である場合は、それら2枚の配向フィルムの配向主軸が互いに平行(同一平面上にあると仮定する)であればよく、好ましくは3枚全ての配向主軸が互いに平行である。
上記のように、画像表示装置が備える複数の配向フィルムの全部又は一部の配向フィルムの配向主軸が互いに平行である場合、当該互いに平行である配向フィルムは、画像表示装置内で連続して配置されていることが好ましい。ここで、「連続して配置される」とは、互いに平行である2枚の配向フィルムの間に他の平行でない配向フィルムが存在しないことを意味する。但し、互いに平行である2枚の配向フィルムの間に配向フィルム以外のフィルムや他の層が含まれることは許容される。
画像表示装置が3枚以上の配向フィルムを備え、それらのうちの一部(2枚以上)の配向フィルム群のリタデーションの合計が3000nm以上であり、且つ、前記一部の配向フィルム群の配向主軸が互いに平行である場合、前記一部の配向フィルム群は、残る配向フィルより光源側に配置されることが好ましい。このような配置を取ることにより、前記一部の配向フィルム群より視認側に存在する配向フィルム(1枚以上)は、その配向主軸が前記一部の配向フィルム群の配向主軸と平行でなくても、視認性に顕著に影響しなくなる。よって、より視認側の配向フィルムの配置を制限(配向主軸方向に関して)なく行うことができる。
前記少なくとも2枚の配向フィルムの配向主軸の向きと視認側偏光子の偏光軸(出射する偏光の振動方向)の向きとの関係は任意であるが、全ての配向フィルムの配向主軸の向きと視認側偏光子の偏光軸の向きとが平行(配向フィルムと偏光子とが同一平面上にあると仮定する)である場合、画像表示装置の画像を偏光フィルタで見た場合に輝度が顕著に低下する場合がある。このような観点から、配向フィルムの配向主軸は、視認側偏光子の偏光軸と完全には平行でないことが好ましい。
前記少なくとも2枚の配向フィルムは、その配向主軸と視認側偏光子の偏光軸とが形成する角(配向フィルムと偏光子とが同一平面上にあると仮定する)が45度に近いことが好ましい。例えば、前記角は、45度±30度以下であり、好ましくは45度±20度以下、好ましくは45度±15度以下、好ましくは45度±10度以下、好ましくは45度±7度以下、好ましくは45度±5度以下、好ましくは45度±3度以下である。なお、この場合の配向主軸は、以下の式より計算される。
{(配向フィルム1の角度×配向フィルム1のリタデーション)+(配向フィルム2の角度×配向フィルム2のリタデーション)+・・・(配向フィルムnの角度×配向フィルムnのリタデーション)}×{1/(配向フィルム1〜nのリタデーションの合計値)}
ここで、上記式における「角度」とは、配向フィルムの配向主軸が視認側偏光子の偏光軸と形成する角の角度を意味する。
特にパソコン等の液晶表示装置に使用される偏光板は、その偏光軸が、画面の縦方向又は横方向と平行になる位置ではなく、斜め45度となるように配置されている場合が多い。画像表示装置を横斜めから見る一般的な態様では、配向フィルムの配向主軸が画面の縦方向と平行になるように、偏光軸と45度の関係で配置することが好ましい。画像表示装置を縦斜めから見ることが多い態様(例えば、ディスプレイを見上げて画面を見る態様、及び腰程度の高さで地面に水平に設置された画面を立った状態で斜め上方から見る態様等)では、配向フィルムの配向主軸を画面の横方向と平行になるように、偏光軸と45度の関係で配置することが好ましい。このようにすることで、画像表示装置を斜め方向からサングラス等の偏光フィルムを介して画面を観察する場合の虹斑をより低減することができる。
配向フィルムは、公知の手法を適宜選択して製造することができる。例えば、ポリエステル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、シンジオタクチックポリスチレン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、ポリオレフィン樹脂(ポリエチレン樹脂、ポリプロピレン樹脂、シクロオレフィン樹脂)、(メタ)アクリル樹脂、酢酸セルロース樹脂(トリアセチルセルロース樹脂)、液晶性ポリマー樹脂、及びセルロース系樹脂に液晶化合物を添加した樹脂から成る群より選択される一種以上を用いて製造することができる。従って、配向フィルムは、ポリエステルフィルム、ポリカーボネートフィルム、ポリスチレンフィルム、シンジオタクチックポリスチレンフィルム、ポリエーテルエーテルケトンフィルム、ポリフェニレンサルファイドフィルム、ポリオレフィンフィルム(ポリエチレンフィルム、ポリプロピレンフィルム、シクロオレフィンフィルム)、(メタ)アクリルフィルム、酢酸セルロースフィルム(トリアセチルセルロースフィルム)、液晶性フィルム、セルロース系樹脂に液晶化合物が添加されたフィルムであり得る。
配向フィルムの好ましい原料樹脂は、ポリカーボネート及び/又はポリエステル、シンジオタクチックポリスチレンである。これらの樹脂は透明性に優れるとともに、熱的、機械的特性にも優れており、延伸加工によって容易にリタデーションを制御することができる。ポリエチレンテレフタレート及びポリエチレンナフタレートに代表されるポリエステルは、固有複屈折が大きく、フィルムの厚みが薄くても比較的容易に大きなリタデーションが得られるので、比較的高いリタデーションを有する配向フィルムを製造する場合に好ましい。特に、ポリエチレンナフタレートは、ポリエステルの中でも固有複屈折率が大きいことから、リタデーションを特に高くしたい場合や、リタデーションを高く保ちながらフィルム厚みを薄くしたい場合に好適である。
<配向フィルムの製造方法>
以下に、ポリエステルフィルムを例に、配向フィルムの製造方法を説明する。ポリエステルフィルムは、任意のジカルボン酸とジオールとを縮合させて得ることができる。ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルトフタル酸、2,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、ジフェニルカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルスルホンカルボン酸、アントラセンジカルボン酸、1,3−シクロペンタンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、マロン酸、ジメチルマロン酸、コハク酸、3,3−ジエチルコハク酸、グルタル酸、2,2−ジメチルグルタル酸、アジピン酸、2−メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、アゼライン酸、ダイマー酸、セバシン酸、スベリン酸、ドデカジカルボン酸等を挙げることができる。
ジオールとしては、例えば、エチレングリコール、プロピレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,2−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、デカメチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサジオール、2,2−ビス(4−ヒドロキシフェニル)プロパン、ビス(4−ヒドロキシフェニル)スルホン等を挙げることができる。
ポリエステルフィルムを構成するジカルボン酸成分とジオール成分はそれぞれ1種又は2種以上を用いても良い。ポリエステルフィルムを構成する具体的なポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等が挙げられ、好ましくはポリエチレンテレフタレート及びポリエチレンナフタレートであり、好ましくはポリエチレンテレフタレートである。ポリエステル樹脂は他の共重合成分を含んでも良く、機械強度の点からは共重合成分の割合は3モル%以下が好ましく、好ましくは2モル%以下、好ましくは1.5モル%以下である。これらの樹脂は透明性に優れるとともに、熱的、機械的特性にも優れる。また、これらの樹脂は、延伸加工によって容易にリタデーションを制御することができる。
ポリエステルフィルムは、一般的な製造方法に従って得ることができる。具体的には、ポリエステル樹脂を溶融し、シート状に押出し成形された無配向ポリエステルをガラス転移温度以上の温度において、ロールの速度差を利用して縦方向に延伸した後、テンターにより横方向に延伸し、熱処理を施すことにより配向ポリエステルフィルムが挙げられる。
ポリエステルフィルムは、一軸延伸フィルムであっても、二軸延伸フィルムであっても良い。上記高リタデーション配向フィルムは斜め45度に延伸されたものであってもよい。
ポリエステルフィルムを得るための製造条件は、公知の手法に従って適宜設定することが出来る。例えば、縦延伸温度及び横延伸温度は、通常80〜130℃であり、好ましくは90〜120℃である。縦延伸倍率は、通常1.0〜3.5倍であり、好ましくは1.0倍〜3.0倍である。また、横延伸倍率は、通常2.5〜6.0倍であり、好ましくは3.0〜5.5倍である。
リタデーションを特定範囲に制御することは、延伸倍率や延伸温度、フィルムの厚みを適宜設定することにより行うことができる。例えば、縦延伸と横延伸の延伸倍率差が高いほど、延伸温度が低いほど、フィルムの厚みが厚いほど高いリタデーションを得やすくなる。逆に、縦延伸と横延伸の延伸倍率差が低いほど、延伸温度が高いほど、フィルムの厚みが薄いほど低いリタデーションを得やすくなる。熱処理温度は、通常140〜240℃が好ましく、好ましくは180〜240℃である。
1枚のポリエステルフィルム内におけるリタデーションの変動を抑制する為には、フィルムの厚み斑が小さいことが好ましい。リタデーション差をつけるために縦延伸倍率を低くすると、縦厚み斑の値が高くなる場合がある。縦厚み斑の値は延伸倍率のある特定の範囲で非常に高くなる領域があるため、そのような範囲を外すように製膜条件を設定することが望ましい。
配向ポリエステルフィルムの厚み斑は5.0%以下であることが好ましく、4.5%以下であることがさらに好ましく、4.0%以下であることがよりさらに好ましく、3.0%以下であることが特に好ましい。フィルムの厚み斑は、任意の手段で測定することができる。例えば、フィルムの流れ方向に連続したテープ状サンプル(長さ3m)を採取し、市販される測定器(例えば、(株)セイコー・イーエム製電子マイクロメータ ミリトロン1240)を用いて、1cmピッチで100点の厚みを測定し、厚みの最大値(dmax)、最小値(dmin)、平均値(d)を求め、下記式にて厚み斑(%)を算出することができる。
厚み斑(%)=((dmax−dmin)/d)×100
<画像表示セル及び光源>
画像表示装置は、典型的に画像表示セルとして液晶セル又は有機ELセルを備え得る。
