JP6175700B2 - CNT dispersion - Google Patents

CNT dispersion Download PDF

Info

Publication number
JP6175700B2
JP6175700B2 JP2011094925A JP2011094925A JP6175700B2 JP 6175700 B2 JP6175700 B2 JP 6175700B2 JP 2011094925 A JP2011094925 A JP 2011094925A JP 2011094925 A JP2011094925 A JP 2011094925A JP 6175700 B2 JP6175700 B2 JP 6175700B2
Authority
JP
Japan
Prior art keywords
cnt
dispersant
dispersion
concentration
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011094925A
Other languages
Japanese (ja)
Other versions
JP2012224521A (en
Inventor
貴文 松田
貴文 松田
基男 須永
基男 須永
弘 磯部
弘 磯部
金子 克美
克美 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Chemical Co Ltd
Original Assignee
Fuji Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Chemical Co Ltd filed Critical Fuji Chemical Co Ltd
Priority to JP2011094925A priority Critical patent/JP6175700B2/en
Publication of JP2012224521A publication Critical patent/JP2012224521A/en
Application granted granted Critical
Publication of JP6175700B2 publication Critical patent/JP6175700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

本発明は、CNT(カーボンナノチューブ)を液中で分散させたCNT分散液に関する。 The present invention relates to C NT dispersion obtained by dispersing CNT (carbon nanotube) in the liquid.

CNTは、電界放出特性、機械的強度、電気伝導性、熱伝導性、化学的安定性等において優れた特性を有する。そのため、CNTを含む材料は、電界放出型ディスプレイ(FED)、透明電極、燃料電池、導電性樹脂、ヒートシンク、宇宙エレベータ、化学センサ等、様々な用途において期待されている。   CNTs have excellent characteristics in field emission characteristics, mechanical strength, electrical conductivity, thermal conductivity, chemical stability, and the like. Therefore, a material containing CNT is expected in various applications such as a field emission display (FED), a transparent electrode, a fuel cell, a conductive resin, a heat sink, a space elevator, and a chemical sensor.

CNTを含む材料を製造するとき、CNTが分散媒中で安定に分散している分散液(CNT分散液)を調製する必要がある。CNTを分散媒中で安定に分散させるために、CNTを酸で処理する方法(非特許文献1参照)、CNTをプラズマで処理する方法(特許文献1参照)、界面活性剤を添加する方法(特許文献2参照)等が提案されている。   When producing a material containing CNTs, it is necessary to prepare a dispersion (CNT dispersion) in which CNTs are stably dispersed in a dispersion medium. In order to stably disperse CNT in a dispersion medium, a method of treating CNT with an acid (see Non-Patent Document 1), a method of treating CNT with plasma (see Patent Document 1), and a method of adding a surfactant ( Patent Document 2) has been proposed.

特開2003-300715号公報Japanese Patent Laid-Open No. 2003-300715 特開2010-13312号公報JP 2010-13312 A

Carbon46(2008)、p833-840Carbon46 (2008), p833-840

しかしながら、CNTを酸やプラズマで処理すると、CNT表面に欠陥を形成し、CNTが元来有している優れた特性(電気伝導性、熱伝導性、機械強度等)を低下させてしまう。   However, when CNTs are treated with acid or plasma, defects are formed on the surface of the CNTs, and the excellent characteristics (electric conductivity, thermal conductivity, mechanical strength, etc.) inherent to the CNTs are reduced.

また、従来の界面活性剤(通常、ドデシル硫酸ナトリウム等の有機系材料)を添加する方法では、分散媒中におけるCNT濃度が高い場合、CNTを安定に分散できず、CNTの凝集や沈降が生じてしまう。   In addition, when a conventional surfactant (usually an organic material such as sodium dodecyl sulfate) is added, if the CNT concentration in the dispersion medium is high, the CNT cannot be stably dispersed, and CNT aggregation and sedimentation occur. End up.

本発明は以上の点に鑑みなされたものであり、CNTの特性を低下させず、分散媒中でCNTを安定に分散させることができるNT分散液を提供することを目的とする。 The present invention is intended is been made in consideration of these circumstances, without reducing the properties of the CNT, and an object thereof is to provide a C NT dispersion can be stably dispersed CNT in the dispersion medium.

NT分散剤は、シリカコロイド、及び/又は遷移金属の酸化物のコロイドを含むことを特徴とする。
のCNT分散剤を用いれば、CNTを分散媒中で安定に分散させることができる。また、CNTを酸やプラズマで処理する方法のように、CNT表面に欠陥を形成してしまうことがない。
The CNT dispersant is characterized by containing a colloid of silica and / or a colloid of an oxide of a transition metal.
The use of CNT dispersant this may be stably disperse CNT in a dispersion medium. In addition, defects are not formed on the CNT surface unlike the method of treating CNT with acid or plasma.

NT分散剤の使用方法としては、例えば、NT分散剤と、CNTの粉末とを混合する方法がある。また、NT分散剤と、CNTを含む分散液とを混合してもよい。 The use of C NT dispersants, for example, a method of mixing a C NT dispersant, a powder of CNT. Further, a C NT dispersant may be mixed with a dispersion containing a CNT.

NT分散剤におけるコロイド粒子の粒径は、1〜110nmの範囲が好適である。この範囲内であることにより、CNTの分散性が一層向上する。
また、CNT分散剤におけるコロイド粒子の濃度は、0.05〜30重量%の範囲が好適である。0.05重量%以上であることにより、CNTの分散性が一層向上する。また、30重量%以下であることにより、コロイド粒子がゲル化しにくい。イオン交換により作製したシリカコロイドを含むCNT分散剤の場合は、0.05〜5重量%の範囲が好適である。
The particle size of the colloidal particles in C NT dispersant range 1~110nm are preferred. By being in this range, the dispersibility of CNT is further improved.
The concentration of colloidal particles in the CNT dispersant is preferably in the range of 0.05 to 30% by weight. The dispersibility of CNT improves further by being 0.05 weight% or more. Further, the colloidal particles are hardly gelled by being 30% by weight or less. In the case of a CNT dispersant containing silica colloid prepared by ion exchange, a range of 0.05 to 5% by weight is suitable.

前記遷移金属の酸化物としては、例えば、ジルコニア、セリア、チタニア、及び酸化亜鉛から成る群から選ばれる1種以上が挙げられる。これらのコロイド粒子は、アルミナのコロイド粒子よりも、CNTの分散性が一層高い。   Examples of the transition metal oxide include one or more selected from the group consisting of zirconia, ceria, titania, and zinc oxide. These colloidal particles have higher CNT dispersibility than alumina colloidal particles.

NT分散剤におけるpHは、7以下であることが好ましい。この範囲内であることにより、CNTの分散性が一層向上する。
NT分散剤に含まれる分散媒としては、例えば、水、IPA、エチレングリコール等が挙げられる。
PH in C NT dispersant is preferably 7 or less. By being in this range, the dispersibility of CNT is further improved.
As the dispersion medium contained in the C NT dispersants, for example, water, IPA, and ethylene glycol.

NT分散剤(シリカコロイドを含むもの)は、例えば、以下のように製造することができる。まず、ケイ酸ソーダ(1〜5号ケイ酸ソーダ、高純度ケイ酸ソーダ)を、SiO2濃度が1〜5重量%となるように希釈する。この希釈したケイ酸ソーダを、強酸性陽イオン交換樹脂に通す。このとき、ケイ酸ソーダのNaイオンがHイオンに置換される。その結果、シリカゾル(活性ケイ酸)が得られる。このシリカゾルを、シリカコロイドを含むCNT分散剤とすることができる。また、硫酸とケイ酸ソーダとから調製した酸性シリカゾル等も、シリカコロイドを含むCNT分散剤とすることができる。 A CNT dispersant (containing a silica colloid) can be produced, for example, as follows. First, sodium silicate (No. 1-5 sodium silicate, high-purity sodium silicate) is diluted so that the SiO 2 concentration becomes 1 to 5% by weight. The diluted sodium silicate is passed through a strongly acidic cation exchange resin. At this time, sodium ions of sodium silicate are replaced with H ions. As a result, silica sol (active silicic acid) is obtained. This silica sol can be used as a CNT dispersant containing silica colloid. An acidic silica sol prepared from sulfuric acid and sodium silicate can also be used as a CNT dispersant containing a silica colloid.

本発明のCNT分散液は、上述したCNT分散剤と、CNTとを含むことを特徴とする。本発明のCNT分散液は、上述したCNT分散剤を含むことにより、CNTを分散媒中で安定に分散させることができる。   The CNT dispersion liquid of the present invention includes the CNT dispersant described above and CNT. The CNT dispersion liquid of the present invention can stably disperse CNTs in a dispersion medium by including the above-described CNT dispersant.

CNT分散液におけるコロイド粒子の濃度は、0.05〜30重量%の範囲ある。0.05重量%以上であることにより、CNTの分散性が一層向上する。また、30重量%以下であることにより、コロイド粒子がゲル化しにくい。イオン交換により作製したシリカコロイドを含むCNT分散液の場合は、0.05〜5重量%の範囲が好適である。 The concentration of colloidal particles in the CNT dispersion is in the range of 0.05 to 30% by weight. The dispersibility of CNT improves further by being 0.05 weight% or more. Further, the colloidal particles are hardly gelled by being 30% by weight or less. In the case of a CNT dispersion containing silica colloid prepared by ion exchange, a range of 0.05 to 5% by weight is suitable.

本発明のCNT分散液におけるpHは、7以下であるこの範囲内であることにより、CNTの分散性が一層向上する。
本発明のCNT分散液における分散媒は、CNT分散剤に含まれていた分散媒であってもよいし、それとは別に加えられた分散媒であってもよいし、CNT分散剤に含まれていた分散媒と他の分散剤との混合物であってもよい。
The pH in the CNT dispersion of the present invention is 7 or less . By being in this range, the dispersibility of CNT is further improved.
The dispersion medium in the CNT dispersion liquid of the present invention may be a dispersion medium contained in the CNT dispersion agent, or may be a dispersion medium added separately from the dispersion medium, or may be contained in the CNT dispersion agent. It may be a mixture of a dispersion medium and other dispersant.

本発明のCNT分散液は、例えば、CNT分散剤と、CNTとを混合させることで製造できる。混合後、分散処理(例えば、超音波処理、機械的な攪拌処理等)を行うことが好ましい。分散処理を行うことにより、CNTの分散性が一層向上する。   The CNT dispersion of the present invention can be produced, for example, by mixing a CNT dispersant and CNT. After mixing, it is preferable to perform a dispersion treatment (for example, ultrasonic treatment, mechanical stirring treatment, etc.). By performing the dispersion treatment, the dispersibility of the CNTs is further improved.

CNTを表す電子顕微鏡写真であって、(a)はVGCF−Hを表し、(b)はVGCF−Xを表す。It is the electron micrograph showing CNT, Comprising: (a) represents VGCF-H and (b) represents VGCF-X.

本発明の実施形態を説明する。   An embodiment of the present invention will be described.

1.CNT分散剤の製造
5号ケイ酸ナトリウム水溶液(SiO2濃度25.6重量%、モル比3.7)を、SiO2濃度が1重量%となるようにイオン交換水で希釈した。この希釈したケイ酸ナトリウム溶液を、カラムに充てんした強酸性陽イオン交換樹脂に通液することで、SiO2濃度1重量%のシリカコロイド溶液(pH3.9)を調製した。このシリカコロイド溶液を、CNT分散剤1Aとする。
1. Production of CNT dispersing agent No. 5 sodium silicate aqueous solution (SiO 2 concentration 25.6 wt%, molar ratio 3.7) was diluted with ion-exchanged water so that the SiO 2 concentration became 1 wt%. The diluted sodium silicate solution was passed through a strongly acidic cation exchange resin packed in a column to prepare a silica colloid solution (pH 3.9) having a SiO 2 concentration of 1% by weight. This silica colloid solution is designated as CNT dispersant 1A.

また、3gのCNT分散剤1Aに、イオン交換水27gを加えて希釈することにより、SiO2濃度0.1重量%のシリカコロイド溶液(pH5.2)を調製した。このシリカコロイド溶液を、CNT分散剤1Bとする。 Further, a silica colloid solution (pH 5.2) having a SiO 2 concentration of 0.1% by weight was prepared by adding and diluting 27 g of ion exchange water to 3 g of the CNT dispersant 1A. This silica colloid solution is designated as CNT dispersant 1B.

また、0.3gのCNT分散剤1Aに、イオン交換水29.7gを加えて希釈することにより、SiO2濃度0.01重量%のシリカコロイド溶液(pH5.6)を調製した。このシリカコロイド溶液を、CNT分散剤1Cとする。 Further, 29.7 g of ion exchange water was added to 0.3 g of CNT dispersant 1A and diluted to prepare a silica colloid solution (pH 5.6) having a SiO 2 concentration of 0.01 wt%. This silica colloid solution is designated as CNT dispersant 1C.

また、CNT分散剤1AのpHを、1mol/lの塩酸を加えることで、1.5、2.5、3.4にそれぞれ調整した。pHが1.5であるシリカコロイド溶液をCNT分散剤1Dとし、pHが2.5であるシリカコロイド溶液をCNT分散剤1Eとし、pHが3.4であるシリカコロイド溶液をCNT分散剤1Fとする。また、CNT分散剤1AのpHを、0.1mol/lのアンモニア水を用いて、4.5、5.5、6.4にそれぞれ調整した。pHが4.5であるシリカコロイド溶液をCNT分散剤1Gとし、pHが5.5であるシリカコロイド溶液をCNT分散剤1Hとし、pHが6.4であるシリカコロイド溶液をCNT分散剤1Iとする。   Further, the pH of the CNT dispersant 1A was adjusted to 1.5, 2.5, and 3.4 by adding 1 mol / l hydrochloric acid, respectively. A silica colloid solution having a pH of 1.5 is referred to as CNT dispersant 1D, a silica colloid solution having a pH of 2.5 is referred to as CNT dispersant 1E, and a silica colloid solution having a pH of 3.4 is referred to as CNT dispersant 1F. Further, the pH of the CNT dispersant 1A was adjusted to 4.5, 5.5, and 6.4 using 0.1 mol / l ammonia water, respectively. A silica colloid solution having a pH of 4.5 is referred to as CNT dispersant 1G, a silica colloid solution having a pH of 5.5 is referred to as CNT dispersant 1H, and a silica colloid solution having a pH of 6.4 is referred to as CNT dispersant 1I.

また、市販のシリカコロイド溶液である、日産化学工業製のシリカゾルスノーテックスOXS(pH2〜4、粒径4〜6nm、SiO2濃度10重量%)、スノーテックスOS(pH2〜4、粒径8〜11nm、SiO2濃度20重量%)、スノーテックスOUP(pH2〜4、粒径40〜100nm、SiO2濃度15重量%)を、それぞれ、CNT分散剤1J、1K、1Lとする。 In addition, commercially available silica colloid solutions, silica sol snowtex OXS (pH 2-4, particle size 4-6 nm, SiO 2 concentration 10% by weight) manufactured by Nissan Chemical Industries, Snowtex OS (pH 2-4, particle size 8-8) 11 nm, SiO 2 concentration 20% by weight) and Snowtex OUP (pH 2-4, particle size 40-100 nm, SiO 2 concentration 15% by weight) are designated as CNT dispersants 1J, 1K, 1L, respectively.

なお、本実施例における各CNT分散剤の概略を表1に示す。   In addition, Table 1 shows an outline of each CNT dispersant in this example.

また、表1には、後述する実施例2〜7で調製する各CNT分散剤の概略も示す。
2. CNT分散液の製造
30gのCNT分散剤1Aに、0.15gのCNTを添加し、20分間の超音波処理を行い、CNT分散液を得た。CNTとしては、図1(a)に示すVGCF−H(Vapor Grown Carbon Fiber、昭和電工製)と図1(b)に示すVGCF−X(Vapor Grown Carbon Fiber、昭和電工製)を、それぞれ用いた。VGCF−Hは直径150nm、長さ6μmのCNTである。また、VGCF−Xは、直径15nm、長さ3μmのCNTである。なお、後述する実施例2以降でも、同様のCNTを用いた。
Table 1 also shows an outline of each CNT dispersant prepared in Examples 2 to 7 described later.
2. Production of CNT dispersion
0.15 g of CNT was added to 30 g of CNT dispersant 1A and subjected to ultrasonic treatment for 20 minutes to obtain a CNT dispersion. As CNT, VGCF-H (Vapor Grown Carbon Fiber, Showa Denko) shown in FIG. 1A and VGCF-X (Vapor Grown Carbon Fiber, Showa Denko) shown in FIG. . VGCF-H is a CNT having a diameter of 150 nm and a length of 6 μm. VGCF-X is a CNT having a diameter of 15 nm and a length of 3 μm. Similar CNTs were used in Example 2 and later described later.

また、CNT分散剤1Aの代わりに、CNT分散剤1B〜1Lをそれぞれ用いて、上と同様に、CNT分散液を得た。
得られた各CNT分散液を、超音波処理後、24時間静置し、凝集や沈降が生じたかを確認した。その結果を上記表1に示す。表1において「○」は凝集や沈降が生じないことを表し、「×」は凝集や沈降が生じたことを表す。
Moreover, the CNT dispersion liquid was obtained similarly to the above using each of the CNT dispersants 1B to 1L instead of the CNT dispersant 1A.
Each obtained CNT dispersion was allowed to stand for 24 hours after ultrasonic treatment to confirm whether aggregation or sedimentation occurred. The results are shown in Table 1 above. In Table 1, “◯” indicates that aggregation or sedimentation does not occur, and “x” indicates that aggregation or sedimentation has occurred.

また、30gのCNT分散剤1Aに、1.5gのCNTを添加し、20分間の超音波処理を行い、CNT分散液を得た。このCNT分散液を、超音波処理後、24時間静置しても、凝集や沈降がないことを確認した。   Further, 1.5 g of CNT was added to 30 g of CNT dispersant 1A, and ultrasonic treatment was performed for 20 minutes to obtain a CNT dispersion. Even if this CNT dispersion was allowed to stand for 24 hours after ultrasonic treatment, it was confirmed that there was no aggregation or sedimentation.

また、30gのCNT分散剤1Aに、0.15gのCNTを添加し、20分間の超音波処理を行い、CNT分散液を得た後、アンモニア水を用いて、このCNT分散液のpHを9.5に調整した。その後、24時間静置しても、凝集や沈降は生じなかった。   In addition, 0.15 g of CNT was added to 30 g of CNT dispersant 1A, subjected to ultrasonic treatment for 20 minutes to obtain a CNT dispersion, and then the pH of this CNT dispersion was adjusted to 9.5 using aqueous ammonia. It was adjusted. Then, even if it left still for 24 hours, aggregation and sedimentation did not arise.

以上のように、本実施例のCNT分散液は、CNTを安定に分散させることができた。また、CNTを酸やプラズマで処理する方法のように、CNT表面に欠陥を形成してしまうことがない。   As described above, the CNT dispersion liquid of this example was able to stably disperse CNTs. In addition, defects are not formed on the CNT surface unlike the method of treating CNT with acid or plasma.

なお、CNT分散剤1AのpHを、0.1mol/Lのアンモニア水を用いて、7.4、8.6、9.5としてから、上と同様にCNTを添加し、20分間の超音波処理を行ったところ、pHが酸性である場合に比べて、凝集や沈降が生じ易かった。   The pH of the CNT dispersant 1A was adjusted to 7.4, 8.6, and 9.5 using 0.1 mol / L ammonia water, and CNT was added in the same manner as above, followed by ultrasonic treatment for 20 minutes. Aggregation and sedimentation were more likely to occur than when the solution was acidic.

日産化学工業製のジルコニアコロイド溶液(pH2.9、粒径80〜110nm、ZrO2濃度30重量%)を、CNT分散剤2とする。
30gのCNT分散剤2に、0.15gのCNTを添加し、20分間の超音波処理を行い、CNT分散液を得た。得られたCNT分散液を、超音波処理後、24時間静置しても、凝集や沈降は生じなかった。
A zirconia colloidal solution (pH 2.9, particle size 80 to 110 nm, ZrO 2 concentration 30% by weight) manufactured by Nissan Chemical Industries is used as CNT dispersant 2.
0.15 g of CNT was added to 30 g of CNT dispersant 2 and subjected to ultrasonic treatment for 20 minutes to obtain a CNT dispersion. Even when the obtained CNT dispersion was allowed to stand for 24 hours after ultrasonic treatment, no aggregation or sedimentation occurred.

以上のように、本実施例のCNT分散液は、CNTを安定に分散させることができた。また、CNTを酸やプラズマで処理する方法のように、CNT表面に欠陥を形成してしまうことがない。   As described above, the CNT dispersion liquid of this example was able to stably disperse CNTs. In addition, defects are not formed on the CNT surface unlike the method of treating CNT with acid or plasma.

日産化学工業製のセリアコロイド溶液(pH3.1、粒径30〜80nm、CeO2濃度20重量%)を、CNT分散剤3とする。
30gのCNT分散剤3に、0.15gのCNTを添加し、20分間の超音波処理を行い、CNT分散液を得た。得られたCNT分散液を、超音波処理後、24時間静置しても、凝集や沈降は生じなかった。
A ceria colloid solution (pH 3.1, particle size 30 to 80 nm, CeO 2 concentration 20% by weight) manufactured by Nissan Chemical Industries is used as the CNT dispersant 3.
0.15 g of CNT was added to 30 g of CNT dispersant 3 and subjected to ultrasonic treatment for 20 minutes to obtain a CNT dispersion. Even when the obtained CNT dispersion was allowed to stand for 24 hours after ultrasonic treatment, no aggregation or sedimentation occurred.

以上のように、本実施例のCNT分散液は、CNTを安定に分散させることができた。また、CNTを酸やプラズマで処理する方法のように、CNT表面に欠陥を形成してしまうことがない。   As described above, the CNT dispersion liquid of this example was able to stably disperse CNTs. In addition, defects are not formed on the CNT surface unlike the method of treating CNT with acid or plasma.

0.2mol/lの硝酸亜鉛水溶液とアンモニア水とを、それぞれ100ml調製した後に混合した。この結果得られた沈殿物を3000rpmで10分間遠心分離させ、未反応成分を除去した。これにエチレングリコール(EG)を溶媒として添加して、40℃で24時間静置して酸化亜鉛コロイド溶液を得た。この酸化亜鉛コロイド溶液をCNT分散剤4とする。CNT分散剤4における酸化亜鉛の濃度は8重量%であり、CNT分散剤4のpHは5.7である。   100 ml each of 0.2 mol / l aqueous zinc nitrate solution and aqueous ammonia were prepared and then mixed. The resulting precipitate was centrifuged at 3000 rpm for 10 minutes to remove unreacted components. Ethylene glycol (EG) was added to this as a solvent, and allowed to stand at 40 ° C. for 24 hours to obtain a zinc oxide colloid solution. This zinc oxide colloid solution is used as CNT dispersant 4. The concentration of zinc oxide in the CNT dispersant 4 is 8% by weight, and the pH of the CNT dispersant 4 is 5.7.

30gのCNT分散剤4に、0.15gのCNTを添加し、20分間の超音波処理を行い、CNT分散液を得た。得られたCNT分散液を、超音波処理後、24時間静置しても、凝集や沈降は生じなかった。   0.15 g of CNT was added to 30 g of CNT dispersant 4 and subjected to ultrasonic treatment for 20 minutes to obtain a CNT dispersion. Even when the obtained CNT dispersion was allowed to stand for 24 hours after ultrasonic treatment, no aggregation or sedimentation occurred.

以上のように、本実施例のCNT分散液は、CNTを安定に分散させることができた。また、CNTを酸やプラズマで処理する方法のように、CNT表面に欠陥を形成してしまうことがない。   As described above, the CNT dispersion liquid of this example was able to stably disperse CNTs. In addition, defects are not formed on the CNT surface unlike the method of treating CNT with acid or plasma.

シリカコロイド粒子が、分散媒であるイソプロピルアルコール(IPA)中に分散しているコロイド溶液を、CNT分散剤5とする。シリカコロイド粒子は、CNT分散剤1Aにおけるシリカコロイド粒子と同様のものである。また、CNT分散剤5におけるシリカ濃度は30重量%である。   A colloidal solution in which silica colloid particles are dispersed in isopropyl alcohol (IPA) as a dispersion medium is referred to as a CNT dispersant 5. The silica colloid particles are the same as the silica colloid particles in the CNT dispersant 1A. The silica concentration in the CNT dispersant 5 is 30% by weight.

30gのCNT分散剤5に、0.15gのCNTを添加し、20分間の超音波処理を行い、CNT分散液を得た。得られたCNT分散液を、超音波処理後、24時間静置しても、凝集や沈降は生じなかった。   0.15 g of CNT was added to 30 g of CNT dispersant 5 and subjected to ultrasonic treatment for 20 minutes to obtain a CNT dispersion. Even when the obtained CNT dispersion was allowed to stand for 24 hours after ultrasonic treatment, no aggregation or sedimentation occurred.

以上のように、本実施例のCNT分散液は、CNTを安定に分散させることができた。また、CNTを酸やプラズマで処理する方法のように、CNT表面に欠陥を形成してしまうことがない。   As described above, the CNT dispersion liquid of this example was able to stably disperse CNTs. In addition, defects are not formed on the CNT surface unlike the method of treating CNT with acid or plasma.

酸化チタン(TiO2)コロイド粒子が、分散媒であるIPA中に分散しているコロイド溶液を、CNT分散剤6とする。CNT分散剤6における酸化チタン濃度は10重量%である。 A colloidal solution in which titanium oxide (TiO 2 ) colloidal particles are dispersed in IPA as a dispersion medium is referred to as CNT dispersant 6. The titanium oxide concentration in the CNT dispersant 6 is 10% by weight.

30gのCNT分散剤6に、0.15gのCNTを添加し、20分間の超音波処理を行い、CNT分散液を得た。得られたCNT分散液を、超音波処理後、24時間静置しても、凝集や沈降は生じなかった。   0.15 g of CNT was added to 30 g of CNT dispersant 6 and subjected to ultrasonic treatment for 20 minutes to obtain a CNT dispersion. Even when the obtained CNT dispersion was allowed to stand for 24 hours after ultrasonic treatment, no aggregation or sedimentation occurred.

以上のように、本実施例のCNT分散液は、CNTを安定に分散させることができた。また、CNTを酸やプラズマで処理する方法のように、CNT表面に欠陥を形成しまうことがない。   As described above, the CNT dispersion liquid of this example was able to stably disperse CNTs. In addition, unlike the method of treating CNT with acid or plasma, no defects are formed on the CNT surface.

まず、前記実施例1と同様にして、SiO2濃度1重量%のシリカコロイド溶液を調製した。次に、このSiO2濃度1重量%のシリカコロイド溶液をイオン交換水で希釈して、SiO2濃度0.25重量%のシリカコロイド溶液を調製した。このSiO2濃度0.25重量%のシリカコロイド溶液を、CNT分散剤7とする。なお、CNT分散剤7におけるシリカ濃度は、後述する比較例4におけるアルミナ濃度と同じである。 First, in the same manner as in Example 1, a silica colloid solution having a SiO 2 concentration of 1% by weight was prepared. Next, this silica colloid solution having a SiO 2 concentration of 1% by weight was diluted with ion-exchanged water to prepare a silica colloid solution having a SiO 2 concentration of 0.25% by weight. This silica colloid solution having a SiO 2 concentration of 0.25 wt% is used as the CNT dispersant 7. Note that the silica concentration in the CNT dispersant 7 is the same as the alumina concentration in Comparative Example 4 described later.

上記のように調製したCNT分散剤7の30gに、0.15gのCNTを添加し、分散処理(超音波処理)を行った。分散処理後、24時間静置しても、凝集や沈降は生じなかった。
(比較例1)
30gの塩酸水溶液(pH2.5)に、0.15gのCNTを添加し、20分間の超音波処理を行った。その後24時間静置すると、凝集や沈降が生じた。
0.15 g of CNT was added to 30 g of the CNT dispersant 7 prepared as described above, and dispersion treatment (ultrasonic treatment) was performed. Even after 24 hours of dispersion treatment, no aggregation or sedimentation occurred.
(Comparative Example 1)
0.15 g of CNT was added to 30 g of hydrochloric acid aqueous solution (pH 2.5) and subjected to ultrasonic treatment for 20 minutes. After standing for 24 hours, aggregation and sedimentation occurred.

(比較例2)
30gのIPAに、0.15gのCNTを添加し、20分間の超音波処理を行った。その後24時間静置すると、凝集や沈降が生じた。
(Comparative Example 2)
0.15 g of CNT was added to 30 g of IPA, and sonication was performed for 20 minutes. After standing for 24 hours, aggregation and sedimentation occurred.

(比較例3)
ドデシル硫酸ナトリウムの(SDS)の1重量%溶液40gに、2gのCNTを添加し、20分間の超音波処理を行った。その後24時間静置すると、凝集や沈降が生じた。また、SDS溶液は、超音波処理時に、泡を発生させた。
(Comparative Example 3)
2 g of CNT was added to 40 g of a 1 wt% solution of sodium dodecyl sulfate (SDS), and sonication was performed for 20 minutes. After standing for 24 hours, aggregation and sedimentation occurred. The SDS solution generated bubbles during the ultrasonic treatment.

(比較例4)
Al2O3濃度0.25重量%のアルミナコロイド溶液を調製した。このアルミナ濃度は、前記実施例7におけるシリカ濃度と同じである。上記のアルミナコロイド溶液30gに、0.15gのCNTを添加し、分散処理(超音波処理)を行った。その後24時間静置すると、凝集や沈降が生じた。
(Comparative Example 4)
An alumina colloid solution having an Al 2 O 3 concentration of 0.25% by weight was prepared. This alumina concentration is the same as the silica concentration in Example 7. 0.15 g of CNT was added to 30 g of the above-mentioned alumina colloid solution, and dispersion treatment (sonication) was performed. After standing for 24 hours, aggregation and sedimentation occurred.

尚、本発明は前記実施形態になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。   In addition, this invention is not limited to the said embodiment at all, and it cannot be overemphasized that it can implement with a various aspect in the range which does not deviate from this invention.

