JP6178962B1 - Laminated battery - Google Patents

Laminated battery Download PDF

Info

Publication number
JP6178962B1
JP6178962B1 JP2016061467A JP2016061467A JP6178962B1 JP 6178962 B1 JP6178962 B1 JP 6178962B1 JP 2016061467 A JP2016061467 A JP 2016061467A JP 2016061467 A JP2016061467 A JP 2016061467A JP 6178962 B1 JP6178962 B1 JP 6178962B1
Authority
JP
Japan
Prior art keywords
electrode
current collector
split plate
plate spring
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016061467A
Other languages
Japanese (ja)
Other versions
JP2017174710A (en
Inventor
堤 香津雄
香津雄 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Exergy Power Systems Inc
Original Assignee
Exergy Power Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exergy Power Systems Inc filed Critical Exergy Power Systems Inc
Priority to JP2016061467A priority Critical patent/JP6178962B1/en
Application granted granted Critical
Publication of JP6178962B1 publication Critical patent/JP6178962B1/en
Publication of JP2017174710A publication Critical patent/JP2017174710A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【課題】正極と負極を積層した電極と、当該電極を貫通している導電性を有する集電体とを備えた積層電池において、その構造上、電極と集電体との接触不良が問題となる。この問題を解決する手段として、例えば、電極と集電体と溶接するのは多大な手間が必要となる。【解決手段】正極および負極のいずれか一方の電極である第1電極が、前記集電体と接触しておらず、正極および負極のいずれか他方の電極である第2電極が、集電体と電気的に接続されており、集電体と第2電極の間に導電性の弾性体であって、曲率が集電体と異なる割り板バネを配置することにより、電極と集電体との接触不良をなくした積層電池を提供する。【選択図】図2In a laminated battery including an electrode in which a positive electrode and a negative electrode are laminated and a conductive current collector penetrating the electrode, the contact between the electrode and the current collector is problematic due to its structure. Become. As a means for solving this problem, for example, welding an electrode and a current collector requires a great deal of labor. A first electrode that is one of a positive electrode and a negative electrode is not in contact with the current collector, and a second electrode that is either the positive electrode or the negative electrode is a current collector. By arranging a split plate spring that is a conductive elastic body between the current collector and the second electrode and has a curvature different from that of the current collector, the electrode and the current collector Provided is a laminated battery that eliminates the poor contact. [Selection] Figure 2

Description

本発明は、積層電池に関し、詳しくは、集電性能の向上を図った積層電池に関する。   The present invention relates to a laminated battery, and more particularly to a laminated battery with improved current collecting performance.

二次電池の主な電極構造には、捲回タイプと積層タイプの2つのタイプがある。捲回タイプの電極構造を有する電池(捲回電池;例えば、特許文献1)は、正極と負極とがセパレータを挟んで渦巻状に巻き取られた状態で、電池ケース内に収納されている。積層タイプの電極構造を有する電池(積層電池)は、正極と負極とがセパレータを介して交互に積層されている電極群が、電池ケース内に収納されている。特許文献2には、円板状の電極が積層された円筒型電池が開示されている。特許文献3には矩形板状の電極が積層されプリーツ状に折り畳まれた角型電池が開示されている。   There are two types of secondary battery main electrode structures: a wound type and a stacked type. A battery having a wound-type electrode structure (a wound battery; for example, Patent Document 1) is housed in a battery case in a state in which a positive electrode and a negative electrode are wound in a spiral shape with a separator interposed therebetween. In a battery (laminated battery) having a stacked electrode structure, an electrode group in which positive electrodes and negative electrodes are alternately stacked via separators is housed in a battery case. Patent Document 2 discloses a cylindrical battery in which disk-shaped electrodes are stacked. Patent Document 3 discloses a rectangular battery in which rectangular plate electrodes are stacked and folded into a pleat shape.

特許文献4に開示の積層電池は、外装体と、正極と、負極と、正極と負極との間に配されたセパレータと、正極、負極およびセパレータを外装体の軸方向に沿って貫通している導電性の集電体と、を備えている。正極、負極およびセパレータは、外装体の軸方向に積層されている。そして、正極および負極のいずれか一方の電極である第1電極が、外装体の内面に接触している一方、集電体と接触していない。他方の電極である第2電極が、外装体に接触していない一方、集電体に接触している。第2電極の外縁は、セパレータにより覆われており、第1電極における集電体が貫通する穴の周縁が、セパレータにより覆われている。   The laminated battery disclosed in Patent Document 4 includes an exterior body, a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a positive electrode, a negative electrode, and a separator that penetrate the axial direction of the exterior body. A conductive current collector. The positive electrode, the negative electrode, and the separator are laminated in the axial direction of the outer package. The first electrode which is one of the positive electrode and the negative electrode is in contact with the inner surface of the exterior body, but is not in contact with the current collector. The second electrode, which is the other electrode, is not in contact with the exterior body, but is in contact with the current collector. The outer edge of the second electrode is covered with a separator, and the peripheral edge of the hole through which the current collector of the first electrode passes is covered with the separator.

特許文献5には、正極および負極を筒状の外装体の軸方向に積層して、正極もしくは負極の一方電極と外装体の間に金属箔を介在させて、正極もしくは負極の他方の電極と集電体との間に金属箔を介在させた積層電池が開示されている。   In Patent Document 5, a positive electrode and a negative electrode are laminated in the axial direction of a cylindrical outer package, and a metal foil is interposed between one electrode of the positive electrode or the negative electrode and the outer package, and the other electrode of the positive electrode or the negative electrode A laminated battery in which a metal foil is interposed between a current collector and the current collector is disclosed.

特開2002−198044号公報JP 2002-198044 A 特開2000−48854号公報JP 2000-48854 A 国際公開2009/125544号公報International Publication No. 2009/125544 国際公開2013/094383号公報International Publication No. 2013/094383 特開2014−71972号公報JP 2014-71972 A

電池活物質は充電すればその体積が増加し、放電すればその体積が減少するので、電極は充放電によりその体積が変化する。温度変化によっても電極の体積は変動する。電極の体積が変化すれば、電極と集電体との間隔が変化して接触不良を起こすことになる。電極と集電体とをスポット溶接して接合すれば、接触不良をなくすことができる。しかし、多数の箇所をスポット溶接するのは多大な手間と時間がかかり、製造コストが上昇するという問題がある。   When the battery active material is charged, its volume increases, and when it is discharged, its volume decreases. Therefore, the volume of the electrode changes due to charging / discharging. The volume of the electrode also varies depending on the temperature change. If the volume of the electrode changes, the gap between the electrode and the current collector changes, resulting in poor contact. If the electrode and the current collector are joined by spot welding, contact failure can be eliminated. However, spot welding of a large number of locations requires a lot of labor and time, and there is a problem that the manufacturing cost increases.

積層電池において、その構造上、電極同士の短絡および電極と集電体との接触不良が問題となる。特許文献4に記載の積層電池は、電池の軸方向に積層された円盤状の電極の中央を集電棒(以下、集電体と称す)が貫通していて、電極の穴の周縁と集電体との接触により一方の電極の集電を図っている。一方、電極の外縁部と外装体との接触により他方の電極の集電を図っている。集電体が通る電極の穴の径は電極の外径に比べて小さいので、電極と集電体の接触部分は外装体に比べて少ない。このため、集電体は外装体に比べて集電が取り難く、電極の穴の周縁全体で集電体と接触を図るためには、電極および集電体の加工精度と組立精度を上げる必要がある。   In the laminated battery, due to its structure, short-circuit between electrodes and poor contact between the electrode and the current collector are problematic. In the laminated battery described in Patent Document 4, a current collector rod (hereinafter, referred to as a current collector) passes through the center of the disk-shaped electrode laminated in the axial direction of the battery, and the peripheral edge of the electrode hole and the current collector. One electrode is collected by contact with the body. On the other hand, current collection of the other electrode is attempted by contact between the outer edge of the electrode and the outer package. Since the diameter of the hole of the electrode through which the current collector passes is smaller than the outer diameter of the electrode, the contact portion between the electrode and the current collector is smaller than that of the exterior body. For this reason, the current collector is harder to collect than the exterior body, and in order to make contact with the current collector over the entire periphery of the hole of the electrode, it is necessary to increase the processing accuracy and assembly accuracy of the electrode and current collector. There is.

この問題を解決する手段として、例えば、特許文献5には、電極と集電体との間に金属箔を配して、接触不良をなくす手段が開示されている。しかし、電極と集電体との間に金属箔を配するのは、製造コストの増大を招くという問題がある。   As means for solving this problem, for example, Patent Document 5 discloses means for eliminating a contact failure by arranging a metal foil between an electrode and a current collector. However, disposing a metal foil between the electrode and the current collector has a problem of increasing the manufacturing cost.

複数の積層電池を用いて構成した組電池において、その一部の積層電池に接触不良が発生すれば、組電池としての所定の性能を発揮することができず、組電池全体の性能が低下することになる。また、接触不良を起こした積層電池を交換するのは多大の手間と労力を要することになる。   In a battery pack configured using a plurality of battery packs, if contact failure occurs in some of the battery packs, the predetermined performance of the battery pack cannot be exhibited, and the performance of the battery pack as a whole decreases. It will be. Moreover, it takes a lot of labor and labor to replace a laminated battery that has caused poor contact.

前記した目的を達成するために、本発明に係る積層電池は、正極と、負極と、前記正極および前記負極を貫通している導電性を有する集電体と、を備えた積層電池であって、前記正極および前記負極が前記積層電池の軸方向に沿って積層されており、前記正極および前記負極のいずれか一方の電極である第1電極が、前記集電体と接触しておらず、前記正極および前記負極のいずれか他方の電極である第2電極が、前記集電体と電気的に接続されており、前記集電体と前記第2電極の間に介在する導電性の板状の弾性体であって、長辺側が前記集電体の軸方向に沿って伸長し、短辺側が前記集電体の曲率と異なる内側曲率を有する割り板バネ、を備えている。   In order to achieve the above-described object, a multilayer battery according to the present invention is a multilayer battery including a positive electrode, a negative electrode, and a conductive current collector that passes through the positive electrode and the negative electrode. The positive electrode and the negative electrode are stacked along the axial direction of the multilayer battery, and the first electrode that is one of the positive electrode and the negative electrode is not in contact with the current collector, The second electrode, which is the other of the positive electrode and the negative electrode, is electrically connected to the current collector, and is a conductive plate that is interposed between the current collector and the second electrode. A split plate spring having a long side extending along the axial direction of the current collector and a short side having an inner curvature different from the curvature of the current collector.

この構成によれば、集電体と第2電極の間に介在する割り板バネの作用により、集電体と積層された複数の第2電極それぞれとは、導電性を有する割り板バネを介して確実に、かつ、小さな電気抵抗で接続されることになる。   According to this configuration, due to the action of the split plate spring interposed between the current collector and the second electrode, each of the plurality of second electrodes stacked with the current collector is interposed via the conductive split plate spring. Therefore, the connection is ensured with a small electric resistance.

本発明に係る積層電池は、前記割り板バネの内側曲率が前記集電体の曲率より小さい。また、 本発明に係る積層電池は、前記短辺側の内周長さが、前記集電体の外周長さの1/2以下である。   In the laminated battery according to the present invention, the inner curvature of the split plate spring is smaller than the curvature of the current collector. In the laminated battery according to the present invention, the inner peripheral length on the short side is ½ or less of the outer peripheral length of the current collector.

本発明に係る積層電池は、前記割り板バネの数が1乃至3である。また、本発明に係る積層電池は、前記割り板バネの数が2である。   In the laminated battery according to the present invention, the number of the split plate springs is 1 to 3. In the laminated battery according to the present invention, the number of the split plate springs is two.

本発明に係る積層電池は、前記割り板バネの厚さが、前記集電体の外径と前記第2電極の穴の径の差の1/2である。また、本発明に係る積層電池は、前記割り板バネがニッケルメッキ鋼板である。ニッケルメッキ鋼板であれば耐アルカリ性を有しており、電解液により腐食されることがない。   In the laminated battery according to the present invention, the thickness of the split plate spring is ½ of the difference between the outer diameter of the current collector and the diameter of the hole of the second electrode. In the laminated battery according to the present invention, the split plate spring is a nickel-plated steel plate. A nickel-plated steel sheet has alkali resistance and is not corroded by the electrolytic solution.

