JP6176056B2 - Inorganic fiber insulation block and furnace with the same installed on the inner wall - Google Patents

Inorganic fiber insulation block and furnace with the same installed on the inner wall Download PDF

Info

Publication number
JP6176056B2
JP6176056B2 JP2013221264A JP2013221264A JP6176056B2 JP 6176056 B2 JP6176056 B2 JP 6176056B2 JP 2013221264 A JP2013221264 A JP 2013221264A JP 2013221264 A JP2013221264 A JP 2013221264A JP 6176056 B2 JP6176056 B2 JP 6176056B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
inorganic fiber
inorganic
material block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013221264A
Other languages
Japanese (ja)
Other versions
JP2015081752A (en
Inventor
河野 幸次
幸次 河野
利光 栗原
利光 栗原
拓男 上原
拓男 上原
翔 山中
翔 山中
雄作 秦
雄作 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Nippon Steel Corp
Original Assignee
Mitsubishi Chemical Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Nippon Steel Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2013221264A priority Critical patent/JP6176056B2/en
Publication of JP2015081752A publication Critical patent/JP2015081752A/en
Application granted granted Critical
Publication of JP6176056B2 publication Critical patent/JP6176056B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

本発明は、無機繊維成形体よりなる断熱材ブロックに係り、特に加熱炉や溶鉱炉等の高温炉における炉壁や天井の断熱部材等として用いるのに好適な無機繊維質断熱材ブロック及びこれを施工した炉に関する。詳しくは、無機繊維マット積層体を圧縮し、保形手段によりこの圧縮状態を維持した圧縮無機繊維質成形体からなる断熱材ブロックに関する。また、本発明は、この無機繊維質断熱材ブロックを施工した炉に関する。   The present invention relates to a heat insulating material block made of an inorganic fiber molded body, and in particular, an inorganic fiber heat insulating material block suitable for use as a heat insulating member for a furnace wall or a ceiling in a high-temperature furnace such as a heating furnace or a blast furnace and a construction thereof. Related to the furnace. In detail, it is related with the heat insulating material block which consists of a compression inorganic fiber molded object which compressed the inorganic fiber mat laminated body and maintained this compression state by the shape-retaining means. Moreover, this invention relates to the furnace which constructed this inorganic fibrous heat insulating material block.

鉄鋼業の加熱炉、熱処理炉などの高温炉等の各種耐火炉の炉壁を覆う無機繊維質断熱材ブロックとして、無機繊維を積層して不織布様にした無機繊維集合体を用いた無機繊維断熱材が用いられている。中でもニードリング加工された無機繊維集合体(ニードルブランケット)は、その軽量性、易加工性、耐熱衝撃性、耐風食性、低熱伝導率性に優れるといった特性を利用し、多く用いられている。   Inorganic fiber insulation using inorganic fiber aggregates made of non-woven fabric by laminating inorganic fibers as an inorganic fiber insulation block covering the walls of various refractory furnaces such as high-temperature furnaces such as heating furnaces and heat treatment furnaces in the steel industry The material is used. Above all, a needling-processed inorganic fiber aggregate (needle blanket) is often used because of its characteristics such as lightness, easy processability, thermal shock resistance, wind erosion resistance, and low thermal conductivity.

特開2011−226771には、無機繊維ニードルブランケットを積層し、圧縮状態を維持した無機繊維断熱材ブロックを、高温炉等の炉壁や天井に隙間なく施工した後、圧縮を開放し、無機繊維ニードルブランケット自体の積層方向の反発力と復元力を利用して断熱材ブロック同士を密に突き合わせるライニング方法が記載されている。   In JP 2011-226771 A, inorganic fiber needle blankets are laminated and an inorganic fiber heat insulating material block maintained in a compressed state is applied to a furnace wall or ceiling of a high-temperature furnace without any gaps, and then the compression is released. A lining method is described in which the heat insulating material blocks are closely abutted using the repulsive force and restoring force in the stacking direction of the needle blanket itself.

この無機繊維質断熱材ブロックは、上記の通り、軽量で断熱性に優れる等の長所を有する反面、炉内から発生するスケールやアルカリガスによる腐食が問題になっている。中でも鉄鋼業の加熱炉においては、炉内の酸化鉄と無機繊維が低融点化合物を生成し、そこを起点として浸食、脆性化が起こり、ライニングを短命化さえるための問題があった。   As described above, the inorganic fibrous heat insulating material block has advantages such as light weight and excellent heat insulating properties, but corrosion due to scale or alkali gas generated from the furnace is a problem. In particular, in the heating furnace of the steel industry, iron oxide and inorganic fibers in the furnace generate a low-melting-point compound, which causes erosion and brittleness from that point, and has a problem of shortening the lining life.

特開平11−211357には、ブランケット積層方向の一面に、アルミナゾル、またはアルミナゾルとシリカゾルの混合ゾルを固形分換算で55〜300g/m塗布して塗布層を形成した後、乾燥(0031段落)することにより耐食性を高めた無機繊維ブロックが記載されている。 In JP-A-11-212357, an alumina sol or a mixed sol of alumina sol and silica sol is applied to one surface in the blanket lamination direction to form a coating layer by applying 55 to 300 g / m 2 in terms of solid content, and then dried (0031 paragraph). An inorganic fiber block with improved corrosion resistance is described.

特開2011−32119の0029段落には、耐FeO性コーティング材を炉内の無機繊維ブロックの表面にスプレーして2mm厚のコーティング層を形成することが記載されている。このコーティング層が炉内で加熱されると、CaO・6Alが生成する。 Japanese Patent Application Laid-Open No. 2011-32119, paragraph 0029 describes that a coating layer having a thickness of 2 mm is formed by spraying a FeO-resistant coating material on the surface of an inorganic fiber block in a furnace. When this coating layer is heated in the furnace, CaO.6Al 2 O 3 is generated.

特開2011−208344には、無機繊維のニードルブランケットに、無機質ゾルを含浸後、乾燥させてなる無機繊維成形体であって、嵩密度が0.08〜0.20g/cmである軽量無機繊維成形体が記載されている。 Japanese Patent Laid-Open No. 2011-208344 discloses an inorganic fiber molded body obtained by impregnating an inorganic fiber needle blanket with an inorganic sol and then drying, and is a lightweight inorganic material having a bulk density of 0.08 to 0.20 g / cm 3. A fiber molded body is described.

特開2011-226771号公報JP 2011-226771 A 特開平11−211357号公報JP-A-11-212357 特開2011−32119号公報JP 2011-32119 A 特開2011−208344号公報JP 2011-208344 A

特許文献2,3に記載の無機繊維ブロックでは、塗布ないしスプレーにより形成した塗布層又はコーティング層が無機繊維成形体から剥離し易い。例えば、熱衝撃や機械的衝撃等によりコーティング層が剥離し、無機繊維が曝露するなどの問題があった。さらに、特許文献3では、無機繊維成形体を炉壁に施工した後に、スプレーガンで吹付けて施工するため、施工作業が煩雑になるといった問題もあった。   In the inorganic fiber block described in Patent Documents 2 and 3, the coating layer or the coating layer formed by coating or spraying is easy to peel from the inorganic fiber molded body. For example, there is a problem that the coating layer is peeled off due to thermal shock or mechanical shock, and the inorganic fibers are exposed. Furthermore, in patent document 3, since it constructed by spraying with a spray gun after constructing an inorganic fiber molded object to a furnace wall, there also existed a problem that construction work became complicated.

特許文献4に記載の無機繊維質断熱材ブロックは、無機質ゾルがニードルブランケット全体に含浸され乾燥されているため、圧縮無機繊維質断熱材ブロックに適用した場合には、断熱材ブロックの可撓性と反発力が低くなる。   In the inorganic fibrous heat insulating material block described in Patent Document 4, since the inorganic sol is impregnated in the entire needle blanket and dried, when applied to the compressed inorganic fibrous heat insulating block, the flexibility of the heat insulating material block And the repulsive force becomes low.

本発明は、上記従来の問題点を解決し、耐FeO性などの耐食性が向上し、しかも反発力(復元性)に優れた無機繊維質断熱材ブロックと、この無機繊維質断熱材ブロックが施行された炉を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, improves the corrosion resistance such as FeO resistance, and has excellent repulsive force (restorability), and the inorganic fiber heat insulating material block is implemented. The purpose is to provide an improved furnace.

本発明の無機繊維質断熱材ブロックは、炉内被加熱面のライニング施工に用いられる無機繊維質断熱材ブロックであって、無機繊維のニードルブランケット又はマットの積層体が積層方向に圧縮され、保形手段により圧縮状態に保形された無機繊維質断熱材ブロックにおいて、該無機繊維質断熱材ブロックの、炉内に向けて配置される加熱面側に、酸化物前駆体含有液が含浸され、かつ未乾燥状態である含浸部が形成されており、該含浸部の該加熱面からの範囲が3〜60mmであり、該含浸部における水分量が、含浸部無機繊維100質量部に対し水分50〜700質量部であり、前記酸化物前駆体含有液は、該含浸部においては、焼成後の酸化物添着量が含浸部無機繊維100質量部に対して2〜50質量部となるように含浸されると共に、無機繊維質断熱材ブロックの炉内加熱面側から炉壁面側の深さ方向への深さ方向60mm超の部分においては、焼成後の酸化物添着量が含浸部無機繊維100質量部に対して1質量部以下となるように含浸されていることを特徴とする。   The inorganic fiber heat insulating block of the present invention is an inorganic fiber heat insulating block used for lining the heated surface in the furnace, and a laminated body of needle blankets or mats of inorganic fibers is compressed in the laminating direction and maintained. In the inorganic fibrous heat insulating material block held in a compressed state by the forming means, the heating surface side of the inorganic fibrous heat insulating material block disposed toward the furnace is impregnated with the oxide precursor containing liquid, And the impregnation part which is an undried state is formed, the range of the impregnation part from the heating surface is 3 to 60 mm, and the amount of water in the impregnation part is 50% of moisture with respect to 100 parts by mass of the impregnation part inorganic fiber. -700 parts by mass, and the oxide precursor-containing liquid is impregnated in the impregnated part so that the amount of oxide after firing is 2 to 50 parts by mass with respect to 100 parts by mass of the impregnated inorganic fiber When done In the portion of the inorganic fiber heat insulating block exceeding 60 mm in the depth direction from the heating surface side in the furnace to the depth direction on the furnace wall surface, the oxide deposition amount after firing is 100 parts by weight of the impregnated inorganic fiber. It is impregnated so that it may become 1 mass part or less.

前記酸化物前駆体含有液が含浸された含浸部の前記加熱面からの範囲が5〜60mmであることが好ましい。   It is preferable that the range from the heating surface of the impregnation part impregnated with the oxide precursor-containing liquid is 5 to 60 mm.

前記酸化物前駆体含有液を含浸させた含浸部における水分量が、無機繊維100質量部に対し水分50〜700質量部であることが好ましい。   It is preferable that the water content in the impregnation part impregnated with the oxide precursor-containing liquid is 50 to 700 parts by mass of water with respect to 100 parts by mass of the inorganic fibers.

前記酸化物前駆体含有液は、焼成によりAlを生じさせる成分と、焼成によりCaOを生じさせる成分とを含んでいることが好ましい。 The oxide precursor-containing liquid preferably includes a component that generates Al 2 O 3 by firing and a component that generates CaO by firing.

前記酸化物前駆体含有液は、焼成により生じるAlと、焼成により生じるCaOとの質量比Al/CaOが30〜300であることが好ましい。 The oxide precursor-containing liquid, Al 2 O 3, based on caused by firing, the mass ratio Al 2 O 3 / CaO and CaO produced by firing is preferably 30 to 300.

前記酸化物前駆体含有液は、焼成後の酸化物添着量が2〜50質量%となるように含浸されていることが好ましい。   It is preferable that the oxide precursor-containing liquid is impregnated so that the oxide deposition amount after firing is 2 to 50% by mass.

前記酸化物前駆体含有液が着色されており、これにより前記含浸部が着色されていてもよい。   The oxide precursor-containing liquid may be colored, whereby the impregnated portion may be colored.

本発明の炉は、かかる本発明の無機繊維断熱材ブロックが、前記保形手段による保形が解除された形態にてライニング施工されたものである。   The furnace according to the present invention is such that the inorganic fiber heat insulating material block according to the present invention is lined in such a form that the shape retaining by the shape retaining means is released.

本発明の無機繊維質断熱材ブロックにあっては、無機繊維のニードルブランケット又はマットの積層体を圧縮してなる圧縮無機繊維成形体の加熱面側に酸化物前駆体含有液を含浸させているので、無機繊維質断熱材ブロックの耐食性(特に耐FeO性)が向上する。また、この酸化物前駆体含有液を加熱面側にのみ含浸させると共に、含浸させた酸化物前駆体含有液を未乾燥状態としているので、無機繊維質断熱材ブロックの反発性(復元性)に優れている。従って、この無機繊維質断熱材ブロックを炉内に施工した後、保形手段による保形を解除すると、隣接無機繊維質断熱材ブロック同士が密着状に当接し、断熱性が著しく高いものとなる。   In the inorganic fibrous heat insulating material block of the present invention, the heated surface side of the compressed inorganic fiber molded body obtained by compressing the laminated body of the needle blanket or mat of inorganic fibers is impregnated with the oxide precursor containing liquid. Therefore, the corrosion resistance (particularly FeO resistance) of the inorganic fibrous heat insulating material block is improved. In addition, since the oxide precursor-containing liquid is impregnated only on the heating surface side and the impregnated oxide precursor-containing liquid is in an undried state, the repulsion (restorability) of the inorganic fibrous heat insulating material block is achieved. Are better. Therefore, after the inorganic fiber heat insulating material block is installed in the furnace, when the shape retention by the shape retaining means is released, the adjacent inorganic fiber heat insulating material blocks come into close contact with each other, and the heat insulating property becomes remarkably high. .

実施の形態に係る無機繊維質断熱材ブロックの斜視図である。It is a perspective view of the inorganic fibrous heat insulating material block which concerns on embodiment. 図1の無機繊維質断熱材ブロックの一部の拡大図である。It is a one part enlarged view of the inorganic fibrous heat insulating material block of FIG. 別の実施の形態に係る無機繊維質断熱材ブロックの斜視図である。It is a perspective view of the inorganic fibrous heat insulating material block which concerns on another embodiment.

本発明の無機繊維質断熱材ブロックは、好ましくは、ニードルブランケット又はマットの積層体を積層方向に圧縮後、固定手段により圧縮状態を維持したブロック状断熱材であり、炉内加熱面側から炉壁面側の深さ方向へ、施工時まで液状物質が含浸されている。含浸深さは、炉内加熱面側から炉壁面側の深さ方向へ、少なくとも3mm以上で60mm以下、好ましくは30mm以上50mm以下とする。   The inorganic fibrous heat insulating material block according to the present invention is preferably a block heat insulating material in which a needle blanket or mat laminate is compressed in the laminating direction, and is maintained in a compressed state by a fixing means. The liquid material is impregnated in the depth direction on the wall surface side until construction. The impregnation depth is at least 3 mm and 60 mm or less, preferably 30 mm or more and 50 mm or less in the depth direction from the furnace heating surface side to the furnace wall surface side.

本発明の無機繊維質断熱材ブロックは、ニードルブランケット又はマットを圧縮したものであるので、圧縮力の開放後反発力を有し、ライニングを行うことができる。ニードルブランケット又はマットの圧縮後の嵩密度は、使用するニードルブランケット又はマットの嵩密度を超えて0.3g/cm以下が望ましい、圧縮しすぎることで、繊維が圧壊するおそれがあり、また嵩密度が高すぎると高温使用時や急冷急昇温時の耐熱衝撃性が低下するおそれがある。 Since the inorganic fibrous heat insulating material block of the present invention is obtained by compressing a needle blanket or a mat, it has a repulsive force after releasing a compressive force and can be lined. The bulk density after compression of the needle blanket or mat is preferably 0.3 g / cm 3 or less, exceeding the bulk density of the needle blanket or mat to be used. If the density is too high, the thermal shock resistance during high-temperature use or rapid cooling / rapid temperature rise may be reduced.

圧縮状態に維持する保形手段としては、圧縮無機繊維成形体の加圧面のそれぞれの少なくとも一部を覆う加圧面当接部、及び前記加熱面当接部と繋がり、且つ繊維質断熱材ブロックが炉内にライニング施工された状態で加熱を受ける加熱面の少なくとも一部を覆う加熱面保護部を有し、前記加圧面当接部と前記加熱面保護部との境界部が、前記加圧面と前記加熱面とがなす前記単位ブロックの角部を覆っている保形板と結束バンドとで固定する手段が良い。かかる保形手段で圧縮状態を維持したのち、ブロック工法で施工し、バンド切断後断熱部材同士の反発力で圧縮状態を維持するなどの方法を選択しても良い。   As a shape-retaining means for maintaining the compressed state, a pressurizing surface abutting portion covering at least a part of each of the pressurizing surfaces of the compressed inorganic fiber molded body, and the heating surface abutting portion, and a fibrous heat insulating material block are provided. A heating surface protection portion that covers at least a part of the heating surface that is heated in a state where the lining is applied in the furnace, and a boundary portion between the pressing surface contact portion and the heating surface protection portion is the pressure surface A means for fixing with a shape-retaining plate and a binding band covering a corner of the unit block formed by the heating surface is preferable. After maintaining the compressed state with such shape-retaining means, a method may be selected in which the block state is used for construction and the compressed state is maintained by the repulsive force between the heat insulating members after cutting the band.

前記保形板の前記加熱面保護部には手掛り部が設けられていることが望ましい。   It is desirable that a cue portion is provided on the heating surface protection portion of the shape retaining plate.

前記保形板は、加熱面側や側面側に穴が開いていたり、保形性を損なわない程度で部分的に切り取られていても良い。これにより、保形板の裏側の無機繊維にも酸化物前駆体含有液を含浸することが容易になるため、無機繊維質断熱材ブロックの含浸状態をより均一にすることができる。   The shape-retaining plate may be partially cut out to such an extent that a hole is formed on the heating surface side or side surface side, or the shape-retaining property is not impaired. Thereby, since it becomes easy to impregnate the inorganic fiber of the back side of a shape-retaining board with an oxide precursor containing liquid, the impregnation state of an inorganic fibrous heat insulating material block can be made more uniform.

以下、本発明の実施の形態について図1〜3を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

[第1の実施の形態]
図1は第1の実施の形態に係る無機繊維質断熱材ブロックの斜視図、図2はその一部を拡大した側面図である。
[First Embodiment]
FIG. 1 is a perspective view of an inorganic fibrous heat insulating material block according to the first embodiment, and FIG. 2 is an enlarged side view of a part thereof.

この無機繊維質断熱材ブロック1は、無機繊維成形体2の折り畳み体3と、この折り畳み体3の加圧面(図1の上面及び下面)に重ね合された保形板4,4と、該保形板4,4及び折り畳み体3を固縛する結束バンド5とを有する。折り畳み体3は、所定幅の帯状のマット状無機繊維成形体2をつづら折り状に交互に折り返して積層した略直方体形状のものであり、積層方向(図1では上下方向)の一端側の面と他端側の面にそれぞれ保形板4が重ね合されている。   This inorganic fibrous heat insulating material block 1 includes a folded body 3 of an inorganic fiber molded body 2, shape-retaining plates 4 and 4 superimposed on the pressure surfaces (upper and lower surfaces in FIG. 1) of the folded body 3, and The shape retaining plates 4 and 4 and the binding band 5 for securing the folded body 3 are provided. The folded body 3 has a substantially rectangular parallelepiped shape in which a band-like mat-like inorganic fiber molded body 2 having a predetermined width is alternately folded back and stacked, and has a surface on one end in the stacking direction (vertical direction in FIG. The shape retaining plates 4 are overlapped on the other end surface.

この折り畳み体3の保形板4,4が重なっていない側面であって、無機繊維成形体2の折り返し部が存在する一方の側面(図1の左側面)に臨む領域が、酸化物前駆体含有液が含浸された含浸部6となっている。   The side of the folded body 3 on which the shape-retaining plates 4 and 4 do not overlap, the region facing the one side (the left side in FIG. 1) where the folded portion of the inorganic fiber molded body 2 is present, is an oxide precursor. The impregnation portion 6 is impregnated with the contained liquid.

無機繊維成形体2としては、無機繊維のマットにニードリング加工を施したニードルブランケットが好適であるが、ニードリング加工を施していないマットであってもよい。なお、ニードルブランケットの好適な構成及び含浸部6に含浸される酸化物前駆体含有液の組成については後述する。   The inorganic fiber molded body 2 is preferably a needle blanket obtained by subjecting an inorganic fiber mat to needling processing, but may be a mat not subjected to needling processing. The preferred configuration of the needle blanket and the composition of the oxide precursor-containing liquid impregnated in the impregnation portion 6 will be described later.

保形板4は、折り畳み体3を両側から挟圧するための強度及び剛性を有した合成樹脂、紙、合板等の材料よりなる。保形板4の寸法は、折り畳み体3の加圧面と同等であることが好ましい。結束バンド5は、保形板4,4及び両者間の折り畳み体3を取り巻くように巻き掛けられている。結束バンド5としては、ポリプロピレン等の合成樹脂テープが好適である。   The shape-retaining plate 4 is made of a material such as synthetic resin, paper, and plywood having strength and rigidity for sandwiching the folded body 3 from both sides. The dimension of the shape retaining plate 4 is preferably the same as the pressing surface of the folded body 3. The binding band 5 is wound around the shape retaining plates 4 and 4 and the folded body 3 between them. As the binding band 5, a synthetic resin tape such as polypropylene is suitable.

保形板4,4で挟まれた折り畳み体3を、無加圧状態の厚みの50〜90%特に60〜80%程度となるように前記積層方向に圧縮して押し縮めた後、結束バンド5を巻き掛け、この圧縮状態に保形する。従って、この実施の形態では、保形板4,4と結束バンド5とによって保形手段が構成されている。   The foldable body 3 sandwiched between the shape retaining plates 4 and 4 is compressed and compressed in the laminating direction so as to be 50 to 90%, particularly 60 to 80% of the thickness of the non-pressurized state, and then the binding band. 5 is wound and the shape is kept in this compressed state. Therefore, in this embodiment, the shape-retaining means is constituted by the shape-retaining plates 4 and 4 and the binding band 5.

結束バンド5で固縛して保形した後の無機繊維質断熱材ブロック1の奥行き方向の寸法aは100〜400m特に200〜300mm、これと直交方向の寸法bは100〜400mm特に200〜300mm、積層方向の寸法cは100〜400mm特に200〜300mm程度であることが好ましい。   The dimension a in the depth direction of the inorganic fibrous heat insulating material block 1 after being bound and held by the binding band 5 is 100 to 400 m, particularly 200 to 300 mm, and the dimension b in the direction perpendicular thereto is 100 to 400 mm, particularly 200 to 300 mm. The dimension c in the stacking direction is preferably about 100 to 400 mm, particularly about 200 to 300 mm.

この実施の形態に係る無機繊維質断熱材ブロック1は、無機繊維成形体2を酸化物前駆体含有液を含浸する前に折り畳んで折り畳み体3とし、保形板4,4を重ねて圧縮し、結束バンド5を巻き掛けた後、酸化物前駆体含有液を含浸させて含浸部6を形成したものである。ただし、折り畳み体3を圧縮する前に含浸処理してもよい。また、無機繊維成形体2をつづら折状に折り畳む前に含浸処理し、その後折り畳んでもよい。ただし、規定の含浸厚みdとするためには、折り畳んで圧縮した後、含浸処理するのが好ましい。   In the inorganic fiber heat insulating material block 1 according to this embodiment, the inorganic fiber molded body 2 is folded before impregnating the oxide precursor-containing liquid to form a folded body 3, and the shape retaining plates 4 and 4 are stacked and compressed. After the binding band 5 is wound, the impregnated portion 6 is formed by impregnating the oxide precursor-containing liquid. However, the impregnation treatment may be performed before the folding body 3 is compressed. Alternatively, the inorganic fiber molded body 2 may be impregnated before being folded into a zigzag shape, and then folded. However, in order to obtain a prescribed impregnation thickness d, it is preferable to perform the impregnation treatment after folding and compressing.

この含浸部6は、無機繊維質断熱材ブロック1が炉内に施工された状態において炉内を向く、無機繊維質断熱材ブロック加熱面の全面に設けられている。含浸部6は、好ましくは、折り畳み体3を酸化物前駆体含有液に浸し、次いで必要に応じ余剰の水分を吸引除去することにより形成される。ただし、スプレー等によって含浸部6を形成してもよい。このように含浸部6を形成した後、含浸部6は、乾燥処理されることなく、未乾燥状態とされる。   This impregnation part 6 is provided in the whole surface of the inorganic fiber heat insulating material block heating surface which faces the inside of the furnace in a state where the inorganic fiber heat insulating material block 1 is installed in the furnace. The impregnation part 6 is preferably formed by immersing the folded body 3 in the oxide precursor-containing liquid, and then suctioning and removing excess water as necessary. However, the impregnation part 6 may be formed by spraying or the like. After the impregnation part 6 is formed in this manner, the impregnation part 6 is not dried and is not dried.

折り畳み体3を酸化物前駆体含有液に浸すときの深さを調整することにより、含浸部6の厚みdが好ましくは3〜60mm特に好ましくは30〜50mmとなるようにする。dが3mmよりも小さいと、耐食性改善効果が低くなり、焼成後含浸部6が剥離しやすいといった問題点がある。60mmを超えると、折り畳み体3の復元性が低くなるおそれがある。   By adjusting the depth when the folded body 3 is immersed in the oxide precursor-containing liquid, the thickness d of the impregnated portion 6 is preferably 3 to 60 mm, particularly preferably 30 to 50 mm. If d is smaller than 3 mm, the effect of improving the corrosion resistance is lowered, and there is a problem that the impregnated portion 6 is easily peeled off after firing. When it exceeds 60 mm, there is a possibility that the restoring property of the folded body 3 is lowered.

この無機繊維質断熱材ブロック1の結束バンド5を切断すると、折り畳み体3はその弾力性により積層方向(図1の上下方向)の厚みを増大させるように復元する。この無機繊維質断熱材ブロック1にあっては、含浸部6に付着した酸化物前駆体が未乾燥状態となっているため、折り畳み体3の復元力が強い。そのため、複数の無機繊維質断熱材ブロック1を炉内壁に沿って配列した後、結束バンド5を切断した場合、隣接する無機繊維質断熱材ブロック1同士が強く密着し、両者間に隙間が生じることが防止される。   When the binding band 5 of the inorganic fibrous heat insulating material block 1 is cut, the folded body 3 is restored so as to increase the thickness in the stacking direction (vertical direction in FIG. 1) due to its elasticity. In this inorganic fibrous heat insulating material block 1, since the oxide precursor adhering to the impregnation part 6 is in an undried state, the restoring force of the folded body 3 is strong. Therefore, when a plurality of inorganic fibrous heat insulating material blocks 1 are arranged along the inner wall of the furnace and then the binding band 5 is cut, the adjacent inorganic fibrous heat insulating material blocks 1 closely adhere to each other, and a gap is generated between them. It is prevented.

この無機繊維質断熱材ブロック1を炉にライニング施工する場合、無機繊維質断熱材ブロック1の加熱面すなわち含浸部6を有する面(図1の左側面)が炉内を向き、それと反対側の背面(図1の右側面)が炉壁、炉天井部等の炉体に対面するように配置される。   When lining the inorganic fiber heat insulating material block 1 in a furnace, the heating surface of the inorganic fiber heat insulating material block 1, that is, the surface having the impregnation portion 6 (the left side surface in FIG. 1) faces the inside of the furnace, and the opposite side. It arrange | positions so that a back surface (right side surface of FIG. 1) may face furnace bodies, such as a furnace wall and a furnace ceiling part.

各無機繊維質断熱材ブロック1をいわゆる市松工法によってライニングする場合、特許文献1のように、隣り合う無機繊維質断熱材ブロック1の積層方向(すなわち復元方向)が一致しないように、その加熱面から見て90°回転させた姿勢にて炉内面に沿って配列した後、結束バンド5を切断し、結束バンド5及び保形板4を撤去する。なお、市松工法以外のソルジャー工法などによってライニング施工されてもよい。   When each inorganic fibrous heat insulating material block 1 is lined by the so-called checkered method, its heating surface is set so that the lamination direction (that is, the restoring direction) of adjacent inorganic fibrous heat insulating material blocks 1 does not coincide with each other as in Patent Document 1. After being arranged along the furnace inner surface in a posture rotated by 90 ° as viewed from, the binding band 5 is cut, and the binding band 5 and the shape retaining plate 4 are removed. The lining may be performed by a soldering method other than the checkered method.

含浸部6における水分含有量は、無機繊維100質量部に対し50〜700質量部であることが好ましい。含水量が過度に少ない場合は、バインダー効果により機繊維成型体同士の固着が起こり、反発力が小さくなる。逆に過度に多い場合は、無機繊維から液が漏れ出たり、含浸深さが過大となって、反発力が低下するおそれがある。   It is preferable that the water content in the impregnation part 6 is 50 to 700 parts by mass with respect to 100 parts by mass of the inorganic fibers. When the water content is excessively small, the machine fiber molded bodies are fixed to each other due to the binder effect, and the repulsive force is reduced. On the other hand, when the amount is excessively large, the liquid may leak from the inorganic fiber, or the impregnation depth may be excessive, which may reduce the repulsive force.

含浸部6における無機繊維100質量部に対する酸化物前駆体の添着量は、好ましくは焼成後の酸化物添着量換算で2〜50質量部、更に好ましくは、5〜30質量部、最も好ましくは10〜25質量部である。添着量が少ない場合は、所望の耐スケール性が得られない場合がある。逆に多すぎると、熱収縮率の悪化や耐熱衝撃性、耐機械衝撃性の低下が見られる場合がある。   The amount of the oxide precursor attached to 100 parts by mass of the inorganic fiber in the impregnated part 6 is preferably 2 to 50 parts by mass, more preferably 5 to 30 parts by mass, and most preferably 10 in terms of the amount of oxide added after firing. ˜25 parts by mass. If the amount of attachment is small, the desired scale resistance may not be obtained. On the other hand, if the amount is too large, deterioration of the thermal shrinkage rate, thermal shock resistance and mechanical shock resistance may be reduced.

反発力部7は、無機繊維成形体2の含浸部6以外の部分である。反発力部7の焼成後の酸化物添着量は、含浸部6の無機繊維100質量部に対して1質量部以下(0(ゼロ)を含む。)、好ましくは0.5質量部以下、より好ましくは0.2質量部以下である。反発力部7の焼成後の酸化物添着量が上記範囲にあることで、無機繊維ニードルブランケットの反発力を保つことができ、好ましい。   The repulsive force portion 7 is a portion other than the impregnated portion 6 of the inorganic fiber molded body 2. The amount of oxide after firing of the repulsive force portion 7 is 1 part by mass or less (including 0 (zero)), preferably 0.5 parts by mass or less, with respect to 100 parts by mass of the inorganic fiber of the impregnated part 6. Preferably it is 0.2 mass part or less. It is preferable that the amount of oxide attached after firing of the repulsive force portion 7 is in the above range because the repulsive force of the inorganic fiber needle blanket can be maintained.

本発明では、酸化物前駆体含有液の酸化物前駆体としては、焼成により酸化カルシウムを生成させる物質、具体的には、カルシウムの水酸化物、塩化物、酢酸化物、乳酸化物、又は硝酸化物を含むことが好ましい。また、酸化物前駆体としては、焼成により酸化アルミニウムを生成させる物質、具体的には、アルミニウムの水酸化物、塩化物、酢酸化物、乳酸化物、硝酸化物特にアルミナゾルを含むことが好ましい。   In the present invention, the oxide precursor of the oxide precursor-containing liquid is a substance that generates calcium oxide by firing, specifically, calcium hydroxide, chloride, acetate, milk oxide, or glass oxide. It is preferable to contain. In addition, the oxide precursor preferably contains a substance that generates aluminum oxide by firing, specifically, aluminum hydroxide, chloride, vinegar oxide, milk oxide, glass oxide, particularly alumina sol.

酸化物前駆体としては、上記各物質を、焼成によりCaO:Alの重量比が1:99〜10:90特に5:95〜9:91となるように含むものが好ましい。この配合比とした場合、炉内で加熱されたときに、耐スケール性の高いCaO・2Al、CaO・6Al等のアルミナ・カルシア系耐火性酸化物が生成する。 As the oxide precursor, those containing each of the above substances so that the weight ratio of CaO: Al 2 O 3 is 1:99 to 10:90, particularly 5:95 to 9:91, by firing are preferable. If it this blending ratio, when it is heated in a furnace, a high CaO · 2Al 2 O 3 resistant to scale resistance, CaO · 6Al alumina-calcia-based refractory oxide, such as 2 O 3 is produced.