また、画像表示装置は、虹斑を抑制するという観点から、連続的で幅広い発光スペクトルを有する白色光源を有することが好ましい。画像表示装置が液晶セルを備える場合、画像表示装置は、そのような光源を画像表示セルとは独立した光源として備えることが好ましい。一方、有機ELセルの場合は、それ自体が光源の機能を有するため、有機ELセル自体が、連続的で幅広い発光スペクトルを有する光を放つことが好ましい。連続的で幅広い発光スペクトルを有する光源の方式及び構造は特に制限されず、例えば、エッジライト方式又は直下型方式であり得る。「連続的で幅広い発光スペクトル」とは、少なくとも450〜650nmの波長領域、好ましくは可視光の領域において光の強度がゼロになる波長領域が存在しない発光スペクトルを意味する。可視光領域とは、例えば、400〜760nmの波長領域であり、360〜760nm、400〜830nm、又は360〜830nmであり得る。
連続的で幅広い発光スペクトルを有する白色光源としては、例えば、白色発光ダイオード(白色LED)を挙げることができる。白色LEDには、蛍光体方式のもの(即ち、化合物半導体を使用した青色光、もしくは紫外光を発する発光ダイオードと蛍光体を組み合わせることにより白色を発する素子)及び有機発光ダイオード(Organic light−emitting diode:OLED)等を挙げることができる。連続的で幅広い発光スペクトルを有し、且つ、発光効率にも優れているという観点から、化合物半導体を使用した青色発光ダイオードとイットリウム・アルミニウム・ガーネット系黄色蛍光体とを組み合わせた発光素子からなる白色発光ダイオードが好ましい。
液晶セルは、液晶表示装置において使用され得る任意の液晶セルを適宜選択して使用することができ、その方式や構造は特に制限されない。例えば、VAモード、IPSモード、TNモード、STNモードやベンド配向(π型)等の液晶セルを適宜選択して使用できる。よって、液晶セルは、公知の液晶材料及び今後開発され得る液晶材料で作製された液晶を適宜選択して使用することができる。一実施形態において好ましい液晶セルは、透過型の液晶セルである。
有機ELセルは、当該技術分野において知られる有機ELセルを適宜選択して使用することができる。有機ELセルは、発光体(有機エレクトロルミネセンス発光体)であり、典型的に透明基材上に透明電極と有機発光層と金属電極とを順に積層した構造を有する。
有機発光層は、種々の有機薄膜の積層体であり、例えばトリフェニルアミン誘導体等からなる正孔注入層とアントラセン等の蛍光性の有機固体からなる発光層との積層体、及び、このような発光層とペリレン誘導体等からなる電子注入層の積層体等を挙げることができる。このように、有機ELセルは、画像表示セルとしての機能と光源としての機能を兼ね備えるため、画像表示装置が有機ELセルを備える場合、独立した光源は不要である。即ち、画像表示装置における光源と画像表示装置は、それらの機能が発揮される限り、互いに独立した存在であっても、一体の形態であってもよい。
画像表示セルとして有機ELセルを用いる場合、画像表示装置における偏光板は必須ではない。しかし、有機発光層の厚みが10nm程度ときわめて薄いために、外光が金属電極で反射して再び視認側へ出射され、外部から視認したとき、有機EL表示装置の表示面が鏡面のように見える場合がある。このような外光の鏡面反射を遮蔽するために、有機ELセルの視認側に、偏光板及び1/4波長板を設けることが好ましい。よって、画像表示装置が、有機ELセル及び偏光板を有する場合には、図1における液晶セル(4)を有機ELセルと考え、視認側偏光板(5)を偏光板として考えれば、液晶表示装置(1)における配向フィルムの位置関係をそのまま適用することができる。
<偏光板及び偏光子保護フィルム>
偏光板は、フィルム状の偏光子の両側を2枚の保護フィルム(「偏光子保護フィルム」と称する場合もある)で挟んだ構造を有する。偏光子は、当該技術分野において使用される任意の偏光子(又は偏光フィルム)を適宜選択して使用することができる。代表的な偏光子としては、ポリビニルアルコール(PVA)フィルム等にヨウ素等の二色性材料を染着させたものを挙げることができるが、これに限定されるものではなく、公知及び今後開発され得る偏光子を適宜選択して用いることができる。
PVAフィルムは、市販品を用いることができ、例えば、「クラレビニロン((株)クラレ製)」、「トーセロビニロン(東セロ(株)製)]、「日合ビニロン(日本合成化学(株)製)]等を用いることができる。二色性材料としてはヨウ素、ジアゾ化合物、ポリメチン染料等を挙げることができる。
偏光子は、任意の手法で得ることができ、例えば、PVAフィルムを二色性材料で染着させたものをホウ酸水溶液中で一軸延伸し、延伸状態を保ったまま洗浄及び乾燥を行うことにより得ることができる。一軸延伸の延伸倍率は、通常4〜8倍程度であるが特に制限されない。他の製造条件等は公知の手法に従って適宜設定することができる。
視認側偏光子の視認側の保護フィルム(視認側偏光子保護フィルム)は、配向フィルムであることが好ましい。
視認側偏光子の光源側の保護フィルム及び光源側偏光子の保護フィルムの種類は任意であり、従来から保護フィルムとして使用されるフィルムを適宜選択して使用することができる。取り扱い性及び入手の容易性といった観点から、例えば、トリアセチルセルロース(TAC)フィルム、アクリルフィルム、及び環状オレフィン系フィルム(例えば、ノルボルネン系フィルム)、ポリプロピレンフィルム、及びポリオレフィン系フィルム(例えば、TPX)等から成る群より選択される一種以上の複屈折性を有さないフィルムを用いることが好ましい。