Claims (2)

シリカコロイド含むCNT分散剤と、CNTとを含み、
pHが3.4以上7以下であり、
前記シリカコロイド濃度が0.05〜30重量%であことを特徴とするCNT分散液。
A CNT dispersant containing silica colloid, and CNT,
pH is 3.4 or more and 7 or less,
CNT dispersion concentration of the colloidal silica is characterized in that Ru 0.05 to 30 wt% der.
請求項1に記載のCNT分散液であって、The CNT dispersion according to claim 1,
前記シリカコロイドの濃度が0.05〜0.25重量%であることを特徴とするCNT分散液。A CNT dispersion liquid, wherein the concentration of the silica colloid is 0.05 to 0.25% by weight.
JP2011094925A 2011-04-21 2011-04-21 CNT dispersion Active JP6175700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011094925A JP6175700B2 (en) 2011-04-21 2011-04-21 CNT dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011094925A JP6175700B2 (en) 2011-04-21 2011-04-21 CNT dispersion

Publications (2)

Publication Number Publication Date
JP2012224521A JP2012224521A (en) 2012-11-15
JP6175700B2 true JP6175700B2 (en) 2017-08-09

Family

ID=47275133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011094925A Active JP6175700B2 (en) 2011-04-21 2011-04-21 CNT dispersion

Country Status (1)

Country Link
JP (1) JP6175700B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6841166B2 (en) * 2017-06-09 2021-03-10 堺化学工業株式会社 Method for producing phenylalkoxysilane-treated silica

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303539A (en) * 2002-04-10 2003-10-24 Mitsubishi Electric Corp Electron emission source and its manufacturing method
JP3955901B2 (en) * 2005-02-17 2007-08-08 国立大学法人大阪大学 Conductive zirconia sintered body and manufacturing method thereof
KR100883737B1 (en) * 2007-01-17 2009-02-12 삼성전자주식회사 Transparent carbon nanotube electrode with net shape carbon nanotube film and preparation method thereof
JP5482194B2 (en) * 2009-03-31 2014-04-23 東レ株式会社 Carbon nanotube aqueous dispersion, conductive composite, and method for producing the same
JP2011037677A (en) * 2009-08-13 2011-02-24 Jsr Corp Composition and carbon nanotube-containing film

Also Published As

Publication number Publication date
JP2012224521A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
Ogi et al. Nanostructuring strategies in functional fine-particle synthesis towards resource and energy saving applications
Tong et al. Systematic control of monoclinic CdWO4 nanophase for optimum photocatalytic activity
CN102716745B (en) Preparation method for yolk-eggshell-type organic-inorganic hybrid silicon oxide nanosphere
Safaei-Naeini et al. Suspension stability of titania nanoparticles studied by UV-VIS spectroscopy method
JP5019826B2 (en) Zirconia sol and method for producing the same
US20120027934A1 (en) Method for preparing carbon-based particle/cooper composite material
CN107915212B (en) Sheet-stacked caterpillar WN nano material and preparation method thereof
JP2009242209A (en) Method for producing organized graphite material
KR102291933B1 (en) Production method for carbon nanofibers, and carbon nanofibers
Hung et al. Chitosan for suspension performance and viscosity of MWCNTs
WO2016072137A1 (en) Suspension of nanodiamond aggregates and single-digit nanodiamond dispersion
JP2009161425A (en) Manufacturing method of dysprosium oxide nanoparticles and manufacturing method of dysprosium oxide nanosole
JP6032591B2 (en) Method for producing silica nano hollow particles
Zhang et al. Enhanced photoluminescence from porous silicon nanowire arrays
Yin et al. Synthesis of Multiwalled Carbon Nanotube Modified BiOCl Microspheres with Enhanced Visible‐Light Response Photoactivity
JP6175700B2 (en) CNT dispersion
JP2013139378A (en) Zirconium oxide nanoparticles and hydrosol of the same and composition and method for manufacturing zirconium oxide nanoparticles
Roca et al. Size and shape tailoring of titania nanoparticles synthesized by solvothermal route in different solvents
KR100867137B1 (en) Method of fabricating carbon-nano tube/copper nano-composite powder
KR102262689B1 (en) Zirconia sol and method for manufacturing the same
CN107552035A (en) A kind of preparation method of zinc oxide carbon nano tube compound material
JP5693187B2 (en) Aqueous dispersion of inorganic oxide fine particles
JP6820085B2 (en) Rare earth organosols and rare earth organosol precursors
Qu et al. Preparation of Gd-doped TiO 2 hollow spheres with enhanced photocatalytic performance
JP4535230B2 (en) Coating agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151120

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151207

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170620

R150 Certificate of patent or registration of utility model

Ref document number: 6175700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250