本発明に係る積層電池は、筒状の導電性の外装体を備え、前記第1電極が、前記外装体の内面と電気的に接続されており、前記第2電極が、前記外装体の内面に接触していない。   The laminated battery according to the present invention includes a cylindrical conductive exterior body, the first electrode is electrically connected to an inner surface of the exterior body, and the second electrode is an inner surface of the exterior body. Not touching.

本発明に係る積層電池は、前記正極と前記負極との間に配された穴の開いたセパレータとを、更に備えており、前記セパレータの外縁が、前記第1電極により覆われており、前記セパレータにおける前記集電体が貫通する穴の周縁が、前記第2電極により覆われており、前記第2電極の外縁が、前記セパレータにより覆われており、前記第1電極における前記集電体が貫通する穴の周縁が、前記セパレータにより覆われている。   The laminated battery according to the present invention further includes a separator having a hole disposed between the positive electrode and the negative electrode, and an outer edge of the separator is covered with the first electrode, A peripheral edge of a hole through which the current collector passes through the separator is covered with the second electrode, an outer edge of the second electrode is covered with the separator, and the current collector in the first electrode is The peripheral edge of the through hole is covered with the separator.

この構成によれば、外装体と第1電極は外装体の近傍においてセパレータにより確実に隔離されており、集電体と第2電極は集電体の近傍においてセパレータにより確実に隔離されているので短絡の生じるおそれがない。また、セパレータの穴の径は集電体の外径よりも小さいので、集電体を電極群に圧入するときにセパレータが第2電極と集電体の間に介在することがなく接触不良を起こすことがない。   According to this configuration, the exterior body and the first electrode are reliably separated by the separator in the vicinity of the exterior body, and the current collector and the second electrode are reliably separated by the separator in the vicinity of the current collector. There is no risk of a short circuit. In addition, since the diameter of the separator hole is smaller than the outer diameter of the current collector, the separator does not intervene between the second electrode and the current collector when the current collector is press-fitted into the electrode group. There is no waking.

本発明によれば、第2電極の穴とこれを貫通する集電体の接触が確実になり、接触不良を起こすことがない積層電池を提供する。   According to the present invention, there is provided a laminated battery in which contact between the hole of the second electrode and the current collector penetrating the hole is ensured and no contact failure occurs.

本発明の電極を用いた積層電池の概略構成図であり、軸方向断面を示す。It is a schematic block diagram of the laminated battery using the electrode of this invention, and shows an axial cross section. 割り板バネの斜視図である。It is a perspective view of a split plate spring. 割り板バネの半径方向の断面図である。It is sectional drawing of the radial direction of a split plate spring. 割り板バネと集電体及び第2電極の寸法関係を説明するための断面図である。It is sectional drawing for demonstrating the dimensional relationship of a split plate spring, a collector, and a 2nd electrode. 割り板バネの曲率が集電体の曲率より大きいときの割り板バネの作用を説明する図面である。It is drawing explaining the effect | action of a split plate spring when the curvature of a split plate spring is larger than the curvature of a collector.

以下、本発明に係る実施形態を図面に従って説明するが、本発明はこの実施形態に限定されるものではない。また、本発明の実施形態の説明にあたり、説明の都合上ニッケル水素電池を例に取り述べるが、二次電池のタイプはこれに限定されるものでなく、リチウムイオン電池、亜鉛マンガン電池、ニッケル鉄電池、ニッケルカドミウム等の二次電池であってもよい。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments. In the description of the embodiments of the present invention, a nickel metal hydride battery will be described as an example for convenience of explanation, but the type of secondary battery is not limited to this, and a lithium ion battery, a zinc manganese battery, nickel iron A secondary battery such as a battery or nickel cadmium may be used.

本発明の各実施形態について説明するのに際して、電極について説明をした後に本発明に係る積層電池について説明を行う。   In describing each embodiment of the present invention, after describing the electrode, the laminated battery according to the present invention will be described.

負極は、水素吸蔵合金、例えばランタン・ニッケル、を主要な物質として含んでいる。正極の活物質としては、オキシ水酸化ニッケルを用いた。セパレータに保持される電解液としては、ニッケル水素電池で一般的に用いられているアルカリ系水溶液、KOH水溶液を用いた。   The negative electrode contains a hydrogen storage alloy such as lanthanum nickel as a main substance. Nickel oxyhydroxide was used as the positive electrode active material. As the electrolytic solution retained in the separator, an alkaline aqueous solution or a KOH aqueous solution generally used in nickel metal hydride batteries was used.

負極としては、水素吸蔵合金、導電性フィラーおよびバインダーに溶剤を加えてペースト状にしたものを、基板上に塗布して板状に成形し、硬化させたものを使用する。同様に、正極としては、正極活物質、導電性フィラーおよびバインダーに溶剤を加えてペースト状にしたものを、基板上に塗布して板状に成形し硬化させたものを使用する。   As the negative electrode, a paste prepared by adding a solvent to a hydrogen storage alloy, a conductive filler, and a binder, applied onto a substrate, molded into a plate shape, and cured is used. Similarly, as the positive electrode, a positive electrode active material, a conductive filler, and a binder added with a solvent are applied to a substrate, formed into a plate shape, and cured.

導電性フィラーとしては、炭素粒子を用いた。基板としては、ニッケル板のような電気伝導性のある金属板もしくは金属箔を用いることができ、本実施形態においては、ニッケルメッキ鋼板を用いた。   Carbon particles were used as the conductive filler. As the substrate, a metal plate or a metal foil having electrical conductivity such as a nickel plate can be used. In this embodiment, a nickel-plated steel plate is used.

セパレータは、水素イオンを透過させるが電子を透過させない素材を使用している。セパレータを形成する素材としては、例えば、ポリプロピレン繊維を使用することができる。セパレータには電解液が保持されている。電解液としては、ニッケル水素電池で一般的に用いられているアルカリ系水溶液、例えば、KOH水溶液、NaOH水溶液、LiOH水溶液などを用いることができる。   The separator uses a material that transmits hydrogen ions but does not transmit electrons. For example, polypropylene fibers can be used as a material for forming the separator. The separator holds an electrolytic solution. As the electrolytic solution, an alkaline aqueous solution generally used in nickel-metal hydride batteries, for example, a KOH aqueous solution, a NaOH aqueous solution, a LiOH aqueous solution, or the like can be used.

図1に本発明の実施形態に係る円筒型積層電池(以下、単に積層電池という)の軸方向の概略断面図を示す。図1に示す積層電池11は、外装体15と集電体17と外装体内部に収納される電極群13とを主な構成要素として備えている。外装体15は、有底の円筒缶12と、円筒缶の開口部12cに取付けられた円盤状の蓋部材16とから構成されている。円筒缶12と蓋部材16は鉄でできているが、他の金属であってもよい。蓋部材16の外径は円筒缶の開口部12cの内径より少し大きい。蓋部材16は、電極群13を収納後に、円筒缶の開口部12cにおいて密に嵌合されている。   FIG. 1 is a schematic sectional view in the axial direction of a cylindrical laminated battery (hereinafter simply referred to as a laminated battery) according to an embodiment of the present invention. A laminated battery 11 shown in FIG. 1 includes an exterior body 15, a current collector 17, and an electrode group 13 housed inside the exterior body as main components. The exterior body 15 includes a bottomed cylindrical can 12 and a disk-shaped lid member 16 attached to the opening 12c of the cylindrical can. The cylindrical can 12 and the lid member 16 are made of iron, but may be other metals. The outer diameter of the lid member 16 is slightly larger than the inner diameter of the opening 12c of the cylindrical can. The lid member 16 is closely fitted in the opening 12c of the cylindrical can after the electrode group 13 is stored.

電極群13は、正極活物質を含む正極13aと、水素吸蔵合金を含む負極13bと、正極13aと負極13bの間に介在してイオンは透過するが電子を透過させないセパレータ13cとから構成されている。電極群13は、円筒缶12の軸方向(図1のX方向)に積層して外装体15の内部に収納されている。なお、電解液(図示せず)は、セパレータ13cに保持されている。正極13a、負極13b、セパレータ13cはいずれも中央に穴の開いた、円盤状である。負極13bの外径は円筒缶12の内径よりも小さく、負極の外縁部13bbと円筒缶の内面12aは接触していない。一方、正極13aの外径は円筒缶12の内径より大きく、正極の外縁部13abは円筒缶の内面12aと接触しており、正極13aと円筒缶12は電気的に接続されている。好ましくは、正極13aの外径は円筒缶12の内径より少し大きい。   The electrode group 13 includes a positive electrode 13a including a positive electrode active material, a negative electrode 13b including a hydrogen storage alloy, and a separator 13c interposed between the positive electrode 13a and the negative electrode 13b that transmits ions but does not transmit electrons. Yes. The electrode group 13 is stacked in the axial direction (X direction in FIG. 1) of the cylindrical can 12 and housed in the exterior body 15. In addition, the electrolyte solution (not shown) is hold | maintained at the separator 13c. Each of the positive electrode 13a, the negative electrode 13b, and the separator 13c has a disk shape with a hole in the center. The outer diameter of the negative electrode 13b is smaller than the inner diameter of the cylindrical can 12, and the outer edge portion 13bb of the negative electrode and the inner surface 12a of the cylindrical can are not in contact. On the other hand, the outer diameter of the positive electrode 13a is larger than the inner diameter of the cylindrical can 12, the outer edge portion 13ab of the positive electrode is in contact with the inner surface 12a of the cylindrical can, and the positive electrode 13a and the cylindrical can 12 are electrically connected. Preferably, the outer diameter of the positive electrode 13 a is slightly larger than the inner diameter of the cylindrical can 12.

集電体17は、鉄にニッケルメッキを施した材料でできており、棒状の軸部17aと軸部17aの一端に配された止め部17bとを有している。ニッケルメッキを施すことにより、集電体17がセパレータ13cに含まれる電解液により腐食されるのを防止する。集電体の軸部17aは、正極13aと負極13bとセパレータ13cとから構成される電極群13の中央を、外装体15の軸方向(図1のX方向)に貫通している。負極13bの中央に設けられた穴の径は、軸部17aの外径より大きく、負極13bと軸部17aとの隙間に割り板バネ19が嵌装される。この結果、負極の穴の周縁部13baは割り板バネ19を介して軸部17aと接触して、負極13bと集電体17は、電気的に接続されている。一方、正極13aの中央に設けられた穴の径は、軸部17aの外径より大きく、正極の穴の周縁部13aaは軸部17aと接触せず、正極13aと集電体17は、電気的に絶縁されている。   The current collector 17 is made of a material obtained by applying nickel plating to iron, and includes a rod-shaped shaft portion 17a and a stopper portion 17b disposed at one end of the shaft portion 17a. By applying nickel plating, the current collector 17 is prevented from being corroded by the electrolyte contained in the separator 13c. The shaft portion 17a of the current collector passes through the center of the electrode group 13 including the positive electrode 13a, the negative electrode 13b, and the separator 13c in the axial direction of the outer package 15 (X direction in FIG. 1). The diameter of the hole provided in the center of the negative electrode 13b is larger than the outer diameter of the shaft portion 17a, and the split plate spring 19 is fitted in the gap between the negative electrode 13b and the shaft portion 17a. As a result, the peripheral edge portion 13ba of the hole of the negative electrode contacts the shaft portion 17a via the split plate spring 19, and the negative electrode 13b and the current collector 17 are electrically connected. On the other hand, the diameter of the hole provided in the center of the positive electrode 13a is larger than the outer diameter of the shaft portion 17a, the peripheral edge portion 13aa of the positive electrode hole does not contact the shaft portion 17a, and the positive electrode 13a and the current collector 17 are electrically connected to each other. Is electrically insulated.

電極群13は、集電体の止め部17bの上に順次積み重ねるように配されている。止め部17bは、組立て時に電極群13が集電体17の端部から脱落するのを防いでいる。止め部17bの形状は円盤状である。止め部17bは、絶縁板14を介して、円筒缶底部12bに配置されている。絶縁板14は、集電体17と円筒缶12が直接接触して電気的に短絡するのを防止している。止め部17bと反対側の軸部17aの端部は、蓋部材16の中央に設けられた軸受18によって支持されている。蓋部材16と軸部17aとが電気的に短絡を起こすことを防止するために、軸受18は絶縁性材料でできている。蓋部材16を貫通した軸部は正極端子17dを構成する。円筒缶12は負極端子として機能する。   The electrode group 13 is disposed so as to be sequentially stacked on the stopper 17b of the current collector. The stopper 17b prevents the electrode group 13 from dropping from the end of the current collector 17 during assembly. The shape of the stop portion 17b is a disk shape. The stopper 17b is disposed on the cylindrical can bottom 12b with the insulating plate 14 interposed therebetween. The insulating plate 14 prevents the current collector 17 and the cylindrical can 12 from coming into direct contact and being electrically short-circuited. The end of the shaft portion 17a opposite to the stop portion 17b is supported by a bearing 18 provided at the center of the lid member 16. In order to prevent the cover member 16 and the shaft portion 17a from being electrically short-circuited, the bearing 18 is made of an insulating material. A shaft portion penetrating the lid member 16 constitutes a positive electrode terminal 17d. The cylindrical can 12 functions as a negative electrode terminal.

次に、正負極13a、13bおよびセパレータ13cの寸法と、外装体15および集電体17の寸法との関係について説明する。セパレータ13cの外縁が、正極13a(第1電極)により覆われており、負極13b(第2電極)の外縁が、セパレータ13cにより覆われている。そして、正極13aにおける集電体17が貫通する穴の周縁が、セパレータ13cにより覆われており、セパレータ13cにおける集電体17が貫通する穴の周縁が、負極13bにより覆われている。   Next, the relationship between the dimensions of the positive and negative electrodes 13a and 13b and the separator 13c and the dimensions of the outer package 15 and the current collector 17 will be described. The outer edge of the separator 13c is covered with the positive electrode 13a (first electrode), and the outer edge of the negative electrode 13b (second electrode) is covered with the separator 13c. The peripheral edge of the hole through which the current collector 17 penetrates in the positive electrode 13a is covered with the separator 13c, and the peripheral edge of the hole through which the current collector 17 penetrates in the separator 13c is covered with the negative electrode 13b.

すなわち、セパレータ13cの外径は、負極13b(第2電極)の外径より大きい。このため、正極13aと負極13bとは、外装体15の内周面近傍においてセパレータ13cにより完全に隔離されている。このため、電極が変形しても、電極は互いに接触することがない。更に、セパレータ13cの中央に設けられた穴の径は、正極13aの中央に設けられた穴の径より小さい。このため、正極13aと負極13bとは、集電体17の外周面近傍においてセパレータ13cにより完全に隔離されている。このため、電極が変形しても、電極は互いに接触することがない。また、セパレータ13cの外径は正極13a(第1電極)の外径より小さい。このため、正極13aと円筒缶12の間にセパレータ13cが介在することがない。更に、セパレータ13cの中央に設けられた穴の径は、負極13bの中央に設けられた穴の径より大きい。このため、負極13bと集電体17の間にセパレータ13cが介在して、接触不良を起こすことがない。   That is, the outer diameter of the separator 13c is larger than the outer diameter of the negative electrode 13b (second electrode). For this reason, the positive electrode 13 a and the negative electrode 13 b are completely separated by the separator 13 c in the vicinity of the inner peripheral surface of the outer package 15. For this reason, even if an electrode deform | transforms, an electrode does not contact each other. Furthermore, the diameter of the hole provided in the center of the separator 13c is smaller than the diameter of the hole provided in the center of the positive electrode 13a. For this reason, the positive electrode 13 a and the negative electrode 13 b are completely separated by the separator 13 c in the vicinity of the outer peripheral surface of the current collector 17. For this reason, even if an electrode deform | transforms, an electrode does not contact each other. Further, the outer diameter of the separator 13c is smaller than the outer diameter of the positive electrode 13a (first electrode). For this reason, the separator 13 c is not interposed between the positive electrode 13 a and the cylindrical can 12. Furthermore, the diameter of the hole provided in the center of the separator 13c is larger than the diameter of the hole provided in the center of the negative electrode 13b. For this reason, the separator 13c is interposed between the negative electrode 13b and the current collector 17, and contact failure does not occur.

正極13aの外縁を、集電端子として機能する外装体15の内面に当接させることにより、正極13aで発生する電気と熱を効率よく外装体15に伝達することが可能になっている。同様に、負極13bの集電体が貫通する穴の周縁を、集電端子として機能する集電体17に割り板バネを介して当接させることにより、負極13bで発生する電気を効率よく集電体17に伝達することを可能にした。   By bringing the outer edge of the positive electrode 13a into contact with the inner surface of the outer package 15 functioning as a current collecting terminal, it is possible to efficiently transmit electricity and heat generated in the positive electrode 13a to the outer package 15. Similarly, the peripheral edge of the hole through which the current collector of the negative electrode 13b passes is brought into contact with the current collector 17 functioning as a current collector terminal via a split plate spring, thereby efficiently collecting electricity generated in the negative electrode 13b. It was possible to transmit to the electric body 17.

割り板バネは、導電性を有する板状の弾性体であって、長辺側が集電体の軸方向に伸長しており、短辺側が湾曲している。積層電池における配置上の関係で述べれば、集電体の軸部17aと負極13bの間に割り板バネ19が配置されている。そして、割り板バネ19の長辺側は、集電体17の軸方向に沿って伸びており、かつ、短辺側は棒状の集電体17の曲面に沿って湾曲している。本実施形態において、割り板バネとしてニッケルメッキ鋼板を用いたが、弾性を有する導電体であれば、他のものであってもよい。   The split plate spring is a plate-like elastic body having conductivity, and its long side extends in the axial direction of the current collector, and its short side is curved. If it describes in the relationship on arrangement | positioning in a laminated battery, the split plate spring 19 is arrange | positioned between the axial part 17a and the negative electrode 13b of a collector. The long side of the split plate spring 19 extends along the axial direction of the current collector 17, and the short side is curved along the curved surface of the rod-shaped current collector 17. In this embodiment, a nickel-plated steel plate is used as the split plate spring, but any other conductive material may be used as long as it is an elastic conductor.

図2〜5を用いて、割り板バネについて詳述する。説明は割り板バネが2枚で構成される場合について行う。図2は、割り板バネ4の斜視図である。割り板バネ4は、長辺側が図2の上下方向(軸方向)に伸長し、短辺側が湾曲した形状となっている。割り板バネ4に対向する位置、すなわち、2枚の割り板バネ4に囲まれた領域に図示しない集電体が位置することになる。   The split plate spring will be described in detail with reference to FIGS. The description will be given for the case where the split plate spring is composed of two pieces. FIG. 2 is a perspective view of the split plate spring 4. The split plate spring 4 has a shape in which the long side extends in the vertical direction (axial direction) in FIG. 2 and the short side is curved. A current collector (not shown) is positioned at a position facing the split plate spring 4, that is, in a region surrounded by the two split plate springs 4.

図3は、割り板バネ4の軸方向に直角方向の断面図であり、中央線Lについて軸対称の位置にある他の1枚の割り板バネの図は省略してある。割り板バネ4は、半径8.5で示される半円の一部が欠損した円弧を有している。   FIG. 3 is a cross-sectional view perpendicular to the axial direction of the split plate spring 4, and the illustration of another split plate spring in an axially symmetric position with respect to the center line L is omitted. The split plate spring 4 has an arc in which a part of a semicircle indicated by a radius 8.5 is missing.

図4は、図1のA−A断面であって、第2電極2と集電体3、および、割り板バネ4の配置関係を示す図面である。図4において、割り板バネ4は付勢されていない状態の図が仮想的に示されている。すなわち、図4の割り板バネ4は、第2電極2と集電体3の間に配置する前の状態で重ね書きされている。集電体3の直径は16.2であって、割り板バネ4の内側曲面は半径8.5の円弧(直径換算17.0)であり、割り板バネ4の内側の曲率は集電体の曲率より小さい。また、割り板バネの外側の曲率は、第2電極2の穴の曲率より小さい。なお、割り板バネの外側および内側は、それぞれ、外周および内周を意味する。   FIG. 4 is a cross-sectional view taken along the line AA of FIG. 1 and shows the positional relationship between the second electrode 2, the current collector 3, and the split plate spring 4. In FIG. 4, the figure of the state in which the split-plate spring 4 is not urged | biased is shown virtually. That is, the split plate spring 4 in FIG. 4 is overwritten in a state before being disposed between the second electrode 2 and the current collector 3. The current collector 3 has a diameter of 16.2, and the inner curved surface of the split plate spring 4 is an arc having a radius of 8.5 (diameter conversion 17.0). The curvature of the inner side of the split plate spring 4 is the current collector. Less than the curvature of. Further, the curvature of the outer side of the split plate spring is smaller than the curvature of the hole of the second electrode 2. The outer side and the inner side of the split plate spring mean the outer circumference and the inner circumference, respectively.

割り板バネ4と集電体3とを点bにおいて接触するように配置すれば、割り板バネ4はその円弧の端部において、第2電極とオーバラップ(wで示す)することになる。この結果、割り板バネ4を第2電極2と集電体3の間に組み込めば、割り板バネ4の外側曲面のエッジ(点aで示す)が第2電極の穴の周縁において付勢された割り板バネの力で強く接触する。同様に、割り板バネ4の内周の中程(点bで示す)において、割り板バネ4と集電体3は、割り板バネの反力により、強い圧力で接触することになる。
以上より、集電体3と第2電極2とは、割り板バネ4を介して、強く接触して確実に集電を図ることができる。
If the split plate spring 4 and the current collector 3 are arranged so as to contact each other at the point b, the split plate spring 4 overlaps the second electrode (indicated by w) at the end of the arc. As a result, when the split plate spring 4 is assembled between the second electrode 2 and the current collector 3, the edge of the outer curved surface of the split plate spring 4 (indicated by a point a) is biased at the periphery of the hole of the second electrode. Strong contact with the split spring force. Similarly, in the middle of the inner periphery of the split plate spring 4 (indicated by the point b), the split plate spring 4 and the current collector 3 come into contact with each other with a strong pressure due to the reaction force of the split plate spring.
As described above, the current collector 3 and the second electrode 2 can come into strong contact with each other via the split plate spring 4 to reliably collect current.

割り板バネと集電体との接触は、幾何学的には点ではなく線においてなされる。すなわち、割り板バネ4の中程で長辺に沿った軸方向に伸びる線上で、割り板バネ4と集電体3は、割り板バネの反力により、強く接触することになる。もっとも、長辺に沿った線上の全ての領域で、割り板バネは集電体と接触する必要はない。割り板バネは電気の良導体であるので、その線上のいくつかの点で、割り板バネと接触しておればよい。図4に示すb点は、割り板バネと集電体が接触する箇所の代表点である。   Contact between the split plate spring and the current collector is made geometrically at a line rather than at a point. That is, the split plate spring 4 and the current collector 3 are in strong contact with each other by the reaction force of the split plate spring on the line extending in the axial direction along the long side in the middle of the split plate spring 4. However, it is not necessary for the split plate spring to contact the current collector in all regions on the line along the long side. Since the split plate spring is a good conductor of electricity, it may be in contact with the split plate spring at several points on the line. The point b shown in FIG. 4 is a representative point where the split plate spring and the current collector are in contact.

同様に、割り板バネ4の外側曲面側を軸方向に伸びる稜線上の点で、割り板バネ4と第2電極2の穴の周縁は、付勢された割り板バネの力で強く接触する。もっとも、4本ある稜線の全てで、割り板バネが第2電極と接触する必要はない。割り板バネの4本の稜線のいずれが、第2電極と接触しておればよい。図4に示すa点は、割り板バネと第2電極が接触する箇所の代表点である。   Similarly, the peripheral edge of the hole of the split plate spring 4 and the second electrode 2 is in strong contact with the force of the biased split plate spring at a point on the ridge line extending in the axial direction on the outer curved surface side of the split plate spring 4. . However, it is not necessary for the split plate spring to be in contact with the second electrode at all four ridge lines. Any of the four ridge lines of the split plate spring may be in contact with the second electrode. A point a shown in FIG. 4 is a representative point where the split plate spring and the second electrode come into contact.

割り板バネ4は1枚の金属板を短冊状に切断して曲げ加工したものであって、その厚みはほぼ均一である。割り板バネ4の厚さは、第2電極の穴の寸法と集電体の外形寸法の関係において定められるところ、本実施形態において、第2電極と集電体の隙間に等しい。集電体が円柱であれば、割り板バネ4の厚さは、第2電極の穴の径と集電体の外径の差の1/2となる。   The split plate spring 4 is obtained by cutting and bending a single metal plate into a strip shape, and its thickness is substantially uniform. The thickness of the split plate spring 4 is determined by the relationship between the dimension of the hole of the second electrode and the outer dimension of the current collector. In this embodiment, the thickness is equal to the gap between the second electrode and the current collector. If the current collector is a cylinder, the thickness of the split plate spring 4 is ½ of the difference between the hole diameter of the second electrode and the outer diameter of the current collector.

割り板バネの内周の長さは、集電体の外周の長さの1/2以下となっている。したがって、割り板バネ4を集電体3と第2電極2との間に等間隔に組み込んだとき、2枚の割り板バネ4の先端は互いに接触することがなく、隙間を有することとなる。   The inner circumferential length of the split plate spring is ½ or less of the outer circumferential length of the current collector. Therefore, when the split plate springs 4 are incorporated at equal intervals between the current collector 3 and the second electrode 2, the tips of the two split plate springs 4 do not contact each other and have a gap. .

図5は、割り板バネの曲率が集電体の曲率より大きいときの作用を説明するための図である。割り板バネの曲率が集電体の曲率より大きいので、割り板バネと集電体はバネの反力により点cにおいて強く接触する。また同様に割り板バネと第2電極とは点dにおいて強く接触する。   FIG. 5 is a diagram for explaining the operation when the curvature of the split plate spring is larger than the curvature of the current collector. Since the curvature of the split plate spring is larger than that of the current collector, the split plate spring and the current collector are in strong contact at the point c due to the reaction force of the spring. Similarly, the split plate spring and the second electrode are in strong contact at point d.

割り板バネが2枚で構成される場合について説明を行ったが、1枚であってもよい。この場合は、割り板バネの内周の長さは、集電体の外周の長さの1/2より長くてもよい。1枚であれば、多少接触力が小さくなるが、割り板バネの組み込みが容易になる。また、3枚で構成してもよい。この場合は、割り板バネの内周の長さは、集電体の外周の長さの1/3以下となる。3枚になれば、より密接に接触を図ることができるが、3枚の割り板バネを配置するのは、組立に手数がかかる。   Although the case where the split plate spring is composed of two sheets has been described, a single sheet spring may be used. In this case, the length of the inner periphery of the split plate spring may be longer than ½ of the length of the outer periphery of the current collector. If the number is one, the contact force is somewhat reduced, but the split plate spring can be easily incorporated. Moreover, you may comprise by 3 sheets. In this case, the inner circumferential length of the split plate spring is 1/3 or less of the outer circumferential length of the current collector. If three sheets are used, contact can be achieved more closely, but the arrangement of three split plate springs requires a lot of assembly work.

積層電池の組み立て方法について説明する。まず、集電体17と同じ外径を有する丸棒に正極と負極の間にセパレータが介在するように順次挿入して電極を積み重ねた後、積み重ねた電極群13の両端に集電体の止め部17bと蓋部材16とからなる押板20を配して電極群13を保持する。そして、押板20の両端に圧力をかけて電極群13を圧縮して、圧縮状態を保持したまま丸棒を引き抜き、割り板バネを第2電極の穴の周囲に配置したのち、集電体17を電極群13に圧入して、押板20を集電体17に螺号させて電極群の圧縮状態を保ちつつ電極集合体を組立てる。そして、電極集合体を外装体内部に圧入した後に、空気抜きを行い、電解液を注入する。   A method for assembling the laminated battery will be described. First, electrodes are stacked by sequentially inserting them into a round bar having the same outer diameter as that of the current collector 17 so that a separator is interposed between the positive electrode and the negative electrode, and then the current collector is fixed to both ends of the stacked electrode group 13. A pressing plate 20 including a portion 17 b and a lid member 16 is disposed to hold the electrode group 13. Then, pressure is applied to both ends of the push plate 20 to compress the electrode group 13, the round bar is pulled out while maintaining the compressed state, and the split plate spring is disposed around the hole of the second electrode, and then the current collector 17 is press-fitted into the electrode group 13, and the push plate 20 is screwed to the current collector 17 to assemble the electrode assembly while maintaining the compressed state of the electrode group. Then, after the electrode assembly is press-fitted into the exterior body, air is vented and an electrolytic solution is injected.

本発明に係る積層電池用電極およびこれを用いた積層電池は、産業用のみならず民生用の蓄電設備としてとして好適に用いることができる。   The electrode for a laminated battery and the laminated battery using the same according to the present invention can be suitably used not only for industrial use but also for consumer use.

2 第2電極
3 集電体
4 割り板バネ
11 円筒型積層電池
12 円筒缶(a:側部内面)
13 電極群(a:正極、b:負極、c:セパレータ)
14 絶縁板
15 外装体
16 蓋部材
17 集電体(a:軸部、b:止め部、c:正極端子)
18 軸受


2 Second electrode 3 Current collector 4 Split plate spring 11 Cylindrical laminated battery 12 Cylindrical can (a: side inner surface)
13 electrode group (a: positive electrode, b: negative electrode, c: separator)
14 Insulating plate 15 Exterior body 16 Lid member 17 Current collector (a: shaft part, b: stopper part, c: positive electrode terminal)
18 Bearing


Claims (9)

正極と、負極と、前記正極および前記負極を貫通している導電性を有する集電体と、を備えた積層電池であって、
前記正極および前記負極が前記積層電池の軸方向に沿って積層されており、
前記正極および前記負極のいずれか一方の電極である第1電極が、前記集電体と接触しておらず、
前記正極および前記負極のいずれか他方の電極である第2電極が、前記集電体と電気的に接続されており、
前記集電体と前記第2電極の間に介在する導電性の板状の弾性体であって、長辺側が前記集電体の軸方向に沿って伸長し、短辺側が前記集電体の曲率と異なる内側曲率を有する割り板バネ、を備えた積層電池。
A laminated battery comprising a positive electrode, a negative electrode, and a conductive current collector passing through the positive electrode and the negative electrode,
The positive electrode and the negative electrode are stacked along the axial direction of the stacked battery,
The first electrode that is one of the positive electrode and the negative electrode is not in contact with the current collector,
A second electrode, which is the other of the positive electrode and the negative electrode, is electrically connected to the current collector;
A conductive plate-like elastic body interposed between the current collector and the second electrode, the long side extending along the axial direction of the current collector, and the short side of the current collector A laminated battery comprising a split plate spring having an inner curvature different from the curvature.
前記割り板バネの内側曲率が前記集電体の曲率より小さい、請求項1に記載の積層電池。   The laminated battery according to claim 1, wherein an inner curvature of the split plate spring is smaller than a curvature of the current collector. 前記短辺側の内周長さが、前記集電体の外周長さの1/2以下である、請求項1または2のいずれか一項に記載の積層電池。   The multilayer battery according to claim 1, wherein an inner peripheral length on the short side is not more than ½ of an outer peripheral length of the current collector. 前記割り板バネの数が1乃至3である、請求項1または2のいずれか一項に記載の積層電池。   The laminated battery according to claim 1, wherein the number of the split plate springs is 1 to 3. 前記割り板バネの数が2である、請求項4に記載の積層電池。   The laminated battery according to claim 4, wherein the number of the split plate springs is two. 前記割り板バネの厚さが、前記集電体の外径と前記第2電極の穴の径の差の1/2である、請求項5に記載の積層電池。   The laminated battery according to claim 5, wherein a thickness of the split plate spring is ½ of a difference between an outer diameter of the current collector and a diameter of a hole of the second electrode. 前記割り板バネがニッケルメッキ鋼板である、請求項1〜6のいずれか一項に記載の積層電池。   The laminated battery according to any one of claims 1 to 6, wherein the split plate spring is a nickel-plated steel plate. 筒状の導電性の外装体を備え、
前記第1電極が、前記外装体の内面と電気的に接続されており、
前記第2電極が、前記外装体の内面に接触していない、請求項1〜7のいずれか一項に記載の積層電池。
It has a cylindrical conductive exterior body,
The first electrode is electrically connected to the inner surface of the exterior body;
The laminated battery according to claim 1, wherein the second electrode is not in contact with the inner surface of the exterior body.
前記正極と前記負極との間に配された穴の開いたセパレータを、更に備えており、
前記セパレータの外縁が、前記第1電極により覆われており、
前記セパレータにおける前記集電体が貫通する穴の周縁が、前記第2電極により覆われており、
前記第2電極の外縁が、前記セパレータにより覆われており、
前記第1電極における前記集電体が貫通する穴の周縁が、前記セパレータにより覆われている、請求項8に記載の積層電池。



Further comprising a perforated separator disposed between the positive electrode and the negative electrode;
An outer edge of the separator is covered with the first electrode;
The peripheral edge of the hole through which the current collector passes through the separator is covered with the second electrode,
An outer edge of the second electrode is covered with the separator;
The multilayer battery according to claim 8, wherein a peripheral edge of a hole through which the current collector passes through the first electrode is covered with the separator.



JP2016061467A 2016-03-25 2016-03-25 Laminated battery Active JP6178962B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016061467A JP6178962B1 (en) 2016-03-25 2016-03-25 Laminated battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016061467A JP6178962B1 (en) 2016-03-25 2016-03-25 Laminated battery

Publications (2)

Publication Number Publication Date
JP6178962B1 true JP6178962B1 (en) 2017-08-16
JP2017174710A JP2017174710A (en) 2017-09-28

Family

ID=59604754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016061467A Active JP6178962B1 (en) 2016-03-25 2016-03-25 Laminated battery

Country Status (1)

Country Link
JP (1) JP6178962B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6315474B2 (en) * 2014-10-03 2018-04-25 藤倉ゴム工業株式会社 Metal air battery
JP6740724B2 (en) * 2016-06-08 2020-08-19 トヨタ自動車株式会社 Stacked battery
JP6931950B1 (en) * 2020-03-27 2021-09-08 株式会社堤水素研究所 Solid electrolyte battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014014964B1 (en) * 2011-11-19 2021-03-02 Exergy Power Systems, Inc cell layer, battery assembled including cell layer and method for assembling cell layer
JP5514971B2 (en) * 2012-01-29 2014-06-04 エクセルギー・パワー・システムズ株式会社 Stacked battery and stacked battery system

Also Published As

Publication number Publication date
JP2017174710A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP5564278B2 (en) Secondary battery
US6312848B1 (en) Electrical rechargeable battery in the form of a button cell
CN111937187B (en) Cylindrical battery
WO2012057335A1 (en) Rectangular secondary battery
EP2337117B1 (en) Secondary battery
JP5924522B2 (en) Power storage element, power storage element group
CN118137034A (en) Energy storage module
JP2019061779A (en) Power storage device and power storage method
JP6160350B2 (en) Power storage device
JP2018018698A (en) Power storage device and method for manufacturing power storage device
CN110165275B (en) Battery and method for manufacturing battery
JP2015141798A (en) power storage device
JP6178962B1 (en) Laminated battery
WO2013164998A1 (en) Accumulator device
US20180342723A1 (en) Energy storage device and method of manufacturing energy storage device
JP2015072828A (en) Electricity storage device
JP6447015B2 (en) Power storage device and method for manufacturing power storage device
JP6796256B2 (en) Lithium ion secondary battery
JP6007659B2 (en) Power storage device and method for manufacturing power storage device
JP2020161293A (en) Lithium ion secondary battery
JP4836428B2 (en) Storage battery
JP5383154B2 (en) Cylindrical secondary battery
JP2017174519A (en) Electrode for battery, manufacturing method of electrode for battery and laminated battery
JP5183251B2 (en) Assembled battery
CN110474012B (en) Battery and battery system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170530

R150 Certificate of patent or registration of utility model

Ref document number: 6178962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250