一実施形態において、視認側偏光子の光源側保護フィルム及び光源側偏光子の視認側保護フィルムは、光学補償機能を有する光学補償フィルムであることが好ましい。そのような光学補償フィルムは液晶の各方式に合わせて適宜選択することができ、例えば、トリアセチルセルロース中に液晶化合物(例えば、ディスコティック液晶化合部及び/又は複屈折性化合物)を分散させた樹脂、環状オレフィン樹脂(例えば、ノルボルネン樹脂)、プロピオニルアセテート樹脂、ポリカーボネートフィルム樹脂、アクリル樹脂、スチレンアクリロニトリル共重合体樹脂、ラクトン環含有樹脂、及びイミド基含有ポリオレフィン樹脂等なら成る群より選択される1種以上から得られるものを挙げることができる。
光学補償フィルムは、商業的に入手可能であるため、それらを適宜選択して使用することも可能である。例えば、TN方式用の「ワイドビュー−EA」及び「ワイドビュー−T」(富士フイルム社製)、VA方式用の「ワイドビュー−B」(富士フイルム社製)、VA−TAC(コニカミノルタ社製)、「ゼオノアフィルム」(日本ゼオン社製)、「アートン」(JSR社製)、「X−plate」(日東電工社製)、並びにIPS方式用の「Z−TAC」(富士フイルム社製)、「CIG」(日東電工社製)、「P−TAC」(大倉工業社製)等が挙げられる。
偏光子保護フィルムは偏光子上に直接又は接着剤層を介して積層することができる。接着性向上の点から、接着剤を介して積層することが好ましい。接着剤としては、特に制限されず任意のものを使用できる。接着剤層を薄くする観点から、水系のもの(即ち、接着剤成分を水に溶解したもの又は水に分散させたもの)が好ましい。例えば、偏光子保護フィルムとしてポリエステルフィルムを用いる場合は、主成分としてポリビニルアルコール系樹脂、ウレタン樹脂などを用い、接着性を向上させるために、必要に応じてイソシアネート系化合物、エポキシ化合物などを配合した組成物を接着剤として用いることができる。接着剤層の厚みは10μm以下が好ましく、5μm以下がより好ましく、3μm以下がさらに好ましい。
偏光子保護フィルムとしてTACフィルムを用いる場合、ポリビニルアルコール系の接着剤を用いて張り合わせることができる。偏光子保護フィルムとして、アクリルフィルム、環状オレフィン系フィルム、ポリプロピレフィルム、又はTPX等の透湿性の低いフィルムを用いる場合は、接着剤として光硬化性接着剤を用いることが好ましい。光硬化性樹脂としては、例えば、光硬化性エポキシ樹脂と光カチオン重合開始剤との混合物などを挙げることができる。
偏光子保護フィルムの厚みは任意であり、例えば、15〜300μmの範囲、好ましくは30〜200μmの範囲で適宜設定できる。
<タッチパネル、透明導電性フィルム、基材フィルム、飛散防止フィルム>
画像表示装置は、タッチパネルを備え得る。タッチパネルの種類及び方式は特に制限されないが、例えば、抵抗膜方式タッチパネル及び静電容量方式タッチパネルを挙げることができる。タッチパネルは、その方式に関係なく、通常、1枚又は2枚以上の透明導電性フィルムを有する。透明導電性フィルムは、基材フィルム上に透明導電層が積層された構造を有する。基材フィルムは、配向フィルム又は従来から基材フィルムとして用いられる他のフィルム若しくはガラス等の剛性板を用いることができる。
基材フィルムとして従来から用いられる他のフィルムとしては、透明性を有する各種の樹脂フィルムを挙げることができる。例えば、ポリエステル樹脂、アセテート樹脂、ポリエーテルスルホン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリオレフィン樹脂、(メタ)アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリビニルアルコール樹脂、ポリアリレート樹脂、及びポリフェニレンサルファイド樹脂等から成る群から選択される1種以上の樹脂から得られるフィルムを使用することができる。これらの中でも、ポリエステル樹脂、ポリカーボネート樹脂、及びポリオレフィン樹脂が好ましく、好ましくはポリエステル樹脂である。
基材フィルムの厚みは任意であるが、15〜500μmの範囲が好ましい。
基材フィルムは、表面に予めスパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、化成、酸化等のエッチング処理や下塗り処理を施してもよい。これにより、基材フィルム上に設けられる透明導電層等との密着性を向上させることができる。また、透明導電層等を設ける前に、必要に応じて基材フィルムの表面を溶剤洗浄や超音波洗浄などにより除塵、清浄化してもよい。
透明導電層は、直接基材フィルムに積層されても良いが、易接着層及び/又は種々の他の層を介して積層することが出来る。他の層としては、例えば、ハードコート層、インデックスマッチング(IM)層、及び低屈折率層等を挙げることができる。代表的な透明導電性フィルムの積層構造としては、次の6パターンを挙げることが出来るが、これらに限定されるわけではない。
(1)基材フィルム/易接着層/透明導電層
(2)基材フィルム/易接着層/ハードコート層/透明導電層
(3)基材フィルム/易接着層/IM(インデックスマッチング)層/透明導電層
(4)基材フィルム/易接着層/ハードコート層/IM(インデックスマッチング)層/透明導電層
(5)基材フィルム/易接着層/ハードコート層(高屈折率でIMを兼ねる)/透明導電層(6)基材フィルム/易接着層/ハードコート層(高屈折率)/低屈折率層/透明導電性薄膜
IM層は、それ自体が高屈折率層/低屈折率層の積層構成(透明導電性薄膜側が低屈折率層)であるため、これを用いることにより、液晶表示画面を見た際にITOパターンを見え難くすることができる。上記(6)のように、IM層の高屈折率層とハードコート層を一体化させることもでき、薄型化の観点から好ましい。
上記(3)〜(6)の構成は、静電容量式のタッチパネルにおける使用に特に適している。また、上記(2)〜(6)の構成は、基材フィルムの表面にオリゴマーが析出することが防止できるという観点で好ましく、基材フィルムのもう一方の片面にもハードコート層を設けることが好ましい。
基材フィルム上の透明導電層は、導電性金属酸化物により形成される。透明導電層を構成する導電性金属酸化物は特に限定されず、インジウム、スズ、亜鉛、ガリウム、アンチモン、チタン、珪素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム、タングステンからなる群より選択される少なくとも1種の金属の導電性金属酸化物が用いられる。当該金属酸化物には、必要に応じて、さらに上記群に示された金属原子を含んでいてもよい。好ましい透明導電層は、例えば、スズドープ酸化インジウム(ITO)層及びアンチモンドープ酸化スズ(ATO)層であり、好ましくはITO層である。また、透明導電層は、Agナノワイヤー、Agインク、Agインクの自己組織化導電膜、網目状電極、CNTインク、導電性高分子であってもよい。
透明導電層の厚みは特に制限されないが、10nm以上であることが好ましく、15〜40nmであることがより好ましく、20〜30nmであることがさらに好ましい。透明導電層の厚みが15nm以上であると、表面抵抗が例えば1×103Ω/□以下の良好な連続被膜が得られ易い。また、透明導電層の厚みが40nm以下であると、より透明性の高い層とすることができる。
透明導電層は、公知の手順に従って形成することができる。例えば、真空蒸着法、スパッタリング法、イオンプレーティング法を例示できる。透明導電層は、アモルファスであってもよく、結晶性のものであってもよい。結晶性の透明導電層を形成する方法としては、一旦基材上にアモルファス膜を形成した後、該アモルファス膜を可撓性透明基材とともに加熱・結晶化することによって形成することが好ましい。
本発明の透明導電性フィルムは、透明導電層の面内の一部が除去されてパターン化されたものであってもよい。透明導電層がパターン化された透明導電性フィルムは、基材フィルム上に透明導電層が形成されているパターン形成部と、基材フィルム上に透明導電層を有していないパターン開口部とを有する。パターン形成部の形状は、例えば、ストライプ状の他、スクエア状等が挙げられる。
画像表示装置は、視認側偏光子より視認側に、1枚又は2枚以上の飛散防止フィルムを有することが好ましい。飛散防止フィルムは、配向フィルムであることが好ましく、光源側飛散防止フィルム又は視認側飛散防止フィルムの一方又は両方を配向フィルムとすることが好ましい。飛散防止フィルムの1枚だけが配向フィルムである場合、残りの飛散防止フィルムは、従来から飛散防止フィルムとして用いられる各種のフィルム(例えば、上記基材フィルムについて記載した透明樹脂フィルム)を用いることができる。飛散防止フィルムが2枚以上設けられる場合、それらは同一の材料から形成されていてもよく、異なっていても良い。
配向フィルムを画像表示装置の表面カバー板の飛散防止フィルムとして使用する場合、配向フィルムの配置は表面カバー板の光源側であっても視認側であっても良い。また、配向フィルムの両側にガラスを積層させた合わせガラス構造であっても良い。配向フィルムが表面カバー板の光源側である場合には、配向フィルムの表面カバー板とは反対側に反射防止層を設けることが好ましい。反射防止層を設けることによって明るくクリアな画像が得られる。
配向フィルムを飛散防止フィルムとして用いる場合には、配向フィルムに紫外線吸収機能を付与することが好ましい。紫外線吸収機能の付与は、配向フィルムに紫外線吸収剤を添加すること、又は配向フィルムの視認側に紫外線吸収コートを施すこと等によって行うことができる。配向フィルムが表面カバー板の視認側にある場合には、配向フィルムの表面カバー板とは反対側に反射防止層、防眩層、帯電防止層、防汚層等を設けることが好ましい。この場合、最表面の表面カバー板の光源側に反射防止層を設けても良いし、視認側の他の部材と接着材で貼り合わせても良い。
偏光子保護フィルム、基材フィルム、及び飛散防止フィルムは、本発明の効果を妨げない範囲で、各種の添加剤を含有させることができる。例えば、紫外線吸収剤、無機粒子、耐熱性高分子粒子、アルカリ金属化合物、アルカリ土類金属化合物、リン化合物、帯電防止剤、耐光剤、難燃剤、熱安定剤、酸化防止剤、ゲル化防止剤、界面活性剤等が挙げられる。また、高い透明性を奏するためにはポリエステルフィルムに実質的に粒子を含有しないことも好ましい。「粒子を実質的に含有させない」とは、例えば無機粒子の場合、ケイ光X線分析で無機元素を定量した場合に重量で50ppm以下、好ましくは10ppm以下、特に好ましくは検出限界以下となる含有量を意味する。
配向フィルムは、種々の機能層を有していても良い。そのような機能層としては、例えば、ハードコート層、防眩層、反射防止層、低反射層、低反射防眩層、反射防止防眩層、帯電防止層、シリコーン層、粘着層、防汚層、撥水層、及びブルーカット層等からなる群より選択される1種以上を用いることができる。防眩層、反射防止層、低反射層、低反射防眩層、反射防止防眩層を設けることにより、斜め方向から観察したときの色斑が改善されるという効果も期待できる。
種々の機能層を設けるに際して、配向フィルムの表面に易接着層を有することが好ましい。その際、反射光による干渉を抑える観点から、易接着層の屈折率を、機能層の屈折率と配向フィルムの屈折率の相乗平均近傍になるように調整することが好ましい。易接着層の屈折率の調整は、公知の方法を採用することができ、例えば、バインダー樹脂に、チタンやジルコニウム、その他の金属種を含有させることで容易に調整することができる。
(ハードコート層)
ハードコート層は、硬度及び透明性を有する層であれば良く、通常、紫外線又は電子線で代表的には硬化させる電離放射線硬化性樹脂、熱で硬化させる熱硬化性樹脂等の各種の硬化性樹脂の硬化樹脂層として形成されたものが利用される。これら硬化性樹脂に、適宜柔軟性、その他物性等を付加する為に、熱可塑性樹脂等も適宜添加してもよい。硬化性樹脂のなかでも、代表的であり且つ優れた硬質塗膜が得られる点で好ましいのが電離放射線硬化性樹脂である。
上記電離放射線硬化性樹脂としては、従来公知の樹脂を適宜採用すれば良い。なお、電離放射線硬化性樹脂としては、エチレン性二重結合を有するラジカル重合性化合物、エポキシ化合物等の様なカチオン重合性化合物等が代表的に用いられ、これら化合物はモノマー、オリゴマー、プレポリマー等としてこれらを単独で、或いは2種以上を適宜組み合わせて用いることができる。代表的な化合物は、ラジカル重合性化合物である各種(メタ)アクリレート系化合物である。(メタ)アクリレート系化合物の中で、比較的低分子量で用いる化合物としては、例えば、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、アクリル(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、等が挙げられる。
モノマーとしては、例えば、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N−ビニルピロリドン等の単官能モノマー;或いは、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6‐ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の多官能モノマー等も適宜用いられる。(メタ)アクリレートとは、アクリレート或いはメタクリレートを意味する。
電離放射線硬化性樹脂を電子線で硬化させる場合、光重合開始剤は不要であるが、紫外線で硬化させる場合は、公知の光重合開始剤を用いる。例えば、ラジカル重合系の場合は、光重合開始剤として、アセトフェノン類、ベンゾフェノン類、チオキサントン類、ベンゾイン、ベンゾインメチルエーテル等を単独又は混合して用いることができる。カチオン重合系の場合は、光重合開始剤として、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタセロン化合物、ベンゾインスルホン酸エステル等を単独又は混合して用いることができる。
ハードコート層の厚みは、適宜の厚さとすればよく、例えば0.1〜100μmであるが、通常は1〜30μmとする。また、ハードコート層は公知の各種塗工法を適宜採用して形成することができる。
電離放射線硬化性樹脂には、適宜物性調整等の為に、熱可塑性樹脂又は熱硬化性樹脂等も適宜添加することができる。熱可塑性樹脂又は熱硬化性樹脂としては、各々、例えば、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂等が挙げられる。
ハードコート層に耐光性を付与し、日光等に含まれる紫外線による変色、強度劣化、亀裂発生等を防止する為には、電離放射線硬化性樹脂中に紫外線吸収剤を添加することも好ましい。紫外線吸収剤を添加する場合、該紫外線吸収剤によってハードコート層の硬化が阻害されることを確実に防ぐ為、電離放射線硬化性樹脂は電子線で硬化させることが好ましい。紫外線吸収剤としては、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物等の有機系紫外線吸収剤、或いは粒径0.2μm以下の微粒子状の酸化亜鉛、酸化チタン、酸化セリウム等の無機系紫外線吸収剤等、公知の物の中から選択して用いれば良い。紫外線吸収剤の添加量は、電離放射線硬化性樹脂組成物中に0.01〜5質量%程度である。
耐光性をより向上させる為に、紫外線吸収剤と併用して、ヒンダードアミン系ラジカル捕捉剤等のラジカル捕捉剤を添加するのが好ましい。なお、電子線照射は加速電圧70kV〜1MV、照射線量5〜100kGy(0.5〜10Mrad)程度である。
(防眩層)
防眩層としては、従来公知のものを適宜採用すれば良く、一般的に、樹脂中に防眩剤を分散した層として形成される。防眩剤としては、無機系又は有機系の微粒子が用いられる。これら微粒子の形状は、真球状、楕円状等である。微粒子は、好ましくは透明性のものが良い。この様な微粒子は、例えば、無機系微粒子としてはシリカビーズ、有機系微粒子としては樹脂ビーズが挙げられる。樹脂ビーズとしては、例えば、スチレンビーズ、メラミンビーズ、アクリルビーズ、アクリルースチレンビーズ、ポリカーボネートビーズ、ポリエチレンビーズ、ベンゾグアナミン−ホルムアルデヒドビーズなどが挙げられる。微粒子は、通常、樹脂分100質量部に対し、2〜30質量部、好ましくは10〜25質量部程度添加することができる。
防眩剤を分散保持する上記樹脂は、ハードコート層と同じ様に、なるべく硬度が高い方が好ましい。よって、上記樹脂として、例えば、上記ハードコート層で述べた電離放射線硬化性樹脂、熱硬化性樹脂等の硬化性樹脂等を用いることができる。
防眩層の厚みは、適宜の厚さとすればよく、通常は1〜20μm程度とする。防眩層は公知の各種塗工法を適宜採用して形成することができる。なお、防眩層を形成する為の塗液中には、防眩剤の沈殿を防ぐ為に、シリカ等の公知の沈降防止剤を適宜添加することが好ましい。
(反射防止層)
反射防止層としては、従来公知のものを適宜採用すれば良い。一般に、反射防止層は少なくとも低屈折率層からなり、更に低屈折率層と(該低屈折率層より屈折率が高い)高屈折率層とを交互に隣接積層し且つ表面側を低屈折率層とした多層の層からなる。低屈折率層及び高屈折率層の各厚みは、用途に応じた適宜厚みとすれば良く、隣接積層時は各々0.1μm前後、低屈折率層単独時は0.1〜1μm程度であることが好ましい。
低屈折率層としては、シリカ、フッ化マグネシウム等の低屈折率物質を樹脂中に含有させた層、フッ素系樹脂等の低屈折率樹脂の層、低屈折率物質を低屈折率樹脂中に含有させた層、シリカ、フッ化マグネシウム等の低屈折率物質からなる層を薄膜形成法(例えば、蒸着、スパッタ、CVD、等の物理的又は化学的気相成長法)で形成した薄膜、酸化ケイ素のゾル液から酸化ケイ素ゲル膜を形成するゾルゲル法で形成した膜、或いは、低屈折率物質として空隙含有微粒子を樹脂中に含有させた層等が挙げられる。
上記空隙含有微粒子とは、内部に気体を含む微粒子、気体を含む多孔質構造の微粒子等のことであり、微粒子固体部分の本来の屈折率に対して、該気体による空隙によって微粒子全体としては、見かけ上屈折率が低下した微粒子を意味する。この様な空隙含有微粒子としては、特開2001−233611号公報に開示のシリカ微粒子等が挙げられる。また、空隙含有微粒子としては、シリカの様な無機物以外に、特開2002−805031号公報等に開示の中空ポリマー微粒子も挙げられる。空隙含有微粒子の粒径は、例えば5〜300nm程度である。
高屈折率層としては、酸化チタン、酸化ジルコニウム、酸化亜鉛等の高屈折率物質を樹脂中に含有させた層、フッ素非含有樹脂等の高屈折率樹脂の層、高屈折率物質を高屈折率樹脂中に含有させた層、酸化チタン、酸化ジルコニウム、酸化亜鉛等の高屈折率物質からなる層を薄膜形成法(例えば、蒸着、スパッタ、CVD、等の物理的乃至は化学的気相成長法)で形成した薄膜等が挙げられる。
(帯電防止層)
帯電防止層としては、従来公知のものを適宜採用すれば良く、一般的に、樹脂中に帯電防止層を含有させた層として形成される。帯電防止層としては、有機系や無機系の化合物が用いられる。例えば、有機系化合物の帯電防止層としては、カチオン系帯電防止剤、アニオン系帯電防止剤、両性系帯電防止剤、ノニオン系帯電防止剤、有機金属系帯電防止剤等が挙げられ、またこれら帯電防止剤は低分子化合物として用いられるほか、高分子化合物としても用いられる。また、帯電防止剤としては、ポリチオフェン、ポリアニリン等の導電性ポリマー等も用いられる。また、帯電防止剤として例えば金属酸化物からなる導電性微粒子等も用いられる。導電性微粒子の粒径は透明性の点で、例えば平均粒径0.1nm〜0.1μm程度である。なお、該金属酸化物としては、例えば、ZnO、CeO2、Sb2O2、SnO2、ITO(インジウムドープ酸化錫)、In2O3、Al2O3、ATO(アンチモンドープ酸化錫)、AZO(アルミニウムドープ酸化亜鉛)等が挙げられる。
帯電防止層を含有させる上記樹脂としては、例えば、上記ハードコート層で述べた様な、電離放射線硬化性樹脂、熱硬化性樹脂等の硬化性樹脂等が使用される他、帯電防止層を中間層として形成して帯電防止層自体の表面強度が不要な場合には、熱可塑性樹脂等も使用される。帯電防止層の厚みは、適宜厚さとすればよく、通常は0.01〜5μm程度とする。帯電防止層は公知の各種塗工法を適宜採用して形成することができる。
配向フィルムを偏光子保護フィルムとして使用する場合には、その表層に帯電防止層を積層することが好ましい。帯電防止層を積層する場合、帯電防止層と防眩層とを重ねて積層すること、又は防眩層に帯電防止剤を加え、両層を兼ね備えるような層を積層することが好ましい。尚、画像表示装置を組み立てる際、偏光板表面にはプロセス部材として偏光板保護フィルム(偏光子保護フィルムとは異なり、液晶表示装置内には最終的に組み入られず、液晶表示装置の製造工程途中で捨てられる部材)が使用されることが通常であるが、この偏光板保護フィルムが偏光板に接する側又はその反対側に帯電防止層を設けることが好ましい。
(防汚層)
防汚層としては、従来公知のものを適宜採用すれば良く、一般的に、樹脂中に、シリコーンオイル、シリコーン樹脂等の珪素系化合物;フッ素系界面活性剤、フッ素系樹脂等のフッ素系化合物;ワックス等の防汚染剤を含む塗料を用いて公知の塗工法で形成することができる。防汚層の厚みは、適宜厚さとすればよく、通常は1〜10μm程度とすることが出来る。
以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは、いずれも本発明の技術的範囲に含まれる。
下記の通り、5種類の配向フィルム(配向フィルム1〜5)を得た。
配向フィルム1
固有粘度0.62dl/gのPET樹脂ペレットを135℃で6時間減圧乾燥(1Torr)した後、押出機に供給し、285℃で溶解した。このポリマーを、ステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに巻きつけて冷却固化し、未延伸フィルムを作った。
上記未延伸フィルムを加熱されたロール群及び赤外線ヒーターで100℃に加熱し、その後周速差のあるロール群で長手方向に3.6倍延伸して一軸配向ポリエチレンテレフタレートフィルムを得た。一軸延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の熱風ゾーンに導き、幅方向に3.8倍に延伸した。次に、幅方向に延伸された幅を保ったまま、温度225℃、30秒間で処理し、さらに幅方向に3%の緩和処理を行い、フィルム厚み約80μmのポリエチレンテレフタレートフィルムを得た。これを配向フィルム1とする。
配向フィルム2
フィルム厚みを約50μmとした以外は実施例1と同様の方法で製膜を行い、配向フィルム2を得た。
配向フィルム3
フィルム厚みを約38μmとした以外は実施例1と同様の方法で製膜を行い、配向フィルム3を得た。
配向フィルム4
フィルム厚みを約28μmとした以外は実施例1と同様の方法で製膜を行い、配向フィルム4を得た。
配向フィルム5
厚さ100μmのポリプロピレンフィルムを140℃で100%延伸処理することにより、リタデーション1200nmのプロピレンフィルム(配向フィルム5)を得た。
得られた配向フィルム1〜5のリタデーションを次の手法で求めた。即ち、二枚の偏光板を用いて、フィルムの配向主軸方向を求め、配向主軸方向が直交するように4cm×2cmの長方形を切り出し、測定用サンプルとした。このサンプルについて、直交する二軸の屈折率(Nx,Ny)、及び厚さ方向の屈折率(Nz)をアッベ屈折率計(アタゴ社製、NAR−4T)によって求め、前記二軸の屈折率差の絶対値(|Nx−Ny|)を屈折率の異方性(△Nxy)として求めた。そして、屈折率の異方性(△Nxy)とフィルムの厚みd(nm)の積(△Nxy×d)より、リタデーション(Re)を求めた。測定結果を下記の表1に示す。また、リタデーションの測定と同様の方法でNx、Ny、Nzとフィルム厚みd(nm)を求め、(△Nxz×d)、(△Nyz×d)の平均値を算出して厚さ方向リタデーション(Rth)を求めた。
上記配向フィルム1〜5を、下記の表2に示す通り、図1における視認側偏光子保護フィルム(10b)、光源側飛散防止フィルム(14)、光源側基材フィルム(11a)、視認側基材フィルム(12a)、及び視認側飛散防止フィルム(15)のうちの視認側偏光子保護フィルム(10b)、飛散防止フィルム(14,15)に必ず用いた液晶表示装置を製造した。試験No.3及び26を除き、2枚以上の配向フィルムを用いた全ての液晶表示装置における配向フィルムは、配向主軸が互いに平行になるように配置した。試験No.3では、2枚の配向フィルムの配向主軸が形成する角度が4度となるように配向フィルムを配置した。試験No.26では、3枚の配向フィルムのうち、視認側の2枚の配向フィルムの配向主軸は0度(平行)で、残る一枚の配向フィルムは、その配向主軸と他のフィルムの配向主軸とが形成する角度が30度となるように配置した。光源には、白色LED又は冷陰極管を用いた。表3において、視認側偏光子保護フィルム(10b)について「TACフィルム」と記載されている場合は、TACフィルムを使用したことを意味する。光源側飛散防止フィルム(14)及び視認側飛散防止フィルム(15)について空欄である場合は、それらを使用しなかったことを意味する。光源側基材フィルム(11a)及び視認側基材フィルム(11b)について空欄である場合は、タッチパネルを使用しなかったことを示し、「ガラス基材」と記載されている場合は、ガラス基材を使用したことを意味する。
得られた液晶表示装置の視認側表面に、視認側表面と平行になるように偏光フィルムを配置して白画像を表示させた。前記平行状態を維持したまま偏光フィルムの偏光軸を360度回転させながら、偏光フィルムを介して白画像を眺めて虹斑発生の有無及び程度を確認し、下記の基準に従って評価した。
<評価基準>
◎: 正面から観察したときに、虹斑が観察されない。
○: 正面から観察したときに、極薄い虹斑が観察される。
×: 正面から観察したときに、明確に虹斑が観察される。
評価結果を下記表2に示す。
表2の結果から、画像表示装置における視認側の偏光子より視認側にある、視認側偏光子保護フィルム及び飛散防止フィルムを含む配向フィルムのリタデーションの合計値を3000nm以上に制御し、連続的な発光スペクトルを有する光源を利用することによって、虹斑を抑制できることが確認された。また、前記リタデーションの合計値を4000nm以上に制御することによって、より顕著な虹斑抑制効果が発揮されることが確認された。更に、視認側偏光子より視認側に配置される配向フィルムの配向主軸を平行にすることによって、より優れた虹斑抑制効果が得られることが確認された。
また、配向フィルムの配向主軸方向に沿って斜め方向から画面を観察すると虹斑が観察される場合であっても、配向フィルムの配向主軸と垂直な方向に沿って斜め方向から画面を観察した場合には、虹斑の発生は抑制できていることが確認された。