酸化物前駆体含有液中の酸化物成分濃度は2〜30質量%特に5〜20質量%が好ましい。この濃度が低すぎると無機繊維成形体に対する酸化物前駆体成分の付着量(添着量)が低くなる恐れがある。また、濃度が高すぎると、酸化物前駆体含有液の粘性が高くなり、含浸しにくくなる恐れがある。   The oxide component concentration in the oxide precursor-containing liquid is preferably 2 to 30% by mass, particularly 5 to 20% by mass. If this concentration is too low, the adhesion amount (attachment amount) of the oxide precursor component to the inorganic fiber molded body may be low. On the other hand, if the concentration is too high, the viscosity of the oxide precursor-containing liquid becomes high, which may make it difficult to impregnate.

酸化物前駆体含有液は、ゾル、スラリー、溶液のいずれでもよい。分散媒体や溶媒としては、水、アルコール等の有機溶媒またはこれらの混合物、好ましくは水が使用される。またポリビニルアルコール等のポリマー成分が含有されていても良い。またゾル、スラリー、又は溶液中の化合物の安定性を高めるために、分散安定剤を加えてもよい。分散安定剤としては、例えば、酢酸、乳酸、塩酸、硝酸、硫酸等が挙げられる。   The oxide precursor-containing liquid may be a sol, a slurry, or a solution. As the dispersion medium or solvent, water, an organic solvent such as alcohol, or a mixture thereof, preferably water is used. Moreover, polymer components, such as polyvinyl alcohol, may contain. A dispersion stabilizer may be added in order to increase the stability of the compound in the sol, slurry, or solution. Examples of the dispersion stabilizer include acetic acid, lactic acid, hydrochloric acid, nitric acid, sulfuric acid and the like.

酸化物前駆体含有液は着色剤が配合されても良い。着色をすることにより、含浸部の厚みdを目視で観察することができる。着色の色は黒色や青色が好ましい。着色剤としては水溶性インクなどを用いることができる。   A coloring agent may be blended in the oxide precursor-containing liquid. By coloring, the thickness d of the impregnated part can be visually observed. The coloring color is preferably black or blue. A water-soluble ink or the like can be used as the colorant.

酸化物前駆体含有液を含浸させた後、必要に応じ吸引又は圧縮などにより余剰な液を脱離させてもよい。吸引により余剰な液を脱離させるには、含浸部6に被さるアタッチメントを装着し、該アタッチメントに設けた吸引口を吸引するのが好ましい。   After impregnating the oxide precursor-containing liquid, excess liquid may be removed by suction or compression as necessary. In order to remove excess liquid by suction, it is preferable to attach an attachment covering the impregnation portion 6 and suck a suction port provided in the attachment.

未乾燥状態の含浸部6を有する無機繊維質断熱材ブロック1は、乾燥を防ぐため、真空梱包やシュリンク梱包などで梱包して保管、輸送されることが好ましい。   In order to prevent drying, the inorganic fibrous heat insulating material block 1 having the impregnated portion 6 in an undried state is preferably packed and stored and transported by vacuum packing or shrink packing.

次に、本発明において好適に用いられる無機繊維ニードルブランケットについて説明する。このニードルブランケットは、前記特許文献4に記載されたものであり、実質的に繊維径3μm以下の繊維を含まず、かつニードリング処理が施されたものが好ましい。なお、このニードルブランケットを用いることにより、無機繊維質断熱材ブロックの耐風食性を高めることができる。   Next, the inorganic fiber needle blanket preferably used in the present invention will be described. The needle blanket described in Patent Document 4 is preferably substantially free of fibers having a fiber diameter of 3 μm or less and subjected to a needling treatment. In addition, the wind erosion resistance of an inorganic fibrous heat insulating material block can be improved by using this needle blanket.

{無機繊維}
無機繊維としては、特に制限がなく、シリカ、アルミナ/シリカ、これらを含むジルコニア、スピネル、チタニア等の単独、又は複合繊維が挙げられるが、特に好ましいのは耐熱性、繊維強度(靭性)、安全性の点で、アルミナ/シリカ系繊維、特に多結晶質アルミナ/シリカ系繊維である。
{Inorganic fiber}
The inorganic fiber is not particularly limited, and examples thereof include silica, alumina / silica, zirconia containing these, spinel, titania and the like alone, or composite fibers. Particularly preferred are heat resistance, fiber strength (toughness), and safety. From the viewpoint of properties, it is an alumina / silica fiber, particularly a polycrystalline alumina / silica fiber.

アルミナ/シリカ系繊維のアルミナ/シリカの組成比(質量比)は65〜98/35〜2のムライト組成、又はハイアルミナ組成と呼ばれる範囲にあることが好ましく、さらに好ましくは70〜95/30〜5、特に好ましくは70〜74/30〜26の範囲である。   The composition ratio (mass ratio) of alumina / silica fiber in the alumina / silica fiber is preferably in the range of 65 to 98/35 to 2 called mullite composition or high alumina composition, more preferably 70 to 95/30 to 5, particularly preferably in the range of 70 to 74/30 to 26.

本発明においては、無機繊維の80質量%以上、好ましくは90質量%以上、特に好ましくはその全量が上記ムライト組成の多結晶アルミナ/シリカ系繊維であることが好ましい。   In the present invention, it is preferred that the inorganic fiber is 80% by mass or more, preferably 90% by mass or more, and particularly preferably the total amount thereof is a polycrystalline alumina / silica fiber having the mullite composition.

この無機繊維は、好ましくは繊維径3μm以下の繊維を実質的に含まない。ここで繊維径3μm以下の繊維を実質的に含まないとは、繊維径3μm以下の繊維が全繊維重量の0.1質量%以下であることをさす。   This inorganic fiber is preferably substantially free of fibers having a fiber diameter of 3 μm or less. Here, “substantially free of fibers having a fiber diameter of 3 μm or less” means that the fibers having a fiber diameter of 3 μm or less is 0.1 mass% or less of the total fiber weight.

無機繊維の平均繊維径は5〜7μmであることが好ましい。無機繊維の平均繊維径が太すぎると繊維集合体の反発力、靭性が失われ、細すぎると空気中に浮遊する発塵量が多くなり、繊維径3μm以下の繊維が含有される確率が高くなる。   The average fiber diameter of the inorganic fibers is preferably 5 to 7 μm. If the average fiber diameter of the inorganic fiber is too thick, the repulsive force and toughness of the fiber assembly will be lost, and if it is too thin, the amount of dust generation floating in the air will increase, and there is a high probability that fibers with a fiber diameter of 3 μm or less will be contained. Become.

上述の好適な平均繊維径を有し、かつ、繊維径3μm以下の繊維を実質的に含まない無機繊維集合体は、ゾルーゲル法による無機繊維集合体の製造において、紡糸液粘度の制御、紡糸ノズルに用いる空気流の制御、延伸糸の乾燥の制御により得ることができる。   The inorganic fiber aggregate having the above-mentioned preferred average fiber diameter and substantially free of fibers having a fiber diameter of 3 μm or less is used in the production of inorganic fiber aggregates by the sol-gel method, and the control of the spinning solution viscosity, the spinning nozzle It can be obtained by controlling the air flow used for the yarn and controlling the drying of the drawn yarn.

{ニードル痕密度}
ニードルブランケットのニードル痕密度については、2〜200打/cm、特に2〜150打/cm、とりわけ2〜100打/cm、中でも2〜50打/cmであることが好ましい。このニードル痕密度が低過ぎると、無機繊維成形体としての厚みの均一性が低下し、かつ耐熱衝撃性が低下する等の問題があり、高過ぎると、繊維を傷め、焼成後に飛散し易くなる恐れがある。
{Needle mark density}
The needle mark density of the needle blanket is preferably 2 to 200 strokes / cm 2 , particularly 2 to 150 strokes / cm 2 , particularly 2 to 100 strokes / cm 2 , and particularly preferably 2 to 50 strokes / cm 2 . If the needle mark density is too low, the uniformity of the thickness of the inorganic fiber molded article is reduced and the thermal shock resistance is lowered. If the needle mark density is too high, the fiber is damaged and easily scattered after firing. There is a fear.

{嵩密度、面密度、厚さ}
ニードルブランケットの嵩密度は、0.05〜0.20g/cmであることが好ましく、0.08〜0.15g/cmであることがより好ましい。嵩密度が低すぎると脆弱な無機繊維成形体しか得られず、また、嵩密度が高すぎると無機繊維成形体の嵩密度が増大するとともに反発力が失われ、靭性の低い成形体となる。
{Bulk density, surface density, thickness}
The bulk density of the needle blanket is preferably 0.05~0.20g / cm 3, more preferably 0.08~0.15g / cm 3. If the bulk density is too low, only a fragile inorganic fiber molded body can be obtained. If the bulk density is too high, the bulk density of the inorganic fiber molded body increases and the repulsive force is lost, resulting in a molded body with low toughness.

ニードルブランケットの面密度は、1000〜4000g/m、特に1500〜3800g/m、とりわけ2000〜3600g/mであることが好ましい。この無機繊維集合体の面密度が小さ過ぎると、繊維量が少なく、極薄い成形体しか得られず、断熱用無機繊維成形体としての有用性が低くなり、面密度が大き過ぎると繊維量が多すぎることにより、ニードリング処理による厚み制御が困難となる。 The surface density of the needle blanket is preferably 1000 to 4000 g / m 2 , particularly 1500 to 3800 g / m 2 , particularly 2000 to 3600 g / m 2 . If the surface density of the inorganic fiber aggregate is too small, the amount of fibers is small, and only a very thin molded body can be obtained, and the usefulness as an inorganic fiber molded body for heat insulation is reduced. When the amount is too large, it becomes difficult to control the thickness by the needling process.

ニードルブランケットの厚さは、好ましくは2〜35mm程度である。   The thickness of the needle blanket is preferably about 2 to 35 mm.

このニードルブランケットは、前記特許文献4に記載の通り、ゾル−ゲル法により無機繊維前駆体の集合体を得る工程と、得られた無機繊維前駆体の集合体に、ニードリング処理を施す工程と、ニードリング処理された無機繊維前駆体の集合体を焼成して無機繊維の集合体とする焼成工程とを経て製造される。   As described in Patent Document 4, the needle blanket includes a step of obtaining an aggregate of inorganic fiber precursors by a sol-gel method, and a step of performing a needling treatment on the obtained aggregate of inorganic fiber precursors. The inorganic fiber precursor aggregate that has been subjected to the needling process is fired to obtain an inorganic fiber aggregate.

[第2の実施の形態]
上記第1の実施の形態では、無機繊維成形体2をつづら折り状に交互に折り畳んだ折り畳み体3を用いているが、無機繊維成形体2を上記寸法a×bの大きさに切断して単板とし、この単板を積層してもよい。図3はかかる無機繊維質断熱材ブロック1’の斜視図である。
[Second Embodiment]
In the first embodiment, the folded body 3 in which the inorganic fiber molded body 2 is alternately folded in a zigzag manner is used. However, the inorganic fiber molded body 2 is simply cut into the size a × b. A single plate may be laminated. FIG. 3 is a perspective view of such an inorganic fibrous heat insulating material block 1 ′.

なお、図3の無機繊維質断熱材ブロック1’では、無機繊維成形体2の単板同士のすべての重なり面が加熱面に露呈する。これに対し、図1の無機繊維質断熱材ブロック1では、折り重ねた重なり面のうち半数のもののみが加熱面に露呈する。スケールによる腐食は目地から起こることが多く、目地の数を減らすことで断熱部材の寿命を延ばすことができる。従って、目地の少ない図1の無機繊維質断熱材ブロック1の方が好ましい。   In addition, in the inorganic fiber heat insulating material block 1 ′ in FIG. 3, all overlapping surfaces of the single plates of the inorganic fiber molded body 2 are exposed to the heating surface. On the other hand, in the inorganic fibrous heat insulating material block 1 of FIG. 1, only half of the folded overlapping surfaces are exposed to the heating surface. Corrosion due to scale often occurs from joints, and the life of the heat insulating member can be extended by reducing the number of joints. Therefore, the inorganic fibrous heat insulating material block 1 of FIG.

[その他の実施の形態]
上記実施の形態では、保形板4として平板状のものを用いたが、特許文献1のように、平板(加圧面当接部)の側縁から折り畳み体3の側縁に回り込む起立片(加熱面当接部)を有するL字形板状体を用い、折り畳み体3の角縁を保護するようにしてもよい。また、特許文献1のように、無機繊維質断熱材ブロックの加熱面に重なる起立片に、作業者が手を掛けるための手掛り部を設けてもよい。折り畳み体3の背面側(図1の右側面)に、無機繊維質断熱材ブロック1を炉壁に係止させるための係止部材を設けてもよい。
[Other embodiments]
In the said embodiment, although the flat thing was used as the shape-retaining board 4, the standing piece (around the side edge of the folding body 3 from the side edge of a flat plate (pressurization surface contact part) like patent document 1 ( You may make it protect the corner | angular edge of the folding body 3 using the L-shaped plate-shaped body which has a heating surface contact part. Moreover, you may provide the clue part for an operator to handle to the standing piece which overlaps with the heating surface of an inorganic fiber heat insulating material block like patent document 1. FIG. A locking member for locking the inorganic fibrous heat insulating material block 1 to the furnace wall may be provided on the back side of the folded body 3 (right side surface in FIG. 1).

以下に実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

[実施例1]
平均繊維径5.5μmであり、実質的に繊維径3μm以下の繊維を含まない、アルミナ72質量%とシリカ28質量%とを含む多結晶質アルミナ/シリカ系繊維を集積してニードリングしてなるニードルブランケット(商品名:三菱樹脂 MAFTEC MLS、厚さ25mm、嵩密度96kg/m)を幅300mm×長さ4800mmに加工し、長さ300mmで交互に折り畳み、16層に積層して折り畳み体3とした。この折り畳み体3の積層方向両端側の面に300mm×300mm×320mmのポリプロピレン製保形板4を重ね、積層方向に圧縮し、圧縮後結束バンド5で固定し、300mm×300mm×300mmの無機繊維成形体を得た。
[Example 1]
Polycrystalline alumina / silica-based fibers containing 72% by mass of alumina and 28% by mass of silica having an average fiber diameter of 5.5 μm and substantially free of fibers having a fiber diameter of 3 μm or less are accumulated and needling. Needle blanket (trade name: Mitsubishi resin MAFTEC MLS, thickness 25 mm, bulk density 96 kg / m 3 ) is processed into a width of 300 mm × length of 4800 mm, folded alternately at a length of 300 mm, and stacked into 16 layers and folded. It was set to 3. A 300 mm × 300 mm × 320 mm polypropylene shape-retaining plate 4 is stacked on the surfaces of both ends of the folded body 3 in the laminating direction, compressed in the laminating direction, fixed with a binding band 5 after compression, and 300 mm × 300 mm × 300 mm inorganic fiber A molded body was obtained.

酸化物前駆体含有液として、アルミナゾル溶液に、酢酸カルシウム一水和物を焼成後の酸化物質量比が91.6:8.4になるように添加し酸化物換算の固形分濃度を7.0%に調整した液を作製した。この液4Lを加熱面側からd=50mmまで含浸させた後、加熱面にアタッチメントを装着し、吸引力3.0m/minとして加熱面から液を吸引し、無機繊維質断熱材ブロック1を製作した。 As an oxide precursor-containing liquid, calcium acetate monohydrate is added to an alumina sol solution so that the oxide mass ratio after firing is 91.6: 8.4, and the solid content concentration in terms of oxide is 7. A liquid adjusted to 0% was prepared. After impregnating this liquid 4L from the heating surface side to d = 50 mm, an attachment is attached to the heating surface and the liquid is sucked from the heating surface with a suction force of 3.0 m 3 / min. Produced.

この無機繊維質断熱材ブロック1において、耐スケール性、反発力、含浸部6における含水率及び添着量を後述の方法により測定した。結果を表1に示す。なお、反発力部7における酸化物前駆体含有液の含浸量は0(ゼロ)であった。   In this inorganic fibrous heat insulating material block 1, the scale resistance, the repulsive force, the moisture content in the impregnation part 6 and the amount of attachment were measured by the methods described later. The results are shown in Table 1. The impregnation amount of the oxide precursor-containing liquid in the repulsive force portion 7 was 0 (zero).

[実施例2]
実施例1において、液の吸引力を10m/minとしたこと以外は同様にして無機繊維質断熱材ブロックを作成した。耐スケール性等の測定結果を表1に示す。
[Example 2]
In Example 1, the inorganic fibrous heat insulating material block was created similarly except having set the suction | attraction force of the liquid to 10 m < 3 > / min. Table 1 shows the measurement results such as scale resistance.

[実施例3]
実施例1において、液の吸引力を0.5m/minとしたこと以外は同様にして無機繊維質断熱材ブロックを作成した。耐スケール性等の測定結果を表1に示す。
[Example 3]
In Example 1, the inorganic fibrous heat insulating material block was created similarly except having set the suction | attraction force of the liquid to 0.5 m < 3 > / min. Table 1 shows the measurement results such as scale resistance.

[比較例1]
酸化物前駆体の液状物質を含浸させなかったこと以外は、実施例1と同様にして無機繊維質断熱材ブロックを作製した。耐スケール性等の測定結果を表1に示す。
[Comparative Example 1]
An inorganic fibrous heat insulating material block was prepared in the same manner as in Example 1 except that the oxide precursor liquid material was not impregnated. Table 1 shows the measurement results such as scale resistance.

[比較例2]
実施例1において、無機繊維断熱ブロックを150℃で24時間乾燥させたこと以外は同様にして無機繊維質断熱材ブロックを作製した。耐スケール性等の測定結果を表1に示す。
[Comparative Example 2]
In Example 1, the inorganic fiber heat insulation block was similarly produced except having dried the inorganic fiber heat insulation block at 150 degreeC for 24 hours. Table 1 shows the measurement results such as scale resistance.

[比較例3]
実施例1において、無機繊維断熱ブロックを120℃で12時間乾燥させたこと以外は同様にして無機繊維質断熱材ブロックを作成した。耐スケール性等の測定結果を表1に示す。
[Comparative Example 3]
In Example 1, the inorganic fiber heat insulation block was similarly produced except having dried the inorganic fiber heat insulation block at 120 degreeC for 12 hours. Table 1 shows the measurement results such as scale resistance.

[参考例1]
実施例1において、含浸液を6.0L含浸させたこと以外は実施例1と同様にして無機繊維質断熱材ブロックを製作したが、液が加熱面側からもれ出てきた。なお、このときの添着量は51質量%、含浸部厚みdは70mmであった。
[Reference Example 1]
In Example 1, an inorganic fibrous heat insulating material block was manufactured in the same manner as in Example 1 except that 6.0 L of the impregnating liquid was impregnated, but the liquid leaked from the heating surface side. In addition, the amount of attachment at this time was 51 mass%, and the impregnation part thickness d was 70 mm.

[実施例4]
実施例1において、酸化物前駆体液状物質をアルミナゾル溶液と酢酸マグネシウム四水和物を焼成後の酸化物質量比が72:28になるように調整したこと以外、実施例1と同様にして無機繊維質断熱材ブロックを作製した。耐スケール性等の測定結果を表1に示す。
[Example 4]
In Example 1, the oxide precursor liquid substance was inorganic in the same manner as in Example 1 except that the alumina sol solution and magnesium acetate tetrahydrate were adjusted so that the oxide mass ratio after firing was 72:28. A fibrous insulation block was prepared. Table 1 shows the measurement results such as scale resistance.

≪特性の測定方法≫
[耐スケール性]
鉄鋼業の熱延加熱炉に設置し、1350℃の操業温度で6ヶ月間使用し、スケールによる侵食の状態を確認した。
≪Measurement method of characteristics≫
[Scale resistance]
It was installed in a hot rolling furnace in the steel industry and used for 6 months at an operating temperature of 1350 ° C., and the state of erosion due to scale was confirmed.

[積層方向の反発性]
無機繊維質ブロックの結束バンド5を切断し、復元力により積層方向に伸長させ、伸長後の積層方向寸法を計測した。反発性に優れているといえるのは、無機繊維断熱ブロックの結束バンド切断後の長さが、切断前の長さより+20%以上になる場合(すなわち360mm以上になる場合)である。
[Repulsiveness in the stacking direction]
The binding band 5 of the inorganic fibrous block was cut and stretched in the laminating direction by a restoring force, and the dimension in the laminating direction after stretching was measured. It can be said that the resilience is excellent when the length of the inorganic fiber heat insulation block after cutting the binding band is + 20% or more than the length before cutting (that is, when the length is 360 mm or more).

[含水量]
無機繊維質断熱材ブロックを、加熱面と平行な切断面によって10mm毎に切断し、150℃で2時間乾燥した。乾燥前後の質量を測定し、含浸部の含水量を求めた。この含水量は、無機繊維100質量部に対する水分の質量である。
[Water content]
The inorganic fibrous heat insulating material block was cut every 10 mm with a cut surface parallel to the heating surface, and dried at 150 ° C. for 2 hours. The mass before and after drying was measured, and the water content of the impregnated part was determined. This water content is the mass of moisture relative to 100 parts by mass of the inorganic fibers.

[添着量]
無機繊維質断熱材ブロックから、酸化物前駆体含有液が含浸されていない部分を切断し無機繊維質断熱材ブロックを構成している無機繊維ニードルブランケット一枚辺りの面比重を5点求め、その平均値を添着前の面比重rとした。酸化物前駆体含有液含浸後の無機繊維質断熱材ブロックを1250℃で2時間で焼成した後、含浸部6の部分を切り出し同様の方法で面比重rを測定した。r、rを用いて計算式(r−r)/rにより添着量を求めた。この添着量は、含浸部6における酸化物の添着量(質量%)を表わす。
[Adhesion amount]
From the inorganic fibrous heat insulating material block, cut the portion that is not impregnated with the oxide precursor-containing liquid, and obtain the surface specific gravity per one piece of the inorganic fiber needle blanket constituting the inorganic fibrous heat insulating material block. The average value was defined as the surface specific gravity r 1 before attachment. After firing the inorganic fibrous heat insulating material block impregnated with the oxide precursor-containing liquid at 1250 ° C. for 2 hours, the impregnated portion 6 was cut out and the surface specific gravity r 2 was measured by the same method. Using r 1 and r 2 , the amount of attachment was determined by the calculation formula (r 2 −r 1 ) / r 1 . This amount of deposition represents the amount of oxide deposition (% by mass) in the impregnation portion 6.

酸化物前駆体含有液が含浸されていない部分の面比重(反発力部7)については、実施例で使用したニードルブランケット(商品名:三菱樹脂 MAFTEC MLS、厚さ25mm、嵩密度96kg/m)と同等である。面比重は下記式により算出される。
面比重=原反重量/面積=原反重量/密度×厚み
About the surface specific gravity (repulsive force part 7) of the part which is not impregnated with the oxide precursor-containing liquid, the needle blanket used in the example (trade name: Mitsubishi Resin MAFTEC MLS, thickness 25 mm, bulk density 96 kg / m 3 ). The surface specific gravity is calculated by the following formula.
Surface specific gravity = raw fabric weight / area = raw fabric weight / density × thickness

Figure 0006176056
Figure 0006176056

表1の通り、Al−CaO系の含浸剤を適量含浸させ、かつ含浸後に未乾燥状態とした実施例1〜3の無機繊維質断熱材ブロックは、反発性に優れ、また耐スケール性に優れる。実施例4は、含浸剤がAl−MgO系であるため、反発性には優れるが、耐スケール性に若干劣る。Al−CaO系の含浸剤の含浸後に乾燥を施した比較例2,3は、耐スケール性には優れるが反発性が低い。比較例1は、何も含浸させなかったものであり、反発力は高いが、耐スケール性に劣る。 As shown in Table 1, the inorganic fibrous thermal insulation blocks of Examples 1 to 3 impregnated with an appropriate amount of an Al 2 O 3 —CaO-based impregnating agent and made into an undried state after impregnation have excellent resilience and are resistant to scale. Excellent in properties. In Example 4, since the impregnating agent is Al 2 O 3 —MgO, the resilience is excellent, but the scale resistance is slightly inferior. Comparative Examples 2 and 3, which were dried after impregnation with an Al 2 O 3 —CaO-based impregnating agent, were excellent in scale resistance but low in resilience. In Comparative Example 1, nothing was impregnated and the resilience was high, but the scale resistance was poor.

1,1’ 無機繊維質断熱材ブロック
2 無機繊維成形体
3 折り畳み体
4 保形板
5 結束バンド
6 含浸部
7 反発力部
1, 1 'Inorganic fiber heat insulating material block 2 Inorganic fiber molded body 3 Folded body 4 Shape retention board 5 Binding band 6 Impregnation part 7 Repulsion part

Claims (5)

炉内被加熱面のライニング施工に用いられる無機繊維質断熱材ブロックであって、
無機繊維のニードルブランケット又はマットの積層体が積層方向に圧縮され、保形手段により圧縮状態に保形された無機繊維質断熱材ブロックにおいて、
該無機繊維質断熱材ブロックの、炉内に向けて配置される加熱面側に、酸化物前駆体含有液が含浸され、かつ未乾燥状態である含浸部が形成されており、
該含浸部の該加熱面からの範囲が3〜60mmであり、
該含浸部における水分量が、含浸部無機繊維100質量部に対し水分50〜700質量部であり、
前記酸化物前駆体含有液は、該含浸部においては、焼成後の酸化物添着量が含浸部無機繊維100質量部に対して2〜50質量部となるように含浸されると共に、
無機繊維質断熱材ブロックの炉内加熱面側から炉壁面側の深さ方向への深さ方向60mm超の部分においては、焼成後の酸化物添着量が含浸部無機繊維100質量部に対して1質量部以下となるように含浸されていることを特徴とする
無機繊維質断熱材ブロック。
An inorganic fiber insulation block used for lining construction of the heated surface in the furnace,
In an inorganic fiber heat insulating material block in which a laminate of inorganic fiber needle blankets or mats is compressed in the laminating direction and held in a compressed state by a shape-retaining means,
An impregnation portion that is impregnated with the oxide precursor-containing liquid and is in an undried state is formed on the heating surface side of the inorganic fibrous heat insulating material block that is disposed toward the furnace,
The range from the heating surface of the impregnation part is 3 to 60 mm,
The amount of water in the impregnation part is 50 to 700 parts by weight of water with respect to 100 parts by weight of the impregnation part inorganic fiber.
The oxide precursor-containing liquid is impregnated in the impregnated portion so that the amount of oxide after baking is 2 to 50 parts by mass with respect to 100 parts by mass of the impregnated inorganic fiber,
In the portion of the inorganic fiber heat insulating material block in the depth direction exceeding 60 mm in the depth direction from the furnace heating surface side to the furnace wall surface side, the oxide deposition amount after firing is 100 parts by mass of the impregnated inorganic fiber. An inorganic fibrous heat insulating material block impregnated so as to be 1 part by mass or less.
前記酸化物前駆体含有液は、焼成によりAlを生じさせる成分と、焼成によりCaOを生じさせる成分とを含む、請求項1に記載の無機繊維質断熱材ブロック。 2. The inorganic fibrous heat insulating material block according to claim 1, wherein the oxide precursor-containing liquid includes a component that generates Al 2 O 3 by firing and a component that generates CaO by firing. 無機繊維質断熱材ブロック含浸部の焼成後の組成は、焼成により生じるAlと無機繊維のAlと、焼成により生じるCaOとの質量比Al/CaOが30〜300である、請求項2に記載の無機繊維質断熱材ブロック。 Composition after firing of the inorganic fiber heat insulating material block impregnation unit, Al 2 O 3 and Al 2 O 3 of inorganic fibers caused by firing, the mass ratio Al 2 O 3 / CaO and CaO produced by firing 30 to 300 The inorganic fibrous heat insulating material block according to claim 2, wherein 前記酸化物前駆体含有液が着色されており、これにより前記含浸部が着色されていることを特徴とする請求項1ないし3のいずれか1項に記載の無機繊維質断熱材ブロック。   The inorganic fibrous heat insulating material block according to any one of claims 1 to 3, wherein the oxide precursor-containing liquid is colored, whereby the impregnated portion is colored. 請求項1ないし4のいずれか1項に記載の無機繊維断熱材ブロックが、前記保形手段による保形が解除された形態にてライニング施工されている炉。   A furnace in which the inorganic fiber heat insulating material block according to any one of claims 1 to 4 is lined in a form in which shape retention by the shape retaining means is released.
JP2013221264A 2013-10-24 2013-10-24 Inorganic fiber insulation block and furnace with the same installed on the inner wall Active JP6176056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013221264A JP6176056B2 (en) 2013-10-24 2013-10-24 Inorganic fiber insulation block and furnace with the same installed on the inner wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013221264A JP6176056B2 (en) 2013-10-24 2013-10-24 Inorganic fiber insulation block and furnace with the same installed on the inner wall

Publications (2)

Publication Number Publication Date
JP2015081752A JP2015081752A (en) 2015-04-27
JP6176056B2 true JP6176056B2 (en) 2017-08-09

Family

ID=53012439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013221264A Active JP6176056B2 (en) 2013-10-24 2013-10-24 Inorganic fiber insulation block and furnace with the same installed on the inner wall

Country Status (1)

Country Link
JP (1) JP6176056B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3220086B1 (en) * 2014-11-14 2020-02-19 Mitsubishi Chemical Corporation Heat-insulating protective member for skid post, and method for applying heat-insulating protective member for skid post
JP6838606B2 (en) * 2016-05-13 2021-03-03 三菱ケミカル株式会社 Insulation protection member, its manufacturing method, construction method, furnace member and heating furnace
KR102268369B1 (en) * 2020-10-08 2021-06-24 조영수 method of making aerogel blanket and aerogel blanket made by the same
JP7404588B1 (en) * 2022-12-09 2023-12-25 イビデン株式会社 Manufacturing method of inorganic fiber mat

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3776182B2 (en) * 1996-10-30 2006-05-17 サンゴバン・ティーエム株式会社 Inorganic fiber block and furnace
US5728326A (en) * 1997-03-18 1998-03-17 Suey; Paul V. Method of making hard-faced ceramic fiber module
JP5110540B2 (en) * 2009-07-31 2012-12-26 新日本サーマルセラミックス株式会社 FeO resistant coating material
JP5791922B2 (en) * 2010-03-09 2015-10-07 三菱樹脂株式会社 Light-weight inorganic fiber molded body and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015081752A (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP6176056B2 (en) Inorganic fiber insulation block and furnace with the same installed on the inner wall
JP5527487B2 (en) Inorganic fiber molded body and method for producing the same
KR101961628B1 (en) Molded inorganic-fiber object
US8999251B2 (en) Inorganic fiber formed article and method for producing the same
US20200182120A1 (en) Retaining material for pollution control element, method for manufacturing the same, and pollution control device
CN113677523B (en) Surface treatment of ceramic coating/impregnating materials
JP7198215B2 (en) Molded heat insulating material with surface layer and method for manufacturing the same
KR102453734B1 (en) Heat-insulating protective member for skid post, and method for applying heat-insulating protective member for skid post
JP6838606B2 (en) Insulation protection member, its manufacturing method, construction method, furnace member and heating furnace
KR20190143300A (en) Aerogel insulation composition for thin film and aerogel thin film sheet comprising the same
JP6327359B2 (en) Method for producing binder-containing inorganic fiber molded body
JP2021185280A (en) Inorganic fiber molded body, mat for exhaust gas purification device, and exhaust gas purification device
JP6805846B2 (en) Method for manufacturing an inorganic fiber molded product containing an organic binder
JP7477137B2 (en) Heat Resistant Filter
JP7394905B2 (en) Binder-containing inorganic fiber molded article, holding material for exhaust gas purification device, and method for producing binder-containing inorganic fiber molded article
KR20220031989A (en) Thermal insulation protection member, its manufacturing method, construction method, furnace member and heating furnace
JP3827857B2 (en) Inorganic fiber molded products
JP2022010303A (en) Nozzle chip manufacturing method and fuel nozzle manufacturing method
JP2002292242A (en) Heat-resistant mat, method for manufacturing the same and catalyst converter for purification of exhaust gas
JP2019052831A (en) Regenerative burner, and fuel nozzle and nozzle tip thereof
JPH01219084A (en) Thermal insulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170626

R150 Certificate of patent or registration of utility model

Ref document number: 6176056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250