JP6176489B2 - Method for producing electrode mixture and method for producing electrode - Google Patents

Method for producing electrode mixture and method for producing electrode Download PDF

Info

Publication number
JP6176489B2
JP6176489B2 JP2014037930A JP2014037930A JP6176489B2 JP 6176489 B2 JP6176489 B2 JP 6176489B2 JP 2014037930 A JP2014037930 A JP 2014037930A JP 2014037930 A JP2014037930 A JP 2014037930A JP 6176489 B2 JP6176489 B2 JP 6176489B2
Authority
JP
Japan
Prior art keywords
composite oxide
metal composite
lithium
lithium metal
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014037930A
Other languages
Japanese (ja)
Other versions
JP2015162412A (en
Inventor
剛志 牧
剛志 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2014037930A priority Critical patent/JP6176489B2/en
Publication of JP2015162412A publication Critical patent/JP2015162412A/en
Application granted granted Critical
Publication of JP6176489B2 publication Critical patent/JP6176489B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電極合剤の製造方法及び電極の製造方法に関する。   The present invention relates to a method for producing an electrode mixture and a method for producing an electrode.

リチウムイオン二次電池は、小型でエネルギー密度が高く、ポータブル電子機器の電源として広く用いられている。リチウムイオン二次電池の正極活物質としては、主としてLiCoO2、LiMn2などのリチウム金属複合酸化物が使われている。正極活物質を用いて正極を作製するために、正極活物質と結着剤と溶剤とを混合してスラリー状の電極合剤を作成し、電極合剤を集電体表面に塗布し乾燥させる。結着剤としては、ポリフッ化ビニリデン(以下、「PVdF」ともいう。)が用いられる。 Lithium ion secondary batteries are small and have high energy density, and are widely used as power sources for portable electronic devices. As the positive electrode active material of the lithium ion secondary battery, lithium metal composite oxides such as LiCoO 2 and LiMn 2 O 4 are mainly used. In order to produce a positive electrode using a positive electrode active material, a positive electrode active material, a binder, and a solvent are mixed to create a slurry electrode mixture, and the electrode mixture is applied to the surface of the current collector and dried. . As the binder, polyvinylidene fluoride (hereinafter also referred to as “PVdF”) is used.

正極活物質としてのリチウム金属複合酸化物を作製するには、例えば、溶融塩法が用いられる。溶融塩法では、製造されるリチウム金属複合酸化物の構成元素を有する金属化合物原料を溶融塩原料とともに溶融させることでリチウム金属複合酸化物を得る。溶融塩原料は、例えば、LiOH、LiCOなどのアルカリ成分が用いられる(特許文献1,2)。こられのアルカリ成分は、正極活物質の表面に残る場合がある。アルカリ成分を正極活物質表面に残しながら電極合剤を作製すると、電極合剤の粘度が時間経過とともに上昇する(特許文献3)。粘度が上昇した電極合剤では、集電体表面に薄い正極層を形成するときに、塗布終端部で尾引きが発生する。そこで、特許文献4では、電極合剤の粘弾性を所定範囲に限定することが提案されている。 In order to produce a lithium metal composite oxide as the positive electrode active material, for example, a molten salt method is used. In the molten salt method, a metal compound raw material having a constituent element of a lithium metal composite oxide to be produced is melted together with the molten salt raw material to obtain a lithium metal composite oxide. As the molten salt raw material, for example, alkaline components such as LiOH and Li 2 CO 3 are used (Patent Documents 1 and 2). These alkali components may remain on the surface of the positive electrode active material. If an electrode mixture is produced while leaving an alkali component on the surface of the positive electrode active material, the viscosity of the electrode mixture increases with time (Patent Document 3). In the electrode mixture having an increased viscosity, tailing occurs at the coating end when a thin positive electrode layer is formed on the surface of the current collector. Therefore, Patent Document 4 proposes limiting the viscoelasticity of the electrode mixture to a predetermined range.

特開2011−23121号公報JP 2011-23121 A 特開2011−124086号公報JP 2011-1224086 A 特開2007−305574号公報JP 2007-305574 A 特開2004−281234号公報JP 2004-281234 A

本発明者は、上記特許文献に記載の技術とは異なる手法で、スラリー状の電極合剤の時間経過に伴う粘度上昇を低減させるべく鋭意探求した。   The inventor has eagerly sought to reduce the increase in viscosity of the slurry-like electrode mixture over time, using a technique different from the technique described in the above-mentioned patent document.

本発明はかかる事情に鑑みてなされたものであり、電極合剤の時間経過に伴う粘度上昇を低減させることができる電極合剤の製造方法及び電極の製造方法を提供することを課題とする。   This invention is made | formed in view of this situation, and makes it a subject to provide the manufacturing method of the electrode mixture which can reduce the viscosity raise accompanying the time passage of an electrode mixture, and the manufacturing method of an electrode.

本発明の電極合剤の製造方法は、リチウム金属複合酸化物を、硝酸塩を有する硝酸塩水溶液に接触させる接触工程と、接触工程を行ったリチウム金属複合酸化物を、ポリフッ化ビニリデン及び溶剤と混合する混合工程と、を有することを特徴とする。   In the method for producing an electrode mixture of the present invention, a lithium metal composite oxide is contacted with a nitrate aqueous solution having a nitrate, and the lithium metal composite oxide subjected to the contact process is mixed with polyvinylidene fluoride and a solvent. And a mixing step.

本発明の電極の製造方法は、上記記載の電極合剤の製造方法により製造された正極合剤を集電体に塗布することを特徴とする。   The method for producing an electrode of the present invention is characterized in that a positive electrode mixture produced by the method for producing an electrode mixture described above is applied to a current collector.

本発明によれば、リチウム金属複合酸化物を、硝酸塩水溶液に接触させているため、電極合剤の時間経過に伴う粘度上昇を低減させることができる。   According to the present invention, since the lithium metal composite oxide is in contact with the nitrate aqueous solution, it is possible to reduce an increase in viscosity with the passage of time of the electrode mixture.

リチウム金属複合酸化物は、合成時に、表面にLiCO、LiOHなどのアルカリ成分が残る場合がある。結着剤であるPVdFは、アルカリ成分により劣化を起こし、ゲル化する傾向にある。このため、リチウム金属複合酸化物にPVdF及び溶剤を混合して作成した電極合剤は、時間経過に伴い粘度が増加する。 Lithium metal composite oxides may have alkaline components such as Li 2 CO 3 and LiOH remaining on the surface during synthesis. PVdF, which is a binder, tends to deteriorate due to an alkali component and gel. For this reason, the viscosity of an electrode mixture prepared by mixing PVdF and a solvent in a lithium metal composite oxide increases with time.

そこで、本発明では、リチウム金属複合酸化物を、Mg(NOなどの硝酸塩を有する硝酸塩水溶液に接触させる。硝酸塩は、アルカリ成分と反応してアルカリ成分を中和させる。硝酸塩が硝酸マグネシウム(Mg(NO)である場合について、硝酸塩とアルカリ成分との反応を、以下の反応式(1)に示す。
Mg(NO+ 2LiOH → Mg(OH)+ 2LiNO・・・(1)
Therefore, in the present invention, the lithium metal composite oxide is brought into contact with a nitrate aqueous solution having a nitrate such as Mg (NO 3 ) 2 . The nitrate reacts with the alkali component to neutralize the alkali component. In the case where the nitrate is magnesium nitrate (Mg (NO 3 ) 2 ), the reaction between the nitrate and the alkali component is shown in the following reaction formula (1).
Mg (NO 3 ) 2 + 2LiOH → Mg (OH) 2 + 2LiNO 3 (1)

アルカリ成分の中和によって、PVdFの劣化が抑制されて、電極合剤の粘度上昇及びゲル化を抑えることができると考えられる。   It is considered that the neutralization of the alkali component suppresses the deterioration of PVdF and can suppress the increase in viscosity and gelation of the electrode mixture.

また、リチウム金属複合酸化物に接触させる水溶液が硝酸塩水溶液である場合には、硫酸塩水溶液に比較して酸化力が強いため、活物質上の金属等のゴミをきれいに溶かす効果がある。   In addition, when the aqueous solution brought into contact with the lithium metal composite oxide is a nitrate aqueous solution, the oxidizing power is stronger than that of the sulfate aqueous solution, so that there is an effect of neatly dissolving metal or other dust on the active material.

また、硝酸塩が硝酸マグネシウムである場合に、リチウム金属複合酸化物を、Mg(NO水溶液に接触させると、リチウム金属複合酸化物の表面にMg(OH)やMgOが残り、リチウム金属複合酸化物の安定性が増すとも考えられる。リチウム金属複合酸化物の表面にMg(OH)やMgOが残ると、リチウム金属複合酸化物の安定性が増すと考えるのは、電解液と活物質の接触面積が減少するためである。 Further, when the nitrate is magnesium nitrate, when the lithium metal composite oxide is brought into contact with the Mg (NO 3 ) 2 aqueous solution, Mg (OH) 2 and MgO remain on the surface of the lithium metal composite oxide, and the lithium metal It is also considered that the stability of the composite oxide is increased. The reason why the stability of the lithium metal composite oxide increases when Mg (OH) 2 or MgO remains on the surface of the lithium metal composite oxide is that the contact area between the electrolytic solution and the active material decreases.

本発明の電極合剤の製造方法は、リチウム金属複合酸化物に接触工程と混合工程と行う。リチウム金属複合酸化物に接触工程を行うことは、リチウム金属複合酸化物の処理方法として把握することもできる。   The manufacturing method of the electrode mixture of this invention performs a contact process and a mixing process to lithium metal complex oxide. Performing the contact step on the lithium metal composite oxide can also be understood as a method for treating the lithium metal composite oxide.

(リチウム金属複合酸化物)
リチウム金属複合酸化物は、電極活物質として用いられる化合物である。リチウム金属複合酸化物は、その酸化還元電位が比較的高いために、主に正極活物質として用いられることが多く、場合によっては負極活物質として用いられることもある。
(Lithium metal composite oxide)
Lithium metal composite oxide is a compound used as an electrode active material. Lithium metal composite oxides are often used mainly as a positive electrode active material because of their relatively high redox potential, and in some cases may be used as a negative electrode active material.

リチウム金属複合酸化物は、層状岩塩構造又は/及びスピネル構造をもつことが多い。層状岩塩構造をもつリチウム金属複合酸化物は、層状化合物ともいわれる。層状岩塩構造をもつリチウム金属複合酸化物は、一般式:LiNiCoMn(0.2≦a≦1.2、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Zr、Ti、P、Ga、Ge、V、Mo、Nb、W、La、Ni、Coから選ばれる少なくとも1の元素、1.7≦f≦2.1)、LiMnOを挙げることができる。 Lithium metal composite oxides often have a layered rock salt structure or / and a spinel structure. A lithium metal composite oxide having a layered rock salt structure is also referred to as a layered compound. The lithium metal composite oxide having a layered rock salt structure has a general formula: Li a Ni b Co c Mn d De O f (0.2 ≦ a ≦ 1.2, b + c + d + e = 1, 0 ≦ e <1, D is Li, Fe, Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Al, Zr, Ti, P, Ga, Ge, V, Mo, Nb, W, La, Ni, Co And at least one element, 1.7 ≦ f ≦ 2.1), and Li 2 MnO 3 .

前記一般式の中のb:c:dの比率は、0.5:0.2:0.3、1/3:1/3:1/3、0.5:0:0.5、0.75:0.10:0.15、0:0:1、1:0:0、及び0:1:0から選ばれる少なくとも1種類であることが良い。   The ratio of b: c: d in the above general formula is 0.5: 0.2: 0.3, 1/3: 1/3: 1/3, 0.5: 0: 0.5, 0 .75: 0.10: 0.15, 0: 0: 1, 1: 0: 0, and 0: 1: 0 are preferable.

即ち、層状岩塩構造をもつリチウム金属複合酸化物の具体例としては、LiNi0.5Co0.2Mn0.3、LiNi1/3Co1/3Mn1/3、LiNi0.5Mn0.5、LiNi0.75Co0.1Mn0.15、LiMnO、LiNiO、及びLiCoOから選ばれる少なくとも一種であることがよい。 That is, specific examples of the lithium metal composite oxide having a layered rock salt structure include LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0. .5 Mn 0.5 O 2 , LiNi 0.75 Co 0.1 Mn 0.15 O 2 , LiMnO 2 , LiNiO 2 , and LiCoO 2 may be at least one kind.

スピネル構造をもつリチウム金属複合酸化物は、一般式:Lix(AyMn2-y)O4(Aは、Ca、Mg、S、Si、Na、K、Al、P、Ga、Geから選ばれる少なくとも1の元素、及び遷移金属元素から選ばれる少なくとも1種の金属元素、0<x≦2.2、0<y≦1)で表されると良い。一般式の中のAを構成し得る遷移金属元素は、例えば、Fe、Cr、Cu、Zn、Zr、Ti、V、Mo、Nb、W、La、Ni、Coから選ばれる少なくとも1の元素であるとよい。スピネル構造をもつリチウム金属複合酸化物の具体例としては、LiMn、LiMn、LiNi0.5Mn1.5から選ばれる少なくとも一種であることがよい。 The lithium metal composite oxide having a spinel structure has a general formula: Li x (A y Mn 2-y ) O 4 (A is Ca, Mg, S, Si, Na, K, Al, P, Ga, Ge) It is preferable that at least one element selected and at least one metal element selected from transition metal elements, 0 <x ≦ 2.2, 0 <y ≦ 1). The transition metal element that can constitute A in the general formula is, for example, at least one element selected from Fe, Cr, Cu, Zn, Zr, Ti, V, Mo, Nb, W, La, Ni, and Co. There should be. Specific examples of the lithium metal composite oxide having a spinel structure are preferably at least one selected from LiMn 2 O 4 , Li 2 Mn 2 O 4 , and LiNi 0.5 Mn 1.5 O 4 .

リチウム金属複合酸化物は、上記の組成式を基本組成とすればよく、基本組成に含まれる金属元素を他の金属元素で置換したものも使用可能であるし、Mgなどの他の金属元素を基本組成のものに加えて金属酸化物としてもよい。   The lithium metal composite oxide may be based on the above composition formula as a basic composition, and the metal element contained in the basic composition may be replaced with another metal element, and other metal elements such as Mg may be used. In addition to the basic composition, a metal oxide may be used.

リチウム金属複合酸化物は、例えば、溶融塩法、水熱法、固相法などにより製造される。この中、溶融塩法では、溶融塩原料としてアルカリ成分が用いられるため、合成後にリチウム金属複合酸化物表面にアルカリ成分が残り、時間経過とともに粘度を上昇させるおそれがある。溶融塩法で合成されたリチウム金属複合酸化物は、本発明の電極合剤の製造方法を行うことの意義が大きい。水熱法及び固相法でも、水酸化リチウムや炭酸リチウムなどのアルカリ成分が残る場合があり、その場合には本発明の電極合剤の製造方法を適用することの意義がある。   The lithium metal composite oxide is produced, for example, by a molten salt method, a hydrothermal method, a solid phase method, or the like. Among these, in the molten salt method, since an alkali component is used as a molten salt raw material, the alkali component remains on the surface of the lithium metal composite oxide after the synthesis, and there is a fear that the viscosity increases with the passage of time. The lithium metal composite oxide synthesized by the molten salt method is significant in carrying out the method for producing the electrode mixture of the present invention. Even in the hydrothermal method and the solid phase method, alkali components such as lithium hydroxide and lithium carbonate may remain, and in that case, it is meaningful to apply the method for producing an electrode mixture of the present invention.

溶融塩法を用いてリチウム金属複合酸化物を製造するために、金属元素を含む金属化合物を含む金属化合物原料を、少なくともリチウム源を含み、前記リチウム金属複合酸化物に含まれるリチウムの理論組成を超えるモル比のリチウムを含む溶融塩原料を溶融した溶融塩中で反応させる。   In order to produce a lithium metal composite oxide using a molten salt method, a metal compound raw material containing a metal compound containing a metal element, at least a lithium source, and a theoretical composition of lithium contained in the lithium metal composite oxide The molten salt raw material containing a molar ratio of lithium exceeding is reacted in the molten salt.

金属化合物原料は、Liを除く一種以上の金属元素を供給する原料である。金属元素を含む金属化合物は、金属化合物原料に必須である。金属化合物に含まれる金属元素の価数に特に限定はない。目的のリチウム含有複合酸化物に含まれる金属元素の価数以下にするのが好ましい。これは、リチウム金属複合酸化物の製造方法では、溶融塩原料の酸化状態を調整することで、合成されるリチウム含有複合酸化物に含まれる金属元素の価数を調整可能であるためである。たとえば、溶融塩原料全体を100モル%としたとき、水酸化リチウムを50モル%以上含む場合には、高酸化状態の溶融塩中で反応が進むため、たとえば2価や3価のMnであっても4価のMnになる。したがって、溶融塩法に使用される一般的な金属化合物であれば使用可能である。具体的には、Mn供給源であれば、二酸化マンガン(MnO)、三酸化二マンガン(Mn)、一酸化マンガン(MnO)、四三酸化マンガン(Mn)水酸化マンガン(Mn(OH))、オキシ水酸化マンガン(MnOOH)、等が挙げられる。Co供給源であれば、酸化コバルト(CoO、Co)、硝酸コバルト(Co(NO・6HO)、水酸化コバルト(Co(OH))、塩化コバルト(CoCl・6HO)、硫酸コバルト(Co(SO)・7HO)、等が挙げられる。Ni供給源であれば、酸化ニッケル(NiO)、硝酸ニッケル(Ni(NO・6HO)、硫酸ニッケル(NiSO・6HO)、塩化ニッケル(NiCl・6HO)、等が挙げられる。Fe供給源であれば、水酸化鉄(Fe(OH))、塩化鉄(FeCl・6HO)、酸化鉄(Fe)、硝酸鉄(Fe(NO・9HO)、硫酸鉄(FeSO・9HO)、等が挙げられる。これらの酸化物、水酸化物または金属塩に含まれる金属元素の一部が他の金属元素(たとえば、Cr、Mn、Fe、Co、Ni、Al、Mgなど)で置換された金属化合物であってもよい。なかでも、Mn供給源であればMnO、Co供給源であればCo(OH)、Ni供給源であればNi(OH)、Fe供給源であればFe(OH)、が好ましく、入手が容易であるとともに、比較的高純度のものが入手しやすい。 The metal compound raw material is a raw material for supplying one or more metal elements excluding Li. A metal compound containing a metal element is essential for a metal compound raw material. There is no particular limitation on the valence of the metal element contained in the metal compound. It is preferable to make it below the valence of the metal element contained in the target lithium-containing composite oxide. This is because in the method for producing a lithium metal composite oxide, the valence of the metal element contained in the synthesized lithium-containing composite oxide can be adjusted by adjusting the oxidation state of the molten salt raw material. For example, when the total amount of the molten salt raw material is 100 mol%, if lithium hydroxide is contained in an amount of 50 mol% or more, the reaction proceeds in the molten salt in a highly oxidized state. Even it becomes tetravalent Mn. Therefore, any general metal compound used in the molten salt method can be used. Specifically, if it is a Mn supply source, manganese dioxide (MnO 2 ), dimanganese trioxide (Mn 2 O 3 ), manganese monoxide (MnO), manganese trioxide (Mn 3 O 4 ) manganese hydroxide (Mn (OH) 2 ), manganese oxyhydroxide (MnOOH), and the like. Co sources include cobalt oxide (CoO, Co 3 O 4 ), cobalt nitrate (Co (NO 3 ) 2 .6H 2 O), cobalt hydroxide (Co (OH) 2 ), cobalt chloride (CoCl 2. 6H 2 O), cobalt sulfate (Co (SO 4 ) · 7H 2 O), and the like. If it is Ni supply source, nickel oxide (NiO), nickel nitrate (Ni (NO 3 ) 2 .6H 2 O), nickel sulfate (NiSO 4 .6H 2 O), nickel chloride (NiCl 2 .6H 2 O), Etc. If Fe source, iron hydroxide (Fe (OH) 3), iron (FeCl 3 · 6H 2 O) chloride, iron oxide (Fe 2 O 3), iron nitrate (Fe (NO 3) 3 · 9H 2 O), iron sulfate (FeSO 4 · 9H 2 O) , and the like. Some of the metal elements contained in these oxides, hydroxides or metal salts are metal compounds substituted with other metal elements (for example, Cr, Mn, Fe, Co, Ni, Al, Mg, etc.). May be. Among these, MnO 2 is preferable for Mn supply sources, Co (OH) 2 is preferable for Co supply sources, Ni (OH) 2 is preferable for Ni supply sources, and Fe (OH) 3 is preferable for Fe supply sources. It is easy to obtain, and it is easy to obtain a relatively high purity.

また、金属化合物原料が二種以上の金属元素を含む場合は、それらを含む化合物を前駆体としてあらかじめ合成するとよい。すなわち、原料を調製する前に、少なくとも二種の金属元素を含む水溶液をアルカリ性にして沈殿物を得る前駆体合成工程を行うとよい。水溶液としては、水溶性の無機塩、具体的には金属元素の硝酸塩、硫酸塩、塩化物塩などを水に溶解し、アルカリ金属水酸化物、アンモニア水などで水溶液をアルカリ性にすると、前駆体は沈殿物として生成される。合成するリチウム含有複合酸化物がNiを含むリチウムニッケル系複合酸化物である場合には、前駆体を用いた製造方法を採用することで、除去が困難な副生成物(NiO)の生成が抑制されるため好ましい。   Moreover, when a metal compound raw material contains 2 or more types of metal elements, it is good to synthesize | combine beforehand by making the compound containing them into a precursor. That is, before preparing the raw material, it is preferable to perform a precursor synthesis step in which an aqueous solution containing at least two metal elements is made alkaline to obtain a precipitate. As an aqueous solution, a water-soluble inorganic salt, specifically, a nitrate, sulfate, or chloride salt of a metal element is dissolved in water, and the aqueous solution is made alkaline with an alkali metal hydroxide, aqueous ammonia, etc. Is produced as a precipitate. When the lithium-containing composite oxide to be synthesized is a lithium nickel-based composite oxide containing Ni, the production of by-products (NiO) that are difficult to remove is suppressed by adopting a manufacturing method using a precursor. Therefore, it is preferable.

溶融塩原料は、水酸化リチウム、硝酸リチウム、及び炭酸リチウムの群から選ばれる1種以上を用いるとよい。水酸化リチウムは、無水物(LiOH)を用いても水和物(LiOH・HO)を用いてもよい。水酸化リチウムの配合割合に特に限定はなく、たとえば、溶融塩原料全体を100モル%としたとき、50モル%以上の水酸化リチウムを含むとよい。水酸化リチウムは、リチウム塩のうち最も塩基性が高いため、溶融塩の酸化力を高めることを目的としても使用される。したがって、たとえば、結晶構造が層状岩塩構造に属するリチウム含有複合酸化物を高品質で効率よく製造するには、溶融塩原料に占める水酸化リチウムの割合を、好ましくは90モル%以上、さらに好ましくは95モル%以上とするとよい。 As the molten salt raw material, one or more selected from the group of lithium hydroxide, lithium nitrate, and lithium carbonate may be used. Lithium hydroxide may be anhydrous (LiOH) or hydrated (LiOH.H 2 O). The mixing ratio of lithium hydroxide is not particularly limited. For example, when the total amount of the molten salt raw material is 100 mol%, 50 mol% or more of lithium hydroxide may be included. Since lithium hydroxide has the highest basicity among lithium salts, it is also used for the purpose of enhancing the oxidizing power of the molten salt. Therefore, for example, in order to produce a lithium-containing composite oxide whose crystal structure belongs to a layered rock salt structure with high quality and efficiency, the proportion of lithium hydroxide in the molten salt raw material is preferably 90 mol% or more, more preferably It is good to set it as 95 mol% or more.

また、上記の溶融塩原料の配合割合は、溶融塩原料に含まれるリチウムに対する、目的のリチウム金属複合酸化物に含まれるリチウムの理論組成(複合酸化物のLi/溶融塩原料のLi)で規定することも可能である。溶融塩原料は、リチウムの供給源のみならず、溶融塩の酸化状態を調整する役割を果たす。そのため、溶融塩原料は、製造されるリチウム金属複合酸化物に含まれるリチウムの理論組成を超えるリチウムを含む。リチウム金属複合酸化物のLi/溶融塩原料のLiは、モル比で1未満であればよいが、0.01〜0.4が好ましく、さらに好ましくは、0.013〜0.3、0.02〜0.2である。0.01未満であると、使用する溶融塩原料の量に対して生成するリチウム金属複合酸化物の量が少なくなるため、製造効率の面で望ましくない。また、0.4を超えると、金属化合物原料を分散させる溶融塩の量が不足し、溶融塩中でリチウム金属複合酸化物が凝集したり粒成長したりすることがあるため望ましくない。   The blending ratio of the molten salt raw material is defined by the theoretical composition of lithium contained in the target lithium metal composite oxide (Li of the composite oxide / Li of the molten salt raw material) with respect to lithium contained in the molten salt raw material. It is also possible to do. The molten salt raw material plays a role of adjusting not only the lithium supply source but also the oxidation state of the molten salt. Therefore, the molten salt raw material contains lithium exceeding the theoretical composition of lithium contained in the manufactured lithium metal composite oxide. Li in the lithium metal composite oxide / Li in the molten salt raw material may be less than 1 in molar ratio, but is preferably 0.01 to 0.4, and more preferably 0.013 to 0.3, 0.0. 02 to 0.2. If it is less than 0.01, the amount of the lithium metal composite oxide produced with respect to the amount of the molten salt raw material to be used decreases, which is not desirable in terms of production efficiency. On the other hand, if it exceeds 0.4, the amount of the molten salt in which the metal compound raw material is dispersed is insufficient, and the lithium metal composite oxide may aggregate or grow in the molten salt.

溶融反応での反応温度は、溶融塩の温度に相当し、溶融塩原料の融点以上である。反応温度は、合成するリチウム含有複合酸化物の構造に応じて適宜選択すればよい。たとえば、スピネル構造のリチウムマンガン系酸化物を合成する場合には、それほど高い反応活性が必要ではないため、300〜550℃程度であればよい。一方、層状岩塩構造のリチウム含有複合酸化物を合成するには、350℃未満では溶融塩の反応活性が十分ではなく層状岩塩構造を有する所望のリチウム金属複合酸化物を高純度で製造することが困難である。また、反応温度が350℃以上であれば、得られる複合酸化物の結晶構造が安定する。したがって、水酸化リチウムと硝酸リチウムとの混合溶融塩であって融点が350℃未満であっても、反応温度は350℃以上とする。好ましい反応温度の下限は、400℃以上、450℃以上、500℃以上さらには550℃以上である。反応温度が高いほど、層状岩塩構造をもつリチウム金属複合酸化物を選択率よく製造することができ、また、結晶性の高いリチウム金属複合酸化物が得られるが、硝酸リチウムは高温(約600℃)になると激しく分解する。そのため、硝酸リチウムを含む溶融塩原料を使用する場合には、500℃以下であれば比較的安定した条件の下でリチウム金属複合酸化物の合成を行うことができる。この反応温度で30分以上さらに望ましくは1〜6時間保持すれば、溶融塩及び金属化合物は十分に反応する。また、溶融反応を酸素含有雰囲気、たとえば大気中、酸素ガス及び/又はオゾンガスを含む雰囲気中で行うと、層状岩塩構造を有するリチウム含有複合酸化物が単相で得られやすい。酸素ガスを含有する雰囲気であれば、酸素ガス濃度を20〜100体積%さらには50〜100体積%とするのがよい。なお、酸素濃度を高くするほど、合成されるリチウム金属複合酸化物の粒子径は小さくなる傾向にある。   The reaction temperature in the melting reaction corresponds to the temperature of the molten salt and is equal to or higher than the melting point of the molten salt raw material. What is necessary is just to select reaction temperature suitably according to the structure of the lithium containing complex oxide to synthesize | combine. For example, when synthesizing a spinel-structured lithium manganese oxide, not so high reaction activity is required, and therefore, it may be about 300 to 550 ° C. On the other hand, in order to synthesize a lithium-containing composite oxide having a layered rock salt structure, the reaction activity of the molten salt is not sufficient at less than 350 ° C., and a desired lithium metal composite oxide having a layered rock salt structure can be produced with high purity Have difficulty. Further, when the reaction temperature is 350 ° C. or higher, the crystal structure of the obtained composite oxide is stabilized. Therefore, even if it is a mixed molten salt of lithium hydroxide and lithium nitrate and the melting point is less than 350 ° C., the reaction temperature is 350 ° C. or higher. The minimum of preferable reaction temperature is 400 degreeC or more, 450 degreeC or more, 500 degreeC or more, and also 550 degreeC or more. The higher the reaction temperature, the higher the selectivity of the lithium metal composite oxide having a layered rock salt structure and the higher the crystallinity of the lithium metal composite oxide. ) And decomposes violently. Therefore, when using a molten salt raw material containing lithium nitrate, the lithium metal composite oxide can be synthesized under relatively stable conditions as long as it is 500 ° C. or lower. If the reaction temperature is maintained for 30 minutes or more, more desirably 1 to 6 hours, the molten salt and the metal compound are sufficiently reacted. In addition, when the melting reaction is performed in an oxygen-containing atmosphere, for example, in the air, an atmosphere containing oxygen gas and / or ozone gas, a lithium-containing composite oxide having a layered rock salt structure is easily obtained in a single phase. If the atmosphere contains oxygen gas, the oxygen gas concentration is preferably 20 to 100% by volume, more preferably 50 to 100% by volume. Note that the particle diameter of the synthesized lithium metal composite oxide tends to be smaller as the oxygen concentration is higher.

(接触工程)
接触工程では、リチウム金属複合酸化物を硝酸塩水溶液に接触させる。
(Contact process)
In the contacting step, the lithium metal composite oxide is brought into contact with an aqueous nitrate solution.

硝酸塩水溶液は、硝酸塩を含む水溶液である。硝酸塩は、硝酸マグネシウム(Mg(NO)、硝酸アルミニウムAl(NOなどが挙げられるが、中でも、硝酸マグネシウムがよい。硝酸塩が硝酸マグネシウムである場合に、リチウム金属複合酸化物を、Mg(NO水溶液に接触させると、リチウム金属複合酸化物の表面にMg(OH)やMgOが残り、リチウム金属複合酸化物の安定性が増すからである。 The aqueous nitrate solution is an aqueous solution containing nitrate. Examples of the nitrate include magnesium nitrate (Mg (NO 3 ) 2 ) and aluminum nitrate Al (NO 3 ) 3 , among which magnesium nitrate is preferable. When the nitrate is magnesium nitrate, when the lithium metal composite oxide is brought into contact with the Mg (NO 3 ) 2 aqueous solution, Mg (OH) 2 and MgO remain on the surface of the lithium metal composite oxide, and the lithium metal composite oxide This is because the stability of things increases.

硝酸塩水溶液1リットル当たりの硝酸塩のモル濃度は、5mmol/L以上200mmol/L以下であることが好ましい。Mg(NO水溶液1リットル当たりの硝酸塩のモル濃度の下限値は、5mmol/L、更には50mmol/Lであることが好ましく、上限値は、200mmol/L、更には100mmol/Lであることが好ましい。このモル濃度が過少の場合には、電極合剤が、時間経過に伴い粘度上昇するおそれがある。このモル濃度が過剰である場合には、電極合剤の初期粘度が増加するおそれがある。 The molar concentration of nitrate per liter of aqueous nitrate solution is preferably 5 mmol / L or more and 200 mmol / L or less. The lower limit of the molar concentration of nitrate per liter of Mg (NO 3 ) 2 aqueous solution is preferably 5 mmol / L, more preferably 50 mmol / L, and the upper limit is 200 mmol / L, more preferably 100 mmol / L. It is preferable. When this molar concentration is too low, the electrode mixture may increase in viscosity with time. When this molar concentration is excessive, the initial viscosity of the electrode mixture may increase.

リチウム金属複合酸化物を硝酸塩水溶液に接触させる手法について、以下に例示する。
・硝酸塩水溶液にリチウム金属複合酸化物を浸漬し、必要に応じて撹拌機などで撹拌する。その後、フィルターなどの濾過装置で層状化合物を硝酸塩水溶液から分離する。
・硝酸塩水溶液をリチウム金属複合酸化物にシャワー掛けする。
・硝酸塩水溶液の流水中にリチウム金属複合酸化物を置く。
The method for bringing the lithium metal composite oxide into contact with the aqueous nitrate solution will be exemplified below.
・ Immerse the lithium metal composite oxide in an aqueous nitrate solution and stir with a stirrer if necessary. Thereafter, the layered compound is separated from the nitrate aqueous solution by a filtering device such as a filter.
・ Show nitrate solution on lithium metal composite oxide.
・ Place lithium metal composite oxide in running nitrate water.

いずれの手法でも、リチウム金属複合酸化物1kgに対して、硝酸塩水溶液を3.3リットル以上用いることがよい。好ましくは、リチウム金属複合酸化物1kgに対する硝酸塩水溶液の使用量の下限は1リットル以上、2リットル以上であり、上限は10リットル以下、5リットル以下であることが好ましい。   In any method, it is preferable to use 3.3 liters or more of an aqueous nitrate solution with respect to 1 kg of the lithium metal composite oxide. Preferably, the lower limit of the amount of the nitrate aqueous solution used with respect to 1 kg of the lithium metal composite oxide is 1 liter or more and 2 liters or more, and the upper limit is preferably 10 liters or less and 5 liters or less.

接触工程を行ったリチウム金属複合酸化物には、必要に応じて、乾燥工程を行うとよい。乾燥工程では、接触工程を行ったリチウム金属複合酸化物を乾燥させる。リチウム金属複合酸化物を乾燥させるために、120℃以上300℃以下の温度にリチウム金属複合酸化物を置くとよい。その他、熱風乾燥、冷風乾燥でもよい。熱風乾燥の場合には、おおよそ40〜100℃の熱風を用いるとよい。冷風乾燥の場合には、おおよそ−5〜5℃の冷風を用いるとよい。   The lithium metal composite oxide subjected to the contact step may be subjected to a drying step as necessary. In the drying step, the lithium metal composite oxide subjected to the contact step is dried. In order to dry the lithium metal composite oxide, the lithium metal composite oxide may be placed at a temperature of 120 ° C. or higher and 300 ° C. or lower. In addition, hot air drying and cold air drying may be used. In the case of hot air drying, hot air of approximately 40 to 100 ° C. may be used. In the case of cold air drying, cold air of approximately −5 to 5 ° C. may be used.

(混合工程)
混合工程では、上記の接触工程、及び必要に応じて乾燥工程を行ったリチウム金属複合酸化物に、結着剤としてのPVdFを混合して電極合剤を形成する。電極合剤は、流動性をもつスラリー状を呈している。
(Mixing process)
In the mixing step, PVdF as a binder is mixed with the lithium metal composite oxide that has been subjected to the contact step and the drying step as necessary to form an electrode mixture. The electrode mixture is in the form of a slurry having fluidity.

リチウム金属複合酸化物は電極活物質の1種である。リチウム金属複合酸化物は、正極活物質として用いられることが多い。リチウム金属複合酸化物は、混合工程において、他の正極活物質と混合されてもよい。例えば、正極活物質は、リチウム金属複合酸化物と、LiMn、LiMn等のスピネルとの混合物で構成される固溶体を含んでいてもよい。 Lithium metal composite oxide is one type of electrode active material. Lithium metal composite oxide is often used as a positive electrode active material. The lithium metal composite oxide may be mixed with another positive electrode active material in the mixing step. For example, the positive electrode active material may include a solid solution composed of a mixture of a lithium metal composite oxide and a spinel such as LiMn 2 O 4 or Li 2 Mn 2 O 4 .

電極合剤は、電極活物質としてのリチウム金属複合酸化物、結着剤としてのPVdF、及び溶剤、並びに必要に応じて導電助剤を含む。   The electrode mixture includes a lithium metal composite oxide as an electrode active material, PVdF as a binder, a solvent, and a conductive aid as necessary.

ポリフッ化ビニリデン(PVdF)は、結着剤としての機能をもつ成分である。電極合剤には、PVdFとともに、ほかの結着剤を含めてもよい。結着剤としては、PVdFの他に、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂を含んでいてもよい。   Polyvinylidene fluoride (PVdF) is a component having a function as a binder. The electrode mixture may contain other binders together with PVdF. In addition to PVdF, the binder includes fluorine-containing resins such as polytetrafluoroethylene and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, and alkoxysilyl group-containing resins. You may go out.

電極合剤において、リチウム金属複合酸化物100質量部に対するPVdFの質量比は、2質量部以上5質量部以下であることがよく、更には3質量部以上4質量部以下であることが好ましい。リチウム金属複合酸化物に対するPVdFの質量比が過大である場合には、電極のエネルギー密度が低くなるおそれがある。リチウム金属複合酸化物に対するPVdFの質量比が過少である場合には、電極の成形性が低下するおそれがある。   In the electrode mixture, the mass ratio of PVdF to 100 parts by mass of the lithium metal composite oxide is preferably 2 parts by mass or more and 5 parts by mass or less, and more preferably 3 parts by mass or more and 4 parts by mass or less. When the mass ratio of PVdF to the lithium metal composite oxide is excessive, the energy density of the electrode may be lowered. When the mass ratio of PVdF to the lithium metal composite oxide is too small, the moldability of the electrode may be reduced.

電極合剤中の、リチウム金属複合酸化物に対するPVdFの配合割合は、質量比で、リチウム金属複合酸化物:PVdF=1:0.005〜1:0.5であるのが好ましい。PVdFが少なすぎると電極の成形性が低下し、また、PVdFが多すぎると電極のエネルギー密度が低くなるためである。   The blending ratio of PVdF to lithium metal composite oxide in the electrode mixture is preferably a mass ratio of lithium metal composite oxide: PVdF = 1: 0.005 to 1: 0.5. This is because when the PVdF is too small, the moldability of the electrode is lowered, and when the PVdF is too much, the energy density of the electrode is lowered.

電極合剤には、更に導電助剤を含めてもよい。導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、および各種金属粒子などが例示される。これらの導電助剤を単独または二種以上組み合わせて活物質層に添加することができる。   The electrode mixture may further contain a conductive additive. The conductive assistant is added to increase the conductivity of the electrode. Therefore, the conductive auxiliary agent may be added arbitrarily when the electrode conductivity is insufficient, and may not be added when the electrode conductivity is sufficiently excellent. The conductive auxiliary agent may be any chemically inert electronic high conductor, such as carbon black, graphite, acetylene black, ketjen black (registered trademark), vapor grown carbon fiber (Vapor Grown Carbon). Fiber: VGCF) and various metal particles are exemplified. These conductive assistants can be added to the active material layer alone or in combination of two or more.

電極合剤中の、リチウム金属複合酸化物に対する導電助剤の配合割合は、質量比で、電極活物質:導電助剤=1:0.05〜1:0.3であるのが好ましい。   The mixing ratio of the conductive additive to the lithium metal composite oxide in the electrode mixture is preferably a mass ratio of electrode active material: conductive auxiliary = 1: 0.05 to 1: 0.3.

電極合剤に含まれる溶剤は、N−メチル−2−ピロリドン(NMP)、メタノール、メチルイソブチルケトン、水を例示できる。溶剤を含む電極合剤全体を100体積%としたときに、溶剤の含有量は、50体積%以上85体積%以下であることが好ましい。   Examples of the solvent contained in the electrode mixture include N-methyl-2-pyrrolidone (NMP), methanol, methyl isobutyl ketone, and water. When the entire electrode mixture containing a solvent is 100% by volume, the content of the solvent is preferably 50% by volume or more and 85% by volume or less.

接触工程を行ったリチウム金属複合酸化物、PVdF及び溶剤、並びに必要に応じて導電助剤を加えて混合してスラリー状とすることで、電極合剤が得られる。   An electrode mixture is obtained by adding a lithium metal composite oxide, PVdF and a solvent subjected to the contact step, and a solvent, and if necessary, mixing them to form a slurry.

電極合剤の粘度は、25000mPA・s以下であることがよく、更には15000mPA・s以下、10000mPA・s以下であることが好ましい。電極合剤の粘度が過剰に高い場合には、集電体への塗布のときに、塗布終端部に尾引きが生じるなどして、塗布時の取り扱い性が低下するおそれがある。   The viscosity of the electrode mixture is preferably 25000 mPA · s or less, more preferably 15000 mPA · s or less and 10000 mPA · s or less. If the viscosity of the electrode mixture is excessively high, tailing may occur at the end of application during application to the current collector, and the handleability during application may be reduced.

(電極)
上記で製造された電極合剤が集電体の表面に塗布されることで、電極が形成される。集電体の表面に電極合剤を塗布する方法には、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法が挙げられる。電極合剤は、集電体の表面に塗布後、乾燥する。溶剤としては、電極密度を高めるべく、乾燥後のものを圧縮しても良い。
(electrode)
An electrode is formed by apply | coating the electrode mixture manufactured above to the surface of an electrical power collector. Examples of methods for applying the electrode mixture to the surface of the current collector include conventionally known methods such as a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method, and a curtain coating method. The electrode mixture is applied to the surface of the current collector and then dried. The solvent may be compressed after drying to increase the electrode density.

集電体は、使用する活物質に適した電圧に耐え得る金属であれば特に制限はない。集電体は、非水系二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。   The current collector is not particularly limited as long as it is a metal that can withstand a voltage suitable for the active material to be used. The current collector refers to a chemically inert electronic high conductor that keeps a current flowing through an electrode during discharging or charging of a non-aqueous secondary battery. As the current collector, at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel, etc. Metal materials can be exemplified. The current collector may be covered with a known protective layer. What collected the surface of the electrical power collector by the well-known method may be used as an electrical power collector.

集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm〜100μmの範囲内であることが好ましい。   The current collector can take the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector. When the current collector is in the form of foil, sheet or film, the thickness is preferably in the range of 1 μm to 100 μm.

(電池)
上記のように本発明の製造方法により製造された電極は、他方の電極及び電解質とともに電池を構成する。上記のように本発明の製造方法により製造された電極は、正極として用いられることが多く、負極と電解質とともに電池を構成することができる。特に、二次電池を構成することができ、電解質として非水系電解液を用いる場合には非水系二次電池を構成することができる。
(battery)
As described above, the electrode manufactured by the manufacturing method of the present invention constitutes a battery together with the other electrode and the electrolyte. As described above, the electrode manufactured by the manufacturing method of the present invention is often used as a positive electrode, and can constitute a battery together with a negative electrode and an electrolyte. In particular, a secondary battery can be configured, and when a non-aqueous electrolyte is used as the electrolyte, a non-aqueous secondary battery can be configured.

上記のように本発明の製造方法により製造された電極が正極である場合、非水系二次電池に用いられる負極は、集電体と、集電体の表面に結着させた負極合剤を有する。   When the electrode manufactured by the manufacturing method of the present invention is a positive electrode as described above, the negative electrode used in the non-aqueous secondary battery includes a current collector and a negative electrode mixture bound to the surface of the current collector. Have.

負極活物質としては、リチウムイオンなどの金属イオンを吸蔵及び放出し得る材料が使用可能である。したがって、リチウムイオンなどの金属イオンを吸蔵及び放出可能である単体、合金または化合物であれば特に限定はない。たとえば、負極活物質としてLiや、炭素、ケイ素、ゲルマニウム、錫などの14族元素、アルミニウム、インジウムなどの13族元素、亜鉛、カドミウムなどの12族元素、アンチモン、ビスマスなどの15族元素、マグネシウム、カルシウムなどのアルカリ土類金属、銀、金などの11族元素をそれぞれ単体で採用すればよい。ケイ素などを負極活物質に採用すると、ケイ素1原子が複数のリチウムと反応するため、高容量の活物質となるが、リチウムの吸蔵及び放出に伴う体積の膨張及び収縮が顕著となるとの問題が生じる恐れがあるため、当該恐れの軽減のために、ケイ素などの単体に遷移金属などの他の元素を組み合わせた合金又は化合物を負極活物質として採用するのも好適である。合金又は化合物の具体例としては、Ag−Sn合金、Cu−Sn合金、Co−Sn合金等の錫系材料、各種黒鉛などの炭素系材料、ケイ素単体と二酸化ケイ素に不均化するSiO(0.3≦x≦1.6)などのケイ素系材料、ケイ素単体若しくはケイ素系材料と炭素系材料を組み合わせた複合体が挙げられる。また、負極活物質して、Nb、TiO、LiTi12、WO、MoO、Fe等の酸化物、又は、Li3−xN(M=Co、Ni、Cu)で表される窒化物を採用しても良い。負極活物質として、これらのものの一種以上を使用することができる。 As the negative electrode active material, a material that can occlude and release metal ions such as lithium ions can be used. Therefore, there is no particular limitation as long as it is a simple substance, alloy, or compound that can occlude and release metal ions such as lithium ions. For example, as a negative electrode active material, Li, group 14 elements such as carbon, silicon, germanium and tin, group 13 elements such as aluminum and indium, group 12 elements such as zinc and cadmium, group 15 elements such as antimony and bismuth, magnesium , Alkaline earth metals such as calcium, and group 11 elements such as silver and gold may be employed alone. When silicon or the like is used for the negative electrode active material, a silicon atom reacts with a plurality of lithiums, so that it becomes a high-capacity active material. However, there is a problem that volume expansion and contraction due to insertion and extraction of lithium becomes significant. In order to reduce the fear, it is also preferable to employ an alloy or compound in which another element such as a transition metal is combined with a simple substance such as silicon as the negative electrode active material. Specific examples of the alloy or compound include tin-based materials such as Ag-Sn alloy, Cu-Sn alloy, Co-Sn alloy, carbon-based materials such as various graphites, SiO x (disproportionated to silicon simple substance and silicon dioxide). Examples thereof include silicon-based materials such as 0.3 ≦ x ≦ 1.6), silicon alone, or composites obtained by combining silicon-based materials and carbon-based materials. In addition, as the negative electrode active material, oxides such as Nb 2 O 5 , TiO 2 , Li 4 Ti 5 O 12 , WO 2 , MoO 2 , Fe 2 O 3 , or Li 3-x M x N (M = A nitride represented by (Co, Ni, Cu) may be employed. One or more of these materials can be used as the negative electrode active material.

負極は、集電体と、集電体の表面に結着させた負極合剤を有する。負極の集電体は、例えば、正極の集電体で説明したものを採用できる。   The negative electrode has a current collector and a negative electrode mixture bound to the surface of the current collector. As the negative electrode current collector, for example, the one described for the positive electrode current collector can be adopted.

負極合剤は負極活物質、並びに必要に応じて結着剤及び/又は導電助剤を含む。   The negative electrode mixture contains a negative electrode active material and, if necessary, a binder and / or a conductive aid.

負極の集電体は、使用する活物質に適した電圧に耐え得る金属であれば特に制限はなく、例えば、正極の集電体で説明したものを採用できる。負極の結着剤および導電助剤は正極で説明したものを採用できる。   The negative electrode current collector is not particularly limited as long as it is a metal that can withstand a voltage suitable for the active material to be used, and for example, the one described for the positive electrode current collector can be adopted. As the negative electrode binder and the conductive additive, those described for the positive electrode can be adopted.

非水系二次電池には必要に応じてセパレータが用いられる。セパレータは、正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンなどの金属イオンを通過させるものである。セパレータとしては、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、セラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布、織布などを挙げることができる。また、セパレータは多層構造としてもよい。電解液は粘度がやや高く極性が高いため、水などの極性溶媒が浸み込みやすい膜が好ましい。具体的には、存在する空隙の90%以上に水などの極性溶媒が浸み込む膜がさらに好ましい。   A separator is used in the non-aqueous secondary battery as necessary. The separator separates the positive electrode and the negative electrode and allows metal ions such as lithium ions to pass while preventing a short circuit of current due to contact between the two electrodes. As separators, natural resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramide (Aromatic polyamide), polyester, polyacrylonitrile, etc., polysaccharides such as cellulose, amylose, fibroin, keratin, lignin, suberin, etc. Examples thereof include porous bodies, nonwoven fabrics, and woven fabrics using one or more electrically insulating materials such as polymers and ceramics. The separator may have a multilayer structure. Since the electrolytic solution has a slightly high viscosity and a high polarity, a membrane in which a polar solvent such as water can easily penetrate is preferable. Specifically, a film in which a polar solvent such as water soaks into 90% or more of the existing voids is more preferable.

正極および負極に必要に応じてセパレータを挟装させ電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極を捲いた捲回型のいずれの型にしても良い。正極の集電体および負極の集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に、電極体に電解液を加えて非水系二次電池とするとよい。また、本発明の非水系二次電池は、電極に含まれる活物質の種類に適した電圧範囲で充放電を実行されればよい。   A separator is sandwiched between the positive electrode and the negative electrode as necessary to form an electrode body. The electrode body may be either a stacked type in which the positive electrode, the separator and the negative electrode are stacked, or a wound type in which the positive electrode, the separator and the negative electrode are sandwiched. After connecting between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal connected to the outside using a current collecting lead or the like, an electrolyte is added to the electrode body to add a non-aqueous secondary battery It is good to do. Moreover, the non-aqueous secondary battery of this invention should just be charged / discharged in the voltage range suitable for the kind of active material contained in an electrode.

本発明の非水系二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。   The shape of the nonaqueous secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a laminate shape can be adopted.

本発明の非水系二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部に非水系二次電池による電気エネルギーを使用している車両であればよく、たとえば、電気車両、ハイブリッド車両などであるとよい。車両に非水系二次電池を搭載する場合には、非水系二次電池を複数直列に接続して組電池とするとよい。非水系二次電池は、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明の非水系二次電池は、風量発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。   The non-aqueous secondary battery of the present invention may be mounted on a vehicle. The vehicle may be a vehicle that uses electric energy from a non-aqueous secondary battery for all or a part of its power source. For example, the vehicle may be an electric vehicle or a hybrid vehicle. When a non-aqueous secondary battery is mounted on a vehicle, a plurality of non-aqueous secondary batteries may be connected in series to form an assembled battery. Examples of the non-aqueous secondary battery include various home electric appliances, office equipment, industrial equipment, and the like driven by batteries, such as personal computers and mobile communication devices, in addition to vehicles. Further, the non-aqueous secondary battery of the present invention includes a wind power generation, solar power generation, hydroelectric power generation and other power system power storage device and power smoothing device, power for ships and / or auxiliary power supply sources, aircraft, Power supply for spacecraft and / or auxiliary equipment, auxiliary power supply for vehicles that do not use electricity as a power source, power supply for mobile home robots, power supply for system backup, power supply for uninterruptible power supply, You may use for the electrical storage apparatus which stores temporarily the electric power required for charge in the charging station for electric vehicles.

(比較例1)
まず、溶融塩法で合成されたリチウム金属複合酸化物LiNi0.5Co0.2Mn0.3(NCM)を準備した。LiNi0.5Co0.2Mn0.3は、層状岩塩構造をもつ。LiNi0.5Co0.2Mn0.3(NCM)、導電助剤としてのアセチレンブラック(AB)、結着材としてのポリフッ化ビニリデン(PVdF)、N−メチル−2−ピロリドン(NMP)を、質量比で、NCM:AB:PVdF:NMP=54.2:1.8:3:41の割合で混合して、正極用スラリー(電極合剤)を作製した(混合工程)。得られた正極用スラリーは比較例1とした。
(Comparative Example 1)
First, a lithium metal composite oxide LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM) synthesized by a molten salt method was prepared. LiNi 0.5 Co 0.2 Mn 0.3 O 2 has a layered rock salt structure. LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM), acetylene black (AB) as a conductive additive, polyvinylidene fluoride (PVdF) as a binder, N-methyl-2-pyrrolidone (NMP) ) At a mass ratio of NCM: AB: PVdF: NMP = 54.2: 1.8: 3: 41 to prepare a positive electrode slurry (electrode mixture) (mixing step). The obtained positive electrode slurry was Comparative Example 1.

(実施例1)
LiNi0.5Co0.2Mn0.3に、接触工程及び乾燥工程を行った。接触工程では、LiNi0.5Co0.2Mn0.3をMg(NO水溶液で洗浄した。Mg(NO水溶液は、水にMg(NOを溶解させている。Mg(NO水溶液のMg(NO濃度は5mM(5mmol/L)であった。Mg(NO水溶液(常温)0.2リットルをビーカーに入れた。Mg(NO水溶液1リットル当たりLiNi0.5Co0.2Mn0.3を60g投入し、撹拌器で10分間撹拌した。
Example 1
LiNi 0.5 Co 0.2 Mn 0.3 O 2 was subjected to a contact process and a drying process. In the contact step, LiNi 0.5 Co 0.2 Mn 0.3 O 2 was washed with an Mg (NO 3 ) 2 aqueous solution. The Mg (NO 3 ) 2 aqueous solution has Mg (NO 3 ) 2 dissolved in water. Mg (NO 3) 2 aqueous Mg (NO 3) 2 concentration was 5mM (5mmol / L). 0.2 liter of Mg (NO 3 ) 2 aqueous solution (normal temperature) was put in a beaker. 60 g of LiNi 0.5 Co 0.2 Mn 0.3 O 2 was added per liter of Mg (NO 3 ) 2 aqueous solution and stirred for 10 minutes with a stirrer.

次に、Mg(NO水溶液をフィルターに通過させて、Mg(NO水溶液に含まれているLiNi0.5Co0.2Mn0.3をろ別した。 Next, the Mg (NO 3 ) 2 aqueous solution was passed through a filter, and LiNi 0.5 Co 0.2 Mn 0.3 O 2 contained in the Mg (NO 3 ) 2 aqueous solution was separated by filtration.

乾燥工程において、LiNi0.5Co0.2Mn0.3を150℃、1時間の条件で乾燥させた。 In the drying step, LiNi 0.5 Co 0.2 Mn 0.3 O 2 was dried at 150 ° C. for 1 hour.

乾燥後のLiNi0.5Co0.2Mn0.3を、比較例1と同様の混合工程を行って、正極用スラリーを得た。得られた正極用スラリーは実施例1とした。 The dried LiNi 0.5 Co 0.2 Mn 0.3 O 2 was subjected to the same mixing step as in Comparative Example 1 to obtain a positive electrode slurry. The obtained positive electrode slurry was designated as Example 1.

(実施例2)
実施例2では、Mg(NO水溶液のMg(NO濃度が50mMである点を除いて、実施例1と同様に正極用スラリーを作成した。
(Example 2)
In Example 2, a positive electrode slurry was prepared in the same manner as in Example 1 except that the Mg (NO 3 ) 2 concentration of the Mg (NO 3 ) 2 aqueous solution was 50 mM.

(実施例3)
実施例2では、Mg(NO水溶液のMg(NO濃度が100mMである点を除いて、実施例1と同様に正極用スラリーを作成した。
(Example 3)
In Example 2, a positive electrode slurry was prepared in the same manner as in Example 1 except that the Mg (NO 3 ) 2 concentration of the Mg (NO 3 ) 2 aqueous solution was 100 mM.

(実施例4)
実施例2では、Mg(NO水溶液のMg(NO濃度が200mMである点を除いて、実施例1と同様に正極用スラリーを作成した。
Example 4
In Example 2, a positive electrode slurry was prepared in the same manner as in Example 1 except that the Mg (NO 3 ) 2 concentration of the Mg (NO 3 ) 2 aqueous solution was 200 mM.

(実施例5)
実施例2では、Mg(NO水溶液のMg(NO濃度が500mMである点を除いて、実施例1と同様に正極用スラリーを作成した。
(Example 5)
In Example 2, a positive electrode slurry was prepared in the same manner as in Example 1 except that the Mg (NO 3 ) 2 concentration of the Mg (NO 3 ) 2 aqueous solution was 500 mM.

(粘度測定)
実施例1〜5及び比較例1の正極用スラリーの初期粘度と2日(48時間)経過後の粘度を測定した。粘度は、B型粘度計により測定した。その結果を表1に示した。表1において、「水溶液中のMg(NO濃度」は、Mg(NO水溶液1リットル当たりに溶解しているMg(NOのモル濃度を示している。「初期粘度」は、リチウム金属複合酸化物に、AB、PVdF及びNMPを混合して正極用スラリーを作製した直後の正極用スラリーの粘度を示している。「2日後粘度」は、AB、PVdF及びNMPを混合して正極用スラリーを作製してから2日経過したときの正極用スラリーの粘度を示している。「粘度上昇率(%)」は、100×(2日後粘度―初期粘度)/初期粘度から算出される。
(Viscosity measurement)
The initial viscosity and the viscosity after 2 days (48 hours) of the positive electrode slurries of Examples 1 to 5 and Comparative Example 1 were measured. The viscosity was measured with a B-type viscometer. The results are shown in Table 1. In Table 1, “Mg (NO 3 ) 2 concentration in aqueous solution” indicates the molar concentration of Mg (NO 3 ) 2 dissolved per liter of Mg (NO 3 ) 2 aqueous solution. “Initial viscosity” indicates the viscosity of the positive electrode slurry immediately after the lithium metal composite oxide is mixed with AB, PVdF, and NMP to produce the positive electrode slurry. “Viscosity after 2 days” indicates the viscosity of the positive electrode slurry when two days have elapsed since the positive electrode slurry was prepared by mixing AB, PVdF, and NMP. “Viscosity increase rate (%)” is calculated from 100 × (viscosity after 2 days−initial viscosity) / initial viscosity.

Figure 0006176489
Figure 0006176489

表1に示すように、接触工程を行った実施例1〜5は、接触工程を行わなかった比較例1に比べて、粘度上昇率が低かった。実施例1〜3は、比較例1に比べて2日後粘度が低かった。実施例1、2は、比較例1に比べて初期粘度も低かった。水溶液中のMg(NO濃度が高くなるに従って、初期粘度及び2日後粘度も上昇した。このことから、リチウム金属複合酸化物はMg(NO水溶液で洗浄することで、粘度上昇が抑制できること、Mg(NO水溶液中のMg(NO濃度は5mM以上100mM以下であることで、粘度上昇を効果的に抑制できることがわかった。 As shown in Table 1, Examples 1-5 which performed the contact process had a low viscosity increase rate compared with the comparative example 1 which did not perform the contact process. In Examples 1 to 3, the viscosity after 2 days was lower than that of Comparative Example 1. In Examples 1 and 2, the initial viscosity was lower than that in Comparative Example 1. As the Mg (NO 3 ) 2 concentration in the aqueous solution increased, the initial viscosity and the viscosity after 2 days also increased. Therefore, lithium metal composite oxide by washing with Mg (NO 3) 2 solution, it is possible to suppress the viscosity increase, Mg (NO 3) Mg in 2 aqueous solution (NO 3) 2 concentration 5mM or 100mM or less It was found that the increase in viscosity can be effectively suppressed.

また、上記比較例1及び各実施例で用いるリチウム金属複合酸化物LiNi0.5Co0.2Mn0.3は、溶融塩法で作製した市販品を購入したものであるが、溶融塩法で合成したもので同様の測定を行った。溶融塩法で合成するときに溶融塩原料としてリチウムを用い、金属化合物原料に含まれるリチウムとあわせて、原料全体で、合成物であるリチウム金属複合酸化物の理論モル比よりも過剰のリチウムを用いている。合成されたリチウム金属複合酸化物では、溶融塩原料と金属化合物原料とをあわせて、モル比で、Li:Ni:Co:Mn=1.0:0.5:0.2:0.3を有する原料を用いて、溶融反応を行った。反応温度は、500〜700℃で、反応時間は1〜6時間とした。溶融反応後に、冷却して、リチウム金属複合酸化物LiNi0.5Co0.2Mn0.3を得た。この合成されたリチウム金属複合酸化物を用いて、実施例1〜5と同様の濃度のMg(NO水溶液で洗浄し、乾燥し、PVdF、AB、及びNMPと混合して、正極用スラリーを得た。Mg(NO水溶液での洗浄を行わないリチウム金属複合酸化物についても、同様に正極用スラリーを作製した。これらの正極用スラリーについて上記と同様の粘度測定を行ったところ、Mg(NO水溶液での洗浄を行った方が、Mg(NO水溶液での洗浄を行わなかった場合に比べて粘度上昇が抑えられる傾向があった。 The lithium metal composite oxide LiNi 0.5 Co 0.2 Mn 0.3 O 2 used in Comparative Example 1 and each example was purchased from a commercial product prepared by the molten salt method. The same measurement was performed with the salt synthesized. When synthesizing by the molten salt method, lithium is used as the molten salt raw material, and together with lithium contained in the metal compound raw material, the total amount of lithium exceeds the theoretical molar ratio of the composite lithium metal composite oxide. Used. In the synthesized lithium metal composite oxide, the molten salt raw material and the metal compound raw material are combined, and the molar ratio is Li: Ni: Co: Mn = 1.0: 0.5: 0.2: 0.3. A melt reaction was carried out using the raw materials. The reaction temperature was 500 to 700 ° C., and the reaction time was 1 to 6 hours. After the melting reaction, the mixture was cooled to obtain a lithium metal composite oxide LiNi 0.5 Co 0.2 Mn 0.3 O 2 . Using this synthesized lithium metal composite oxide, it was washed with an aqueous Mg (NO 3 ) 2 solution having the same concentration as in Examples 1 to 5, dried, mixed with PVdF, AB, and NMP, and used for the positive electrode A slurry was obtained. A positive electrode slurry was similarly prepared for a lithium metal composite oxide that was not washed with an aqueous Mg (NO 3 ) 2 solution. Was carried out similar to the above viscosity measurement for these positive electrode slurry, as compared with the case where those who were washed with Mg (NO 3) 2 aqueous solution was not carried out washing with Mg (NO 3) 2 aqueous solution There was a tendency for the viscosity increase to be suppressed.

Claims (5)

リチウム金属複合酸化物を、硝酸塩を有する硝酸塩水溶液に接触させる接触工程と、
接触工程を行ったリチウム金属複合酸化物を、ポリフッ化ビニリデン及び溶剤と混合する混合工程と、を有し、
前記硝酸塩は、Mg(NO を有し、
前記硝酸塩水溶液1リットルの中のMg(NO の濃度は、5mmol/L以上200mmol/L以下であることを特徴とする電極合剤の製造方法。
Contacting the lithium metal composite oxide with a nitrate aqueous solution having a nitrate;
The lithium-metal composite oxide subjected to the contacting step includes a mixing step of mixing a polyvinylidene fluoride and a solvent, and
The nitrate has Mg (NO 3 ) 2 ,
The method for producing an electrode mixture , wherein a concentration of Mg (NO 3 ) 2 in 1 liter of the aqueous nitrate solution is 5 mmol / L or more and 200 mmol / L or less .
接触工程の後には、前記リチウム金属複合酸化物を乾燥させる乾燥工程を行う請求項に記載の電極合剤の製造方法。 After the contacting step, the manufacturing method of the electrode mixture according to claim 1 to perform the drying step of drying the lithium-metal composite oxide. 前記溶剤は、N−メチル−2−ピロリドンを有する請求項1又は2に記載の電極合剤の製造方法。 The solvent method of producing an electrode mixture according to claim 1 or 2 having a N- methyl-2-pyrrolidone. 前記リチウム金属複合酸化物は、層状岩塩構造を有する請求項1〜のいずれか1項に記載の電極合剤の製造方法。 The method for producing an electrode mixture according to any one of claims 1 to 3 , wherein the lithium metal composite oxide has a layered rock salt structure. 請求項1〜のいずれか1項に記載の電極合剤の製造方法により製造された正極合剤を集電体に塗布することを特徴とする電極の製造方法。 The manufacturing method of the electrode characterized by apply | coating the positive mix manufactured by the manufacturing method of the electrode mixture of any one of Claims 1-4 to a collector.
JP2014037930A 2014-02-28 2014-02-28 Method for producing electrode mixture and method for producing electrode Expired - Fee Related JP6176489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014037930A JP6176489B2 (en) 2014-02-28 2014-02-28 Method for producing electrode mixture and method for producing electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014037930A JP6176489B2 (en) 2014-02-28 2014-02-28 Method for producing electrode mixture and method for producing electrode

Publications (2)

Publication Number Publication Date
JP2015162412A JP2015162412A (en) 2015-09-07
JP6176489B2 true JP6176489B2 (en) 2017-08-09

Family

ID=54185373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014037930A Expired - Fee Related JP6176489B2 (en) 2014-02-28 2014-02-28 Method for producing electrode mixture and method for producing electrode

Country Status (1)

Country Link
JP (1) JP6176489B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4197225B2 (en) * 2001-10-12 2008-12-17 パナソニック株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
KR20120099375A (en) * 2009-08-27 2012-09-10 엔비아 시스템즈 인코포레이티드 Metal oxide coated positive electrode materials for lithium-based batteries
CN103238242B (en) * 2010-11-30 2016-04-13 三洋电机株式会社 Rechargeable nonaqueous electrolytic battery conductive agent, positive electrode for nonaqueous electrolyte secondary battery and rechargeable nonaqueous electrolytic battery

Also Published As

Publication number Publication date
JP2015162412A (en) 2015-09-07

Similar Documents

Publication Publication Date Title
JP5418664B2 (en) Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP5440614B2 (en) Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2013031331A1 (en) Positive electrode active material for sodium batteries and method for producing same
JP5552685B2 (en) Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP5724269B2 (en) Method for producing composite oxide
WO2012124242A1 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery using same
JP5733571B2 (en) Method for producing lithium-containing composite oxide, positive electrode active material, and secondary battery
JP5674055B2 (en) Method for producing composite oxide, positive electrode active material for secondary battery, and secondary battery
JP5370501B2 (en) Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP5447452B2 (en) Positive electrode active material for lithium ion secondary battery, lithium ion secondary battery using the positive electrode active material, and method for producing lithium manganese silver composite oxide
JP2013060319A (en) Lithium manganese (iv) nickel (iii)-based oxide, positive electrode active material for lithium ion secondary battery containing the oxide, lithium ion secondary battery using the material, and vehicle carrying the battery
JP2013173632A (en) Lithium-manganese-based composite oxide, positive electrode active material for secondary battery, and secondary battery
JP2013012336A (en) Secondary battery and charging method of the same
JP2013012387A (en) Electrolyte and lithium ion secondary battery
WO2012127796A1 (en) Process for producing lithium-containing composite oxide, positive electrode active material, and secondary battery
JP5594241B2 (en) Electrolyte and lithium ion secondary battery
JP5828282B2 (en) Method for producing active material for non-aqueous electrolyte secondary battery and secondary battery using the same
JP2016119190A (en) Electrode active material, manufacturing method of the same, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6347507B2 (en) Electrode active material and method for producing the same
JP6176489B2 (en) Method for producing electrode mixture and method for producing electrode
JP5617793B2 (en) Lithium ion secondary battery
JP5831234B2 (en) Method for producing active material for non-aqueous electrolyte secondary battery
JP6995346B2 (en) Positive electrode material for lithium secondary batteries and its manufacturing method
JP5459565B2 (en) Lithium ion secondary battery
JP5678822B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170628

R151 Written notification of patent or utility model registration

Ref document number: 6176489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees