JP6173974B2 - OFDM communication system and subcarrier allocation method - Google Patents

OFDM communication system and subcarrier allocation method Download PDF

Info

Publication number
JP6173974B2
JP6173974B2 JP2014120807A JP2014120807A JP6173974B2 JP 6173974 B2 JP6173974 B2 JP 6173974B2 JP 2014120807 A JP2014120807 A JP 2014120807A JP 2014120807 A JP2014120807 A JP 2014120807A JP 6173974 B2 JP6173974 B2 JP 6173974B2
Authority
JP
Japan
Prior art keywords
delay time
time difference
length
segment
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014120807A
Other languages
Japanese (ja)
Other versions
JP2016001802A (en
Inventor
大介 五藤
大介 五藤
杉山 隆利
隆利 杉山
山下 史洋
史洋 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2014120807A priority Critical patent/JP6173974B2/en
Publication of JP2016001802A publication Critical patent/JP2016001802A/en
Application granted granted Critical
Publication of JP6173974B2 publication Critical patent/JP6173974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radio Transmission System (AREA)

Description

本発明は、複数の送信局と複数の受信局との間で、OFDM(Orthogonal Frequency Division Multiplexing)信号の各サブキャリアに各受信局を割り当ててMIMO伝送を行うOFDM通信システムおよびサブキャリア割当方法に関する。   The present invention relates to an OFDM communication system and a subcarrier allocation method for performing MIMO transmission by allocating each receiving station to each subcarrier of an OFDM (Orthogonal Frequency Division Multiplexing) signal between a plurality of transmitting stations and a plurality of receiving stations. .

図4は、従来のOFDM通信システムの構成例を示す。
図4において、OFDM通信システムは、制御局50の制御により、複数の送信局A21,送信局B22が協調して複数の受信局31〜37にマルチストリーム伝送(協調MIMO伝送)を行う構成である(非特許文献1〜4)。ここで、OFDM伝送では、サブキャリア1〜7に受信局31〜37を割り当てる場合、各サブキャリア1〜7がシンボル同期していることが前提となる。しかし、各送信局・受信局間の伝搬路長は互いに異なるので、すべての受信局の受信タイミングを同期させることはできない。
FIG. 4 shows a configuration example of a conventional OFDM communication system.
In FIG. 4, the OFDM communication system has a configuration in which a plurality of transmitting stations A21 and B22 perform multistream transmission (cooperative MIMO transmission) to a plurality of receiving stations 31 to 37 under the control of the control station 50. (Non-Patent Documents 1 to 4). Here, in OFDM transmission, when receiving stations 31 to 37 are assigned to subcarriers 1 to 7, it is assumed that subcarriers 1 to 7 are symbol-synchronized. However, since the propagation path lengths between the transmitting and receiving stations are different from each other, the reception timings of all the receiving stations cannot be synchronized.

そこで、送信局A21,送信局B22が送信信号にガードインターバルとしてCP(Cyclic Prefix) を設定し、各受信局における遅延時間差がCP長に納まるようにしてシンボル同期をとっている。しかし、例えば各送信局が同時送信する場合、各送信局からほぼ等距離にある受信局34,35のように遅延時間差がCP長を超えなければシンボル同期が可能であるが、受信局31,37のように遅延時間差がCP長を超える場合にはシンボル同期がとれない。その場合、CP長を増大させて対応することになるが、遅延時間差が大きくなるほど所要CP長が増大し、制御フレームの時間帯域が長くなって周波数利用効率が低下する。   Therefore, the transmitting station A21 and the transmitting station B22 set a CP (Cyclic Prefix) as a guard interval in the transmission signal, and the symbol synchronization is performed so that the delay time difference at each receiving station falls within the CP length. However, for example, when each transmitting station transmits simultaneously, symbol synchronization is possible if the delay time difference does not exceed the CP length as in the receiving stations 34 and 35 that are substantially equidistant from each transmitting station. When the delay time difference exceeds the CP length as in 37, symbol synchronization cannot be achieved. In this case, the CP length is increased to cope with it. However, as the delay time difference increases, the required CP length increases, the time band of the control frame becomes longer, and the frequency utilization efficiency decreases.

Yamashita, Fumihiro, et al. "Broadband multiple satellite MIMO system." Vehicular Technology Conference, 2005. VTC-2005-Fall. 2005 IEEE 62nd. Vol. 4. IEEE, 2005.Yamashita, Fumihiro, et al. "Broadband multiple satellite MIMO system." Vehicular Technology Conference, 2005. VTC-2005-Fall. 2005 IEEE 62nd. Vol. 4. IEEE, 2005. Liolis, Konstantinos P., Athanasios D. Panagopoulos, and Panayotis G. Cottis. "Multi-satellite MIMO communications at ku-band and above: investigations on spatial multiplexing for capacity improvement and selection diversity for interference mitigation." EURASIP Journal on Wireless Communications and Networking 2007.2 (2007): 16-16.Liolis, Konstantinos P., Athanasios D. Panagopoulos, and Panayotis G. Cottis. "Multi-satellite MIMO communications at ku-band and above: investigations on spatial multiplexing for capacity improvement and selection diversity for interference mitigation." EURASIP Journal on Wireless Communications and Networking 2007.2 (2007): 16-16. Zhang, Hongyuan, and Huaiyu Dai. "Cochannel interference mitigation and cooperative processing in downlink multicell multiuser MIMO networks." EURASIP Journal on Wireless Communications and Networking 2004.2 (2004): 222-235.Zhang, Hongyuan, and Huaiyu Dai. "Cochannel interference mitigation and cooperative processing in downlink multicell multiuser MIMO networks." EURASIP Journal on Wireless Communications and Networking 2004.2 (2004): 222-235. Irmer, Ralf, et al. "Coordinated multipoint: Concepts, performance, and field trial results." Communications Magazine, IEEE 49.2 (2011): 102-111.Irmer, Ralf, et al. "Coordinated multipoint: Concepts, performance, and field trial results." Communications Magazine, IEEE 49.2 (2011): 102-111. Ishihara, Koichi, et al. "Overlap Frequency-Domain Multiuser Detection for Asynchronous Uplink Multiuser MIMO-OFDM Systems." IEICE transactions on communications 92.5 (2009): 1582-1588.Ishihara, Koichi, et al. "Overlap Frequency-Domain Multiuser Detection for Asynchronous Uplink Multiuser MIMO-OFDM Systems." IEICE transactions on communications 92.5 (2009): 1582-1588.

非特許文献1,2の複数衛星MIMO技術は、見通し環境でのMIMO伝送であり、アンテナ間の相関が高くなりやすい衛星通信において、複数の衛星中継器で連携して異なる信号を同一周波数伝送することで、低相関化したMIMO伝送を可能にするものである。しかし、本文献ではシンボル非同期での復調の考察はされていない。   The multi-satellite MIMO technology of Non-Patent Documents 1 and 2 is MIMO transmission in a line-of-sight environment, and in satellite communication in which the correlation between antennas tends to be high, different signals are transmitted at the same frequency in cooperation with a plurality of satellite repeaters. Thus, MIMO transmission with reduced correlation is enabled. However, in this document, no consideration is given to demodulation that are asynchronous with symbols.

非特許文献3,4の基地局間協調技術は、セルラ方式におけるセル端のスループットを向上するために、複数の基地局で協調して信号伝送を行うものである。これは各送信局からの伝送距離が異なると受信タイミング誤差が生じ、シンボル間干渉に起因する。本文献では、OFDMでマルチパス耐性のために用いられるガードインターバル長(CP長)以内のずれであればシンボル間干渉が発生しないことを述べている。   The inter-base station cooperation techniques of Non-Patent Documents 3 and 4 perform signal transmission in cooperation with a plurality of base stations in order to improve the cell edge throughput in the cellular system. This is because when the transmission distance from each transmitting station is different, a reception timing error occurs, which is caused by intersymbol interference. This document describes that intersymbol interference does not occur if the shift is within a guard interval length (CP length) used for multipath tolerance in OFDM.

ただし、衛星通信のような広範囲なサービスエリアにおいて複数送信局MIMOを行う場合、図4のように、送受信局間の伝搬路長が異なることによる各受信局における遅延時間差が大きくなる。各受信局における遅延時間差以上のCP長があればよいが、遅延時間差が大きくなるほど所要CP長が増大し、制御フレームの時間帯域が長くなって周波数利用効率の低下する。しかし、非特許文献3,4では、周波数利用効率の低下や遅延時間差がシンボル長を超える程の多大な遅延時間差となった場合の考察はされていない。   However, when performing multiple transmission station MIMO in a wide service area such as satellite communication, as shown in FIG. 4, the difference in delay time at each reception station increases due to the difference in propagation path length between the transmission and reception stations. It is sufficient that the CP length is equal to or greater than the delay time difference at each receiving station. However, as the delay time difference increases, the required CP length increases, the time band of the control frame becomes longer, and the frequency utilization efficiency decreases. However, Non-Patent Documents 3 and 4 do not consider the case where the frequency utilization efficiency is reduced and the delay time difference is so large that the delay time difference exceeds the symbol length.

非特許文献5は、複数受信局によるアップリンクMIMO−OFDMにおける、時間非同期で基地局に送信することでCP長を超える遅延が生じた場合の復調方法の検討であるが、計算量が増大するという問題点がある。今回はダウンリンクを想定しているため、受信局の回路規模増大は望ましくない。   Non-Patent Document 5 discusses a demodulation method in the case where a delay exceeding the CP length occurs due to time-asynchronous transmission to the base station in uplink MIMO-OFDM by a plurality of receiving stations, but the amount of calculation increases. There is a problem. Since the downlink is assumed this time, it is not desirable to increase the circuit scale of the receiving station.

本発明は、各送信局・受信局間の伝搬路長が大きく異なった場合でも、OFDM信号のCP長の増大を抑え、かつ遅延時間差がシンボル長を超える場合にも対応できるOFDM通信システムおよびサブキャリア割当方法を提供することを目的とする。   The present invention provides an OFDM communication system and a sub that can suppress an increase in the CP length of an OFDM signal and can cope with a case where a delay time difference exceeds a symbol length even when the propagation path length between each transmitting station and receiving station is greatly different. An object is to provide a carrier allocation method.

第1の発明は、複数の送信局と複数の受信局との間で、OFDM信号の各サブキャリアに各受信局を割り当ててMIMO伝送を行うOFDM通信システムにおいて、複数の送信局から送信された信号が複数の受信局に受信されるときの遅延時間差を受信局ごとに検出し、該遅延時間差があらかじめ設定した最大CP長を超えない受信局ごとに、OFDM信号のサブキャリアをセグメント分けして割り当てる手段を備え、複数の送信局は、各セグメントごとに遅延時間差が最大CP長を超えないようにそれぞれの送信タイミングを制御する構成である。   The first invention is an OFDM communication system that performs MIMO transmission by assigning each receiving station to each subcarrier of an OFDM signal between a plurality of transmitting stations and a plurality of receiving stations. The delay time difference when the signal is received by a plurality of receiving stations is detected for each receiving station, and the OFDM signal subcarrier is segmented for each receiving station where the delay time difference does not exceed the preset maximum CP length. A plurality of transmitting stations are configured to control each transmission timing so that the delay time difference does not exceed the maximum CP length for each segment.

第1の発明のOFDM通信システムにおいて、複数の送信局は、セグメントごとに送信タイミングを制御したときの遅延時間差の最大値を当該セグメントにおける所要CP長として設定する構成である。   In the OFDM communication system of the first invention, the plurality of transmitting stations are configured to set the maximum value of the delay time difference when the transmission timing is controlled for each segment as the required CP length in the segment.

第1の発明のOFDM通信システムにおいて、複数の送信局は、セグメントごとに送信タイミングを制御するとともに、セグメントのOFDM信号の周波数帯域を分離する構成である。   In the OFDM communication system of the first invention, the plurality of transmitting stations are configured to control the transmission timing for each segment and to separate the frequency band of the OFDM signal of the segment.

第2の発明は、複数の送信局と複数の受信局との間で、OFDM信号の各サブキャリアに各受信局を割り当ててMIMO伝送を行うOFDM通信システムのサブキャリア割当方法において、複数の送信局から送信された信号が複数の受信局に受信されるときの遅延時間差を受信局ごとに検出する第1のステップと、遅延時間差があらかじめ設定した最大CP長を超えない受信局ごとに、OFDM信号のサブキャリアをセグメント分けして割り当てる第2のステップと、各セグメントごとに遅延時間差が最大CP長を超えないようにそれぞれの送信タイミングを制御する第3のステップとを実行する。   According to a second aspect of the present invention, there is provided a subcarrier allocation method for an OFDM communication system in which MIMO transmission is performed by allocating each receiving station to each subcarrier of an OFDM signal between a plurality of transmitting stations and a plurality of receiving stations. A first step of detecting, for each receiving station, a delay time difference when a signal transmitted from the station is received by a plurality of receiving stations; and for each receiving station where the delay time difference does not exceed a preset maximum CP length, A second step of allocating the signal subcarriers in segments and a third step of controlling the transmission timing so that the delay time difference does not exceed the maximum CP length for each segment are executed.

第2の発明のサブキャリア割当方法において、複数の送信局は、セグメントごとに送信タイミングを制御したときの遅延時間差の最大値を当該セグメントにおける所要CP長として設定する。   In the subcarrier allocation method of the second invention, the plurality of transmitting stations set the maximum value of the delay time difference when the transmission timing is controlled for each segment as the required CP length in the segment.

第2の発明のサブキャリア割当方法において、複数の送信局は、セグメントごとに送信タイミングを制御するとともに、セグメントのOFDM信号の周波数帯域を分離する。   In the subcarrier allocation method of the second invention, the plurality of transmitting stations control the transmission timing for each segment and separate the frequency band of the OFDM signal of the segment.

本発明によれば、ロケーションの異なる複数の送信局による協調MIMO伝送をOFDMを用いて行った場合に、各送信局・受信局間の伝搬路長が大きく異なる場合でも、遅延時間差が最大CP長を超えない受信局ごとにセグメント分けしてサブキャリアの割り当てと送信タイミング制御を行うことにより、OFDM信号のCP長(ガードインターバル長)の長大化による周波数利用効率の劣化を抑えることができる。   According to the present invention, when cooperative MIMO transmission by a plurality of transmitting stations with different locations is performed using OFDM, even when the propagation path length between each transmitting station and receiving station is greatly different, the delay time difference is the maximum CP length. By performing segmentation for each receiving station that does not exceed 1 and performing subcarrier allocation and transmission timing control, it is possible to suppress deterioration in frequency utilization efficiency due to an increase in the CP length (guard interval length) of the OFDM signal.

本発明のOFDM通信システムの構成例を示す図である。It is a figure which shows the structural example of the OFDM communication system of this invention. 本発明のOFDM通信システムの制御局10の構成例を示す図である。It is a figure which shows the structural example of the control station 10 of the OFDM communication system of this invention. 本発明のOFDM通信システムの制御局10の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the control station 10 of the OFDM communication system of this invention. 従来のOFDM通信システムの構成例を示す図である。It is a figure which shows the structural example of the conventional OFDM communication system.

図1は、本発明のOFDM通信システムの構成例を示す。
図1において、OFDM通信システムは、制御局10の制御により、複数の送信局A21,送信局B22が協調して複数の受信局31〜37に協調MIMO伝送を行う。
FIG. 1 shows a configuration example of an OFDM communication system according to the present invention.
In FIG. 1, in the OFDM communication system, a plurality of transmitting stations A21 and B22 cooperate to perform coordinated MIMO transmission to a plurality of receiving stations 31 to 37 under the control of the control station 10.

本発明の特徴は、複数の送信局A21,送信局B22からそれぞれ所定のタイミングで送信されたOFDM信号が各受信局31〜37に受信されるときに、送信局・受信局間の伝搬路長の違いによる遅延時間差が、あらかじめ設定した最大CP長を超えない範囲の受信局に対してのみOFDM伝送を行うように、制御局10がOFDM信号のサブキャリア1〜7をセグメント分けし、各セグメントごとに送信局A21,送信局B22の送信タイミングを制御する。これにより、各セグメントのOFDM信号のCP長は、最大CP長以下で各セグメント内での最大遅延時間差(所要CP長)を満たせばよく、各セグメントのOFDM信号のCP長を最小限に抑えながら、送信局A21,送信局B22と受信局31〜37との間でOFDM伝送が可能となる。ただし、セグメント間は周波数分離され、シンボル同期が不要となる。   The feature of the present invention is that the propagation path length between the transmitting station and the receiving station is obtained when the receiving stations 31 to 37 receive the OFDM signals transmitted at a predetermined timing from the plurality of transmitting stations A21 and B22, respectively. The control station 10 segments the OFDM signal subcarriers 1 to 7 so as to perform OFDM transmission only to a receiving station in a range in which the delay time difference due to the difference does not exceed a preset maximum CP length, The transmission timing of the transmitting station A21 and the transmitting station B22 is controlled every time. As a result, the CP length of the OFDM signal of each segment should be less than the maximum CP length and satisfy the maximum delay time difference (required CP length) within each segment, while minimizing the CP length of the OFDM signal of each segment. OFDM transmission is possible between the transmitting station A21, the transmitting station B22, and the receiving stations 31 to 37. However, the segments are frequency separated, and symbol synchronization is not necessary.

図2は、本発明のOFDM通信システムの制御局10の構成例を示す。
図2において、制御局10は、遅延時間差検出部11、最大CP長比較部12、セグメント割当・送信局制御部13から構成される。
FIG. 2 shows a configuration example of the control station 10 of the OFDM communication system of the present invention.
In FIG. 2, the control station 10 includes a delay time difference detection unit 11, a maximum CP length comparison unit 12, and a segment assignment / transmission station control unit 13.

以下、図1,図2を参照して説明する。遅延時間差検出部11は、送信局A21,送信局B22が受信局31〜37から得た情報を取得し、各受信局における遅延時間差を検出する。例えば、送信局A21,送信局B22がパイロット信号を同時に送信した場合、受信局31〜37における受信信号の遅延時間差は、送信局A21からの信号の受信時間t1と送信局B22からの信号の受信時間t2の差t1−t2として、表1に示す遅延時間差のようになる。なお、送信局A21,送信局B22が受信局31〜37からGPSなどによる位置情報を取得し、伝搬路長差から遅延時間差を算出してもよい。   Hereinafter, a description will be given with reference to FIGS. The delay time difference detector 11 acquires information obtained from the receiving stations 31 to 37 by the transmitting station A21 and the transmitting station B22, and detects a delay time difference at each receiving station. For example, when the transmission station A21 and the transmission station B22 transmit pilot signals simultaneously, the delay time difference between the reception signals at the reception stations 31 to 37 is the reception time t1 of the signal from the transmission station A21 and the reception of the signal from the transmission station B22. As a difference t1-t2 of time t2, the delay time difference shown in Table 1 is obtained. Note that the transmitting station A21 and the transmitting station B22 may acquire position information by GPS or the like from the receiving stations 31 to 37, and calculate the delay time difference from the propagation path length difference.

Figure 0006173974
Figure 0006173974

ここで、最大CP長を10μsと設定し、送信局A21,送信局B22がOFDM信号の各サブキャリア1〜7に受信局31〜37を割り当てて同時送信する場合、受信局34,35の遅延時間差が最大CP長以下となり、OFDM信号のサブキャリア4,5をそれぞれシンボル同期できる。一方、受信局31〜33,36〜37の遅延時間差は最大CP長を超えるので、CP長を拡大しない限りシンボル同期できない。   Here, when the maximum CP length is set to 10 μs and the transmitting station A21 and the transmitting station B22 assign the receiving stations 31 to 37 to the subcarriers 1 to 7 of the OFDM signal and transmit simultaneously, the delay of the receiving stations 34 and 35 The time difference becomes less than the maximum CP length, and the subcarriers 4 and 5 of the OFDM signal can be symbol-synchronized. On the other hand, since the delay time difference between the receiving stations 31 to 33 and 36 to 37 exceeds the maximum CP length, symbol synchronization cannot be performed unless the CP length is increased.

本発明は、最大CP長を10μsとしたまま、受信局31〜33がOFDM信号のサブキャリア1〜3を受信するためにセグメント分けし(セグメント1)、例えば受信局31においてOFDM信号の遅延時間差が0になるように、送信局A21,送信局B22の送信タイミングを制御する。具体的には、送信局B22を基準として送信局A21の送信タイミングを19μsだけ遅くする。この場合、受信局31〜33の遅延時間差は、表2に示す相対遅延時間差0〜5μsとなり最大CP長以下となるので、OFDM信号のサブキャリア1〜3のシンボル同期が可能となる。このセグメント1のOFDM信号の所要CP長は、相対遅延時間差の最大値である5μsとなる。なお、受信局32または受信局33の遅延時間差を0とする送信タイミング制御を行ってもよい。   The present invention performs segmentation so that the receiving stations 31 to 33 receive the subcarriers 1 to 3 of the OFDM signal while keeping the maximum CP length at 10 μs (segment 1). The transmission timing of the transmitting station A21 and the transmitting station B22 is controlled so that becomes zero. Specifically, the transmission timing of the transmission station A21 is delayed by 19 μs with reference to the transmission station B22. In this case, the delay time difference between the receiving stations 31 to 33 is 0 to 5 μs, which is the relative delay time difference shown in Table 2, and is equal to or shorter than the maximum CP length, so that symbol synchronization of the subcarriers 1 to 3 of the OFDM signal is possible. The required CP length of the segment 1 OFDM signal is 5 μs, which is the maximum relative delay time difference. Note that transmission timing control in which the delay time difference between the receiving station 32 and the receiving station 33 is zero may be performed.

Figure 0006173974
Figure 0006173974

同様に、最大CP長を10μsとしたまま、受信局36〜37がOFDM信号のサブキャリア6〜7を受信するためにセグメント分けし(セグメント3)、例えば受信局36においてOFDM信号の遅延時間差が0になるように、送信局A21,送信局B22の送信タイミングを制御する。具体的には、送信局A21を基準として送信局B22の送信タイミングを21μsだけ遅らせる。この場合、受信局36〜37の遅延時間差は、表2に示す調整遅延時間差0〜4μsとなり最大CP長以下となるので、OFDM信号のサブキャリア6〜7のシンボル同期が可能となる。このセグメント3のOFDM信号の所要CP長は、相対遅延時間差の最大値である4μsとなる。なお、受信局37の遅延時間差を0とする送信タイミング制御を行ってもよい。   Similarly, the receiving stations 36 to 37 perform segmentation in order to receive the OFDM signal subcarriers 6 to 7 while keeping the maximum CP length at 10 μs (segment 3). The transmission timings of the transmitting station A21 and the transmitting station B22 are controlled so as to be zero. Specifically, the transmission timing of the transmission station B22 is delayed by 21 μs with reference to the transmission station A21. In this case, the delay time difference between the receiving stations 36 to 37 is the adjustment delay time difference 0 to 4 μs shown in Table 2 and is equal to or shorter than the maximum CP length, so that symbol synchronization of the subcarriers 6 to 7 of the OFDM signal is possible. The required CP length of the OFDM signal of segment 3 is 4 μs, which is the maximum value of the relative delay time difference. Note that transmission timing control may be performed in which the delay time difference of the receiving station 37 is zero.

制御局10の最大CP長比較部12およびセグメント割当・送信局制御部13は、このように、各受信局における遅延時間差と最大CP長を比較し、遅延時間差が最大CP長以下となるように各サブキャリアをセグメント分けし、セグメント1(サブキャリア1〜3)を受信局31〜33に割り当て、セグメント2(サブキャリア4〜5)を受信局34〜35に割り当て、セグメント3(サブキャリア6〜7)を受信局36〜37に割り当てるとともに、送信局A21,送信局B22の送信タイミングを各セグメントごとに制御する。すなわち、送信局A21を基準とする送信局B22の送信タイミングは、セグメント1については19μs早く、セグメント2については同時、セグメント3については21μs遅くする。   The maximum CP length comparison unit 12 and the segment allocation / transmission station control unit 13 of the control station 10 thus compare the delay time difference at each receiving station with the maximum CP length so that the delay time difference is less than or equal to the maximum CP length. Each subcarrier is segmented, segment 1 (subcarriers 1 to 3) is assigned to receiving stations 31 to 33, segment 2 (subcarriers 4 to 5) is assigned to receiving stations 34 to 35, segment 3 (subcarrier 6) To 7) are assigned to the receiving stations 36 to 37, and the transmission timings of the transmitting station A21 and the transmitting station B22 are controlled for each segment. That is, the transmission timing of the transmission station B22 with reference to the transmission station A21 is 19 μs earlier for the segment 1, simultaneously for the segment 2, and 21 μs later for the segment 3.

このとき、各セグメント内のサブキャリアは、送信局A21,送信局B22からそれぞれ所定のタイミングで同期送信される。一方、セグメント間は周波数分離して送信され、シンボル同期は不要である。   At this time, the subcarriers in each segment are synchronously transmitted from the transmitting station A21 and the transmitting station B22 at a predetermined timing. On the other hand, the segments are transmitted with frequency separation, and symbol synchronization is unnecessary.

なお、セグメント2(サブキャリア4〜5)については、送信局A21,送信局B22の送信タイミングを同時としても、受信局34,35における遅延時間差が最大CP長以下となるのでそのままでよいが、表2に示すセグメント1,3と同様に、例えば受信局34におけるOFDM信号の遅延時間差が0になるように送信タイミングを制御してもよい。その場合の受信局34,35の相対遅延時間差は、0μsと2μsとなり、所要CP長を表2に示す3μsから2μsに短縮することができる。   For segment 2 (subcarriers 4 to 5), even if the transmission timings of the transmitting station A21 and the transmitting station B22 are the same, the delay time difference between the receiving stations 34 and 35 is not more than the maximum CP length. Similarly to the segments 1 and 3 shown in Table 2, for example, the transmission timing may be controlled so that the delay time difference of the OFDM signal at the receiving station 34 becomes zero. In this case, the relative delay time difference between the receiving stations 34 and 35 is 0 μs and 2 μs, and the required CP length can be shortened from 3 μs shown in Table 2 to 2 μs.

以上の処理を効率よく行うための制御局10の処理手順を図3のフローチャートに示す。
制御局10は、図2の遅延時間差検出部11の動作として説明したように、受信局ごとに、各送信局からの信号の遅延時間差を取得する(S1)。次に、この遅延時間差を昇順とした受信局のリストを作成する(S2)。表3に示すリストは、各受信局の遅延時間差を昇順に表したものである。
The processing procedure of the control station 10 for efficiently performing the above processing is shown in the flowchart of FIG.
As described as the operation of the delay time difference detection unit 11 in FIG. 2, the control station 10 acquires the delay time difference of the signal from each transmitting station for each receiving station (S1). Next, a list of receiving stations with the delay time difference ascending order is created (S2). The list shown in Table 3 shows the delay time difference of each receiving station in ascending order.

次に、遅延時間差の最小値(ここでは受信局31の−19μs)が0となるように、送信局A21,送信局B22の送信タイミングを制御し、遅延時間差を相対遅延時間差に変更する(S3)。相対遅延時間差は、表3に示すように、受信局31が0μsとなると、受信局32は2μs、受信局33は5μs、受信局34は20μs、以下同様となる。ここで、相対遅延時間差と最大CP長(例えば10μs)を比較し、相対遅延時間差が最大CP長を超えない受信局31〜33については、セグメント1として、相対遅延時間差の昇順にサブキャリア1〜3の割当を順次行う(S4:Yes ,S5,S6:No)。   Next, the transmission timings of the transmitting station A21 and the transmitting station B22 are controlled so that the minimum value of the delay time difference (here, −19 μs of the receiving station 31) becomes 0, and the delay time difference is changed to the relative delay time difference (S3). ). As shown in Table 3, when the receiving station 31 reaches 0 μs, the relative delay time difference is 2 μs for the receiving station 32, 5 μs for the receiving station 33, 20 μs for the receiving station 34, and so on. Here, the relative delay time difference is compared with the maximum CP length (for example, 10 μs), and for the receiving stations 31 to 33 whose relative delay time difference does not exceed the maximum CP length, subcarriers 1 to 3 are set as segment 1 in ascending order of the relative delay time difference. 3 are sequentially assigned (S4: Yes, S5, S6: No).

一方、相対遅延時間差が最大CP長を超える受信局34以降についてはセグメントを変更し(S4:No,S7)、ステップS3の処理に戻る。すなわち、遅延時間差の最小値(ここでは受信局34の20μs)が0となるように、送信局A21,送信局B22の送信タイミングを制御し、遅延時間差を相対遅延時間差に変更する(S3)。相対遅延時間差は、表3に示すように、受信局34が0μsとなると、受信局35は2μs、受信局36は20μs、受信局37は24μsとなる。ここで、相対遅延時間差と最大CP長(例えば10μs)を比較し、相対遅延時間差が最大CP長を超えない受信局34〜35については、セグメント2として、相対遅延時間差の昇順にサブキャリア4〜5の割当を順次行う(S4:Yes ,S5,S6:No)。   On the other hand, the segment after the receiving station 34 where the relative delay time difference exceeds the maximum CP length is changed (S4: No, S7), and the process returns to step S3. That is, the transmission timing of the transmitting station A21 and the transmitting station B22 is controlled so that the minimum value of the delay time difference (here, 20 μs of the receiving station 34) becomes 0, and the delay time difference is changed to the relative delay time difference (S3). As shown in Table 3, when the receiving station 34 becomes 0 μs, the relative delay time difference is 2 μs for the receiving station 35, 20 μs for the receiving station 36, and 24 μs for the receiving station 37. Here, the relative delay time difference is compared with the maximum CP length (for example, 10 μs). For the receiving stations 34 to 35 whose relative delay time difference does not exceed the maximum CP length, subcarriers 4 to 35 are set as segment 2 in ascending order of the relative delay time difference. 5 are sequentially assigned (S4: Yes, S5, S6: No).

同様に、相対遅延時間差が最大CP長を超える受信局36以降についてはセグメントを変更し(S4:No,S7)、ステップS3の処理に戻る。すなわち、遅延時間差の最小値(ここでは受信局36の20μs)が0となるように、送信局A21,送信局B22の送信タイミングを制御し、遅延時間差を相対遅延時間差に変更する(S3)。相対遅延時間差は、表3に示すように、受信局36が0μsとなると、受信局37は4μsとなる。ここで、相対遅延時間差と最大CP長(例えば10μs)を比較し、相対遅延時間差が最大CP長を超えない受信局36〜37については、セグメント3として、相対遅延時間差の昇順にサブキャリア6〜7の割当を順次行い(S4:Yes ,S5)、すべてのサブキャリアの割当を終えたときに終了する。   Similarly, the segment is changed for the receiving station 36 and beyond after the relative delay time difference exceeds the maximum CP length (S4: No, S7), and the process returns to step S3. That is, the transmission timing of the transmitting station A21 and the transmitting station B22 is controlled so that the minimum value of the delay time difference (here, 20 μs of the receiving station 36) becomes 0, and the delay time difference is changed to the relative delay time difference (S3). As shown in Table 3, the relative delay time difference is 4 μs for the receiving station 37 when the receiving station 36 becomes 0 μs. Here, the relative delay time difference is compared with the maximum CP length (for example, 10 μs). For the receiving stations 36 to 37 whose relative delay time difference does not exceed the maximum CP length, the subcarriers 6 to 37 are segment 3 ascending order of the relative delay time difference. 7 are sequentially performed (S4: Yes, S5), and the process ends when all the subcarriers have been allocated.

Figure 0006173974
Figure 0006173974

このように、本発明のOFDM通信システムは、3つのOFDM信号のセグメントに分解され、所要CP長としてセグメント1は5μs、セグメント2が2μs、セグメント3が4μsとなることが分かる。一方、図4に示すように、受信局31〜37を1つのセグメントとしてOFDM伝送を行った場合には、所要CP長は相対遅延時間差の最大値である44μsとなる。本発明のOFDM通信システムは、これに比べてCP長の長大化が大幅に抑えられることが分かる。   Thus, it can be seen that the OFDM communication system of the present invention is broken down into three OFDM signal segments, and the required CP length is 5 μs for segment 1, 2 μs for segment 2, and 4 μs for segment 3. On the other hand, as shown in FIG. 4, when OFDM transmission is performed with the receiving stations 31 to 37 as one segment, the required CP length is 44 μs, which is the maximum value of the relative delay time difference. In the OFDM communication system of the present invention, it can be seen that an increase in the CP length is significantly suppressed as compared with this.

10 制御局
11 遅延時間差検出部
12 最大CP長比較部
13 セグメント割当・送信局制御部
21 送信局A
22 送信局B
31〜37 受信局
10 Control Station 11 Delay Time Difference Detection Unit 12 Maximum CP Length Comparison Unit 13 Segment Allocation / Transmission Station Control Unit 21 Transmitting Station A
22 Transmitting station B
31-37 receiving station

Claims (6)

複数の送信局と複数の受信局との間で、OFDM信号の各サブキャリアに各受信局を割り当ててMIMO伝送を行うOFDM通信システムにおいて、
前記複数の送信局から送信された信号が前記複数の受信局に受信されるときの遅延時間差を前記受信局ごとに検出し、該遅延時間差があらかじめ設定した最大CP長を超えない受信局ごとに、前記OFDM信号のサブキャリアをセグメント分けして割り当てる手段を備え、
前記複数の送信局は、各セグメントごとに前記遅延時間差が前記最大CP長を超えないようにそれぞれの送信タイミングを制御する構成である
ことを特徴とするOFDM通信システム。
In an OFDM communication system that performs MIMO transmission by assigning each receiving station to each subcarrier of an OFDM signal between a plurality of transmitting stations and a plurality of receiving stations,
A delay time difference when signals transmitted from the plurality of transmitting stations are received by the plurality of receiving stations is detected for each receiving station, and for each receiving station where the delay time difference does not exceed a preset maximum CP length. Means for segmenting and assigning subcarriers of the OFDM signal,
The OFDM communication system, wherein the plurality of transmitting stations are configured to control transmission timing so that the delay time difference does not exceed the maximum CP length for each segment.
請求項1に記載のOFDM通信システムにおいて、
前記複数の送信局は、前記セグメントごとに前記送信タイミングを制御したときの前記遅延時間差の最大値を当該セグメントにおける所要CP長として設定する構成である
ことを特徴とするOFDM通信システム。
The OFDM communication system according to claim 1,
The OFDM communication system, wherein the plurality of transmitting stations are configured to set a maximum value of the delay time difference when the transmission timing is controlled for each segment as a required CP length in the segment.
請求項1に記載のOFDM通信システムにおいて、
前記複数の送信局は、前記セグメントごとに前記送信タイミングを制御するとともに、前記セグメントのOFDM信号の周波数帯域を分離する構成である
ことを特徴とするOFDM通信システム。
The OFDM communication system according to claim 1,
The OFDM communication system, wherein the plurality of transmission stations are configured to control the transmission timing for each of the segments and to separate the frequency band of the OFDM signal of the segment.
複数の送信局と複数の受信局との間で、OFDM信号の各サブキャリアに各受信局を割り当ててMIMO伝送を行うOFDM通信システムにおいて、
前記複数の送信局から送信された信号が前記複数の受信局に受信されるときの遅延時間差を前記受信局ごとに検出する第1のステップと、
前記遅延時間差があらかじめ設定した最大CP長を超えない受信局ごとに、前記OFDM信号のサブキャリアをセグメント分けして割り当てる第2のステップと、
前記各セグメントごとに前記遅延時間差が前記最大CP長を超えないようにそれぞれの送信タイミングを制御する第3のステップと
を実行することを特徴とするサブキャリア割当方法。
In an OFDM communication system that performs MIMO transmission by assigning each receiving station to each subcarrier of an OFDM signal between a plurality of transmitting stations and a plurality of receiving stations,
A first step of detecting, for each of the receiving stations, a delay time difference when signals transmitted from the plurality of transmitting stations are received by the plurality of receiving stations;
A second step of segmenting and assigning subcarriers of the OFDM signal for each receiving station in which the delay time difference does not exceed a preset maximum CP length;
And a third step of controlling each transmission timing so that the delay time difference does not exceed the maximum CP length for each segment.
請求項4に記載のサブキャリア割当方法において、
前記複数の送信局は、前記セグメントごとに前記送信タイミングを制御したときの前記遅延時間差の最大値を当該セグメントにおける所要CP長として設定する
ことを特徴とするサブキャリア割当方法。
In the subcarrier allocation method according to claim 4,
The plurality of transmitting stations set the maximum value of the delay time difference when the transmission timing is controlled for each segment as a required CP length in the segment.
請求項4に記載のサブキャリア割当方法において、
前記複数の送信局は、前記セグメントごとに前記送信タイミングを制御するとともに、前記セグメントのOFDM信号の周波数帯域を分離する
ことを特徴とするサブキャリア割当方法。
In the subcarrier allocation method according to claim 4,
The plurality of transmitting stations control the transmission timing for each segment and separate the frequency band of the OFDM signal of the segment.
JP2014120807A 2014-06-11 2014-06-11 OFDM communication system and subcarrier allocation method Active JP6173974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014120807A JP6173974B2 (en) 2014-06-11 2014-06-11 OFDM communication system and subcarrier allocation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014120807A JP6173974B2 (en) 2014-06-11 2014-06-11 OFDM communication system and subcarrier allocation method

Publications (2)

Publication Number Publication Date
JP2016001802A JP2016001802A (en) 2016-01-07
JP6173974B2 true JP6173974B2 (en) 2017-08-02

Family

ID=55077205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014120807A Active JP6173974B2 (en) 2014-06-11 2014-06-11 OFDM communication system and subcarrier allocation method

Country Status (1)

Country Link
JP (1) JP6173974B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10063306B2 (en) * 2016-10-24 2018-08-28 Mitsubishi Electric Research Laboratories, Inc. Method and systems using quasi-synchronous distributed CDD systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4444294B2 (en) * 2004-12-14 2010-03-31 富士通株式会社 Wireless communication apparatus and communication method
JP4564430B2 (en) * 2005-09-05 2010-10-20 シャープ株式会社 COMMUNICATION DEVICE, COMMUNICATION METHOD, RADIO COMMUNICATION SYSTEM, AND RADIO COMMUNICATION METHOD
JP5601803B2 (en) * 2009-08-06 2014-10-08 シャープ株式会社 COMMUNICATION SYSTEM, COMMUNICATION METHOD, AND BASE STATION

Also Published As

Publication number Publication date
JP2016001802A (en) 2016-01-07

Similar Documents

Publication Publication Date Title
CN106664688B (en) Wireless communication method, device and system
JP6573874B2 (en) Correction of time division long term evolution (TD-LTE) frame structure
CN105471790B (en) Cooperative transmission method, base station and terminal suitable for distributed antenna system
US11659525B2 (en) Communicating data of a first user equipment and data of a second user equipment on shared resources of a wireless communication system
WO2015025847A1 (en) Wireless base station, relay station, and wireless communication method
US20150358133A1 (en) User equipment, base station, and radio communication method
RU2501175C2 (en) Base station and method for reducing asynchronous interference in multi-tier ofdma overlay network
US20160006586A1 (en) Zero insertion for isi free ofdm reception
EP3192185A1 (en) Parallel channel training in multi-user multiple-input and multiple-output system
JP6720344B2 (en) Method for transmitting and receiving information, user equipment and base station
US20170012809A1 (en) System and method for simultaneous communication with multiple wireless communication devices
WO2016060791A1 (en) Simultaneous communication with multiple wireless communication devices
EP3207646B1 (en) Simultaneous communication with multiple wireless communication devices
US11109330B2 (en) Method for determining correction time in wireless communication system and apparatus therefor
EP2733901B1 (en) Communication method and reception apparatus
US20190014198A1 (en) Telegram Splitting for Slotted ALOHA
JP6173974B2 (en) OFDM communication system and subcarrier allocation method
KR102301820B1 (en) Method and apparatus for determining of correction time
US20200267041A1 (en) Method and apparatus for processing delayed sidelink signal
CN102711186B (en) The method that in CoMP up link, time advance adjustment reference node is chosen and device
US20100074127A1 (en) Channel measurements on combined pilot signala in multi-carrier systems
WO2020132794A9 (en) Method, device and computer readable medium for diversity transmissions
JP2006191187A (en) Ofdm-mimo receiver and ofdm-mimo receiving method
US20210075539A1 (en) Non-orthogonal multiple access (noma) using rate based receivers
CN112534865A (en) Method, apparatus and computer readable medium for detecting waveguide interference sources

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160916

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170203

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170705

R150 Certificate of patent or registration of utility model

Ref document number: 6173974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150