JP5936514B2 - Power generation unit - Google Patents

Power generation unit Download PDF

Info

Publication number
JP5936514B2
JP5936514B2 JP2012229929A JP2012229929A JP5936514B2 JP 5936514 B2 JP5936514 B2 JP 5936514B2 JP 2012229929 A JP2012229929 A JP 2012229929A JP 2012229929 A JP2012229929 A JP 2012229929A JP 5936514 B2 JP5936514 B2 JP 5936514B2
Authority
JP
Japan
Prior art keywords
rod
power generation
vibration
magnetostrictive
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012229929A
Other languages
Japanese (ja)
Other versions
JP2014082879A (en
Inventor
宏樹 布野
宏樹 布野
俊一 信夫
俊一 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2012229929A priority Critical patent/JP5936514B2/en
Publication of JP2014082879A publication Critical patent/JP2014082879A/en
Application granted granted Critical
Publication of JP5936514B2 publication Critical patent/JP5936514B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、装着された振動源の振動を利用して発電を行う発電ユニットに関し、特に、振動が比較的低周波数である振動源において、発電を効率的に行うことができる発電ユニットに関するものである。   The present invention relates to a power generation unit that generates power using vibration of a mounted vibration source, and more particularly to a power generation unit that can efficiently generate power in a vibration source having a relatively low frequency of vibration. is there.

特許文献1には、磁歪材料の逆磁歪効果を利用して振動発電を行う発電素子が開示される。この発電素子について、図5(a)を参照して説明する。図5(a)は、従来の発電素子901の正面図であり、図5(b)は、図5(a)の矢印Vb方向視における発電素子901の側面図である。なお、図5(a)では、磁歪棒911,912が伸張または短縮した状態が模式的に図示されると共に、コイル931、永久磁石941,942及びバックヨーク950の図示が省略される。   Patent Document 1 discloses a power generation element that performs vibration power generation using the inverse magnetostriction effect of a magnetostrictive material. This power generation element will be described with reference to FIG. FIG. 5A is a front view of a conventional power generation element 901, and FIG. 5B is a side view of the power generation element 901 viewed in the direction of arrow Vb in FIG. 5A. 5A schematically shows a state where the magnetostrictive rods 911 and 912 are expanded or shortened, and illustration of the coil 931, the permanent magnets 941 and 942 and the back yoke 950 is omitted.

図5(a)に示すように、発電素子901は、一対の磁歪棒911,912と、それら一対の磁歪棒911,912の一端を支持する第1ヨーク921と、一対の磁歪棒911,912の他端を支持すると共に質量体(可動マス)として機能する第2ヨーク922と、一対の磁歪棒911,912にそれぞれ巻回される一対のコイル931,932(但し、コイル932の図示は省略)と、一対の磁歪棒911,912の一端および他端の背面にそれぞれ磁極を違えて配設される一対の永久磁石941,942と、それら一対の永久磁石941,942を連結することで一対の磁歪棒911,912にバイアス磁界を付与するバックヨーク950と、を主に備える。   As shown in FIG. 5A, the power generation element 901 includes a pair of magnetostrictive rods 911 and 912, a first yoke 921 that supports one end of the pair of magnetostrictive rods 911 and 912, and a pair of magnetostrictive rods 911 and 912. And a pair of coils 931 and 932 wound around a pair of magnetostrictive rods 911 and 912 (note that the coil 932 is not shown). ), And a pair of permanent magnets 941 and 942 disposed on the back surfaces of one end and the other end of the pair of magnetostrictive rods 911 and 912, respectively, and a pair of the permanent magnets 941 and 942 connected to each other. The back yoke 950 for applying a bias magnetic field to the magnetostrictive rods 911 and 912 is mainly provided.

発電素子901は、第1ヨーク921を振動源に固着すると共に、第2ヨーク922を自由端とした状態で設置され、振動源の振動に伴って、磁歪棒911,912の軸直角方向へ第2ヨーク922を振り子運動(自由振動)させることで、磁歪棒911,912の一方および他方に軸方向の伸張および収縮をそれぞれ発生させる。即ち、図5(a)に示すように、振り子運動により、磁歪棒911,912が曲げ変形されることで、一方(磁歪棒911)に軸方向の収縮が、他方(磁歪棒912)に軸方向の伸張が、それぞれ発生される。これにより、磁歪棒911,912の軸方向と平行な方向に磁束密度が変化し(逆磁歪効果)、磁歪棒911,912にそれぞれ巻回されたコイルに電流が発生し、発電が行われる。   The power generation element 901 is installed with the first yoke 921 fixed to the vibration source and the second yoke 922 as a free end, and is moved in the direction perpendicular to the axis of the magnetostrictive rods 911 and 912 as the vibration source vibrates. By causing the two yokes 922 to perform pendulum movement (free vibration), axial expansion and contraction are generated in one and the other of the magnetostrictive rods 911 and 912, respectively. That is, as shown in FIG. 5 (a), the magnetostrictive rods 911 and 912 are bent and deformed by the pendulum movement, so that one (magnetostrictive rod 911) contracts in the axial direction and the other (magnetostrictive rod 912) axially. Each directional stretch is generated. As a result, the magnetic flux density changes in a direction parallel to the axial direction of the magnetostrictive rods 911 and 912 (inverse magnetostrictive effect), current is generated in the coils wound around the magnetostrictive rods 911 and 912, and power generation is performed.

発電素子901は、その設置環境下(振動源の振動)で共振するように、可動マスの質量とばね定数とが設定される。例えば、第2ヨーク922を大きくして、可動マスとしての質量を重くする、或いは、磁歪棒911,912の軸方向長さを長くして・磁歪棒911,912の厚みを薄くして・磁歪棒911,912の対向間隔を狭くして、ばね定数を小さくすることで、発電素子901の共振周波数を、低周波数側へ調整できる一方、これらの逆を行えば、高周波数側へ調整できる。   The mass of the movable mass and the spring constant are set so that the power generation element 901 resonates under the installation environment (vibration of the vibration source). For example, the second yoke 922 is enlarged to increase the mass as a movable mass, or the axial lengths of the magnetostrictive rods 911 and 912 are increased, and the magnetostrictive rods 911 and 912 are decreased in thickness. The resonance frequency of the power generation element 901 can be adjusted to the low frequency side by narrowing the facing distance between the bars 911 and 912 and reducing the spring constant, while the reverse can be adjusted to the high frequency side.

PCT/JP2011/003276(段落0078、図4Aなど)PCT / JP2011 / 003276 (paragraph 0078, FIG. 4A, etc.)

しかしながら、上述した発電素子901では、振動が比較的低周波数である振動源(例えば、約3Hz〜20Hzで振動する橋や歩道橋、道路など)に対しては、発電を効率的に行うことが困難であるという問題点があった。   However, with the power generation element 901 described above, it is difficult to efficiently generate power for a vibration source (for example, a bridge, a footbridge, or a road that vibrates at about 3 Hz to 20 Hz) whose vibration is relatively low. There was a problem that.

即ち、可動マスの質量を増加させるべく、第2ヨーク922を大きくすると、発電と無関係な部位の体積が増加するため、電力密度(単位体積あたりから取り出せる電力)が低くなる。ばね定数を小さくするべく、磁歪棒911,912の軸方向長さを長くすると、発電素子901全体の大型化を招き、磁歪棒911,912の厚みを薄くすると、磁束が漏れやすくなるため発電量が低下し、磁歪棒911,912の対向間隔を狭くすると、コイルの配設スペースが減少して巻き数が確保できなくなるため、発電量が低下する。そもそも、発電素子901は、その発電圧が周波数に比例することから、振動源の振動が低周波数であるほど、発電効率が低下する。   That is, when the second yoke 922 is enlarged to increase the mass of the movable mass, the volume of the portion unrelated to the power generation increases, so that the power density (power that can be taken out per unit volume) decreases. Increasing the axial length of the magnetostrictive rods 911, 912 to reduce the spring constant leads to an increase in the size of the entire power generating element 901, and reducing the thickness of the magnetostrictive rods 911, 912 makes it easier for magnetic flux to leak, resulting in the amount of power generation. If the facing distance between the magnetostrictive rods 911 and 912 is narrowed, the coil arrangement space is reduced and the number of turns cannot be secured, so the amount of power generation is reduced. In the first place, since the generated voltage of the power generation element 901 is proportional to the frequency, the power generation efficiency decreases as the vibration of the vibration source becomes lower in frequency.

本発明は、上述した問題点を解決するためになされたものであり、振動が比較的低周波数である振動源において、発電を効率的に行うことができる発電ユニットを提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a power generation unit that can efficiently generate power in a vibration source having a relatively low frequency of vibration. .

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

請求項1記載の発電ユニットによれば、振動源側に固定された固定部材に対してマス部材が弾性支持部材によって自由振動可能に弾性支持される加振装置を備え、加振装置の共振周波数である第1周波数が、発電素子の共振周波数である第2周波数よりも低くされるので、加振装置の共振周波数(第1周波数)を振動源の振動に合わせることで、加振装置を共振させ、マス部材を発電素子の磁歪棒の他端側に周期的に衝突させることができる。これにより、磁歪棒の他端側に自由振動を発生させ、発電素子に発電を効率的に行わせることができる。   According to the power generation unit of claim 1, the mass member is provided on the fixed member fixed on the vibration source side and is elastically supported by the elastic support member so as to freely vibrate, and the resonance frequency of the vibration device is provided. The first frequency is lower than the second frequency, which is the resonance frequency of the power generation element, so that the vibration device is resonated by matching the resonance frequency (first frequency) of the vibration device with the vibration of the vibration source. The mass member can periodically collide with the other end of the magnetostrictive rod of the power generating element. Thereby, free vibration can be generated on the other end side of the magnetostrictive rod, and the power generation element can efficiently generate power.

即ち、発電素子の共振周波数(第2周波数)を、振動源の振動に合わせる必要がなく、高周波数に設定できるので、その分、発電素子の発電圧を確保した状態で、発電を行うことができる。その結果、振動が比較的低周波数の振動源において、発電を効率的に行うことができる。   In other words, the resonance frequency (second frequency) of the power generation element does not need to be adjusted to the vibration of the vibration source and can be set to a high frequency, so that power generation can be performed while securing the generation voltage of the power generation element. it can. As a result, power generation can be performed efficiently in a vibration source having a relatively low frequency of vibration.

また、発電素子の共振周波数(第2周波数)を、高周波数に設定できれば、例えば、可動マスとなる部分の体積を小さくすることや磁歪棒の長さを短くすることができるので、その分、発電ユニット全体としての小型化を図ることができる。   Further, if the resonance frequency (second frequency) of the power generating element can be set to a high frequency, for example, the volume of the portion that becomes the movable mass can be reduced and the length of the magnetostrictive rod can be shortened. The entire power generation unit can be reduced in size.

請求項2記載の発電ユニットによれば、請求項1記載の発電ユニットの奏する効果に加え、第1棒および第2棒の対向間に一対の永久磁石が磁極を違えて挟装されるので、第1棒および第2棒と一対の永久磁石とにより磁気ループが形成されると共に、永久磁石の起磁力によるバイアス磁界が第1棒および第2棒に付与される。よって、軸方向他端側の自由振動により、第1棒および第2棒が伸張または収縮されることで、その軸方向と平行な方向に磁束密度が変化される。その結果、第1棒または第2棒の内の少なくとも一方に巻回されたコイルに電流が発生し、発電が行われる。   According to the power generation unit of claim 2, in addition to the effect produced by the power generation unit of claim 1, a pair of permanent magnets are sandwiched between the first rod and the second rod with different magnetic poles. A magnetic loop is formed by the first rod and the second rod and the pair of permanent magnets, and a bias magnetic field by the magnetomotive force of the permanent magnet is applied to the first rod and the second rod. Therefore, the first rod and the second rod are expanded or contracted by free vibration at the other end in the axial direction, whereby the magnetic flux density is changed in a direction parallel to the axial direction. As a result, a current is generated in the coil wound around at least one of the first rod and the second rod, and power generation is performed.

この場合、請求項2によれば、上述したように、加振装置を備えることで、発電素子の共振周波数(第2周波数)を、高周波数に設定できるので、可動マスとなる軸方向他端側の保持部材の質量を小さくできる。これにより、発電と無関係な部位の体積を抑制できるので、その分、電力密度(単位体積あたりから取り出せる電力)を大きくできる。また、発電素子のばね定数を大きくできる。これにより、第1棒および第2棒の軸方向長さを短くできるので、その分、発電ユニットの小型化を図ることができる。同様に、第1棒および第2棒の厚みや径を大きくできるので、磁束を漏れ難くできると共に、第1棒および第2棒の対向間隔を広くできるので、コイルの配設スペースを確保して、その巻き数を多くでき、その分、発電効率の向上を図ることができる。   In this case, according to the second aspect, as described above, since the resonance frequency (second frequency) of the power generation element can be set to a high frequency by providing the vibration generator, the other axial end becomes a movable mass. The mass of the holding member on the side can be reduced. Thereby, since the volume of the part unrelated to power generation can be suppressed, the power density (the power that can be extracted from the unit volume) can be increased accordingly. In addition, the spring constant of the power generating element can be increased. Thereby, since the axial direction length of a 1st rod and a 2nd rod can be shortened, size reduction of an electric power generation unit can be achieved by that much. Similarly, since the thickness and diameter of the first rod and the second rod can be increased, the magnetic flux can hardly be leaked, and the facing distance between the first rod and the second rod can be increased, so that a space for arranging the coil is ensured. The number of turns can be increased, and the power generation efficiency can be improved accordingly.

ここで、請求項2によれば、永久磁石は、第1棒および第2棒の対向間に挟装され、これら第1棒および第2棒の対向間に永久磁石が挟装された状態が保持部材により保持される(即ち、永久磁石が挟装された第1棒および第2棒の軸方向一端側および他端側が保持部材によりそれぞれ保持される)ので、発電中に第1棒および第2棒と永久磁石との間に滑りが発生することを抑制でき、摩擦抵抗によるエネルギーの損失を低減できる。さらに、第1棒および第2棒と永久磁石とにより磁気ループを形成でき、従来技術のように、バックヨークを取り付ける必要がないので、その分、部品点数の削減と小型化とを図ることができる。よって、請求項2によれば、部品点数の削減と小型化とを図りつつ、発電効率の向上を図ることができる。   Here, according to the second aspect, the permanent magnet is sandwiched between the opposed first and second rods, and the permanent magnet is sandwiched between the opposed first and second rods. Since it is held by the holding member (that is, the axial direction one end side and the other end side of the first rod and the second rod in which the permanent magnet is sandwiched are respectively held by the holding member), the first rod and the second rod during power generation It is possible to suppress the occurrence of slipping between the two bars and the permanent magnet, and to reduce energy loss due to frictional resistance. Furthermore, a magnetic loop can be formed by the first and second rods and the permanent magnet, and there is no need to attach a back yoke as in the prior art, so that the number of parts can be reduced and the size can be reduced accordingly. it can. Therefore, according to the second aspect, it is possible to improve the power generation efficiency while reducing the number of parts and reducing the size.

請求項3記載の発電素子によれば、請求項2記載の発電素子の奏する効果に加え、部品点数の削減を図りつつ、発電効率の向上を図ることができるという効果を奏する。即ち、第1棒のみにコイルが巻回され、第2棒にコイルを巻回する必要がないので、その分、部品点数の削減を図ることができる。また、第2棒にコイルを巻回する必要がなければ、第2棒にコイルを巻回するためのスペースを利用して、第1棒に巻回されるコイルの巻き数を増加させることができ、その分、発電効率の向上を図ることができる。更に、上述したように、加振装置を備えることで、発電素子の共振周波数(第2周波数)を、高周波数に設定でき、発電素子のばね定数を高くできるので、第1棒および第2棒の間隔を広くすることができる。この点からも、コイルの巻き数を増加させ、発電効率の向上を図ることができる。   According to the power generating element of the third aspect, in addition to the effect of the power generating element of the second aspect, there is an effect that the power generation efficiency can be improved while reducing the number of parts. That is, since the coil is wound only around the first rod and the coil does not need to be wound around the second rod, the number of parts can be reduced accordingly. Further, if it is not necessary to wind the coil around the second rod, the number of turns of the coil wound around the first rod can be increased by using the space for winding the coil around the second rod. The power generation efficiency can be improved accordingly. Furthermore, as described above, since the resonance frequency (second frequency) of the power generation element can be set to a high frequency and the spring constant of the power generation element can be increased by providing the vibration generator, the first rod and the second rod Can be widened. Also from this point, it is possible to increase the number of turns of the coil and improve the power generation efficiency.

ここで、第1棒と第2棒との対向間に一対の永久磁石が磁極を違えて挟装され、第1棒および第2棒と一対の永久磁石とにより磁気ループが形成される構造では、第1棒にその軸方向に沿って形成される磁界の方向と第2棒にその軸方向に沿って形成される磁界の方向とが逆方向となる。よって、発電中、第1棒および第2棒が伸張または収縮される際に、軸方向と平行な方向の磁束密度の変化が逆方向となり互いに打ち消し合う。そのため、磁束密度の変化が低減され、発電効率の低下を招く。   Here, in a structure in which a pair of permanent magnets are sandwiched between the first and second rods facing each other with different magnetic poles, and a magnetic loop is formed by the first and second rods and the pair of permanent magnets. The direction of the magnetic field formed along the axial direction of the first bar is opposite to the direction of the magnetic field formed along the axial direction of the second bar. Therefore, during power generation, when the first rod and the second rod are extended or contracted, the change in magnetic flux density in the direction parallel to the axial direction is reversed and cancels each other. Therefore, the change in magnetic flux density is reduced, resulting in a decrease in power generation efficiency.

これに対し、請求項3によれば、第2棒(即ち、コイルが巻回されないもの)が第1棒よりも磁歪効果の低い磁歪材料から構成されるので、発電中、第1棒および第2棒が伸張または収縮される際には、第2棒における軸方向と平行な方向の磁束密度の変化を少なくできる。よって、第2棒における軸方向と平行な方向の磁束密度の変化によって、第1棒における軸方向と平行な方向の磁束密度の変化が打ち消されることを抑制できるので、その分、発電に必要な第1棒における軸方向と平行な方向の磁束密度の変化を確保して、発電効率の向上を図ることができる。   On the other hand, according to the third aspect, since the second rod (that is, the coil is not wound) is made of a magnetostrictive material having a magnetostriction effect lower than that of the first rod, When the two bars are expanded or contracted, the change in magnetic flux density in the direction parallel to the axial direction of the second bar can be reduced. Therefore, the change in the magnetic flux density in the direction parallel to the axial direction of the first rod can be suppressed from canceling out the change in the magnetic flux density in the direction parallel to the axial direction of the first rod. The change in magnetic flux density in the direction parallel to the axial direction of the first rod can be ensured to improve the power generation efficiency.

また、第2棒を、磁歪効果の高い磁歪材料から構成する必要がなく、一般的な磁性材料から構成することができるので、その分、第2棒の材料コストを削減して、発電素子全体としての製品コストを削減することができる。   In addition, the second rod does not need to be made of a magnetostrictive material having a high magnetostriction effect, and can be made of a general magnetic material. As a product cost can be reduced.

請求項4記載の発電素子によれば、請求項2又は3に記載の発電素子の奏する効果に加え、加振装置の固定部材が発電素子の保持部材と一体に形成されるので、これら両部材を別体とする場合と比較して、部品点数を削減できると共に組み立て工程を簡素化して、その分、発電ユニット全体としての製品コストの削減を図ることができる。   According to the power generating element of claim 4, in addition to the effect produced by the power generating element of claim 2 or 3, the fixing member of the vibration exciter is formed integrally with the holding member of the power generating element. As compared with the case where the power generator is separated, the number of parts can be reduced and the assembly process can be simplified, and the product cost of the power generation unit as a whole can be reduced accordingly.

本発明の第1実施形態における発電ユニットの部分断面正面図である。It is a partial section front view of the power generation unit in a 1st embodiment of the present invention. (a)は、加振装置の上面図であり、(b)は、発電素子の上面図である。(A) is a top view of a vibrating device, (b) is a top view of a power generation element. 第2実施形態における発電ユニットの正面図である。It is a front view of the electric power generation unit in 2nd Embodiment. 第3実施形態における発電ユニットの正面図である。It is a front view of the electric power generation unit in 3rd Embodiment. (a)は、従来の発電素子の正面図であり、(b)は、図5(a)の矢印Vb方向視における発電素子の側面図である。(A) is a front view of the conventional electric power generation element, (b) is a side view of the electric power generation element in the arrow Vb direction view of Fig.5 (a).

以下、本発明の好ましい実施形態について添付図面を参照して説明する。図1は、本発明の第1実施形態における発電ユニット1の部分断面正面図である。図2(a)は、加振装置70の上面図であり、図2(b)は、発電素子10の上面図である。なお、図1では、永久磁石31,32の磁極の向きの理解を助けるために、その磁性を「N」「S」の表記を用いて便宜的に図中に図示する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a partial cross-sectional front view of a power generation unit 1 according to a first embodiment of the present invention. FIG. 2A is a top view of the vibrating device 70, and FIG. 2B is a top view of the power generation element 10. In FIG. 1, in order to help understanding of the orientation of the magnetic poles of the permanent magnets 31 and 32, the magnetism is shown in the drawing for the sake of convenience using the notation “N” and “S”.

図1及び図2に示すように、発電ユニット1は、一対の保持部材60の内の一方の保持部材60(図1右側)が振動源SVに固定された状態で設置され、第1棒11及び第2棒12の軸方向一端側(図1右側)が固定端とされると共に第1棒11及び第2棒12の軸方向他端側(図1左側)が自由振動可能な自由端とされる。振動源SVが振動されると、その振動により、他方の保持部材60(図1左側)が振り子運動(自由振動)されることで、発電が行われる。即ち、振り子運動に伴う曲げ変形により第1棒11には軸方向の伸張および収縮が発生し、第1棒11の軸方向と平行な方向に磁束密度が変化することで、コイル20に電流が発生し、発電が行われる。   As shown in FIGS. 1 and 2, the power generation unit 1 is installed with one holding member 60 (the right side in FIG. 1) of the pair of holding members 60 fixed to the vibration source SV. One end side in the axial direction of the second rod 12 (right side in FIG. 1) is a fixed end, and the other end side in the axial direction (left side in FIG. 1) of the first rod 11 and second rod 12 is a free end capable of free vibration. Is done. When the vibration source SV is vibrated, the other holding member 60 (left side in FIG. 1) is caused to perform a pendulum motion (free vibration) by the vibration, thereby generating electric power. That is, the first rod 11 is stretched and contracted in the axial direction due to bending deformation accompanying the pendulum motion, and the magnetic flux density changes in a direction parallel to the axial direction of the first rod 11, so that current is supplied to the coil 20. Generated and power is generated.

なお、発電ユニット1の装着対象は、振動が比較的低周波数(例えば、約3Hz〜20Hz程度)となる振動源SVとされ、このような振動源SVとしては、例えば、橋や横断歩道、道路などが一例として例示される。本実施形態では、振動源SVの振動が10Hzであるとして、説明する。   In addition, the mounting target of the power generation unit 1 is a vibration source SV whose vibration is relatively low frequency (for example, about 3 Hz to 20 Hz). Examples of such a vibration source SV include a bridge, a pedestrian crossing, and a road. Etc. are illustrated as an example. In the present embodiment, the description will be made assuming that the vibration of the vibration source SV is 10 Hz.

発電ユニット1は、発電素子10と、その発電素子10に連結される加振装置70とを備えて構成される。発電素子10は、磁歪材料から構成される第1棒11及び第2棒12と、第1棒11に巻回されるコイル20と、第1棒11及び第2棒12の軸方向他端側(図1左側)及び軸方向一端側(図1右側)においてこれら第1棒11及び第2棒12の対向間に挟装される一対の永久磁石31,32と、第1棒11及び第2棒12の軸方向一端側および他端側にそれぞれ取着され第1棒11及び第2棒12の対向間に永久磁石31,32が挟装された状態を保持する一対の保持部材60とを備える。   The power generation unit 1 includes a power generation element 10 and a vibration device 70 connected to the power generation element 10. The power generating element 10 includes a first rod 11 and a second rod 12 made of a magnetostrictive material, a coil 20 wound around the first rod 11, and the other axial end side of the first rod 11 and the second rod 12. A pair of permanent magnets 31 and 32 sandwiched between the first rod 11 and the second rod 12 facing each other (on the left side in FIG. 1) and one axial end side (the right side in FIG. 1), the first rod 11 and the second rod. A pair of holding members 60 that are attached to one end side and the other end side of the rod 12 in the axial direction and hold the state in which the permanent magnets 31 and 32 are sandwiched between the first rod 11 and the second rod 12 facing each other. Prepare.

第1棒11及び第2棒12は、厚み寸法(図1上下方向寸法)に対して幅寸法(図2(b)上下方向寸法)が大きな断面長方形(即ち、断面が長辺(幅方向に沿う辺)及び短辺(厚み方向に沿う辺)を有する長方形)の長尺板状に形成される。   The first rod 11 and the second rod 12 are cross-sectional rectangles having a larger width dimension (vertical dimension in FIG. 2 (b)) than the thickness dimension (vertical dimension in FIG. 1) (that is, the cross section has a long side (in the width direction). (Long side) and a short side (rectangular shape having a side along the thickness direction).

これら第1棒11及び第2棒12は、互いに同一形状(寸法)に形成されると共に、面積が大きな側面(即ち、断面において長辺を含む側面)同士を対向させて平行に配置される。なお、第2棒12は、第1棒11よりも磁歪効果の低い磁歪材料から構成される。本実施形態では、第1棒11が鉄ガリウム合金から、第2棒12が鉄鋼材料から、それぞれ構成される。   The first rod 11 and the second rod 12 are formed in the same shape (dimension) with each other, and are arranged in parallel with side surfaces having a large area (that is, side surfaces including long sides in the cross section) facing each other. The second rod 12 is made of a magnetostrictive material having a magnetostriction effect lower than that of the first rod 11. In the present embodiment, the first rod 11 is made of an iron gallium alloy, and the second rod 12 is made of a steel material.

コイル20は、銅線から構成される線材を第1棒11に巻回したコイルである。コイル20と第1棒11との間には隙間が設けられる。永久磁石31,32は、第1棒11にバイアス磁界を付与するための部材(永久磁石)であり、それぞれ断面矩形の板状に形成される。   The coil 20 is a coil obtained by winding a wire made of copper wire around the first rod 11. A gap is provided between the coil 20 and the first rod 11. The permanent magnets 31 and 32 are members (permanent magnets) for applying a bias magnetic field to the first rod 11 and are each formed in a plate shape having a rectangular cross section.

永久磁石31,32は、互いに磁極を違えて配設される。即ち、永久磁石31は、第1棒11に接続される面側(図1上側)にN極、第2棒12に接続される面側(図1下側)にS極が配置される一方、これとは反対に、永久磁石32は、第1棒11に接続される面側にS極、第2棒12に接続される面側にN極が配置される。   The permanent magnets 31 and 32 are arranged with different magnetic poles. That is, the permanent magnet 31 has an N pole on the surface connected to the first rod 11 (upper side in FIG. 1) and an S pole on the surface connected to the second rod 12 (lower side in FIG. 1). On the contrary, the permanent magnet 32 has an S pole on the surface connected to the first rod 11 and an N pole on the surface connected to the second rod 12.

これにより、第1棒11と、第2棒12と、永久磁石31,32とにより磁気ループが形成され、永久磁石31,32の起磁力によるバイアス磁界が第1棒11に付与される。その結果、第1棒11の磁化容易方向(磁化の方向または磁化が生じ易い方向)が、第1棒11の軸方向(長手方向、図1左右方向)に設定される。   Accordingly, a magnetic loop is formed by the first rod 11, the second rod 12, and the permanent magnets 31 and 32, and a bias magnetic field due to the magnetomotive force of the permanent magnets 31 and 32 is applied to the first rod 11. As a result, the easy magnetization direction (the direction of magnetization or the direction in which magnetization is likely to occur) of the first rod 11 is set to the axial direction (longitudinal direction, left-right direction in FIG. 1) of the first rod 11.

永久磁石31,32は、固定部材40に形成(凹設)された収容空間に配設される。この収容空間の内面および第1棒11及び第2棒12の側面と、永久磁石31,32の側面との対向間には隙間が形成され、この隙間に充填した接着剤により、永久磁石31,32が固定部材40に固着される。   The permanent magnets 31 and 32 are disposed in a storage space formed (recessed) in the fixed member 40. A gap is formed between the inner surface of the housing space and the side surfaces of the first rod 11 and the second rod 12 and the side surfaces of the permanent magnets 31 and 32, and the permanent magnets 31, 32 is fixed to the fixing member 40.

保持部材60は、第1棒11及び第2棒12の軸方向一端側および他端側にそれぞれ取着される一対の固定部材40と、それら一対の固定部材40がそれぞれ圧入されるホルダ部材50とを備える。固定部材40及びホルダ部材50は、非磁性材料(本実施形態では、アルミニウム合金)から構成される。   The holding member 60 includes a pair of fixing members 40 that are respectively attached to one end side and the other end side in the axial direction of the first rod 11 and the second rod 12, and a holder member 50 into which the pair of fixing members 40 are press-fitted. With. The fixing member 40 and the holder member 50 are made of a nonmagnetic material (in this embodiment, an aluminum alloy).

固定部材40は、ブロック状に形成され、その一側の側面(図1紙面手前側、図2(b)下側)には、第1棒11、第2棒12及び永久磁石31,32を収容するための凹部空間が凹設される。即ち、永久磁石31,32を収容する凹部空間が、固定部材40の略中央部に正面視矩形状に凹設され、その永久磁石31,32を収容する凹部空間を上下方向(図1上下方向)から挟んで、第1棒11及び第2棒12を収容する溝状の凹部空間が左右方向(図1左右方向)に延設される。   The fixing member 40 is formed in a block shape, and the first rod 11, the second rod 12, and the permanent magnets 31 and 32 are provided on one side surface (the front side in FIG. 1 and the lower side in FIG. 2B). A recessed space for accommodating is recessed. That is, a concave space for accommodating the permanent magnets 31 and 32 is formed in a rectangular shape in front view at a substantially central portion of the fixing member 40, and the concave space for accommodating the permanent magnets 31 and 32 is formed in the vertical direction (the vertical direction in FIG. 1). ), A groove-like recess space that accommodates the first rod 11 and the second rod 12 extends in the left-right direction (left-right direction in FIG. 1).

第1棒11及び第2棒12を収容する凹部空間の対向間には、永久磁石31,32を収容する凹部空間に隣接する位置に、正面視矩形状の規制部41が突設される。規制部41の厚み寸法(図1上下方向寸法)は、永久磁石31,32の厚み寸法(図1上下方向寸法)よりも大きくされる。   Between the concave spaces for accommodating the first rod 11 and the second rod 12, a regulating portion 41 having a rectangular shape in front view is projected at a position adjacent to the concave space for accommodating the permanent magnets 31 and 32. The thickness dimension (the vertical dimension in FIG. 1) of the restricting portion 41 is made larger than the thickness dimension (the vertical dimension in FIG. 1) of the permanent magnets 31 and 32.

固定部材40の上下(図1上側および下側)の側面は、固定部材40をホルダ部材50へ圧入する際の圧入方向に沿って傾斜する傾斜面として形成される。これら上下の傾斜面の傾斜(勾配)によって、固定部材40は、図1に示す正面視において、第1棒11及び第2棒12の軸方向中央から離間するに従って先細りとなる形状に形成される。   The upper and lower (upper and lower) side surfaces of the fixing member 40 are formed as inclined surfaces that are inclined along the press-fitting direction when the fixing member 40 is press-fitted into the holder member 50. Due to the inclination (gradient) of the upper and lower inclined surfaces, the fixing member 40 is formed in a shape that tapers as the distance from the axial center of the first rod 11 and the second rod 12 increases in the front view shown in FIG. .

ホルダ部材50は、略直方体形状のベース部51と、そのベース部51から突設されると共に所定間隔を隔てて互いに対向する被圧入対向部52,53とを備え、被圧入対向部52,53の対向間に固定部材40を保持する。   The holder member 50 includes a substantially rectangular parallelepiped base portion 51 and press-fit facing portions 52 and 53 that protrude from the base portion 51 and face each other at a predetermined interval. The fixing member 40 is held between the two.

被圧入対向部52,53の互いに対向する面は、固定部材40をホルダ部材50へ圧入する際の圧入方向に沿って傾斜する傾斜面として形成される。これら対向する面の傾斜(勾配)によって、その対向間隔は、ベース部51へ向かうに従って狭くなる。なお、一対のホルダ部材50の一方(図1右側)のホルダ部材50には、被圧入対向部52の上側の側面に、締結孔52aが凹設される。   The mutually opposing surfaces of the press-fitting opposing portions 52 and 53 are formed as inclined surfaces that are inclined along the press-fitting direction when the fixing member 40 is press-fitted into the holder member 50. Due to the inclination (gradient) of these opposing surfaces, the facing interval becomes narrower toward the base portion 51. Note that a fastening hole 52 a is recessed in the upper side surface of the press-fitting facing portion 52 in one of the pair of holder members 50 (right side in FIG. 1).

ここで、発電素子10は、その振り子運動(自由振動)の共振周波数(第2周波数)が、加振装置70における振り子運動(自由振動)の共振周波数(第1周波数)よりも高い値(高周波数)に設定され、本実施形態では、第2周波数が150Hzに設定される。なお、発電素子10における自由振動の共振周波数(第2周波数)は、約100Hz〜200Hzに設定されることが好ましい。   Here, the power generation element 10 has a resonance frequency (second frequency) of the pendulum motion (free vibration) higher than the resonance frequency (first frequency) of the pendulum motion (free vibration) in the excitation device 70 (high frequency). Frequency), and in the present embodiment, the second frequency is set to 150 Hz. In addition, it is preferable that the resonance frequency (second frequency) of free vibration in the power generation element 10 is set to about 100 Hz to 200 Hz.

加振装置70は、質量体(可動マス)として構成されるマス部材71と、振動源SV側に固定される固定部材72と、それらマス部材71及び固定部材72の間に介設され、固定部材72に対してマス部材71を自由振動可能に弾性支持する弾性支持部材73とを備え、これら各部材71〜73が鉄鋼材料から一体に形成される。   The vibration device 70 is a mass member 71 configured as a mass body (movable mass), a fixed member 72 fixed to the vibration source SV side, and interposed between the mass member 71 and the fixed member 72 and fixed. An elastic support member 73 that elastically supports the mass member 71 with respect to the member 72 so as to freely vibrate, and these members 71 to 73 are integrally formed from a steel material.

マス部材71は、直方体形状に形成され、発電素子10の他方の保持部材60(図1左側であって、自由振動可能な自由端側)に対して所定間隔を隔てつつ対向配置される。即ち、マス部材71は、その下面(図1下側面)を他方の保持部材60の上面(図1上側面)に衝突可能な位置に配置される。   The mass member 71 is formed in a rectangular parallelepiped shape, and is disposed to face the other holding member 60 of the power generation element 10 (on the left side in FIG. 1 and on the free end side capable of free vibration) with a predetermined interval. That is, the mass member 71 is disposed at a position where the lower surface (lower side surface in FIG. 1) can collide with the upper surface (upper side surface in FIG. 1) of the other holding member 60.

なお、マス部材71は、保持部材60(ホルダ部材50のベース部51)の端面よりも外方(弾性支持部材73と反対側、図1左側)に突出する位置に配置される。これにより、保持部材60の最端部(図1左端)にマス部材71を衝突させることができるので、発電素子10に自由振動を効率的に発生させることができる。   The mass member 71 is disposed at a position protruding outward (on the opposite side to the elastic support member 73, left side in FIG. 1) from the end surface of the holding member 60 (the base portion 51 of the holder member 50). Thereby, since the mass member 71 can be made to collide with the most end part (left end of FIG. 1) of the holding member 60, the free vibration can be efficiently generated in the power generation element 10.

固定部材72は、直方体形状に形成され、発電素子10の一方の保持部材60(図1右側、即ち、振動源SVに固定される固定端側)に締結ボルトbtにより締結固定される。即ち、固定部材72には、挿通孔72aが貫通形成されており、締結ボルトbtは、固定部材72の挿通孔72aに挿通され、一方の保持部材60の締結孔52aに締結される。   The fixing member 72 is formed in a rectangular parallelepiped shape, and is fastened and fixed to one holding member 60 (the right side in FIG. 1, that is, the fixed end side fixed to the vibration source SV) of the power generation element 10 by a fastening bolt bt. That is, an insertion hole 72 a is formed through the fixing member 72, and the fastening bolt bt is inserted into the insertion hole 72 a of the fixing member 72 and fastened to the fastening hole 52 a of one holding member 60.

弾性支持部材73は、第1棒11及び第2棒12と同様に、厚み寸法に対して幅寸法が大きな断面長方形の長尺板状に形成され、面積が大きな側面(即ち、断面において長辺を含む側面)を対向させて第1棒11及び第2棒12に平行に配置される。弾性支持部材73が撓み変形されることで、マス部材71が固定部材72に対して振り子運動(自由振動)される。即ち、振動源SVからの振動の入力により加振装置70が共振されると、マス部材71が発電素子10の他方の保持部材60に周期的に衝突される。   Similar to the first rod 11 and the second rod 12, the elastic support member 73 is formed in a long plate shape having a rectangular section with a large width dimension relative to the thickness dimension, and has a side surface with a large area (that is, a long side in the section). Are arranged in parallel to the first rod 11 and the second rod 12. When the elastic support member 73 is bent and deformed, the mass member 71 is pendulum-moved (free vibration) with respect to the fixed member 72. That is, when the vibration device 70 is resonated by the input of vibration from the vibration source SV, the mass member 71 periodically collides with the other holding member 60 of the power generation element 10.

ここで、加振装置70は、その振り子運動(自由振動)の共振周波数(第1周波数)が、発電素子10における振り子運動(自由振動)の共振周波数(第2周波数)よりも低い値(低周波数)に設定され、本実施形態では、第1周波数が10Hzに設定される。即ち、加振装置70における自由振動の共振周波数(第1周波数)は、振動源SVの振動の周波数に一致される。   Here, the vibration device 70 has a resonance frequency (first frequency) of the pendulum motion (free vibration) lower than the resonance frequency (second frequency) of the pendulum motion (free vibration) in the power generation element 10 (low frequency). Frequency), and in the present embodiment, the first frequency is set to 10 Hz. That is, the resonance frequency (first frequency) of the free vibration in the vibration generator 70 matches the vibration frequency of the vibration source SV.

以上のように構成された発電ユニット1によれば、第1棒11及び第2棒12の対向間に一対の永久磁石31,32が磁極を違えて挟装されるので、第1棒11及び第2棒12と一対の永久磁石31,32とにより磁気ループが形成されると共に、永久磁石31,32の起磁力によるバイアス磁界が第1棒11及び第2棒12に付与される。よって、振り子運動(自由振動)により、第1棒11及び第2棒12が伸張または収縮されることで、その軸方向(図1左右方向)と平行な方向に磁束密度が変化される。その結果、第1棒11に巻回されたコイル20に電流が発生し、発電が行われる。   According to the power generation unit 1 configured as described above, the pair of permanent magnets 31 and 32 are sandwiched between the first rod 11 and the second rod 12 facing each other with different magnetic poles. A magnetic loop is formed by the second rod 12 and the pair of permanent magnets 31 and 32, and a bias magnetic field generated by the magnetomotive force of the permanent magnets 31 and 32 is applied to the first rod 11 and the second rod 12. Therefore, the first rod 11 and the second rod 12 are expanded or contracted by the pendulum motion (free vibration), so that the magnetic flux density is changed in a direction parallel to the axial direction (left and right direction in FIG. 1). As a result, a current is generated in the coil 20 wound around the first rod 11, and power generation is performed.

この場合、発電素子10における振り子運動(自由振動)の共振周波数である第2周波数を、振動源SVの振動の周波数に一致させ(例えば、一方の保持部材60の質量、第1棒11及び第2棒12の軸方向長さや厚み寸法を調整する)、振動源SVの振動により発電素子10を共振させることで、発電を行っても良い。   In this case, the second frequency that is the resonance frequency of the pendulum motion (free vibration) in the power generation element 10 is matched with the vibration frequency of the vibration source SV (for example, the mass of the one holding member 60, the first rod 11 and the first rod 11). Power generation may be performed by resonating the power generation element 10 by vibration of the vibration source SV).

しかしながら、この方法では、効率的に発電を行うことができない。つまり、発電圧Vは、V=2π・f・B・N・Sにより決定され(f:周波数、B:磁束密度の変化量、N:コイルの巻き数、S:磁歪棒の断面積)、極力、周波数fを大きな値(高周波数)として、発電圧を高くすることが、効率的な発電を行うために必要となるところ、振動源SVは、その振動が例えば約3Hz〜20Hzと低周波数であるため、その低周波数の振動に発電素子10を共振させても、発電圧が低く、効率的な発電を行うことができない。   However, this method cannot efficiently generate power. That is, the generated voltage V is determined by V = 2π · f · B · N · S (f: frequency, B: change amount of magnetic flux density, N: number of turns of coil, S: cross-sectional area of magnetostrictive rod), As much as possible, setting the frequency f to a large value (high frequency) and increasing the generated voltage is necessary for efficient power generation. The vibration source SV has a low frequency of about 3 Hz to 20 Hz, for example. Therefore, even if the power generation element 10 is made to resonate with the low-frequency vibration, the generated voltage is low and efficient power generation cannot be performed.

これに対し、発電ユニット1によれば、加振装置70における振り子運動(自由振動)の共振周波数である第1周波数(本実施形態では10Hz)が、振動源SVの振動の周波数に一致されるので、加振装置70を共振させ、マス部材71を発電素子10の他方(自由端側)の保持部材60に周期的に衝突させることができ、これにより、発電素子10に自由振動を発生させ、発電素子10による発電を効率的に行わせることができる。   On the other hand, according to the power generation unit 1, the first frequency (10 Hz in this embodiment), which is the resonance frequency of the pendulum motion (free vibration) in the vibration generator 70, is matched with the vibration frequency of the vibration source SV. Therefore, the vibration device 70 can be made to resonate and the mass member 71 can be periodically collided with the holding member 60 on the other (free end side) of the power generation element 10, thereby generating free vibration in the power generation element 10. The power generation by the power generation element 10 can be performed efficiently.

即ち、発電素子10における振り子運動(自由振動)の共振周波数(第2周波数)を、振動源SVの振動(即ち、低周波数の振動)に合わせる必要がなく、高周波数(本実施形態では150Hz)に設定できるので、その分、発電素子10の発電圧を確保した状態で、発電を行うことができる。その結果、振動が比較的低周波数の振動源SVにおいて、発電を効率的に行うことができる。   That is, it is not necessary to match the resonance frequency (second frequency) of the pendulum motion (free vibration) in the power generation element 10 with the vibration (that is, low frequency vibration) of the vibration source SV, and high frequency (150 Hz in this embodiment). Therefore, power generation can be performed with the generation voltage of the power generation element 10 secured. As a result, power generation can be performed efficiently in the vibration source SV having a relatively low frequency of vibration.

また、発電素子10の共振周波数(第2周波数)を高周波数に設定できれば、質量体(可動マス)として機能する他方(自由端側、図1左側)の保持部材60の質量を小さくできる。これにより、発電と無関係な部位の体積を小さくできるので、その分、電力密度(単位体積あたりから取り出せる電力)を大きくできる。   Further, if the resonance frequency (second frequency) of the power generation element 10 can be set to a high frequency, the mass of the holding member 60 on the other side (free end side, left side in FIG. 1) that functions as a mass body (movable mass) can be reduced. Thereby, since the volume of the part unrelated to power generation can be reduced, the power density (the power that can be extracted from per unit volume) can be increased accordingly.

同様に、発電素子10の共振周波数(第2周波数)を高周波数に設定できれば、発電素子10のばね定数を大きくできる。これにより、第1棒11及び第2棒12の軸方向長さを短くできるので、その分、発電ユニット1の小型化を図ることができる。また、第1棒11及び第2棒12の厚み寸法や幅寸法を大きくできるので、磁束を漏れ難くできる。さらに、第1棒11及び第2棒12の対向間隔を広くできるので、コイル20の配設スペースを確保して、その巻き数を多くすることができる。その結果、発電効率の向上を図ることができる。   Similarly, if the resonance frequency (second frequency) of the power generation element 10 can be set to a high frequency, the spring constant of the power generation element 10 can be increased. Thereby, since the axial direction length of the 1st stick | rod 11 and the 2nd stick | rod 12 can be shortened, the size reduction of the electric power generation unit 1 can be achieved. Moreover, since the thickness dimension and width dimension of the 1st stick | rod 11 and the 2nd stick | rod 12 can be enlarged, magnetic flux can be made hard to leak. Furthermore, since the opposing space | interval of the 1st rod 11 and the 2nd rod 12 can be widened, the arrangement | positioning space of the coil 20 can be ensured and the winding number can be increased. As a result, the power generation efficiency can be improved.

なお、発電ユニット1の発電素子10によれば、第1棒11のみにコイル20が巻回され、第2棒12にコイル20を巻回する必要がないので、その分、部品点数の削減を図ることができる。また、第2棒12にコイル20を巻回する必要がなければ、本来、第2棒12にコイル20を巻回するためのスペースを利用して、第1棒11に巻回されるコイル20の巻き数を増加させることができる。即ち、この構成も、発電効率の向上に寄与する。   According to the power generation element 10 of the power generation unit 1, the coil 20 is wound only on the first rod 11, and there is no need to wind the coil 20 around the second rod 12. Can be planned. If it is not necessary to wind the coil 20 around the second rod 12, the coil 20 that is wound around the first rod 11 by using a space for winding the coil 20 around the second rod 12 originally. The number of turns can be increased. That is, this configuration also contributes to improvement of power generation efficiency.

ここで、発電ユニット1の構造では、第1棒11にその軸方向(図1左右方向)に沿って形成される磁界の方向と第2棒12にその軸方向(図1左右方向)に沿って形成される磁界の方向とが逆方向となる。よって、発電中、第1棒11及び第2棒12が伸張または収縮される際に、軸方向と平行な方向の磁束密度の変化が逆方向となり互いに打ち消し合う。そのため、磁束密度の変化が低減され、発電効率の低下を招く。   Here, in the structure of the power generation unit 1, the direction of the magnetic field formed along the axial direction (left and right direction in FIG. 1) of the first rod 11 and the axial direction (left and right direction of FIG. 1) of the second rod 12. The direction of the magnetic field formed in the opposite direction is the opposite direction. Therefore, when the first rod 11 and the second rod 12 are expanded or contracted during power generation, the changes in the magnetic flux density in the direction parallel to the axial direction are reversed and cancel each other. Therefore, the change in magnetic flux density is reduced, resulting in a decrease in power generation efficiency.

この場合、発電ユニット1によれば、第2棒12(即ち、コイルが巻回されない磁歪棒)が第1棒11よりも磁歪効果の低い磁歪材料から構成されるので、発電中、第1棒11及び第2棒12が伸張または収縮される際には、第2棒12における軸方向と平行な方向の磁束密度の変化を少なくできる。よって、第2棒12における軸方向と平行な方向の磁束密度の変化によって、第1棒11における軸方向と平行な方向の磁束密度の変化が打ち消されることを抑制できるので、その分、発電に必要な第1棒11における軸方向と平行な方向の磁束密度の変化を確保して、発電効率の向上を図ることができる。   In this case, according to the power generation unit 1, since the second rod 12 (that is, the magnetostrictive rod around which the coil is not wound) is made of a magnetostrictive material having a magnetostriction effect lower than that of the first rod 11, the first rod during power generation. When the 11 and the second rod 12 are expanded or contracted, the change in the magnetic flux density in the direction parallel to the axial direction of the second rod 12 can be reduced. Therefore, the change in the magnetic flux density in the direction parallel to the axial direction in the first rod 11 can be suppressed from being canceled by the change in the magnetic flux density in the direction parallel to the axial direction in the second rod 12. The change in magnetic flux density in the direction parallel to the axial direction of the necessary first rod 11 can be ensured, and the power generation efficiency can be improved.

また、第2棒12を、磁歪効果の高い磁歪材料から構成する必要がなく、一般的な磁性材料(本実施形態では鉄鋼材料)から構成することができるので、第1棒11と比較して、第2棒12の材料コストを削減でき、その分、発電ユニット1全体としての製品コストを削減できる。   Further, the second rod 12 does not need to be made of a magnetostrictive material having a high magnetostrictive effect, and can be made of a general magnetic material (steel material in the present embodiment). The material cost of the second rod 12 can be reduced, and the product cost of the power generation unit 1 as a whole can be reduced accordingly.

次いで、図3を参照して、第2実施形態における発電ユニット201について説明する。第1実施形態では、弾性支持部材73が板ばねとして形成される場合を説明したが、第2実施形態における弾性支持部材273は、コイルスプリングとして形成される。なお、上述した第1実施形態と同一の部分には同一の符号を付して、その説明は省略する。   Next, the power generation unit 201 in the second embodiment will be described with reference to FIG. In the first embodiment, the case where the elastic support member 73 is formed as a leaf spring has been described. However, the elastic support member 273 in the second embodiment is formed as a coil spring. In addition, the same code | symbol is attached | subjected to the part same as 1st Embodiment mentioned above, and the description is abbreviate | omitted.

図3は、第2実施形態における発電ユニット201の正面図である。なお、第2実施形態における発電素子210は、一方の保持部材260(ホルダ部材250)の構成が、第1実施形態における保持部材60(ホルダ部材50)と異なる点を除き、他の構成は第1実施形態における発電素子10と同一であるので、その説明は省略する。   FIG. 3 is a front view of the power generation unit 201 in the second embodiment. The power generating element 210 in the second embodiment is the same as the other configuration except that the configuration of one holding member 260 (holder member 250) is different from the holding member 60 (holder member 50) in the first embodiment. Since it is the same as the electric power generation element 10 in 1 embodiment, the description is abbreviate | omitted.

図3に示すように、第2実施形態における発電ユニット201は、発電素子210と、加振装置270とを備える。発電素子210の一方の保持部材260は、第1棒11及び第2棒12の軸方向一端側に取着される固定部材40と、その固定部材40が圧入されるホルダ部材250とを備える。なお、ホルダ部材250は、非磁性材料(本実施形態では、アルミニウム合金)から構成される。   As shown in FIG. 3, the power generation unit 201 in the second embodiment includes a power generation element 210 and a vibration device 270. One holding member 260 of the power generation element 210 includes a fixing member 40 attached to one end side in the axial direction of the first rod 11 and the second rod 12, and a holder member 250 into which the fixing member 40 is press-fitted. The holder member 250 is made of a nonmagnetic material (in this embodiment, an aluminum alloy).

ホルダ部材250は、ベース部251及び被圧入対向部252が上方(図3上側)へ向けて延設されることで、第1実施形態におけるホルダ部材50のベース部51及び被圧入対向部52よりも高さ寸法が大きくされ、被圧入対向部252の側面からは、張出部254が張り出し形成される。   The holder member 250 has the base portion 251 and the press-fitting facing portion 252 extended upward (upper side in FIG. 3), so that the holder member 250 is more than the base portion 51 and the press-fitting facing portion 52 of the holder member 50 in the first embodiment. Further, the height dimension is increased, and an overhang portion 254 is formed to protrude from the side surface of the press-fitting facing portion 252.

加振装置270は、質量体(可動マス)として構成されるマス部材271と、そのマス部材271とホルダ部材250の張出部254との間に介設され、張出部254に対してマス部材271を自由振動可能に弾性支持する弾性支持部材273とを備える。   The vibration device 270 is interposed between the mass member 271 configured as a mass body (movable mass) and the mass member 271 and the overhanging portion 254 of the holder member 250, and is connected to the overhanging portion 254 with respect to the mass. And an elastic support member 273 that elastically supports the member 271 so as to freely vibrate.

マス部材271は、直方体形状に形成され、発電素子210の他方の保持部材60(図3左側であって自由振動可能な自由端側)に対して所定間隔を隔てつつ対向配置される。即ち、マス部材271は、その下面(図3下側面)を他方の保持部材60の上面(図3上側面)に衝突可能な位置に配置される。   The mass member 271 is formed in a rectangular parallelepiped shape, and is disposed so as to face the other holding member 60 of the power generating element 210 (on the left side in FIG. 3, the free end side capable of free vibration) with a predetermined interval. That is, the mass member 271 is disposed at a position where the lower surface (lower side surface in FIG. 3) can collide with the upper surface (upper side surface in FIG. 3) of the other holding member 60.

弾性支持部材273は、鉄鋼材料からなるコイルスプリングとして形成され、マス部材271をホルダ部材250の張出部254の下面側に吊持する。弾性支持部材273が伸縮変形されることで、マス部材271がホルダ部材250の張出部254に対して上下方向(図3上下方向)に自由振動される。即ち、振動源SVからの振動の入力により加振装置270が共振されると、マス部材271が発電素子210の他方の保持部材60に周期的に衝突される。   The elastic support member 273 is formed as a coil spring made of a steel material, and suspends the mass member 271 on the lower surface side of the overhang portion 254 of the holder member 250. When the elastic support member 273 is expanded and contracted, the mass member 271 is freely vibrated in the vertical direction (the vertical direction in FIG. 3) with respect to the protruding portion 254 of the holder member 250. That is, when the vibration device 270 is resonated by the input of vibration from the vibration source SV, the mass member 271 periodically collides with the other holding member 60 of the power generation element 210.

このように、弾性支持部材273がコイルスプリングとして形成されることで、発電ユニット201の設置環境(振動源SVの振動の周波数)に応じて、コイルスプリングを交換して、弾性支持部材273のばね定数(即ち、加振装置270の共振周波数(第1周波数))を変更できるので、設置環境に応じた調整を容易に行うことができると共に、より効率的な発電が可能となる。   As described above, the elastic support member 273 is formed as a coil spring, so that the coil spring is replaced according to the installation environment (vibration frequency of the vibration source SV) of the power generation unit 201 and the spring of the elastic support member 273 is replaced. Since the constant (that is, the resonance frequency (first frequency) of the vibration exciter 270) can be changed, adjustment according to the installation environment can be easily performed, and more efficient power generation becomes possible.

なお、加振装置270及び発電素子210の共振周波数(第1周波数および第2周波数)は、第1実施形態の場合と同様に設定されるので、その説明は省略する。   In addition, since the resonant frequency (1st frequency and 2nd frequency) of the vibration exciting apparatus 270 and the electric power generation element 210 is set similarly to the case of 1st Embodiment, the description is abbreviate | omitted.

第2実施形態における発電ユニット201によれば、第1実施形態における発電ユニット1と同様に、発電素子210の共振周波数(第2周波数)を高い周波数に設定しておきつつ、振動源SVの振動により加振装置270を共振させ、マス部材271を発電素子210の他方(自由端側)の保持部材60に周期的に衝突させることで、発電素子210に自由振動を発生させ、発電素子210による発電を効率的に行わせることができる。   According to the power generation unit 201 in the second embodiment, as with the power generation unit 1 in the first embodiment, the vibration frequency of the vibration source SV is set while the resonance frequency (second frequency) of the power generation element 210 is set to a high frequency. By causing the vibration device 270 to resonate and causing the mass member 271 to periodically collide with the holding member 60 on the other (free end side) of the power generation element 210, free vibration is generated in the power generation element 210, and Power generation can be performed efficiently.

ここで、第1実施形態における発電ユニット1では、加振装置70がマス部材71、固定部材72及び弾性支持部材73を備えて構成されたが、第2実施形態における発電ユニット201の加振装置270は、マス部材271及び弾性支持部材273のみを備えて構成され、固定部材が省略される。   Here, in the power generation unit 1 according to the first embodiment, the vibration device 70 includes the mass member 71, the fixing member 72, and the elastic support member 73, but the vibration device of the power generation unit 201 according to the second embodiment. 270 includes only the mass member 271 and the elastic support member 273, and the fixing member is omitted.

言い換えると、加振装置270の「固定部材」に相当する張出部254が、発電素子210の保持部材260(具体的には、ホルダ部材250)と一体に形成される。これにより、これら加振装置270の固定部材と発電素子210の保持部材260とを別体とする場合と比較して、部品点数を削減できると共に組み立て工程を簡素化でき、その分、発電ユニット201全体としての製品コストの削減を図ることができる。   In other words, the overhang portion 254 corresponding to the “fixing member” of the vibrating device 270 is formed integrally with the holding member 260 (specifically, the holder member 250) of the power generation element 210. As a result, the number of parts can be reduced and the assembling process can be simplified as compared with the case where the fixing member of the vibration exciter 270 and the holding member 260 of the power generation element 210 are separated from each other. The product cost as a whole can be reduced.

次いで、図4を参照して、第3実施形態における発電ユニット301について説明する。第1実施形態では、弾性支持部材73が板ばねとして形成される場合を説明したが、第3実施形態における弾性支持部材373は、ゴム状弾性体として形成される。なお、上述した第1実施形態と同一の部分には同一の符号を付して、その説明は省略する。   Next, the power generation unit 301 in the third embodiment will be described with reference to FIG. Although the case where the elastic support member 73 is formed as a leaf spring has been described in the first embodiment, the elastic support member 373 in the third embodiment is formed as a rubber-like elastic body. In addition, the same code | symbol is attached | subjected to the part same as 1st Embodiment mentioned above, and the description is abbreviate | omitted.

図4は、第3実施形態における発電ユニット301の正面図である。なお、第3実施形態における発電素子310は、一方の保持部材360(ホルダ部材350)の構成が、第1実施形態における保持部材60(ホルダ部材50)と異なる点を除き、他の構成は第1実施形態における発電素子10と同一であるので、その説明は省略する。   FIG. 4 is a front view of the power generation unit 301 in the third embodiment. The power generating element 310 according to the third embodiment has the other configuration except that the configuration of one holding member 360 (holder member 350) is different from the holding member 60 (holder member 50) according to the first embodiment. Since it is the same as the electric power generation element 10 in 1 embodiment, the description is abbreviate | omitted.

図4に示すように、第3実施形態における発電ユニット301は、発電素子310と、加振装置370とを備える。発電素子310の一方の保持部材360は、第1棒11及び第2棒12の軸方向一端側に取着される固定部材40と、その固定部材40が圧入されるホルダ部材350とを備える。なお、ホルダ部材350は、非磁性材料(本実施形態では、アルミニウム合金)から構成される。   As shown in FIG. 4, the power generation unit 301 in the third embodiment includes a power generation element 310 and a vibration device 370. One holding member 360 of the power generation element 310 includes a fixing member 40 attached to one end side in the axial direction of the first rod 11 and the second rod 12, and a holder member 350 into which the fixing member 40 is press-fitted. The holder member 350 is made of a nonmagnetic material (in this embodiment, an aluminum alloy).

ホルダ部材350は、ベース部351及び被圧入対向部352が上方(図4上側)へ向けて延設されることで、第1実施形態におけるホルダ部材50のベース部51及び被圧入対向部52よりも高さ寸法が大きくされ、被圧入対向部352の側面からは、張出部354が張り出し形成される。   The holder member 350 has a base portion 351 and a press-fitting facing portion 352 extending upward (upper side in FIG. 4) so that the holder member 350 is more than the base portion 51 and the press-fitting facing portion 52 of the holder member 50 in the first embodiment. Further, the height dimension is increased, and an overhang portion 354 is formed so as to overhang from the side surface of the press-fitting facing portion 352.

加振装置370は、質量体(可動マス)として構成されるマス部材371と、そのマス部材371とホルダ部材350の張出部354との間に介設され、張出部354に対してマス部材371を自由振動可能に弾性支持する弾性支持部材373とを備える。   The vibration device 370 is interposed between a mass member 371 configured as a mass body (movable mass) and the mass member 371 and the overhanging portion 354 of the holder member 350. And an elastic support member 373 that elastically supports the member 371 so as to freely vibrate.

マス部材371は、立方体形状に形成され、発電素子310の他方の保持部材60(図4左側であって、自由振動可能な自由端側)に対して所定間隔を隔てつつ対向配置される。即ち、マス部材371は、その下面(図4下側面)を他方の保持部材60の上面(図3上側面)に衝突可能な位置に配置される。   The mass member 371 is formed in a cubic shape, and is disposed to face the other holding member 60 of the power generation element 310 (on the left side in FIG. 4, the free end side capable of free vibration) with a predetermined interval. That is, the mass member 371 is disposed at a position where the lower surface (lower side surface in FIG. 4) can collide with the upper surface (upper side surface in FIG. 3) of the other holding member 60.

弾性支持部材373は、断面円形のゴム状弾性体(加硫成形体)として形成され、マス部材371をホルダ部材250の張出部254の側端面(図4左側面)に支持する。弾性支持部材373が撓み変形されることで、マス部材371がホルダ部材350の張出部354に対して振り子振動(自由振動)される。即ち、振動源SVからの振動の入力により加振装置370が共振されると、マス部材371が発電素子310の他方の保持部材60に周期的に衝突される。   The elastic support member 373 is formed as a rubber-like elastic body (vulcanized molded body) having a circular cross section, and supports the mass member 371 on the side end surface (left side surface in FIG. 4) of the overhang portion 254 of the holder member 250. As the elastic support member 373 is bent and deformed, the mass member 371 is subjected to pendulum vibration (free vibration) with respect to the protruding portion 354 of the holder member 350. That is, when the vibration device 370 is resonated by the input of vibration from the vibration source SV, the mass member 371 periodically collides with the other holding member 60 of the power generation element 310.

マス部材371は、保持部材60(ホルダ部材50のベース部51)の端面よりも外方(弾性支持部材373と反対側、図4左側)に突出する位置に配置される。これにより、保持部材60の最端部(図4左端)にマス部材371を衝突させることができるので、発電素子310に自由振動を効率的に発生させることができる。   The mass member 371 is disposed at a position protruding outward (on the opposite side to the elastic support member 373, left side in FIG. 4) from the end surface of the holding member 60 (base portion 51 of the holder member 50). Thereby, since the mass member 371 can collide with the outermost end part (left end in FIG. 4) of the holding member 60, free vibration can be efficiently generated in the power generation element 310.

ここで、弾性支持部材373がゴム状弾性体として形成されることで、発電ユニット301の設置環境(振動源SVの振動の周波数)に応じて、ゴム硬度などを調整して、弾性支持部材373のばね定数(即ち、加振装置370の共振周波数(第1周波数))を変更できるので、設置環境に応じた調整を容易に行うことができると共に、より効率的な発電が可能となる。   Here, the elastic support member 373 is formed as a rubber-like elastic body, so that the rubber hardness and the like are adjusted according to the installation environment (vibration frequency of the vibration source SV) of the power generation unit 301, and the elastic support member 373. The spring constant (that is, the resonance frequency (first frequency) of the vibration exciter 370) can be changed, so that adjustment according to the installation environment can be easily performed and more efficient power generation is possible.

なお、加振装置370及び発電素子310の共振周波数(第1周波数および第2周波数)は、第1実施形態の場合と同様に設定されるので、その説明は省略する。   Note that the resonance frequencies (first frequency and second frequency) of the vibration generator 370 and the power generating element 310 are set in the same manner as in the first embodiment, and thus description thereof is omitted.

第3実施形態における発電ユニット301によれば、第1実施形態における発電ユニット1と同様に、発電素子310の共振周波数(第2周波数)を高い周波数に設定しておきつつ、振動源SVの振動により加振装置370を共振させ、マス部材371を発電素子310の他方(自由端側)の保持部材60に周期的に衝突させることで、発電素子310に自由振動を発生させ、発電素子310による発電を効率的に行わせることができる。   According to the power generation unit 301 in the third embodiment, similarly to the power generation unit 1 in the first embodiment, the vibration frequency of the vibration source SV is set while the resonance frequency (second frequency) of the power generation element 310 is set to a high frequency. The vibration device 370 is caused to resonate, and the mass member 371 is periodically collided with the holding member 60 on the other (free end side) of the power generation element 310, thereby generating free vibration in the power generation element 310. Power generation can be performed efficiently.

また、発電ユニット301によれば、第2実施形態の場合と同様に、加振装置370の「固定部材」に相当する張出部354が、発電素子310の保持部材360(具体的には、ホルダ部材350)と一体に形成される。これにより、これら加振装置370の固定部材40と発電素子310の保持部材360とを別体とする場合と比較して、部品点数を削減できると共に組み立て工程を簡素化でき、その分、発電ユニット301全体としての製品コストの削減を図ることができる。   Further, according to the power generation unit 301, as in the case of the second embodiment, the overhanging portion 354 corresponding to the “fixing member” of the vibration generator 370 is provided with the holding member 360 (specifically, It is integrally formed with the holder member 350). As a result, the number of components can be reduced and the assembly process can be simplified, compared with the case where the fixing member 40 of the vibration exciting device 370 and the holding member 360 of the power generation element 310 are separated, and the power generation unit accordingly. 301 can reduce the product cost as a whole.

以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。   As described above, the present invention has been described based on the embodiments, but the present invention is not limited to the above-described embodiments, and various improvements and modifications can be easily made without departing from the spirit of the present invention. It can be guessed.

上記各実施形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。   The numerical values given in the above embodiments are examples, and other numerical values can naturally be adopted.

上記各実施形態では、保持部材60,260,360が固定部材40とホルダ部材50,250,350との2部材から構成される場合を説明したが、必ずしもこれに限られるものではなく、固定部材40とホルダ部材50,250,350とを一体に形成しても良い。なお、この場合には、圧入による第1棒11等の挟圧保持作用を得られないため、第1棒11等の保持部材60,260,360への固着を、接着剤による接着固定で行う。   In each of the above-described embodiments, the case where the holding members 60, 260, and 360 are configured by two members, that is, the fixing member 40 and the holder members 50, 250, and 350 has been described. 40 and the holder members 50, 250, and 350 may be integrally formed. In this case, since the holding action of the first rod 11 and the like by press fitting cannot be obtained, the first rod 11 and the like are fixed to the holding members 60, 260, and 360 by adhesive fixing with an adhesive. .

上記各実施形態では、第1棒11のみにコイル20を巻回する場合を説明したが、必ずしもこれに限られるのもではなく、第1棒11と第2棒12との両者にそれぞれコイル20を巻回しても良い。なお、この場合には、第1棒11及び第2棒12を同じ磁歪材料から構成する(即ち、第2棒12を第1棒11よりも磁歪効果の低い材料で構成する必要はない)。   In each of the above-described embodiments, the case where the coil 20 is wound only on the first rod 11 has been described. However, the present invention is not necessarily limited thereto, and the coil 20 is provided on both the first rod 11 and the second rod 12. May be wound. In this case, the first rod 11 and the second rod 12 are made of the same magnetostrictive material (that is, the second rod 12 need not be made of a material having a lower magnetostriction effect than the first rod 11).

上記各実施形態では、発電ユニット1,201,301を構成する発電素子として、発電素子10,210,310を採用する場合を説明したが、必ずしもこれに限られるものではなく、「磁歪材料から構成される磁歪棒と、その磁歪棒に巻回されるコイルとを備え、磁歪棒の軸方向一端側が振動源側に固定される固定端とされると共に軸方向他端側が自由振動可能な自由端とされ、磁歪棒が軸方向に伸張または収縮されることで、逆磁歪効果により発電を行うもの」であれば、他の発電素子を採用しても良い。他の発電素子としては、例えば、図5に示す発電素子901が例示される。   In each of the above-described embodiments, the case where the power generation elements 10, 210, 310 are employed as the power generation elements constituting the power generation units 1, 201, 301 has been described. However, the present invention is not necessarily limited to this. A magnetostrictive rod and a coil wound around the magnetostrictive rod, and one end in the axial direction of the magnetostrictive rod is a fixed end fixed to the vibration source side, and the other end in the axial direction is a free end capable of free vibration If the magnetostrictive rod is expanded or contracted in the axial direction to generate power by the inverse magnetostrictive effect, other power generating elements may be employed. As another power generation element, for example, a power generation element 901 shown in FIG. 5 is exemplified.

上記第1実施形態では、加振装置70のマス部材71、固定部材72及び弾性支持部材73が一体に形成される場合を説明したが、必ずしもこれに限られるのもではなく、これらマス部材71、固定部材72及び弾性支持部材73を別体に形成しても良い。これにより、発電ユニット1の設置環境(振動源SVの振動の周波数)に応じて、マス部材71及び弾性支持部材73を変更して、加振装置70の共振周波数(第1周波数)を変更できるので、設置環境に応じた調整を容易に行うことができると共に、より効率的な発電が可能となる。   In the first embodiment, the case where the mass member 71, the fixing member 72, and the elastic support member 73 of the vibration device 70 are integrally formed has been described. However, the present invention is not necessarily limited thereto, and these mass members 71 are not necessarily limited thereto. The fixing member 72 and the elastic support member 73 may be formed separately. Accordingly, the mass member 71 and the elastic support member 73 can be changed according to the installation environment of the power generation unit 1 (vibration frequency of the vibration source SV), and the resonance frequency (first frequency) of the vibration excitation device 70 can be changed. Therefore, adjustment according to the installation environment can be easily performed, and more efficient power generation becomes possible.

上記各実施形態では、マス部材71,271,371が保持部材60(ホルダ部材50)に直接衝突する場合を説明したが、必ずしもこれに限られるものではなく、これら両者の間にゴムシートなどの緩衝材を介在させても良い。これにより、異音の防止と耐久性の向上とを図ることができる。   In each of the above-described embodiments, the case where the mass members 71, 271 and 371 directly collide with the holding member 60 (holder member 50) has been described. However, the present invention is not limited to this, and a rubber sheet or the like is not necessarily provided between them. A cushioning material may be interposed. Thereby, it is possible to prevent abnormal noise and improve durability.

上記各実施の形態では、加振装置70,270,370が1のマス部材71,271,371を備える場合を説明したが、必ずしもこれに限られるものではなく、加振装置70,270,370が複数のマス部材71,271,371を備えていても良い。この場合には、各マス部材71,271,371が個別に自由振動可能となるように、複数の弾性支持部材73,273,373により弾性支持すると共に、これら複数の弾性支持部材73,273,373をそれぞれ異なるばね定数に設定する(これに代えて、或いは、これに加えて、各マス部材71,271,371の質量をそれぞれ異ならせる)。これにより、振動源SVの振動の周波数が変化しても、複数のマス部材71,271,371の内のいずれかのマス部材71,271,371を発電素子10,210,310の保持部材60に衝突させて、発電素子10,210,310に自由振動を発生させることができる。よって、加振装置70,270,370の共振を利用して、発電素子10,210,310による発電を行える周波数帯域を拡大できる。   In each of the above-described embodiments, the case where the vibration devices 70, 270, and 370 include one mass member 71, 271 and 371 has been described. However, the present invention is not necessarily limited thereto, and the vibration devices 70, 270, and 370 are not necessarily limited thereto. May be provided with a plurality of mass members 71, 271, 371. In this case, the mass members 71, 271, 371 are elastically supported by a plurality of elastic support members 73, 273, 373 so that the mass members 71, 271, 371 can freely vibrate individually. 373 is set to a different spring constant (instead of or in addition to this, the mass of each mass member 71, 271 and 371 is set differently). As a result, even if the vibration frequency of the vibration source SV changes, any one of the mass members 71 271 371 among the plurality of mass members 71 271 371 can be held by the holding member 60 of the power generating elements 10, 210 310. And free vibration can be generated in the power generation elements 10, 210, 310. Therefore, the frequency band in which the power generation by the power generation elements 10, 210, 310 can be expanded using the resonance of the vibration devices 70, 270, 370.

上記第1実施の形態では、発電素子10と加振装置70とが連結(締結固定)されて、発電ユニット1が構成される場合を説明したが、必ずしもこれに限られるものではなく、発電ユニット1は、発電素子10と加振装置70とが非連結であっても良い。即ち、発電素子10の一方の保持部材60と加振装置70の固定部材72とをそれぞれ個別に振動源SVに固定しても良い。   In the first embodiment, the case where the power generation element 10 and the vibration generator 70 are connected (fastened and fixed) to configure the power generation unit 1 has been described. However, the present invention is not necessarily limited thereto, and the power generation unit is not necessarily limited thereto. 1, the power generation element 10 and the vibration device 70 may be disconnected. That is, one holding member 60 of the power generation element 10 and the fixing member 72 of the vibration device 70 may be individually fixed to the vibration source SV.

上記各実施形態では、ホルダ部材50,250,350の被圧入対向部53の下面が振動源SVに固定される場合を説明したが、必ずしもこれに限られるものではなく、ホルダ部材50,250,350のいずれの部分が振動源SVに固定されても良い。また、固定方法も適宜選択することができる。例えば、接着固定、溶接固定、締結固定などが例示される。   In each of the above embodiments, the case where the lower surface of the press-fitting facing portion 53 of the holder member 50, 250, 350 is fixed to the vibration source SV has been described, but the present invention is not necessarily limited thereto, and the holder member 50, 250, Any part of 350 may be fixed to the vibration source SV. Also, the fixing method can be appropriately selected. For example, adhesion fixation, welding fixation, fastening fixation, etc. are illustrated.

1,201,301 発電ユニット
10,210,310 発電素子
11 第1棒(磁歪棒)
12 第2棒(磁歪棒)
20 コイル
31,32 永久磁石
40 固定部材(保持部材の一部)
50,250,350 ホルダ部材(保持部材の一部)
60,260,360 保持部材
70,270,370 加振装置
71,271,371 マス部材
72 固定部材
73,273,373 弾性支持部材
SV 振動源
1, 201, 301 Power generation unit 10, 210, 310 Power generation element 11 First rod (magnetostrictive rod)
12 Second rod (magnetostrictive rod)
20 Coils 31, 32 Permanent magnet 40 Fixed member (part of holding member)
50, 250, 350 Holder member (part of the holding member)
60, 260, 360 Holding members 70, 270, 370 Excitation devices 71, 271, 371 Mass members 72 Fixing members 73, 273, 373 Elastic support members SV Vibration source

Claims (4)

発電素子と、加振装置と、を備え、装着された振動源の振動を利用して発電を行う発電ユニットであって、
前記発電素子は、
磁歪材料から構成される磁歪棒と、
その磁歪棒に巻回されるコイルと、を備え、
前記磁歪棒の軸方向一端側が振動源側に固定される固定端とされると共に軸方向他端側が自由振動可能な自由端とされ、前記磁歪棒が軸方向に伸張または収縮されることで、逆磁歪効果により発電を行い、
前記加振装置は、
質量体として構成されると共に前記発電素子の磁歪棒の他端側に所定間隔を隔てつつ対向配置されるマス部材と、
前記振動源側に固定される固定部材と、
前記固定部材およびマス部材の間に介設され、前記固定部材に対して前記マス部材を自由振動可能に弾性支持する弾性支持部材と、を備え、
前記加振装置の共振周波数である第1周波数が、前記発電素子の共振周波数である第2周波数よりも低くされると共に、前記振動源から前記第1周波数の振動が入力され、前記加振装置が共振されると、前記マス部材が前記発電素子の磁歪棒の他端側に周期的に衝突されることを特徴とする発電ユニット。
A power generation unit that includes a power generation element and a vibration generator, and generates power using vibrations of a mounted vibration source,
The power generating element is:
A magnetostrictive rod composed of a magnetostrictive material;
A coil wound around the magnetostrictive rod,
One end side in the axial direction of the magnetostrictive rod is a fixed end fixed to the vibration source side and the other end side in the axial direction is a free end capable of free vibration, and the magnetostrictive rod is expanded or contracted in the axial direction. Power is generated by the inverse magnetostrictive effect,
The vibration exciter is
A mass member that is configured as a mass body and is disposed opposite to the other end side of the magnetostrictive rod of the power generating element with a predetermined interval therebetween;
A fixing member fixed to the vibration source side;
An elastic support member interposed between the fixing member and the mass member and elastically supporting the mass member so as to freely vibrate with respect to the fixing member;
A first frequency, which is a resonance frequency of the vibration device, is set lower than a second frequency, which is a resonance frequency of the power generation element, and vibration of the first frequency is input from the vibration source, and the vibration device is When resonating, the mass member periodically collides with the other end of the magnetostrictive rod of the power generating element.
前記磁歪棒は、磁歪材料から構成され軸方向一端側が振動源側に固定される固定端とされると共に軸方向他端側が自由振動可能な自由端とされる第1棒および第2棒を備え、
前記コイルは、前記第1棒または第2棒の内の少なくとも一方に巻回され、
前記発電素子は、
前記第1棒および第2棒の軸方向一端側および他端側においてこれら第1棒および第2棒の対向間に挟装されると共に互いに磁極を違えて配設される一対の永久磁石と、
前記第1棒および第2棒の軸方向一端側および他端側にそれぞれ取着され前記第1棒および第2棒の対向間に前記永久磁石が挟装された状態を保持する一対の保持部材と、を備えることを特徴する請求項1記載の発電ユニット。
The magnetostrictive rod includes a first rod and a second rod which are made of a magnetostrictive material and have one axial end as a fixed end fixed to the vibration source side and the other axial end as a free end capable of free vibration. ,
The coil is wound around at least one of the first rod or the second rod;
The power generating element is:
A pair of permanent magnets that are sandwiched between the opposing ends of the first rod and the second rod on the one end side and the other end side in the axial direction of the first rod and the second rod, and arranged with different magnetic poles;
A pair of holding members that are attached to one end side and the other end side in the axial direction of the first bar and the second bar, respectively, and hold the state in which the permanent magnet is sandwiched between the first bar and the second bar. The power generation unit according to claim 1, further comprising:
前記第2棒が前記第1棒よりも磁歪効果の低い磁歪材料から構成されると共に、前記第1棒のみに前記コイルが巻回されることを特徴とする請求項2記載の発電ユニット。   The power generation unit according to claim 2, wherein the second rod is made of a magnetostrictive material having a lower magnetostrictive effect than the first rod, and the coil is wound only on the first rod. 前記加振装置の固定部材が、前記発電素子の保持部材と一体に形成されることを特徴とする請求項2又は3に記載の発電ユニット。   The power generation unit according to claim 2 or 3, wherein a fixing member of the vibration exciter is formed integrally with a holding member of the power generation element.
JP2012229929A 2012-10-17 2012-10-17 Power generation unit Expired - Fee Related JP5936514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012229929A JP5936514B2 (en) 2012-10-17 2012-10-17 Power generation unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012229929A JP5936514B2 (en) 2012-10-17 2012-10-17 Power generation unit

Publications (2)

Publication Number Publication Date
JP2014082879A JP2014082879A (en) 2014-05-08
JP5936514B2 true JP5936514B2 (en) 2016-06-22

Family

ID=50786605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012229929A Expired - Fee Related JP5936514B2 (en) 2012-10-17 2012-10-17 Power generation unit

Country Status (1)

Country Link
JP (1) JP5936514B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075724B (en) * 2016-04-19 2020-03-03 国立大学法人金泽大学 Power generating element, method for manufacturing power generating element, and actuator
JP7068680B2 (en) * 2017-01-11 2022-05-17 株式会社M.T.C Power generator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090322184A1 (en) * 2005-09-23 2009-12-31 Gregory P Carman Energy Harvesting Using Frequency Rectification
JP4905820B2 (en) * 2010-06-18 2012-03-28 国立大学法人金沢大学 Power generation element and power generation device including power generation element
JP2012054430A (en) * 2010-09-01 2012-03-15 Kanazawa Univ Bone oscillation device
JP5867700B2 (en) * 2011-12-02 2016-02-24 国立大学法人金沢大学 Power generator

Also Published As

Publication number Publication date
JP2014082879A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
KR101944654B1 (en) Linear vibration motor
KR101084800B1 (en) Linear Vibration Motor
KR20110120242A (en) Apparatus for generating vibration
JP6803722B2 (en) Linear vibration motor
JP2019201486A (en) Linear vibration motor and electronic equipment
JP2011217431A (en) Vibration generator using blade spring and blade spring for vibration generators
JP6331677B2 (en) Vibration power generator
US20170126109A1 (en) Vibration motor
TW201512493A (en) Noise reducing or vibration damping device and a structural member provided with such device
JP5798653B2 (en) Vibration generator
CN112689945A (en) Power generating element and actuator
JP5936514B2 (en) Power generation unit
JP6971714B2 (en) Linear vibration motors and electronic devices
KR20170023384A (en) Broadband electromagnetic vibration energy harvester
JP2005537898A (en) Small electric appliance with drive mechanism for generating oscillating motion
JP5943423B2 (en) Power generator
JP5890721B2 (en) Power generation element
JP2016077037A (en) Power generation device, and design method for power generation device
JP2015180126A (en) Power generator and tire
JP2015029377A (en) Vibration power generator utilizing magnetostrictor
JP2013208027A (en) Power generation element
JP2017022958A (en) Vibration power generation device
RU2356645C2 (en) Electromagnetic vibration exciter
JP6136758B2 (en) Power generation device
JP6068187B2 (en) Power generation element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160510

R150 Certificate of patent or registration of utility model

Ref document number: 5936514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees