JP6177051B2 - Solid phase ratio measuring device, cooling system and solid phase ratio measuring method for solid-liquid two-phase fluid - Google Patents

Solid phase ratio measuring device, cooling system and solid phase ratio measuring method for solid-liquid two-phase fluid Download PDF

Info

Publication number
JP6177051B2
JP6177051B2 JP2013173672A JP2013173672A JP6177051B2 JP 6177051 B2 JP6177051 B2 JP 6177051B2 JP 2013173672 A JP2013173672 A JP 2013173672A JP 2013173672 A JP2013173672 A JP 2013173672A JP 6177051 B2 JP6177051 B2 JP 6177051B2
Authority
JP
Japan
Prior art keywords
solid
phase
liquid
phase difference
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013173672A
Other languages
Japanese (ja)
Other versions
JP2015040841A (en
Inventor
敏弘 駒込
敏弘 駒込
紀治 玉田
紀治 玉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2013173672A priority Critical patent/JP6177051B2/en
Publication of JP2015040841A publication Critical patent/JP2015040841A/en
Application granted granted Critical
Publication of JP6177051B2 publication Critical patent/JP6177051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、固相成分と液相成分とを含んでなる固液二相流体の固相率測定装置、該固相率測定装置を備える冷却システム、及び、固液二相流体の固相率測定方法の技術分野に関する。   The present invention relates to a solid-phase two-phase fluid solid phase ratio measuring device including a solid phase component and a liquid phase component, a cooling system including the solid phase ratio measuring device, and a solid-liquid two-phase fluid solid phase ratio. The present invention relates to the technical field of measurement methods.

固相成分と液相成分とが混合してなる固液二相流体の一例として、スラッシュ窒素が広く知られている。スラッシュ窒素は微粒化された固体窒素と液体窒素との混合物のスラリーであり、温度が63Kと低く、その流動性の高さから、例えば超電導機器等の冷却システムに適している。特に、超電導機器の一例である超電導送電ケーブルを冷却する場合、冷却ステーションの設置間隔が数kmに及ぶことが想定されるが、数km先のケーブル出口側においても固相成分が残っていれば窒素温度は融解温度である63Kに保たれ、その結果、超電導ケーブルはその能力、すなわち63Kにおける臨界電流値に対応する送電量を維持することができる。   Slush nitrogen is widely known as an example of a solid-liquid two-phase fluid obtained by mixing a solid phase component and a liquid phase component. Slush nitrogen is a slurry of a mixture of atomized solid nitrogen and liquid nitrogen, and has a low temperature of 63 K and is suitable for cooling systems such as superconducting equipment because of its high fluidity. In particular, when cooling a superconducting power transmission cable that is an example of a superconducting device, it is assumed that the installation interval of the cooling station may reach several kilometers, but if a solid phase component remains on the cable outlet side several kilometers away The nitrogen temperature is kept at the melting temperature of 63K, and as a result, the superconducting cable can maintain its capacity, that is, the amount of power transmission corresponding to the critical current value at 63K.

このような固液二相流体における固相成分の割合(すなわち、固相率)は、冷却対象の熱負荷と密接な関係がある(尚、固相率は固体成分の質量割合を示すが、体積と質量の変換は容易にできることから、以下では体積割合を固相率として説明を行うこととする)。そのため、冷却対象の熱負荷が変動する場合には、その変動に応じて固相率を制御することが重要である。このような固相率制御では、基準となる固相率を精度よく検出する必要がある。   The ratio of the solid phase component in this solid-liquid two-phase fluid (that is, the solid phase ratio) is closely related to the heat load of the object to be cooled (the solid phase ratio indicates the mass ratio of the solid component, Since conversion of volume and mass can be easily performed, the following description will be made with the volume ratio as the solid phase ratio). For this reason, when the heat load to be cooled varies, it is important to control the solid phase ratio according to the variation. In such solid phase rate control, it is necessary to detect the solid phase rate as a reference with high accuracy.

この種の固液二相流体の固相率を測定する方法として、固液二相流体における固相成分と液相成分とが互いに異なる比誘電率を有する性質に着目し、固液二相流体に浸漬した一対または複数対の電極で構成されたキャパシタの静電容量の変化に基づいて固相率を測定するものがある。図8は、この種の固相率測定方装置の一例を示す模式図である。この例では、キャパシタCが有する一対の電極31及び32を固液二相流体に浸漬し、LCRメータである検出器35でキャパシタCの静電容量を計測することで、電極31及び32間を占める固液二相流体の比誘電率を評価して固相率を求めることができる。特許文献1では、電極の形状を円筒対平板対円筒として、平板対平板の場合よりも、電極間に固体粒子を入りやすくして測定感度の向上を図っている。   As a method of measuring the solid phase ratio of this kind of solid-liquid two-phase fluid, paying attention to the property that the solid phase component and the liquid phase component in the solid-liquid two-phase fluid have different relative dielectric constants, Some measure the solid phase ratio based on the change in the capacitance of a capacitor composed of a pair or a plurality of pairs of electrodes immersed in the substrate. FIG. 8 is a schematic diagram showing an example of this type of solid-phase rate measuring apparatus. In this example, a pair of electrodes 31 and 32 of the capacitor C are immersed in a solid-liquid two-phase fluid, and the capacitance of the capacitor C is measured by the detector 35 which is an LCR meter, so that the gap between the electrodes 31 and 32 is measured. The solid phase ratio can be determined by evaluating the relative dielectric constant of the solid-liquid two-phase fluid occupied. In Patent Document 1, the shape of the electrode is cylinder-to-plate-to-cylinder, and solid particles are more easily inserted between the electrodes than in the case of plate-to-plate, thereby improving measurement sensitivity.

このように図8ではキャパシタの静電容量をLCRメータなどの検出器35で直接測定しているが、特許文献2では、キャパシタCとコイルLとによって形成された共振回路の共振特性を利用して静電容量Cを計測することが開示されている。特に特許文献2では、固液二相流体に浸漬した共振回路に交流信号を印加し、エコー信号が最大となる共振周波数を求めることで、静電容量Cを算出し、固相率の測定を行っている。   As described above, in FIG. 8, the capacitance of the capacitor is directly measured by the detector 35 such as an LCR meter. However, in Patent Document 2, the resonance characteristic of the resonance circuit formed by the capacitor C and the coil L is used. It is disclosed that the electrostatic capacitance C is measured. In particular, in Patent Document 2, an AC signal is applied to a resonance circuit immersed in a solid-liquid two-phase fluid, and a capacitance C is calculated by calculating a resonance frequency at which the echo signal is maximized. Is going.

特許第3572200号Japanese Patent No. 3572200 特開2010−223740号公報JP 2010-223740 A

一般的に、静電容量Cは電極の面積S、電極間の距離L、及び、電極間に存在する物質が有する誘電率εを用いて、
C∝εS/L (1)
と表される。(1)式に示されているように、静電容量Cは電極の面積Sに比例するため、測定感度を向上するためには、電極の面積を大きくすることが好ましい。しかしながら、狭い配管中を流れる固液二相流体の固相率を測定しようとした場合、電極面積を小さくせざるを得ず、微小な静電容量の変化を計測することとなり、十分な測定精度を確保することが困難であるという問題がある。
一方、静電容量Cは電極間の距離Lに反比例するため、固相率の測定精度を向上するためには、電極間の距離Lを小さくすることが好ましい。しかしながら、電極間にスムーズに測定対象である固液二相流体を導くためには、電極間の距離Lを固液二相流体に含まれる固相成分の粒径に比べて十分大きく確保する必要がある。そのため、電極間の距離Lを小さくことによって、測定精度を向上することにも限界がある。狭い配管中で固相率を測定する場合の測定精度の向上は、特許文献1および特許文献2に共通する課題である。
In general, the capacitance C is obtained by using the area S of the electrodes, the distance L between the electrodes, and the dielectric constant ε of the substance existing between the electrodes.
C∝εS / L (1)
It is expressed. As shown in the equation (1), since the capacitance C is proportional to the area S of the electrode, it is preferable to increase the area of the electrode in order to improve measurement sensitivity. However, when trying to measure the solid phase ratio of a solid-liquid two-phase fluid flowing in a narrow pipe, the electrode area must be reduced, and a minute change in capacitance will be measured. There is a problem that it is difficult to ensure.
On the other hand, since the capacitance C is inversely proportional to the distance L between the electrodes, it is preferable to reduce the distance L between the electrodes in order to improve the measurement accuracy of the solid phase ratio. However, in order to smoothly guide the solid-liquid two-phase fluid to be measured between the electrodes, it is necessary to ensure that the distance L between the electrodes is sufficiently larger than the particle size of the solid phase component contained in the solid-liquid two-phase fluid. There is. For this reason, there is a limit to improving the measurement accuracy by reducing the distance L between the electrodes. Improvement of measurement accuracy when measuring the solid phase ratio in a narrow pipe is a problem common to Patent Document 1 and Patent Document 2.

また特許文献2では、LCRメータは、それぞれの電極間の容量を、電極に接続されたリード線を介して測定しているため、LCRメータの測定値には配線間に生じる浮遊容量が含まれる。この浮遊容量は典型的には数pF程度の大きさを有する。一方、狭い配管内を流れる固液二相流体の固相率を測定するために、キャパシタCを配管内に設置する場合、キャパシタCの電極サイズが制限されるため、その値は数pF〜数十pF程度となる。そのため、測定値における浮遊容量の割合が多く、正確に固相率を計測することが難しいという問題点がある。   In Patent Document 2, since the LCR meter measures the capacitance between the respective electrodes via the lead wire connected to the electrode, the measured value of the LCR meter includes the stray capacitance generated between the wires. . This stray capacitance typically has a magnitude of about several pF. On the other hand, when the capacitor C is installed in the pipe in order to measure the solid phase ratio of the solid-liquid two-phase fluid flowing in the narrow pipe, the electrode size of the capacitor C is limited. About 10 pF. Therefore, there is a problem that it is difficult to accurately measure the solid phase ratio because the ratio of the stray capacitance in the measured value is large.

本発明は上述の問題点に鑑みなされたものであり、固液二相流体の固相率を高精度で測定することが可能な固液二相流体の固相率測定装置及び該固相率測定装置を備える冷却システムを提供することを目的とする。   The present invention has been made in view of the above problems, and a solid-liquid two-phase fluid solid-phase ratio measuring apparatus capable of measuring the solid-phase ratio of a solid-liquid two-phase fluid with high accuracy and the solid-phase ratio. It aims at providing a cooling system provided with a measuring device.

本発明に係る固液二相流体の固相率測定装置は上記課題を解決するために、固相成分及び液相成分を含む固液二相流体の固相率を測定する固液二相流体の固相率測定装置であって、キャパシタ及び該キャパシタに並列に接続される水晶振動子を含む並列回路に対して抵抗器を直列接続してなる測定回路と、前記測定回路に所定周波数を有する交流信号を入力する信号発生器と、前記並列回路の両端および前記抵抗器の両端に接続されたインピーダンス変換器と、該インピーダンス変換器を介して前記並列回路の両端電圧及び前記抵抗器の両端電圧間の位相差を検出する位相差検出器と、前記位相差検出器によって検出した位相差に基づいて、前記固液二相流体の固相率を演算する演算部とを備え、前記演算部は、前記測定回路を前記固液二相流体に浸漬し、前記信号発生器から前記水晶振動子の並列共振周波数を有する交流信号を入力した際に、前記位相差検出器によって検出される位相差に基づいて、前記固液二相流体の固相率を演算することを特徴とする。   In order to solve the above problems, a solid-liquid two-phase fluid measuring device for measuring a solid phase ratio of a solid-liquid two-phase fluid containing a solid phase component and a liquid phase component is provided. A solid-phase ratio measuring apparatus comprising: a measuring circuit in which a resistor is connected in series to a parallel circuit including a capacitor and a crystal resonator connected in parallel to the capacitor; and the measuring circuit has a predetermined frequency A signal generator for inputting an AC signal, an impedance converter connected to both ends of the parallel circuit and the resistor, a voltage across the parallel circuit and a voltage across the resistor via the impedance converter A phase difference detector that detects a phase difference between the phase difference detector, and a calculation unit that calculates a solid phase ratio of the solid-liquid two-phase fluid based on the phase difference detected by the phase difference detector. The measurement circuit is connected to the solid-liquid two-phase Based on the phase difference detected by the phase difference detector when an AC signal having a parallel resonance frequency of the crystal resonator is input from the signal generator, the solid-liquid two-phase fluid is immersed in a body. The solid phase ratio is calculated.

本発明では、キャパシタ、水晶振動子及び抵抗器からなる測定回路を測定対象である固液二相流体に浸漬し、交流信号を印加したときの位相差を検出することによって、キャパシタの電極間を占める固液二相流体の固相率の変化を、キャパシタの静電容量の変化としてとらえ、固相率を測定することができる。特に測定回路に入力する交流信号の周波数を水晶振動子の並列共振周波数に設定することによって、測定回路における位相差の変化量Δθと静電容量の変化量Δcとの間に次式
Δθ∝Δc (2)
の比例関係が成立する。そのため、演算部において複雑な演算を伴うことなく、精度よく固相率を測定することができる。
またインピーダンス変換器を介して並列回路の両端電圧及び抵抗器の両端電圧間の位相差を検出することによって出力インピーダンスが小さくなるので、位相差検出器側におけるノイズや配線浮遊容量による測定誤差を低減し、良好な測定精度を得ることができる。
In the present invention, a measurement circuit composed of a capacitor, a crystal resonator, and a resistor is immersed in a solid-liquid two-phase fluid to be measured, and a phase difference when an AC signal is applied is detected, so that the gap between the electrodes of the capacitor is The change in the solid phase ratio of the occupied solid-liquid two-phase fluid can be regarded as the change in the capacitance of the capacitor, and the solid phase ratio can be measured. In particular, by setting the frequency of the AC signal input to the measurement circuit to the parallel resonance frequency of the crystal resonator, the following expression Δθ∝Δc is established between the phase difference variation Δθ and the capacitance variation Δc in the measurement circuit. (2)
The proportional relationship is established. Therefore, the solid phase ratio can be accurately measured without complicated calculations in the calculation unit.
In addition, the output impedance is reduced by detecting the phase difference between the voltage across the parallel circuit and the voltage across the resistor via the impedance converter, reducing measurement errors due to noise and wiring stray capacitance on the phase difference detector side. In addition, good measurement accuracy can be obtained.

本発明の一態様では、前記測定回路を前記液相成分のみからなる流体に浸漬し、前記信号発生器から前記水晶振動子の並列共振周波数を有する交流信号を入力した際に、前記位相差検出器によって検出される位相差を基準位相差として予め求めておき、前記演算部は、前記位相差検出器によって検出された位相差の前記基準位相差からの変化量に基づいて、前記固液二相流体の固相率を測定する。
この態様によれば、測定精度の更なる向上のために、液相成分のみからなる流体(すなわち固相率がゼロ)に浸漬した際に得られる位相差を基準位相差θとして予め求めておき、実際に測定対象とする固液二相流体に測定回路を浸漬した際に得られる位相差θと該基準位相差との間の変化量Δθ(=θ―θ)に基づいて、上記(2)式により静電容量の変化量Δcを求めて固相率測定を行うことができる。
In one aspect of the present invention, the phase difference detection is performed when the measurement circuit is immersed in a fluid including only the liquid phase component and an AC signal having a parallel resonance frequency of the crystal resonator is input from the signal generator. The phase difference detected by the detector is obtained in advance as a reference phase difference, and the calculation unit is configured to determine the phase difference detected by the phase difference detector based on the amount of change from the reference phase difference. Measure the solid fraction of the phase fluid.
According to this aspect, in order to further improve the measurement accuracy, the phase difference obtained when immersed in a fluid consisting only of the liquid phase component (that is, the solid phase ratio is zero) is obtained in advance as the reference phase difference θ 0. Based on the amount of change Δθ (= θ−θ 0 ) between the phase difference θ obtained when the measurement circuit is actually immersed in the solid-liquid two-phase fluid to be measured and the reference phase difference, The amount of change in capacitance Δc can be obtained by the equation (2), and the solid phase ratio can be measured.

本発明に係る冷却システムは、前記固液二相流体を冷媒として循環する循環回路上に設けられた熱負荷を冷却する冷却システムであって、該循環路上に、前記固液二相流体を生成する生成装置と、前記生成装置の下流側に設置された請求項1又は2に記載の固液二相流体の固相率測定装置と、前記固相率測定装置の測定値に基づいて前記生成装置の動作状態を制御する制御部とを備えることを特徴とする。
この冷却システムによれば、上述した固液二相流体の固相率測定装置(上記各種態様を含む)を備えることによって、固液二相流体の生成装置を制御する際に、生成される固液二相流体の固相率をリアルタイムに精度よく把握することができるので、冷却システムの固相率の分布を最適な状態で維持することが可能となる。特に、熱負荷が時間的に変化する場合には循環経路を流れる固液二相流体の固相率も変化することとなるが、本発明に係る固相率測定装置によって固液二相流体の固相率を精度よく把握することで、そのときどきの熱負荷に応じた最適な固相率になるように生成装置を制御して、固液二相流体の特徴を活かした冷却システムを実現することができる。
Cooling system according to the present invention, the solid-liquid two-phase fluid a cooling system for cooling a thermal load is provided on the circulation circuit for circulating a refrigerant, into the circulation times path, the solid-liquid two-phase fluid A generating device to be generated, a solid-phase ratio measuring device for a solid-liquid two-phase fluid according to claim 1 or 2 installed on the downstream side of the generating device, and based on a measurement value of the solid-phase rate measuring device And a control unit that controls an operation state of the generation device.
According to this cooling system, when the solid-liquid two-phase fluid measuring device (including the various aspects described above) is provided, the solid-liquid two-phase fluid generator is controlled when the solid-liquid two-phase fluid generator is controlled. Since the solid phase ratio of the liquid two-phase fluid can be accurately grasped in real time, the distribution of the solid phase ratio of the cooling system can be maintained in an optimum state. In particular, when the thermal load changes with time, the solid phase ratio of the solid-liquid two-phase fluid flowing through the circulation path also changes. However, the solid-liquid two-phase fluid of the present invention is By accurately determining the solid phase ratio, the generator is controlled to achieve the optimal solid phase ratio according to the thermal load at that time, and a cooling system that takes advantage of the characteristics of the solid-liquid two-phase fluid is realized. be able to.

本発明に係る固液二相流体の固相率測定方法は上記課題を解決するために、固相成分及び液相成分を含む固液二相流体の固相率を測定する固液二相流体の固相率測定方法であって、キャパシタ及び該キャパシタに並列に接続される水晶振動子を含む並列回路に対して抵抗器を直列接続してなる測定回路を前記固液二相流体に浸漬する第1の工程と、前記測定回路に前記水晶振動子の並列共振周波数を有する交流信号を入力する第2の工程と、前記並列回路の両端電圧及び前記抵抗器の両端電圧間の位相差を検出する第3の工程と、前記検出した位相差に基づいて、前記固液二相流体の固相率を演算する第4の工程とを備えることを特徴とする。
本発明の一態様では、前記測定回路を前記液相成分のみからなる流体に浸漬し、前記水晶振動子の並列共振周波数を有する交流信号を入力した際の前記位相差を基準位相差として予め求める工程を更に備え、前記第4の工程は、前記第3の工程で求めた位相差の前記基準位相差からの変化量に基づいて、前記固液二相流体の固相率を測定する。
In order to solve the above problems, a solid-liquid two-phase fluid measuring method for measuring a solid-phase ratio of a solid-liquid two-phase fluid including a solid-phase component and a liquid-phase component is provided. A solid phase ratio measuring method for immersing a measuring circuit in which a resistor is connected in series to a parallel circuit including a capacitor and a crystal resonator connected in parallel to the capacitor in the solid-liquid two-phase fluid. A first step, a second step of inputting an AC signal having a parallel resonance frequency of the crystal resonator to the measurement circuit, and detecting a phase difference between the voltage across the parallel circuit and the voltage across the resistor And a fourth step of calculating a solid phase ratio of the solid-liquid two-phase fluid based on the detected phase difference.
In one aspect of the present invention, the phase difference when the measurement circuit is immersed in a fluid composed only of the liquid phase component and an AC signal having a parallel resonance frequency of the crystal resonator is input is obtained in advance as a reference phase difference. The method further includes a step, wherein the fourth step measures the solid phase ratio of the solid-liquid two-phase fluid based on a change amount of the phase difference obtained in the third step from the reference phase difference.

本発明に係る固液二相流体の固相率測定方法は、上述の固相率測定装置(上記各種態様を含む)によって好適に実施することができる。   The solid phase ratio measuring method for a solid-liquid two-phase fluid according to the present invention can be preferably carried out by the above-described solid phase ratio measuring apparatus (including the above-described various aspects).

本発明では、キャパシタ、水晶振動子及び抵抗器からなる測定回路を測定対象である固液二相流体に浸漬し、交流信号を印加したときの位相差を検出することによって、キャパシタの電極間を占める固液二相流体の固相率の変化を、キャパシタの静電容量の変化としてとらえ、固相率を測定することができる。特に測定回路に入力する交流信号の周波数を水晶振動子の並列共振周波数に設定することによって、測定回路における位相差の変化量Δθと静電容量の変化量Δcとの間に比例関係が成立する。そのため、演算部において複雑な演算を伴うことなく、精度よく固相率を測定することができる。
またインピーダンス変換器を介して並列回路の両端電圧及び抵抗器の両端電圧間の位相差を検出することによって出力インピーダンスが小さくなるので、位相差検出器側におけるノイズや配線浮遊容量による測定誤差を低減し、良好な測定精度を得ることができる。
In the present invention, a measurement circuit composed of a capacitor, a crystal resonator, and a resistor is immersed in a solid-liquid two-phase fluid to be measured, and a phase difference when an AC signal is applied is detected, so that the gap between the electrodes of the capacitor is The change in the solid phase ratio of the occupied solid-liquid two-phase fluid can be regarded as the change in the capacitance of the capacitor, and the solid phase ratio can be measured. In particular, by setting the frequency of the AC signal input to the measurement circuit to the parallel resonance frequency of the crystal resonator, a proportional relationship is established between the phase difference variation Δθ and the capacitance variation Δc in the measurement circuit. . Therefore, the solid phase ratio can be accurately measured without complicated calculations in the calculation unit.
In addition, the output impedance is reduced by detecting the phase difference between the voltage across the parallel circuit and the voltage across the resistor via the impedance converter, reducing measurement errors due to noise and wiring stray capacitance on the phase difference detector side. In addition, good measurement accuracy can be obtained.

本実施例に係る固相率測定装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the solid-phase-ratio measuring apparatus which concerns on a present Example. 固相率測定装置を等価回路として表した回路構成図である。It is a circuit block diagram showing a solid-phase-ratio measuring apparatus as an equivalent circuit. キャリブレーションの際に液体窒素に浸漬された測定回路に対する入力周波数と位相差検出器によって検出される位相θとの関係を示すグラフである。It is a graph which shows the relationship between the input frequency with respect to the measurement circuit immersed in liquid nitrogen in the case of calibration, and phase (theta) detected by a phase difference detector. 固相率f=0.1のスラッシュ窒素に浸漬された測定回路に対する入力周波数と位相差検出器によって検出される位相θとの関係と、固相率f=0の場合との位相差Δθを併せて示すグラフである。The relationship between the input frequency to the measurement circuit immersed in slush nitrogen with a solid phase ratio f = 0.1 and the phase θ detected by the phase difference detector, and the phase difference Δθ between the solid phase ratio f = 0 and It is a graph shown together. 図4の並列共振周波数近傍を拡大して示したものである。FIG. 5 is an enlarged view of the vicinity of the parallel resonance frequency in FIG. 4. 固相率と検出位相差との変化量の関係を示すグラフである。It is a graph which shows the relationship of the variation | change_quantity of a solid-phase rate and a detection phase difference. 本実施例に係る冷却システムの全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the cooling system which concerns on a present Example. 固相率測定装置の一例を示す模式図である。It is a schematic diagram which shows an example of a solid-phase-ratio measuring apparatus.

以下、図面に基づいて本発明の実施の形態を例示的に詳しく説明する。但し、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りはこの発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, embodiments of the present invention will be exemplarily described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to those unless otherwise specified. This is just an example.

以下の本実施例では固液二相流体として、固相成分である固体窒素と、液相成分である液体窒素とを含んでなるスラッシュ窒素を例に説明することとする。尚、スラッシュ水素などの他の固液二相流体についても、同様に本発明を適用可能であることはいうまでもない。   In the following embodiment, as a solid-liquid two-phase fluid, slash nitrogen including solid nitrogen as a solid phase component and liquid nitrogen as a liquid phase component will be described as an example. Needless to say, the present invention can be similarly applied to other solid-liquid two-phase fluids such as slush hydrogen.

(固相率測定装置)
図1は本実施例に係る固相率測定装置1の全体構成を示す模式図である。
固相率測定装置1は、測定対象であるスラッシュ窒素が貯留された貯留槽2と、該貯留槽2に浸漬された測定回路3と、該測定回路3に交流信号を入力する信号発生器4と、位相差を検出する位相差検出器5と、該位相差検出器5の検出結果に基づいて固相率の演算を行う演算部10と、センサ出力へのノイズや配線浮遊容量による測定誤差を低減するインピーダンス変換器9とを備えて構成されている。
(Solid ratio measurement device)
FIG. 1 is a schematic diagram showing an overall configuration of a solid phase ratio measuring apparatus 1 according to the present embodiment.
The solid phase ratio measuring device 1 includes a storage tank 2 in which slush nitrogen as a measurement target is stored, a measurement circuit 3 immersed in the storage tank 2, and a signal generator 4 that inputs an AC signal to the measurement circuit 3. A phase difference detector 5 that detects a phase difference, a calculation unit 10 that calculates a solid phase ratio based on the detection result of the phase difference detector 5, and a measurement error due to noise in the sensor output or wiring stray capacitance And an impedance converter 9 for reducing the above.

測定回路3は、所定の固有振動数を有する水晶振動子SとキャパシタCとが並列接続されてなる並列回路6と、該並列回路6に対して直列接続される抵抗器Rとを含んで構成されている。信号発生器4は所定周波数を有する交流信号(例えば正弦波)を測定回路3の両端に入力し、位相差検出器5は並列回路6の両端電圧Vと抵抗器Rの両端電圧Vの位相差θ(すなわち、インピーダンスの偏角)を検出する。
例えば、並列回路6の両端電圧Vと抵抗器Rの両端電圧Vとをそれぞれ

Figure 0006177051
とすると、その差分ΔVは次式

Figure 0006177051
ただし、

Figure 0006177051
となる。差分信号の振幅AはA0とA1の値によって依存し、

Figure 0006177051
の場合に最小値

Figure 0006177051
となる。つまり、各信号をアンプ等で増幅し、信号の差分の振幅Aが最小となるように、各増幅率を調整することで、得られる差分信号の振幅は入力信号の振幅と位相差の積となる。位相差の検出は、アンプ利得を調整した場合における、差分信号の最小振幅を計測する簡単なアナログ回路にて実現できる。位相差検出器5では、電圧V、Vを取り込み、(3)式に基づいて演算することによって位相差θを検出する。 Measurement circuit 3 includes a parallel circuit 6 and a crystal oscillator S and the capacitor C is connected in parallel with a predetermined natural frequency, and a resistor R m which is serially connected to said parallel circuit 6 It is configured. Signal generator 4 is inputted to both ends of the measuring circuit 3 and AC signal (e.g., sine wave) having a predetermined frequency, the voltage across V 1 of the phase difference detector 5 and the voltage across V 0 which parallel circuit 6 resistor R m Phase difference θ (that is, impedance deviation angle) is detected.
For example, the voltage V 0 across the parallel circuit 6 and the voltage V 1 across the resistor R m are respectively

Figure 0006177051
Then, the difference ΔV is given by

Figure 0006177051
However,

Figure 0006177051
It becomes. Amplitude A 2 of the difference signal is dependent on the value of A 0 and A 1,

Figure 0006177051
Minimum value in case of

Figure 0006177051
It becomes. That is, by amplifying each signal with an amplifier or the like and adjusting each amplification factor so that the amplitude A 2 of the signal difference is minimized, the amplitude of the obtained difference signal is the product of the amplitude of the input signal and the phase difference. It becomes. The detection of the phase difference can be realized by a simple analog circuit that measures the minimum amplitude of the difference signal when the amplifier gain is adjusted. The phase difference detector 5 detects the phase difference θ by taking in the voltages V 0 and V 1 and calculating based on the equation (3).

図2は固相率測定装置1を等価回路として表した回路図である。図2では、水晶振動子Sは、インダクタンス成分L、容量成分C及び抵抗成分Rが互いに直列接続されてなる直列回路に対してキャパシタCが並列接続されて表される。また図1に示すように、信号発生器4は配線7a及び7bを介して測定回路3の両端に接続されており、位相差検出器5は配線8a、8bおよびインピーダンス変換器9a、9bを介して、並列回路6の両端及び抵抗器Rの両端にそれぞれ接続されている。これらの配線7a、7b、8a、8b間には、少なからず浮遊容量が発生する。8a、8b間の配線浮遊容量によるインピーダンスは、測定値に影響を与えるため、信号の増幅が必要となる。そこで、センサの両端にインピーダンス変換器9a、9bを接続し、センサ出力を変換器に入力する。センサの出力インピーダンスを非常に小さくすることで、配線浮遊容量によるインピーダンスを無視できる。インピーダンス変換器は、極低温環境(液体窒素中またはスラッシュ窒素中)で使用されるため、たとえばMOSトランジスタのドレイン共通回路などが使用される。図2では、配線7a、7b間に発生する浮遊容量を信号発生器4に並列接続された容量Cとして表している。
このようにインピーダンス変換器を用いると配線浮遊容量による影響を低減できるため、インピーダンス変換器9a、9bと位相差を検出する位相差検出器5との間の配線長を長くとることができる。尚、より高い精度を得る場合には、インピーダンス変換器9a、9bと並列回路6および直列抵抗Rとの間の配線長を極力短くするとよいことは当然である。
FIG. 2 is a circuit diagram showing the solid phase ratio measuring apparatus 1 as an equivalent circuit. In FIG. 2, the crystal resonator S is represented by connecting a capacitor C 0 in parallel to a series circuit in which an inductance component L 1 , a capacitance component C 1, and a resistance component R 1 are connected in series. As shown in FIG. 1, the signal generator 4 is connected to both ends of the measurement circuit 3 via wirings 7a and 7b, and the phase difference detector 5 is connected to wirings 8a and 8b and impedance converters 9a and 9b. Te are respectively connected to both ends of both ends and a resistor R m of the parallel circuit 6. There is a considerable amount of stray capacitance between these wirings 7a, 7b, 8a, 8b. Since the impedance due to the wiring stray capacitance between 8a and 8b affects the measured value, signal amplification is required. Therefore, impedance converters 9a and 9b are connected to both ends of the sensor, and the sensor output is input to the converter. By making the output impedance of the sensor very small, the impedance due to wiring stray capacitance can be ignored. Since the impedance converter is used in a cryogenic environment (in liquid nitrogen or slush nitrogen), for example, a drain common circuit of a MOS transistor or the like is used. In FIG. 2, the stray capacitance generated between the wirings 7 a and 7 b is represented as a capacitance C f connected in parallel to the signal generator 4.
When the impedance converter is used in this manner, the influence of the wiring stray capacitance can be reduced, so that the wiring length between the impedance converters 9a and 9b and the phase difference detector 5 for detecting the phase difference can be increased. Incidentally, in the case of obtaining a higher accuracy, impedance converter 9a, the wiring length between the 9b parallel circuit 6 and the series resistance R m may be as short as possible is naturally.

ここで水晶振動子SのインピーダンスZaは次式

Figure 0006177051
となる。 Here, the impedance Za of the crystal resonator S is expressed by the following equation:

Figure 0006177051
It becomes.

ここで水晶振動子Sの共振周波数は2つあり、それぞれ水晶振動子Sの直列共振周波数f及び並列共振周波数fに対応する角周波数ω、ωである。各共振角周波数は、

Figure 0006177051
ただし、

Figure 0006177051
である。ωs0を基準角周波数と呼ぶ。 Here there resonance frequency two crystal resonator S, the series resonance frequency f s and the parallel resonance frequency f corresponding to the p angular frequency omega s of each crystal resonator S, is omega p. Each resonance angular frequency is

Figure 0006177051
However,

Figure 0006177051
It is. ω s0 is called a reference angular frequency.

ここで、Zaの偏角は、p、Q、ωs0を用いて、

Figure 0006177051
と整理できる。これは図5(a)に相当する。 Here, the declination of Za uses p, Q, and ωs0 ,

Figure 0006177051
Can be organized. This corresponds to FIG.

ここで回路の並列容量C→C(1+Δc)に変化した場合の、インピーダンス偏角
arg(Za’)は

Figure 0006177051
となる。これは図5(c)に相当する。 Here, the impedance deviation angle when the parallel capacitance C 0 → C 0 (1 + Δc) of the circuit is changed.
arg (Za ') is

Figure 0006177051
It becomes. This corresponds to FIG.

(7)式と(8)式の位相差Δθ(ω,Δc)は、

Figure 0006177051
となる。これは、図5(b)に相当する。ただし、(9)式において

Figure 0006177051
とした。 The phase difference Δθ (ω, Δc) between the equations (7) and (8) is

Figure 0006177051
It becomes. This corresponds to FIG. However, in equation (9)

Figure 0006177051
It was.

ここで、

Figure 0006177051
と仮定すると、最終的に(9)式は以下のように近似される。

Figure 0006177051
従って(10)式によれば、キャパシタの静電容量Cが一定である場合(すなわちΔc=0の場合)には位相差θの変化量はΔθ=0であるが、静電容量Cが変化した場合には、その変化量Δcに比例する変化量Δθが生じることとなる。
本実施例に係る固相率測定装置1では、位相差検出器5によって位相差の変化量Δθを検出することによって、(10)式に基づいて、対応する静電容量の変化量Δcを算出する。そして、(1)式で示した静電容量と誘電率との関係に当てはめることによって、静電容量の変化量を更に誘電率εの変化に換算する。スラッシュ窒素の比誘電率εslは、固体窒素の比誘電率ε、液体窒素の比誘電率ε、固相率f(0≦f≦1)とすると、次式
εsl=f×ε+(1−f)×ε (11)
により表される。従って、静電容量の変化量Δcに対応するスラッシュ窒素の誘電率εslの変化量に基づいて、固相率fが求められることとなる。 here,

Figure 0006177051
Assuming that, equation (9) is finally approximated as follows.

Figure 0006177051
Therefore, according to equation (10), when the capacitance C of the capacitor is constant (that is, when Δc = 0), the change amount of the phase difference θ is Δθ = 0, but the capacitance C changes. In this case, a change amount Δθ proportional to the change amount Δc is generated.
In the solid phase ratio measuring apparatus 1 according to the present embodiment, the phase difference detector 5 detects the phase difference change amount Δθ, thereby calculating the corresponding capacitance change amount Δc based on the equation (10). To do. Then, by applying the relationship between the capacitance and the dielectric constant shown in the equation (1), the amount of change in capacitance is further converted into a change in dielectric constant ε. The relative permittivity ε sl of slush nitrogen is given by the following formula: ε sl = f × ε, where the relative permittivity ε s of solid nitrogen, the relative permittivity ε l of liquid nitrogen, and the solid phase ratio f (0 ≦ f ≦ 1) s + (1−f) × ε l (11)
It is represented by Therefore, the solid phase ratio f is obtained based on the amount of change in the dielectric constant ε sl of slush nitrogen corresponding to the amount of change Δc in capacitance.

続いて、このような固相率測定装置1を用いてスラッシュ窒素の固相率を測定する手順について、具体的に説明する。
(キャリブレーション)
はじめに固相率測定を行う前提として、基準点となる固相率f=0のスラッシュ窒素(すなわち液体窒素)を用いてキャリブレーションを行う。キャリブレーションでは、貯留槽2にスラッシュ窒素に代えて液体窒素(固相率f=0)を充填し、測定回路3を浸漬する。そして、信号発生器4から所定周波数を有する交流信号を入力した後、位相差検出器5にて位相差θの検出を行う。
Subsequently, the procedure for measuring the solid fraction of slush nitrogen using such a solid fraction measurement apparatus 1 will be specifically described.
(Calibration)
First, as a premise for performing solid phase ratio measurement, calibration is performed using slush nitrogen (that is, liquid nitrogen) having a solid phase ratio f = 0 as a reference point. In the calibration, the storage tank 2 is filled with liquid nitrogen (solid phase ratio f = 0) instead of slush nitrogen, and the measurement circuit 3 is immersed. Then, after inputting an AC signal having a predetermined frequency from the signal generator 4, the phase difference detector 5 detects the phase difference θ.

ここで図3はキャリブレーションの際に液体窒素に浸漬された測定回路3に対する入力周波数と位相差検出器5によって検出される位相差(インピーダンス偏角)θとの関係を示すグラフである。尚、図3では横軸は、水晶振動子Sの基準周波数fs0で正規化した周波数を示している。
信号発生器4から入力される交流信号の周波数を変化させていくと、水晶振動子Sの並列共振周波数fにおいて位相差θがゼロとなる。キャリブレーションでは、このように水晶振動子Sの並列共振周波数fにおける位相差θがゼロとなるという特性に基づいて、基準位相差がゼロであることを確認する。
Here, FIG. 3 is a graph showing the relationship between the input frequency to the measurement circuit 3 immersed in liquid nitrogen and the phase difference (impedance deviation angle) θ detected by the phase difference detector 5 during calibration. In FIG. 3, the horizontal axis indicates the frequency normalized with the reference frequency f s0 of the crystal resonator S.
As you changing the frequency of the alternating current signal inputted from the signal generator 4, the phase difference θ becomes zero at the parallel resonance frequency f p of the crystal oscillator S. In the calibration, thus the phase difference θ at the parallel resonance frequency f p of the crystal oscillator S is based on the characteristic that the zero, to verify that the reference phase difference is zero.

しかしながら実際の測定では、測定環境条件(温度や圧力)や、配線間の浮遊容量Cの影響のような様々な要因によって、基準位相差がゼロからずれている場合がある。キャリブレーションでは、固相率f=0の液体窒素を用いて、このような基準位相差のずれを補正することで、測定精度を向上することができる。位相θのずれを補正する具体的な方法としては、例えば信号発生器4の周波数微調整などが挙げられるが、これに限られない。 However, in actual measurement, and measurement environment conditions (temperature and pressure), by a variety of factors such as the influence of the stray capacitance C f between the wires, the reference phase difference in some cases deviates from zero. In calibration, the measurement accuracy can be improved by correcting such a shift in the reference phase difference using liquid nitrogen having a solid phase ratio f = 0. A specific method for correcting the shift of the phase θ includes, for example, fine frequency adjustment of the signal generator 4, but is not limited thereto.

(固相率測定)
キャリブレーションを行った後、貯留槽2に測定対象となる固相率f(>0)のスラッシュ窒素を充填し、測定回路3を浸漬する。そして、上述のキャリブレーションと同様に、信号発生器4から所定周波数を有する交流信号を入力した後、位相差検出器5にて位相差θの検出を行う。
(Solid fraction measurement)
After calibration, the storage tank 2 is filled with slush nitrogen having a solid phase ratio f (> 0) to be measured, and the measurement circuit 3 is immersed. Similarly to the calibration described above, an AC signal having a predetermined frequency is input from the signal generator 4, and then the phase difference θ is detected by the phase difference detector 5.

図4は(a)固相率f=0.1のスラッシュ窒素に浸漬された測定回路3に対する入力周波数と位相差検出器5によって検出される位相差(インピーダンス偏角)θとの関係と、(b)固相率f=0の場合(図3を参照)との位相差の変化量Δθを併せて示すグラフである。また、図5は図4の並列共振周波数f近傍を拡大して示したものであり、それぞれ(a)固相率f=0.1の場合、(c)固相率f=0の場合における、入力周波数に対して位相差検出器5によって検出される位相差θ、また、(b)は固相率がf=0からf=0.1に変化した場合の、位相差の変化量Δθを示している。 FIG. 4 shows (a) the relationship between the input frequency to the measurement circuit 3 immersed in slush nitrogen having a solid phase ratio f = 0.1 and the phase difference (impedance deviation angle) θ detected by the phase difference detector 5; (B) It is a graph which shows together the variation | change_quantity (DELTA) (theta) of a phase difference with the case where a solid-phase rate f = 0 (refer FIG. 3). Further, FIG. 5 shows an enlarged parallel resonance frequency f p vicinity of Figure 4, in each case (a) the solid phase ratio f = 0.1, in the case of (c) fraction solid f = 0 , The phase difference θ detected by the phase difference detector 5 with respect to the input frequency, and (b) is the amount of change in the phase difference when the solid phase ratio changes from f = 0 to f = 0.1. Δθ is shown.

固相率f>0の場合、信号発生器4から入力される交流信号の周波数を変化させていくと、直列共振周波数fでは固相率f=0の場合と同様に位相差θがゼロとなるが、並列共振周波数fでは位相差θがゼロからずれた値を示す。これは、図4に示すΔθが並列共振周波数f近傍で大きなピークを示していることからも明らかである。これは、固相率fが0→0.1に変化することによって静電容量CがΔcだけ変化したとすると、上記(11)式に示すように、該変化量Δcに比例する位相差の変化量Δθが現れることを反映したものである。固相率と位相差の変化量の例を図6に示す。 When the solid phase ratio f> 0, when the frequency of the AC signal input from the signal generator 4 is changed, the phase difference θ is zero at the series resonance frequency f s as in the case of the solid phase ratio f = 0. become, but shows values parallel resonance frequency f a phase difference at p theta deviates from zero. This is evidenced by Δθ as shown in FIG. 4 indicates a large peak at a parallel resonance frequency f p vicinity. Assuming that the capacitance C 0 changes by Δc due to the change in the solid phase ratio f from 0 to 0.1, the phase difference proportional to the change amount Δc is obtained as shown in the above equation (11). This reflects the appearance of the change amount Δθ of. An example of the amount of change in the solid phase ratio and the phase difference is shown in FIG.

つまり、本実施例に係る固相率測定装置1では、固相率fを0→0.1に変化させた場合には、信号発生器4から出力される交流信号の周波数を並列共振周波数fに設定すると共に、演算部10において、位相差検出器5によって測定した位相差θの変化量Δθを求めることで、(10)式から静電容量の変化量Δcが得られる。演算部10ではこのように求めた静電容量の変化量Δcに基づいて、固液二相流体の固相率が求められる。 That is, in the solid phase ratio measuring apparatus 1 according to the present embodiment, when the solid phase ratio f is changed from 0 to 0.1, the frequency of the AC signal output from the signal generator 4 is changed to the parallel resonance frequency f. In addition to setting to p , the calculation unit 10 obtains the change amount Δθ of the phase difference θ measured by the phase difference detector 5, thereby obtaining the change amount Δc of the capacitance from the equation (10). The computing unit 10 obtains the solid phase ratio of the solid-liquid two-phase fluid based on the capacitance change Δc thus obtained.

このように固相率測定装置1で固相率を測定する際には、信号発生器4の出力周波数は水晶振動子Sの並列共振周波数fに設定されることとなる。一方、測定周波数が並列共振周波数fからずれた場合、固相率の測定感度が低下するため、測定周波数は並列共振周波数fからある一定の許容範囲内に収める必要がある。
周波数と測定感度との関係は、予め想定される静電容量の変化量Δcと、位相差検出器5の最小分解能(すなわち、検出可能な最小位相の大きさ)θに基づいて規定することができる。
例えば、(10)式は、周波数ω=ωαのときに位相変化量が最大値Δθmaxとなり、その値は次式であらわされる。

Figure 0006177051
静電容量がΔc変化した場合に、そのときの位相変化量がθを超えている必要があるが、その条件を満たす運転周波数の範囲は、

Figure 0006177051
となる。すなわち、信号発生器4の出力周波数を(12)式を満たす範囲に設定すれば、十分な測定感度を得ることができる。 Thus in measuring the solid fraction in a solid phase rate measuring device 1, the output frequency of the signal generator 4 will be set to the parallel resonance frequency f p of the crystal oscillator S. On the other hand, when the measured frequency deviates from the parallel resonant frequency f p, since the measurement sensitivity of the solid fraction is reduced, the measurement frequency must fall within a certain tolerance from the parallel resonance frequency f p.
The relationship between the frequency and the measurement sensitivity should be defined based on the expected change amount Δc of the capacitance and the minimum resolution (that is, the minimum detectable phase) θ q of the phase difference detector 5. Can do.
For example, (10), the phase change amount when the frequency omega = omega alpha is the maximum value Δθmax next, its value is expressed by the following equation.

Figure 0006177051
When the capacitance changes by Δc, the amount of phase change at that time needs to exceed θ q .

Figure 0006177051
It becomes. That is, if the output frequency of the signal generator 4 is set in a range that satisfies the equation (12), sufficient measurement sensitivity can be obtained.

(冷却システム)
続いて、上記固相率測定装置を備えた冷却システムについて説明する。本実施例に係る冷却システムは、超電導ケーブルなどの熱負荷に対して固液二相流体であるスラッシュ窒素を循環供給することで冷却を行うものであり、図7にその全体構成を模式的に示す。
(Cooling system)
Then, the cooling system provided with the said solid-phase-ratio measuring apparatus is demonstrated. The cooling system according to this embodiment performs cooling by circulating and supplying slush nitrogen, which is a solid-liquid two-phase fluid, to a thermal load such as a superconducting cable. FIG. 7 schematically shows the overall configuration. Show.

冷却システム100は冷媒であるスラッシュ窒素が循環する循環経路110を有しており、該循環経路110上には上流側からスラッシュ窒素を圧送するための循環ポンプ120と、スラッシュ窒素を生成する生成装置130と、熱負荷である超電導ケーブル140とが設けられている。生成装置130は、外部からの熱侵入を防止しつつ循環経路110を流れるスラッシュ窒素を貯留する真空断熱容器131と、冷凍機136で冷却された冷媒が導入されることにより、真空断熱容器131内に貯留されたスラッシュ窒素と熱交換を行う流体凝固用熱交換器132と、外部電力で動作するモータ133を軸134を介して接続して駆動されることにより流体凝固用熱交換器132によって凝固して形成された固体窒素を微粒化および攪拌するための熱交換器表面掻き取り羽根135とを備えて構成されている。上述した固相率測定装置1は、真空断熱容器131の出口近傍に設置されており、特に、静電容量Cを構成する一対の電極が出口配管の入口に位置するように設置されている。これにより、生成装置130によって生成されたスラッシュ窒素の固相率がリアルタイムにモニタできるようになっている。   The cooling system 100 has a circulation path 110 through which slush nitrogen as a refrigerant circulates. A circulation pump 120 for pumping slush nitrogen from the upstream side on the circulation path 110 and a generator for generating slush nitrogen. 130 and a superconducting cable 140 that is a thermal load are provided. The generation device 130 has a vacuum heat insulating container 131 that stores slush nitrogen flowing through the circulation path 110 while preventing heat from entering from the outside, and a refrigerant cooled by the refrigerator 136, thereby introducing the inside of the vacuum heat insulating container 131. The fluid coagulation heat exchanger 132 that exchanges heat with the slush nitrogen stored in the motor and the motor 133 that operates with external electric power are connected and driven via the shaft 134 to be solidified by the fluid coagulation heat exchanger 132. The heat exchanger surface scraping blade 135 for atomizing and stirring the solid nitrogen formed in this manner is provided. The solid phase ratio measuring apparatus 1 described above is installed in the vicinity of the outlet of the vacuum heat insulating container 131, and in particular, the pair of electrodes constituting the capacitance C is installed at the inlet of the outlet pipe. As a result, the solid phase ratio of slush nitrogen generated by the generator 130 can be monitored in real time.

コントローラ160は冷却システム100の制御ユニットであり、固相率測定装置1から測定した固相率データを取得し、その取得値が予め設定された目標値になるように、冷凍機136の冷凍能力やモータ133の動作等を制御することで、循環経路110を流れるスラッシュ窒素の固相率を適切に維持する。
本実施例に係る冷却システム100では、上述した固相率測定装置を用いることによって、生成装置130の制御に用いられるスラッシュ窒素の固相率を精度よく測定することができるので、超電導ケーブル140の熱負荷状態に応じた最適な制御を行うことができる。特に超電導送電ケーブルのように熱負荷が時間的に変化する場合には、循環経路110を流れるスラッシュ窒素の固相率が逐次変化する。このような場合においても、固相率測定装置1によって正確に固相率をリアルタイムで精度よく測定することで、生成装置130を制御によって冷却システムの最適な固相率分布を維持し、超電導送電ケーブル140の固液二相流体の特性を活かした冷却と安定な運用を行うことができる。
The controller 160 is a control unit of the cooling system 100, acquires the solid phase ratio data measured from the solid phase ratio measuring apparatus 1, and the refrigerating capacity of the refrigerator 136 so that the acquired value becomes a preset target value. By controlling the operation of the motor 133 and the like, the solid phase rate of slush nitrogen flowing through the circulation path 110 is appropriately maintained.
In the cooling system 100 according to the present embodiment, the solid phase ratio of slush nitrogen used for controlling the generator 130 can be accurately measured by using the above-described solid phase ratio measuring device. Optimal control according to the thermal load state can be performed. In particular, when the thermal load changes with time as in a superconducting power transmission cable, the solid fraction of slush nitrogen flowing through the circulation path 110 changes sequentially. Even in such a case, the solid-phase ratio is accurately measured in real time by the solid-phase ratio measuring device 1, and the optimum solid-phase ratio distribution of the cooling system is maintained by controlling the generator 130, and the superconducting power transmission Cooling and stable operation utilizing the characteristics of the solid-liquid two-phase fluid of the cable 140 can be performed.

本発明は、固相成分と液相成分とを含んでなる固液二相流体の固相率測定装置、該固相率測定装置を備える冷却システム、及び、固液二相流体の固相率測定方法に利用可能である。   The present invention relates to a solid-phase two-phase fluid solid phase ratio measuring device including a solid phase component and a liquid phase component, a cooling system including the solid phase ratio measuring device, and a solid-liquid two-phase fluid solid phase ratio. It can be used for the measurement method.

1 固相率測定装置
2 貯留槽
3 測定回路
4 信号発生器
5 位相差検出器
6 並列回路
9 インピーダンス変換器
10 演算部
DESCRIPTION OF SYMBOLS 1 Solid-phase-ratio measuring apparatus 2 Reservoir 3 Measurement circuit 4 Signal generator 5 Phase difference detector 6 Parallel circuit 9 Impedance converter 10 Calculation part

Claims (5)

固相成分及び液相成分を含む固液二相流体の固相率を測定する固液二相流体の固相率測定装置であって、
キャパシタ及び該キャパシタに並列に接続される水晶振動子を含む並列回路に対して抵抗器を直列接続してなる測定回路と、
前記測定回路に所定周波数を有する交流信号を入力する信号発生器と、
前記並列回路の両端および前記抵抗器の両端に接続されたインピーダンス変換器と、
前記並列回路の両端電圧及び前記抵抗器の両端電圧間の位相差を検出する位相差検出器と、
前記位相差検出器によって検出した位相差に基づいて、前記固液二相流体の固相率を演算する演算部と
を備え、
前記演算部は、前記測定回路を前記固液二相流体に浸漬し、前記信号発生器から前記水晶振動子の並列共振周波数を有する交流信号を入力した際に、前記位相差検出器によって検出される位相差に基づいて、前記固液二相流体の固相率を演算することを特徴とする固液二相流体の固相率測定装置。
A solid-liquid two-phase fluid solid phase ratio measuring device for measuring a solid-phase ratio of a solid-liquid two-phase fluid containing a solid phase component and a liquid phase component,
A measurement circuit formed by connecting a resistor in series to a parallel circuit including a capacitor and a crystal resonator connected in parallel to the capacitor;
A signal generator for inputting an AC signal having a predetermined frequency to the measurement circuit;
An impedance converter connected to both ends of the parallel circuit and to both ends of the resistor;
A phase difference detector for detecting a phase difference between the voltage across the parallel circuit and the voltage across the resistor;
Based on the phase difference detected by the phase difference detector, comprising a calculation unit for calculating the solid phase ratio of the solid-liquid two-phase fluid,
The calculation unit is detected by the phase difference detector when the measurement circuit is immersed in the solid-liquid two-phase fluid and an AC signal having a parallel resonance frequency of the crystal resonator is input from the signal generator. A solid-phase ratio measurement apparatus for a solid-liquid two-phase fluid, wherein the solid-phase ratio of the solid-liquid two-phase fluid is calculated based on the phase difference.
前記測定回路を前記液相成分のみからなる流体に浸漬し、前記信号発生器から前記水晶振動子の並列共振周波数を有する交流信号を入力した際に、前記位相差検出器によって検出される位相差を基準位相差として予め求めておき、
前記演算部は、前記位相差検出器によって検出された位相差の前記基準位相差からの変化量に基づいて、前記固液二相流体の固相率を測定することを特徴とする請求項1に記載の固液二相流体の固相率測定装置。
A phase difference detected by the phase difference detector when the measurement circuit is immersed in a fluid composed of only the liquid phase component and an AC signal having a parallel resonance frequency of the crystal resonator is input from the signal generator. Is determined in advance as a reference phase difference,
The said calculating part measures the solid-phase rate of the said solid-liquid two-phase fluid based on the variation | change_quantity from the said reference | standard phase difference of the phase difference detected by the said phase difference detector. The solid-phase ratio measuring apparatus of the solid-liquid two-phase fluid described in 1.
前記固液二相流体を冷媒として循環する循環回路上に設けられた熱負荷を冷却する冷却システムであって、
該循環路上に、
前記固液二相流体を生成する生成装置と、
前記生成装置の下流側に設置された請求項1又は2に記載の固液二相流体の固相率測定装置と、
前記固相率測定装置の測定値に基づいて前記生成装置の動作状態を制御する制御部と
を備えることを特徴とする冷却システム。
A cooling system for cooling a heat load provided on a circulation circuit that circulates the solid-liquid two-phase fluid as a refrigerant,
In the circulation times the street,
A generating device for generating the solid-liquid two-phase fluid;
The solid-liquid two-phase fluid solid phase ratio measuring device according to claim 1 or 2 installed downstream of the generating device;
A cooling system comprising: a control unit that controls an operation state of the generating device based on a measurement value of the solid phase ratio measuring device.
固相成分及び液相成分を含む固液二相流体の固相率を測定する固液二相流体の固相率測定方法であって、
キャパシタ及び該キャパシタに並列に接続される水晶振動子を含む並列回路に対して抵抗器を直列接続してなる測定回路を前記固液二相流体に浸漬する第1の工程と、
前記測定回路に前記水晶振動子の並列共振周波数を有する交流信号を入力する第2の工程と、
前記並列回路の両端電圧及び前記抵抗器の両端電圧間の位相差を検出する第3の工程と、
前記検出した位相差に基づいて、前記固液二相流体の固相率を演算する第4の工程と
を備えることを特徴とする固液二相流体の固相率測定方法。
A solid-liquid two-phase fluid phase ratio measurement method for measuring a solid-phase ratio of a solid-liquid two-phase fluid containing a solid phase component and a liquid phase component,
A first step of immersing a measurement circuit formed by connecting a resistor in series with a parallel circuit including a capacitor and a crystal resonator connected in parallel to the capacitor in the solid-liquid two-phase fluid;
A second step of inputting an AC signal having a parallel resonance frequency of the crystal resonator to the measurement circuit;
A third step of detecting a phase difference between the voltage across the parallel circuit and the voltage across the resistor;
And a fourth step of calculating a solid phase ratio of the solid-liquid two-phase fluid based on the detected phase difference.
前記測定回路を前記液相成分のみからなる流体に浸漬し、前記水晶振動子の並列共振周波数を有する交流信号をそれぞれ入力した際の前記位相差を基準位相差として予め求める工程を更に備え、
前記第4の工程は、前記第3の工程で求めた位相差の前記基準位相差からの変化量に基づいて、前記固液二相流体の固相率を測定することを特徴とする請求項4に記載の固液二相流体の固相率測定方法。
The step of immersing the measurement circuit in a fluid composed only of the liquid phase component, and further obtaining in advance the phase difference when an AC signal having a parallel resonance frequency of the crystal resonator is input as a reference phase difference,
The fourth step is characterized in that the solid phase ratio of the solid-liquid two-phase fluid is measured based on a change amount of the phase difference obtained in the third step from the reference phase difference. 5. A method for measuring a solid phase ratio of a solid-liquid two-phase fluid according to 4.
JP2013173672A 2013-08-23 2013-08-23 Solid phase ratio measuring device, cooling system and solid phase ratio measuring method for solid-liquid two-phase fluid Active JP6177051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013173672A JP6177051B2 (en) 2013-08-23 2013-08-23 Solid phase ratio measuring device, cooling system and solid phase ratio measuring method for solid-liquid two-phase fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013173672A JP6177051B2 (en) 2013-08-23 2013-08-23 Solid phase ratio measuring device, cooling system and solid phase ratio measuring method for solid-liquid two-phase fluid

Publications (2)

Publication Number Publication Date
JP2015040841A JP2015040841A (en) 2015-03-02
JP6177051B2 true JP6177051B2 (en) 2017-08-09

Family

ID=52695074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013173672A Active JP6177051B2 (en) 2013-08-23 2013-08-23 Solid phase ratio measuring device, cooling system and solid phase ratio measuring method for solid-liquid two-phase fluid

Country Status (1)

Country Link
JP (1) JP6177051B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7071723B2 (en) * 2017-08-03 2022-05-19 哲男 吉田 Circuit for measuring complex permittivity, device for measuring complex permittivity, and method for measuring complex permittivity
DE102017131390A1 (en) * 2017-12-28 2019-07-04 Kautex Textron Gmbh & Co. Kg A method of determining a state of aggregation of an aqueous working fluid in an operating fluid reservoir for a motor vehicle and operating fluid reservoir for carrying out the method
JP7276711B2 (en) * 2019-07-18 2023-05-18 マツダ株式会社 Vehicle battery cooling system
CN112858460B (en) * 2021-01-06 2023-07-18 西华大学 Method for measuring concentration of solid medium in solid-liquid two-phase fluid
CN112858463B (en) * 2021-01-06 2023-11-24 西华大学 Device for measuring concentration of solid medium in solid-liquid two-phase fluid

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4555661A (en) * 1983-04-11 1985-11-26 Forte Technology, Inc. Method and apparatus for determining dielectric constant
JPH04168370A (en) * 1990-10-31 1992-06-16 Toshiba Corp Capacitance detector
JPH0599872A (en) * 1991-10-04 1993-04-23 Kyoto Denshi Kogyo Kk Measuring apparatus for electrochemical quantity
JP3126872B2 (en) * 1994-05-12 2001-01-22 三菱電機株式会社 Fuel mixing ratio detector
GB9709290D0 (en) * 1997-05-07 1997-06-25 Collister Christopher J Electrical measurement apparatus for oil
JP2005030948A (en) * 2003-07-07 2005-02-03 Sony Corp Concentration measuring apparatus, and concentration measuring method
JP2006105927A (en) * 2004-10-08 2006-04-20 Nippon Dempa Kogyo Co Ltd Element-measuring device
JP2008275504A (en) * 2007-05-01 2008-11-13 Hirokazu Tanaka Sensing device
US8253426B2 (en) * 2007-10-18 2012-08-28 Pioneer Corporation Capacitance detector
JP5411544B2 (en) * 2009-03-23 2014-02-12 株式会社前川製作所 Refrigerant condition monitoring device for slush fluid cooled superconducting power transmission cable

Also Published As

Publication number Publication date
JP2015040841A (en) 2015-03-02

Similar Documents

Publication Publication Date Title
JP6177051B2 (en) Solid phase ratio measuring device, cooling system and solid phase ratio measuring method for solid-liquid two-phase fluid
CN101266220B (en) Method and device for measuring liquid thermal conductivity factor and thermal diffusivity by harmonic detection technology
US9562930B2 (en) Method for the contactless determination of an electrical potential of an object using two different values for the electric flux, and device
CN105651649A (en) Real-time online atomic density measuring method suitable for atom magnetometer
US7772854B2 (en) High-conductivity contacting-type conductivity measurement
Salmela et al. Acoustic resonances in helium fluids excited by quartz tuning forks
RU2295706C2 (en) Electromagnetic flow meter
CN106152927A (en) The device and method of detection metal thickness
Filippov et al. New solutions to produce a cryogenic void fraction sensor of round cross-section and its applications
Lötters et al. Fully integrated microfluidic measurement system for real-time determination of gas and liquid mixtures composition
JP2012013692A (en) Precise measuring method for density of sample
CN102508034B (en) Method and device for measuring parameters of micro solid gyroscope equivalent circuit
Filippov et al. Diagnostics of salty water-in-oil two-phase flow
Hamelin et al. Resonators for accurate dielectric measurements in conducting liquids
US9121878B2 (en) Method for contactless determination of electrical potential using oscillating electrode, and device
JP5664217B2 (en) Water level gauge and water level measurement method
JP6247044B2 (en) Solid phase ratio measuring device and cooling system for two-phase fluid
US10551265B2 (en) Pressure sensing using quantum molecular rotational state transitions
US20230142240A1 (en) Flow meter for measuring flow velocity in oil continuous flows
RU2742526C1 (en) Liquid volumetric flow meter
RU2491517C1 (en) Method to measure liquid level in case of reservoir position change and device for its realisation
Jollyn et al. Ice fraction estimation for ice slurries through impedance measurements
RU2774218C1 (en) Method for measuring the position of the interface between two dielectric media in a tank
RU2354980C2 (en) Method of determining dielectric constant of dielectric product
Daghighi et al. Automated conductometry measurements of simple electrolytes and micellar solutions using a voltage divider technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170711

R150 Certificate of patent or registration of utility model

Ref document number: 6177051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250