JP6171992B2 - Power generator - Google Patents
Power generator Download PDFInfo
- Publication number
- JP6171992B2 JP6171992B2 JP2014049444A JP2014049444A JP6171992B2 JP 6171992 B2 JP6171992 B2 JP 6171992B2 JP 2014049444 A JP2014049444 A JP 2014049444A JP 2014049444 A JP2014049444 A JP 2014049444A JP 6171992 B2 JP6171992 B2 JP 6171992B2
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- magnetostrictive
- magnetic
- conversion means
- power conversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000010248 power generation Methods 0.000 claims description 42
- 238000006243 chemical reaction Methods 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 12
- 239000000945 filler Substances 0.000 claims description 6
- 239000000696 magnetic material Substances 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 5
- 239000011347 resin Substances 0.000 claims description 5
- 229920001187 thermosetting polymer Polymers 0.000 claims description 3
- 230000008602 contraction Effects 0.000 claims 1
- 230000000149 penetrating effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 description 10
- 238000005452 bending Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000009499 grossing Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000807 Ga alloy Inorganic materials 0.000 description 1
- QVYYOKWPCQYKEY-UHFFFAOYSA-N [Fe].[Co] Chemical compound [Fe].[Co] QVYYOKWPCQYKEY-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Description
本発明は、振動を利用した発電装置に関する。 The present invention relates to a power generation device using vibration.
振動を利用した発電技術としては、圧電素子を利用した発電方法がよく知られている。圧電素子を利用した発電方法の多くは、圧電素子に何らかの方法で外部から力を加えることにより、圧電素子を変形させて発電するものである。 As a power generation technique using vibration, a power generation method using a piezoelectric element is well known. Many of the power generation methods using piezoelectric elements are to generate power by deforming the piezoelectric elements by applying external force to the piezoelectric elements in some way.
圧電素子を利用した発電方法としては、例えば、下記特許文献1に記載のものがある。すなわち、下記特許文献1では、音による空気の圧力変動を利用して圧電素子により発電する音力発電装置、および、振動による圧力変動を利用して圧電素子により発電する振動力発電装置が記載されている。 As a power generation method using a piezoelectric element, for example, there is a method described in Patent Document 1 below. That is, the following Patent Document 1 describes a sound power generation device that generates electric power with a piezoelectric element using fluctuations in air pressure due to sound, and a vibration power generation device that generates electric power with piezoelectric elements using pressure fluctuations caused by vibration. ing.
また圧電素子に代えて磁歪素子を利用した発電方法も提案されている。磁歪素子を利用した発電方法としては、例えば、下記特許文献2に記載のものがある。
図6は、下記特許文献2に記載の振動を利用した発電素子の構成例を示す図である。すなわち、図6(a)は、下記特許文献2に示された発電素子の構成を示す上面図、図6(b)は、下記特許文献2に示された発電素子の構成を示す側面図である。
A power generation method using a magnetostrictive element instead of a piezoelectric element has also been proposed. As a power generation method using a magnetostrictive element, for example, there is a method described in Patent Document 2 below.
FIG. 6 is a diagram illustrating a configuration example of a power generation element using vibration described in Patent Document 2 below. That is, FIG. 6A is a top view showing the configuration of the power generation element shown in Patent Document 2 below, and FIG. 6B is a side view showing the configuration of the power generation element shown in Patent Document 2 below. is there.
図6において発電素子100は、連結ヨーク100aおよび100bと、磁歪棒110aおよび110bと、コイル120aおよび120bと、永久磁石140aおよび140bと、パッシブヨーク150とを備えて構成されている。 In FIG. 6, the power generating element 100 includes connecting yokes 100 a and 100 b, magnetostrictive rods 110 a and 110 b, coils 120 a and 120 b, permanent magnets 140 a and 140 b, and a passive yoke 150.
図7は、図6に示した発電素子による発電装置の構成例を示す図である。すなわち図6に示した発電素子を片持ち梁構成として発電装置を構成したものである。図7において発電装置は、発電素子100の連結ヨーク100aを固定部材で固定した片持ち梁構成とし、連結ヨーク100bに曲げ応力Pを印加することにより、磁歪棒110aおよび110bが曲げ変形される。これにより磁歪棒110aおよび110bに発生する逆磁歪効果により、コイル120aおよび120b(図6参照)を貫く磁束が変化することで、コイル120aおよび120bに誘導電圧(または誘導電流)が発生する。これにより、発電素子100に振動を印加することで発電が可能となるものである。 FIG. 7 is a diagram illustrating a configuration example of the power generation device using the power generation element illustrated in FIG. 6. That is, the power generation device is configured with the power generation element shown in FIG. 6 as a cantilever structure. In FIG. 7, the power generation device has a cantilever structure in which the connecting yoke 100a of the power generating element 100 is fixed by a fixing member, and the bending stress P is applied to the connecting yoke 100b, whereby the magnetostrictive rods 110a and 110b are bent and deformed. As a result, the magnetic flux passing through the coils 120a and 120b (see FIG. 6) changes due to the inverse magnetostrictive effect generated in the magnetostrictive rods 110a and 110b, so that an induced voltage (or induced current) is generated in the coils 120a and 120b. As a result, power can be generated by applying vibration to the power generation element 100.
特許文献1に記載された圧電素子を利用する発電方法では、圧電素子を構成する圧電材料が脆性材料であり、曲げや衝撃に対して弱い材料である。そのため過度に力を加えることができず、発電量を増加させるために大きな曲げや衝撃を加えることが難しいという問題がある。また、圧電素子は低周波でインピーダンスが高く、圧電素子より低いインピーダンスを有する負荷を接続した際に、負荷に発生する電圧が小さくなるため、発電により得られる電力が小さくなり、発電の効率が低いという問題がある。 In the power generation method using the piezoelectric element described in Patent Document 1, the piezoelectric material constituting the piezoelectric element is a brittle material and is a material that is weak against bending and impact. For this reason, there is a problem that it is difficult to apply excessive bending and impact in order to increase the amount of power generation because excessive force cannot be applied. In addition, the piezoelectric element has a high impedance at a low frequency, and when a load having a lower impedance than that of the piezoelectric element is connected, the voltage generated in the load is small, so the power obtained by power generation is small and the power generation efficiency is low. There is a problem.
一方、特許文献2に記載された磁歪棒110aおよび110bを構成する磁歪材料は、延性材料であり、圧電材料に比べて曲げや衝撃に強いため、大きな曲げや衝撃を加えることで発電量を増加させることが可能である。また素子のインピーダンスが圧電材料よりも低いことから、インピーダンスの低い負荷の接続による発電効率の低下が少ないため特許文献1に記載の圧電材料の問題点を解消することができる。 On the other hand, the magnetostrictive material composing the magnetostrictive rods 110a and 110b described in Patent Document 2 is a ductile material and is more resistant to bending and impact than the piezoelectric material. Therefore, power generation is increased by applying large bending and impact. It is possible to make it. Further, since the impedance of the element is lower than that of the piezoelectric material, the problem of the piezoelectric material described in Patent Document 1 can be solved because there is little decrease in power generation efficiency due to connection of a load with low impedance.
しかしながら、特許文献2に記載された振動発電素子は、パッシブヨーク150と連結ヨーク(100aおよび100b)とを、永久磁石(140aおよび140b)を介して接続しているので構造的な強度が不足するという問題があった。振動により磁歪部材(110aおよび110b)やパッシブヨーク150が伸縮することで、最悪の場合、永久磁石(140aおよび140b)との接続部分が外れてしまう可能性がある。 However, the vibration power generation element described in Patent Document 2 is insufficient in structural strength because the passive yoke 150 and the connecting yoke (100a and 100b) are connected via the permanent magnets (140a and 140b). There was a problem. In the worst case, the magnetostrictive members (110a and 110b) and the passive yoke 150 expand and contract due to vibration, and the connection portion with the permanent magnets (140a and 140b) may be disconnected.
また、磁歪部材(110aおよび110b)とパッシブヨーク150と連結ヨーク(100aおよび100b)とで構成される磁気回路の磁路中に永久磁石(140aおよび140b)があるので、永久磁石(140aおよび140b)が大きな磁気抵抗となり、振動による発電量が低下してしまう問題があった。 Further, since the permanent magnets (140a and 140b) are present in the magnetic path of the magnetic circuit composed of the magnetostrictive members (110a and 110b), the passive yoke 150, and the connecting yokes (100a and 100b), the permanent magnets (140a and 140b). ) Becomes a large magnetic resistance, and there is a problem that the amount of power generation due to vibration is reduced.
そこで本発明の目的は、上記の課題に対応して、振動を磁歪素子に与えて発電する発電装置において、構造的に堅牢で、振動による発電効率をより高めることが可能な発電装置を提供することにある。 Accordingly, an object of the present invention is to provide a power generator that is structurally robust and that can further improve power generation efficiency due to vibration in a power generator that generates vibration by applying vibration to a magnetostrictive element in response to the above-described problems. There is.
上記課題を解決するために請求項1に記載の発明は、振動電力変換手段の一端を固定または支持する支持体と、該支持体を介して振動源からの振動を受けて振動するように構成され、固有の振動周波数で振動することで振動エネルギーを電気エネルギーに変換する振動電力変換手段とを備えて構成される発電装置であって、前記振動電力変換手段は、磁歪材料で構成された磁歪部材と、該磁歪部材に磁気的に連結されるとともに該磁歪部材に平行に配置されて磁性材料で構成される磁性部材と、前記磁歪部材に巻かれた磁気コイルと、磁気バイアスを供給する複数の中空形状の永久磁石とを有し、前記複数の中空形状の永久磁石は、前記磁歪部材に貫通されて該部材の所定の部位で前記永久磁石の内面と前記部材との間に生じる空間を所定の充填材で充填して固着され、前記磁歪部材の軸方向と垂直な方向の振動が前記振動電力変換手段に与えられた際に、前記振動電力変換手段の前記磁歪部材が伸張または収縮することにより発電することを特徴とする。 In order to solve the above-mentioned problem, the invention described in claim 1 is configured to fix or support one end of the vibration power conversion means and to vibrate by receiving vibration from a vibration source via the support. And a vibration power conversion means for converting vibration energy into electric energy by vibrating at a specific vibration frequency, wherein the vibration power conversion means is a magnetostriction made of a magnetostrictive material. A magnetic member coupled to the magnetostrictive member and arranged in parallel with the magnetostrictive member and made of a magnetic material, a magnetic coil wound around the magnetostrictive member, and a plurality of magnetic biases A plurality of hollow permanent magnets that pass through the magnetostrictive member to form a space generated between the inner surface of the permanent magnet and the member at a predetermined portion of the member. Predetermined Is fixed by filling in Hama material, when the vibration in the axial direction perpendicular to the direction of said magnetostrictive member is applied to the vibration power conversion means, by said magnetostrictive member of the vibration power conversion means is stretched or contracted It is characterized by generating electricity.
請求項2に記載の発明は、請求項1に記載の発明において、前記充填材は、熱硬化性樹脂であることを特徴とする。
請求項3に記載の発明は、請求項1または2に記載の発明において、前記磁性部材と前記磁歪部材を磁気的に連結する第1及び第2の連結部材と、前記磁性部材が前記第2の連結部材を介して前記支持体に連結されると共に、前記第1の連結部材に連結され、前記振動電力変換手段に与えられた振動を持続させる錘体を備えることを特徴とする。
The invention described in claim 2 is the invention described in claim 1, wherein the filler is a thermosetting resin.
According to a third aspect of the present invention, in the first or second aspect of the present invention, the first and second connecting members that magnetically connect the magnetic member and the magnetostrictive member, and the magnetic member is the second member. And a weight body that is connected to the first connection member and maintains the vibration applied to the vibration power conversion means.
請求項4に記載の発明は、請求項1に記載の発明において、前記中空形状の永久磁石は、円柱状とされ、前記磁歪部材と磁性部材からなるヨークとで前記永久磁石を挟み、更に磁性材からなる固着手段で前記磁歪部材と前記ヨークを固着することを特徴とする。 According to a fourth aspect of the present invention, in the first aspect of the present invention, the hollow permanent magnet is formed in a cylindrical shape, and the permanent magnet is sandwiched between the magnetostrictive member and a yoke made of the magnetic member. The magnetostrictive member and the yoke are fixed by fixing means made of a material.
請求項5に記載の発明は、請求項4に記載の発明において、前記固着手段は、磁性材からなるネジまたはリベットであることを特徴とする。
請求項6に記載の発明は、請求項4または5に記載の発明において、前記ヨークに連結され、前記振動電力変換手段に与えられた振動を持続させる錘体を備えることを特徴とする。
The invention according to claim 5 is the invention according to claim 4 , wherein the fixing means is a screw or a rivet made of a magnetic material.
The invention described in claim 6 is the invention described in claim 4 or 5, further comprising a weight body that is connected to the yoke and maintains the vibration applied to the vibration power conversion means.
本発明によれば、日常の環境下で生成される振動から効率的に電力を取り出すことが可能となるので、従来殆ど省みられなかった振動エネルギーを有効利用して電気エネルギーを産み出すことができる。すなわち本発明の発電装置を用いることにより、電気エネルギー産出のための費用を削減できるとともに、CO2排出量を低減できるので、電気エネルギー産出のための環境負荷を低減することができる。 According to the present invention, since it is possible to efficiently extract electric power from vibration generated in an everyday environment, it is possible to produce electric energy by effectively using vibration energy that has not been conventionally omitted. it can. That is, by using the power generation device of the present invention, it is possible to reduce the cost for producing electric energy and reduce the amount of CO2 emission, so that the environmental load for producing electric energy can be reduced.
また、構造的に堅牢な発電装置を提供することができるので途中で壊れることなく、長期間メンテナンスフリーで動作させられる。これにより維持管理コストを低減できる。
一例として、本発明をワイヤレスセンサに適用した場合、現存するワイヤレスセンサのような有線による電源供給やバッテリ搭載が不要となるので、ワイヤレスセンサにおける電源供給コスト及びメンテナンスコストを削減することができ、ワイヤレスセンサシステム全体のコストダウンを実現することができる。
In addition, since a structurally robust power generator can be provided, it can be operated without maintenance for a long time without being broken in the middle. This can reduce the maintenance cost.
As an example, when the present invention is applied to a wireless sensor, there is no need for wired power supply and battery mounting as in the existing wireless sensor, so the power supply cost and maintenance cost of the wireless sensor can be reduced. The cost of the entire sensor system can be reduced.
また高効率な発電装置であるので、接続するワイヤレスセンサのデータ計測や通信頻度を上げることができる。この為ワイヤレスセンサの付加価値を向上させることができる。 In addition, since the power generation device is highly efficient, data measurement and communication frequency of the connected wireless sensor can be increased. For this reason, the added value of the wireless sensor can be improved.
以下、本発明の実施の形態について、詳細に説明する。
[実施形態1]
図1は、本発明の実施形態に係る発電装置の構成を示す断面図であり正面から見た図である。図1において、1aは発電装置、10は振動源、9aは振動源に固定されるフレーム、2aは錘、3aは鉄ガリウム合金や鉄コバルト合金からなる磁歪部材、4aはヨークを構成する磁性部材、8aはフレームに固定された支柱、7aと7bは磁歪部材3aに固着されたバイアス磁界発生用の中空形状の永久磁石、5aは磁歪部材3aに巻き回された磁気コイル、11aは磁気コイル5aに接続された電源回路、13は振動電力変換手段(後述する)を支柱8aに固定するピン、15aと15bは磁性部材4aを磁歪部材3aに磁気的に連結する連結部材である。
Hereinafter, embodiments of the present invention will be described in detail.
[Embodiment 1]
FIG. 1 is a cross-sectional view illustrating a configuration of a power generation device according to an embodiment of the present invention, as viewed from the front. In FIG. 1, 1a is a power generator, 10 is a vibration source, 9a is a frame fixed to the vibration source, 2a is a weight, 3a is a magnetostrictive member made of iron gallium alloy or iron cobalt alloy, and 4a is a magnetic member constituting a yoke. 8a is a support fixed to the frame, 7a and 7b are hollow permanent magnets for generating a bias magnetic field fixed to the magnetostrictive member 3a, 5a is a magnetic coil wound around the magnetostrictive member 3a, and 11a is a magnetic coil 5a. Reference numeral 13 denotes a power supply circuit, 13 is a pin for fixing an oscillating power conversion means (described later) to the column 8a, and 15a and 15b are connecting members for magnetically connecting the magnetic member 4a to the magnetostrictive member 3a.
振動源10の矢印(図左端参照)方向の振動によりフレーム9aおよび支柱8aが振動することで、錘2aと磁性部材4aと磁歪部材3aと磁気コイル5aと中空部が所定の充填材(後述する)で充填されて固着された永久磁石7a,7bと第1及び第2の連結部材15a,15bとで構成された振動電力変換手段が以下に示す式(1)に従って振動する。 The frame 9a and the support column 8a vibrate due to the vibration of the vibration source 10 in the direction of the arrow (see the left end in the figure), so that the weight 2a, the magnetic member 4a, the magnetostrictive member 3a, the magnetic coil 5a, and the hollow portion have predetermined fillers (described later) The vibration power conversion means constituted by the permanent magnets 7a and 7b filled and fixed with the first and second connecting members 15a and 15b vibrate according to the following equation (1).
磁歪部材3aと磁性部材4aと中空部が所定の充填材で充填されて固着された永久磁石7a,7bと連結部材15a,15bとで磁気回路を構成する。振動により磁歪部材3aに応力が加わると、逆磁歪効果により磁歪部材3aの磁束が変化するので、これにより磁気コイル5aに誘導電圧(または誘導電流)が発生する。 The magnetostrictive member 3a, the magnetic member 4a, and the permanent magnets 7a and 7b and the connecting members 15a and 15b in which the hollow portions are filled and fixed with a predetermined filler form a magnetic circuit. When stress is applied to the magnetostrictive member 3a by vibration, the magnetic flux of the magnetostrictive member 3a changes due to the inverse magnetostrictive effect, thereby generating an induced voltage (or induced current) in the magnetic coil 5a.
なお、図1では振動電力変換手段の一部に錘2aを設ける構成を示しているが、図1に示す例ではピン13で振動電力変換手段を支柱8aに固定しているので回転方向の自由度がフリーなので錘2aが無くても振動電力変換手段を動作させることが可能である。また、図1では磁性部材4aと磁歪部材3aを長さ方向の両端で連結部材15a,15bにより磁気的に接続する構成を示しているが、磁性部材4aに第1、第2の連結部を形成してなる連結ヨークを用いて磁歪部材3aを支持するようにしても良い。 1 shows a configuration in which the weight 2a is provided in a part of the vibration power conversion means. However, in the example shown in FIG. 1, the vibration power conversion means is fixed to the support column 8a by the pin 13, so that the rotation direction can be freely set. Since the degree is free, the vibration power conversion means can be operated without the weight 2a. FIG. 1 shows a configuration in which the magnetic member 4a and the magnetostrictive member 3a are magnetically connected by connecting members 15a and 15b at both ends in the length direction, but the first and second connecting portions are provided on the magnetic member 4a. The magnetostrictive member 3a may be supported using a formed connecting yoke.
ここで本発明の実施形態に係る発電装置で用いられる電源回路11aの構成について説明する。図5は、本発明の実施形態に係る電源回路の構成を示す図である。図5において、111は磁気コイル5a(コイル巻線)に発生する交流信号を整流する整流手段、112は整流手段111の整流信号を平滑する平滑手段、114は二次電池やコンデンサで構成される蓄電手段、115は蓄電手段114に蓄電した電力を出力端子116に出力する出力手段である。113は平滑手段112で平滑した直流電圧を蓄電手段114に蓄電させるとともに、蓄電手段114に蓄電された電力を出力手段115に供給する制御を行う制御手段である。 Here, the configuration of the power supply circuit 11a used in the power generator according to the embodiment of the present invention will be described. FIG. 5 is a diagram showing a configuration of the power supply circuit according to the embodiment of the present invention. 5, 111 is a rectifying means for rectifying an AC signal generated in the magnetic coil 5a (coil winding), 112 is a smoothing means for smoothing the rectified signal of the rectifying means 111, and 114 is a secondary battery or a capacitor. The power storage means 115 is an output means for outputting the power stored in the power storage means 114 to the output terminal 116. Reference numeral 113 denotes control means for controlling the DC voltage smoothed by the smoothing means 112 to be stored in the power storage means 114 and supplying the power stored in the power storage means 114 to the output means 115.
図2は、本発明の実施形態に係る発電装置の振動電力変換手段の構造を示す断面図であり、図1に示した図を上面から見た図である。図2において本発明の実施形態に係る発電装置の振動電力変換手段は、支柱8aにピン13で振動電力変換手段を固定し、振動電力変換手段を振り子状に振動させるものである。このように構成することで、磁歪部材3aの軸方向と垂直な方向の振動(図1の左端の両矢視線参照)が振動電力変換手段に加えられた際に、支柱8aの一端にピン13により固定されている磁歪部材3aの軸方向と垂直な方向の振動がフリーになることで振動電力変換手段が低振動周波数で動作し磁歪部材3aが伸縮または収縮することにより発電できるので、低い振動周波数領域で発電することができる。 FIG. 2 is a cross-sectional view showing the structure of the vibration power conversion means of the power generation apparatus according to the embodiment of the present invention, and is a view of the view shown in FIG. 1 as viewed from above. In FIG. 2, the vibration power conversion means of the power generator according to the embodiment of the present invention is such that the vibration power conversion means is fixed to the support column 8a with a pin 13 and vibrates in a pendulum shape. With this configuration, when vibration in a direction perpendicular to the axial direction of the magnetostrictive member 3a (see the arrow at the left end in FIG. 1) is applied to the vibration power conversion means, the pin 13 is connected to one end of the column 8a. Since the vibration in the direction perpendicular to the axial direction of the magnetostrictive member 3a fixed by the vibration is free, the vibration power conversion means operates at a low vibration frequency, and the magnetostrictive member 3a expands or contracts or contracts, so that power can be generated. Power can be generated in the frequency domain.
次に、バイアス磁界発生用の中空形状の永久磁石7a,7bの設置の具体例について説明する。
[具体例1]
図3は、本発明の実施形態に係る永久磁石の設置の具体例(その1)を示す図である。図3においては、幅を有する環状の永久磁石7a,7bを所定の充填材、例えば、フェノール樹脂、PET(ポリエチレンテレフタレート)樹脂、PBT(ポリブチレンテレフタレート)樹脂などの熱硬化性樹脂を用いて、この例では磁歪部材3aに充填し磁歪部材3aに固定するものである。そして図2に示しているようにこの例では磁気回路を構成する磁歪部材3aにバイアス磁界を供給できるように永久磁石7a,7bの幅方向(矢印参照)に着磁させている。
Next, a specific example of installation of the hollow permanent magnets 7a and 7b for generating the bias magnetic field will be described.
[Specific Example 1]
FIG. 3 is a diagram showing a specific example (part 1) of the installation of the permanent magnet according to the embodiment of the present invention. In FIG. 3, the annular permanent magnets 7a and 7b having a width are made of a predetermined filler, for example, a thermosetting resin such as phenol resin, PET (polyethylene terephthalate) resin, PBT (polybutylene terephthalate) resin, In this example, the magnetostrictive member 3a is filled and fixed to the magnetostrictive member 3a. In this example, as shown in FIG. 2, the permanent magnets 7a and 7b are magnetized in the width direction (see arrows) so that a bias magnetic field can be supplied to the magnetostrictive member 3a constituting the magnetic circuit.
また本例では幅を有する環状の永久磁石を2個使用する例を示しているが、1個でもよく、さらには3個以上設けてもよいことは云うまでもない。また、幅を有する環状の永久磁石を磁歪部材3aに設ける例を示しているが、これに限定されず、磁気回路の磁路を形成する部材、例えば、上記した磁性部材4a、連結部材15aなど、のいずれかの箇所に設ければよい。 In this example, an example is shown in which two annular permanent magnets having a width are used, but it is needless to say that one or more may be provided. Moreover, although the example which provides the cyclic | annular permanent magnet which has a width | variety in the magnetostriction member 3a is shown, it is not limited to this, The member which forms the magnetic path of a magnetic circuit, for example, above-mentioned magnetic member 4a, the connection member 15a, etc. It suffices to provide it at any of the locations.
また環状の永久磁石の例を実施例として示したが、中空形状にした永久磁石であれば環状のものに限定されないことは云うまでもない。
このように本発明の実施形態に係る発電装置は、振動電力変換手段を構成する磁気回路の磁路中のいずれかの部材の所定の部位に中空形状の永久磁石を固着したことを特徴とするものである。
Although an example of an annular permanent magnet has been shown as an example, it goes without saying that the permanent magnet is not limited to an annular one as long as it is a hollow permanent magnet.
As described above, the power generation apparatus according to the embodiment of the present invention is characterized in that a hollow permanent magnet is fixed to a predetermined portion of any member in the magnetic path of the magnetic circuit constituting the vibration power conversion means. Is.
また振動電力変換手段を振り子状に振動させる構造にしているので、低い周波数で大きな発電量が得られるという格別の作用効果を有するものである。
なお、図示していないが、磁気コイル5aを巻き回す位置は、上記した実施形態に係る発電装置のような磁歪部材3aのみに限定されず、例えば、磁性部材4a、継ぎ手を付加して連結部材15a,15b、若しくは、磁歪部材3aと磁性部材4aの両方、更には、磁歪部材3aと継ぎ手を付加した連結部材15a,15bの両方に巻き回すことができることはいうまでもない。
Further, since the vibration power conversion means is structured to vibrate in a pendulum manner, it has a special effect that a large amount of power generation can be obtained at a low frequency.
Although not shown, the position where the magnetic coil 5a is wound is not limited to the magnetostrictive member 3a as in the power generation device according to the above-described embodiment. For example, a magnetic member 4a and a coupling member with a joint added thereto are used. Needless to say, it can be wound around 15a, 15b, or both of the magnetostrictive member 3a and the magnetic member 4a, and further both of the magnetostrictive member 3a and the connecting members 15a, 15b to which the joint is added.
またピン13を介して支柱8aに固定せず、支柱8aに直接固定するようにしてもよい。但し、この場合には上記の実施形態に係る発電装置と同じように振動周波数領域を低減させるのは難しくなる。 Further, it may be directly fixed to the column 8a without being fixed to the column 8a via the pin 13. However, in this case, it is difficult to reduce the vibration frequency region as in the case of the power generation apparatus according to the above embodiment.
さらに取付面は、図1に示した取付面に限定されず、振動源からの振動方向と支柱とが平行となるように取り付けることで、例えば縦方向に発電装置を設置可能である。
[具体例2]
図4は、本発明の実施形態に係る永久磁石の設置の具体例(その2)を示す図である。図4(a)は、図2と同様、本発明の実施形態に係る発電装置の振動電力変換手段の構造を示す断面図であり上面から見た図であり、また図4(b)は本発明の実施形態に係る発電装置の振動電力変換手段の構造を示す断面図であり正面から見た図で、それぞれ磁気コイルの巻き回しを省略している。図4(a),(b)においては、円柱状で中空の永久磁石7a’,7b’を磁歪部材3aとヨーク16で挟み、磁性体のネジ(例えば、鉄製ネジ)6a,6bで固定するようにしたものである。
Furthermore, the mounting surface is not limited to the mounting surface shown in FIG. 1, and the power generation device can be installed, for example, in the vertical direction by mounting the mounting surface so that the vibration direction from the vibration source and the support column are parallel to each other.
[Specific Example 2]
FIG. 4 is a diagram showing a specific example (part 2) of the installation of the permanent magnet according to the embodiment of the present invention. 4A is a cross-sectional view showing the structure of the vibration power conversion means of the power generation apparatus according to the embodiment of the present invention, as seen from FIG. 2, and is a view seen from above, and FIG. It is sectional drawing which shows the structure of the vibration electric power conversion means of the electric power generating apparatus which concerns on embodiment of this invention, and is the figure seen from the front, The winding of a magnetic coil is abbreviate | omitted, respectively. 4 (a) and 4 (b), cylindrical and hollow permanent magnets 7a 'and 7b' are sandwiched between the magnetostrictive member 3a and the yoke 16, and fixed with magnetic screws (for example, iron screws) 6a and 6b. It is what I did.
図4に示されるように本方法は、永久磁石7a’,7b’の中空部を図3に示したような所定の充填材を用いて充填し所定の部材に固着する必要がない。そして図4に示す例では磁気回路を構成する磁歪部材3aに磁性部材からなるネジ6a,6bを介してヨーク16と磁歪部材3aにバイアス磁界を供給することができる。 As shown in FIG. 4, this method does not require filling the hollow portions of the permanent magnets 7 a ′ and 7 b ′ with a predetermined filler as shown in FIG. 3 and fixing them to a predetermined member. In the example shown in FIG. 4, a bias magnetic field can be supplied to the yoke 16 and the magnetostrictive member 3a via the screws 6a and 6b made of a magnetic member to the magnetostrictive member 3a constituting the magnetic circuit.
また本例では円柱状で中空の永久磁石を2個使用する例を示しているが、1個でもよいことは云うまでもない。なお、本例ではヨーク16が図1に示す磁性材料4aと連結部材15a,15bを一体に構成したものに相当する。 In this example, two cylindrical and permanent magnets are used, but it goes without saying that only one may be used. In this example, the yoke 16 corresponds to the magnetic material 4a and the connecting members 15a and 15b shown in FIG.
また図4に示す具体例では、円柱状で中空の永久磁石7a’,7b’を磁性部材からなるネジ6a,6bで固定し、ネジ6a,6bが磁気回路の磁路の一部を形成するようにしているが、ネジに限定されず、磁性体であれば他の固着手段(例えば、リベット等)を用いてもよいことは云うまでもない。 In the specific example shown in FIG. 4, cylindrical and hollow permanent magnets 7a 'and 7b' are fixed with screws 6a and 6b made of a magnetic member, and the screws 6a and 6b form part of the magnetic path of the magnetic circuit. However, the present invention is not limited to screws, and other fixing means (for example, rivets) may be used as long as they are magnetic.
上述した本発明の発電装置をワイヤレスセンサの電源装置として適用することで、ワイヤレスセンサにおける電力供給に関する問題点を克服することが可能となる。ワイヤレスセンサは、振動を計測するセンサとして、高速道路や鉄道、建物、回転機などの構造ヘルスモニタリング用の振動センサや加速度センサ、タイヤ圧のモニタリングセンサ等に実用化されている。 By applying the above-described power generation device of the present invention as a power supply device for a wireless sensor, it is possible to overcome problems related to power supply in the wireless sensor. Wireless sensors have been put to practical use as vibration sensors for structural health monitoring such as highways, railways, buildings, and rotating machines, acceleration sensors, tire pressure monitoring sensors, and the like as sensors for measuring vibration.
1a 発電装置
2a 錘体
3a 磁歪部材
4a 磁性部材
5a 磁気コイル
6a,6b ネジ
7a,7a’,7b,7b’ 永久磁石
8a 支持体(支柱)
9a フレーム
10 振動源
11a 電源回路
13 ピン
15a,15b 連結部材
16 ヨーク
111 整流手段
112 平滑手段
113 制御手段
114 蓄電手段
115 出力手段
116 出力端子
DESCRIPTION OF SYMBOLS 1a Power generator 2a Weight body 3a Magnetostrictive member 4a Magnetic member 5a Magnetic coil 6a, 6b Screw 7a, 7a ', 7b, 7b' Permanent magnet 8a Support body (support)
9a frame 10 vibration source 11a power supply circuit 13 pin 15a, 15b connecting member 16 yoke 111 rectifying means 112 smoothing means 113 control means 114 power storage means 115 output means 116 output terminal
Claims (6)
前記振動電力変換手段は、
磁歪材料で構成された磁歪部材と、該磁歪部材に磁気的に連結されるとともに該磁歪部材に平行に配置されて磁性材料で構成される磁性部材と、前記磁歪部材に巻かれた磁気コイルと、磁気バイアスを供給する複数の中空形状の永久磁石とを有し、
前記複数の中空形状の永久磁石は、前記磁歪部材に貫通されて該部材の所定の部位で前記永久磁石の内面と前記部材との間に生じる空間を所定の充填材で充填して固着され、
前記磁歪部材の軸方向と垂直な方向の振動が前記振動電力変換手段に与えられた際に、前記振動電力変換手段の前記磁歪部材が伸張または収縮することにより発電することを特徴とする発電装置。 A support body that fixes or supports one end of the vibration power conversion means, and is configured to vibrate by receiving vibration from a vibration source via the support body, and vibration energy is converted into electric energy by vibrating at a specific vibration frequency. A vibration generator configured to convert to vibration power conversion means,
The vibration power conversion means includes
A magnetostrictive member made of a magnetostrictive material, a magnetic member magnetically coupled to the magnetostrictive member and arranged in parallel to the magnetostrictive member and made of a magnetic material, and a magnetic coil wound around the magnetostrictive member; A plurality of hollow permanent magnets for supplying a magnetic bias,
The plurality of hollow permanent magnets are fixed by filling a space formed between the inner surface of the permanent magnet and the member at a predetermined portion of the member penetrating through the magnetostrictive member ,
When the vibration in the direction perpendicular to the axial direction of the magnetostrictive member is applied to the vibration power conversion means, the power generation apparatus generates power by the expansion or contraction of the magnetostriction member of the vibration power conversion means. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014049444A JP6171992B2 (en) | 2014-03-12 | 2014-03-12 | Power generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014049444A JP6171992B2 (en) | 2014-03-12 | 2014-03-12 | Power generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015177553A JP2015177553A (en) | 2015-10-05 |
JP6171992B2 true JP6171992B2 (en) | 2017-08-02 |
Family
ID=54256250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014049444A Expired - Fee Related JP6171992B2 (en) | 2014-03-12 | 2014-03-12 | Power generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6171992B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6992935B1 (en) | 2021-03-30 | 2022-01-13 | 三菱電機株式会社 | Robot installation assist device and robot installation assist method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6657878B2 (en) * | 2015-12-04 | 2020-03-04 | 富士電機株式会社 | Power generator |
CN105533980B (en) * | 2016-02-04 | 2017-11-14 | 南京邮电大学 | Generating brace connecting buckle |
CN107147333A (en) * | 2017-07-20 | 2017-09-08 | 京东方科技集团股份有限公司 | A kind of portable intelligent device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05283762A (en) * | 1992-03-31 | 1993-10-29 | Toshiba Corp | Magnetostrictive actuator |
JP2005277471A (en) * | 2004-03-22 | 2005-10-06 | Tdk Corp | Speaker |
JP2006066882A (en) * | 2004-07-27 | 2006-03-09 | Tdk Corp | Actuator and method of driving magnetostrictive actuator |
KR101457782B1 (en) * | 2010-06-18 | 2014-11-03 | 도쿠리츠다이가쿠호징 가나자와다이가쿠 | Power generation element and power generation apparatus provided with power generation element |
JP5940344B2 (en) * | 2012-03-29 | 2016-06-29 | 東洋ゴム工業株式会社 | Power generation unit |
JP5915433B2 (en) * | 2012-07-23 | 2016-05-11 | ミツミ電機株式会社 | Power generation element |
JP6155009B2 (en) * | 2012-10-31 | 2017-06-28 | 住友理工株式会社 | Power generator |
JP6125344B2 (en) * | 2013-06-20 | 2017-05-10 | 住友理工株式会社 | Magnetostrictive vibration power generator |
-
2014
- 2014-03-12 JP JP2014049444A patent/JP6171992B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6992935B1 (en) | 2021-03-30 | 2022-01-13 | 三菱電機株式会社 | Robot installation assist device and robot installation assist method |
Also Published As
Publication number | Publication date |
---|---|
JP2015177553A (en) | 2015-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6171992B2 (en) | Power generator | |
JP5645179B2 (en) | Power generation element | |
JP6171991B2 (en) | Power generator | |
JP6331677B2 (en) | Vibration power generator | |
CN103560640A (en) | Magneto-electricity/electromagnetic compound type low-frequency wideband vibration energy collector | |
JP2019510920A5 (en) | ||
JP6174053B2 (en) | Magnetostrictive vibration power generator | |
KR101746857B1 (en) | Hybrid generator using vibration | |
JP6349909B2 (en) | Power generator | |
JP6287580B2 (en) | Power generator | |
JP6266991B2 (en) | Vibration power generator | |
WO2015162988A1 (en) | Electricity generation device | |
JP6657878B2 (en) | Power generator | |
JP6209818B2 (en) | Power generator | |
JP6028594B2 (en) | Power generator | |
JP5890721B2 (en) | Power generation element | |
JP6064865B2 (en) | Vibration power generator | |
JP6424485B2 (en) | POWER GENERATOR AND ELECTRONIC DEVICE PROVIDED WITH THE SAME | |
JP5936514B2 (en) | Power generation unit | |
JP7218522B2 (en) | generator | |
WO2014168007A1 (en) | Power generation device | |
JP2017022958A (en) | Vibration power generation device | |
JP6136758B2 (en) | Power generation device | |
JP5346137B1 (en) | Giant magnetostrictive actuator | |
JP2023025314A (en) | Inverse magnetostrictive power generation element and power generation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160315 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170619 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6171992 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |