JP6169926B2 - Water-absorbing resin with excellent water-absorbing resin pulverization method and salt resistance - Google Patents

Water-absorbing resin with excellent water-absorbing resin pulverization method and salt resistance Download PDF

Info

Publication number
JP6169926B2
JP6169926B2 JP2013180125A JP2013180125A JP6169926B2 JP 6169926 B2 JP6169926 B2 JP 6169926B2 JP 2013180125 A JP2013180125 A JP 2013180125A JP 2013180125 A JP2013180125 A JP 2013180125A JP 6169926 B2 JP6169926 B2 JP 6169926B2
Authority
JP
Japan
Prior art keywords
water
pulverization
absorbent resin
particle size
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013180125A
Other languages
Japanese (ja)
Other versions
JP2015048386A (en
Inventor
松本 誠
誠 松本
加藤 誠司
誠司 加藤
邦彦 石▲崎▼
邦彦 石▲崎▼
博之 池内
博之 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2013180125A priority Critical patent/JP6169926B2/en
Publication of JP2015048386A publication Critical patent/JP2015048386A/en
Application granted granted Critical
Publication of JP6169926B2 publication Critical patent/JP6169926B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)

Description

本発明は、吸水性樹脂の微粉砕方法及び耐塩性に優れた吸水性樹脂に関する。   The present invention relates to a method for finely pulverizing a water absorbent resin and a water absorbent resin excellent in salt resistance.

近年、吸水性樹脂は、紙おむつ等の衛生材料のみならず、止水材、結露防止材、更に鮮度保持材、溶剤脱水剤等の産業用途、緑化用途、農園芸用途等にも実用化されつつある。さらにゴムに吸水剤を配合し水膨潤性ゴムを調製し、これを止水材として使用する技術も提案されている。   In recent years, water-absorbing resins have been put into practical use not only for sanitary materials such as paper diapers, but also for water-stopping materials, anti-condensation materials, freshness-retaining materials, solvent dehydrating agents, etc. is there. Further, a technique has been proposed in which a water-swelling rubber is prepared by blending a rubber with a water-absorbing agent and this is used as a water-stopping material.

特許文献1及び特許文献2では、セメント水、塩化カルシウム水に対する高い吸水性、吸水ゲルのゲル形態保持性及びゲル強度を有し、ゴムやプラスチック、セメント等の混練された際に、優れた吸水機能を発揮する吸水剤として、特定の中和率を有するスルホン酸基含有アクリルアミド単量体とアクリルアミド系単量体と中和されていない(メタ)アクリル酸単量体とを架橋剤の存在下で共重合させた高分子架橋共重合体粒子からなる吸水剤が開示されている。   In patent document 1 and patent document 2, it has high water absorption with respect to cement water and calcium chloride water, has a gel shape retention property and gel strength of water-absorbing gel, and has excellent water absorption when kneaded rubber, plastic, cement and the like. As a water-absorbing agent that exhibits its function, a sulfonic acid group-containing acrylamide monomer having a specific neutralization rate, an acrylamide monomer, and an unneutralized (meth) acrylic acid monomer in the presence of a crosslinking agent A water-absorbing agent comprising polymer cross-linked copolymer particles copolymerized with is disclosed.

また、特許文献3及び特許文献4では、電解質を多量に含む水(例えば、海水や塩水)に対して高い吸収能を持つ吸水剤として、2−アクリルアミド−2−メチルプロパンスルホン酸並びにそのアルカリ金属塩及びアンモニウム塩よりなる群の中から選ばれた少なくとも1種の単量体と、アクリル酸及びそのアルカリ金属塩及びアンモニウム塩、メタクリル酸及びそのアルカリ金属塩及びアンモニウム塩、アクリルアミド並びにビニルピロリドンよりなる群の中から選ばれた少なくとも1種の単量体と、及び少なくとも2個の官能基を有する架橋剤とからなる吸水剤が開示されている。さらに特許文献4では、該吸水性樹脂と熱可塑性樹脂及び/又はゴムからなる基材に分散せしめてなる耐塩性水膨潤材が開示されている。   In Patent Document 3 and Patent Document 4, 2-acrylamido-2-methylpropanesulfonic acid and its alkali metal are used as a water-absorbing agent having a high absorption capacity for water containing a large amount of electrolyte (for example, seawater or salt water). And at least one monomer selected from the group consisting of salts and ammonium salts, and acrylic acid and its alkali metal salts and ammonium salts, methacrylic acid and its alkali metal salts and ammonium salts, acrylamide and vinylpyrrolidone A water absorbing agent comprising at least one monomer selected from the group and a crosslinking agent having at least two functional groups is disclosed. Furthermore, Patent Document 4 discloses a salt-resistant water-swelling material that is dispersed in a base material made of the water-absorbing resin, a thermoplastic resin, and / or rubber.

特許文献5〜7では、水膨潤性のエマルションが開示されている。   Patent Documents 5 to 7 disclose water-swellable emulsions.

特許文献8では、吸水性樹脂の微粉末(例えば150μm通過物)はおむつなどの衛生材料で不適あるため、吸水性樹脂の製造工程で低減、除去ないしリサイクルされることが開示されている。   Patent Document 8 discloses that water-absorbent resin fine powder (for example, 150 μm passing material) is unsuitable for sanitary materials such as diapers and is therefore reduced, removed, or recycled in the water-absorbent resin manufacturing process.

特許文献9及び特許文献10では、衛生材料用途では不適当とされている吸水性樹脂の微粉末(300μm以下)を、ネコ砂、建築材料などで用いることが開示されている。   Patent Document 9 and Patent Document 10 disclose the use of fine powder (300 μm or less) of a water-absorbent resin, which is inappropriate for sanitary material applications, for cat sand, building materials, and the like.

特許文献12,13では吸水性樹脂の粉砕方法が開示されている。   Patent Documents 12 and 13 disclose a method of pulverizing a water absorbent resin.

しかし、水膨潤性ゴムにおける分散性や、海水などの高濃度の金属イオン存在下での吸水性能等、未だ改良の余地がある。   However, there is still room for improvement such as dispersibility in water-swellable rubber and water absorption performance in the presence of high-concentration metal ions such as seawater.

特開2007−009108号公報JP 2007-009108 A 特公2006−233061号Japanese Patent Publication No. 2006-233061 特開平03−176065号公報Japanese Patent Laid-Open No. 03-176065 特開平 03−157455号JP 03-157455 A 特表2011−506703号Special table 2011-506703 特開2000−234003号JP 2000-234003 特開平09 −140826号JP 09-140826 A 特表2009−522389号Special table 2009-522389 特開2004− 2145号Japanese Patent Application Laid-Open No. 2004-2145 特表2005−501960号Special table 2005-501960 国際公開第2009/059956号パンフレットInternational Publication No. 2009/059956 Pamphlet 国際公開第2011/034146号パンフレットInternational Publication No. 2011/034146 Pamphlet 国際公開第2011/034147号パンフレットInternational Publication No. 2011/034147 Pamphlet

水膨潤性ゴムにおける分散性や、海水などの高濃度の金属イオン存在下での吸水性能等を改善するため、均一な微小粒径の吸水剤の製造方法及び耐塩性に優れた吸水剤提供することを目的とする。 To improve water dispersibility in water-swellable rubber and water absorption performance in the presence of high-concentration metal ions such as seawater, provide a method for producing a water-absorbing agent with a uniform fine particle size and a water-absorbing agent with excellent salt resistance The purpose is to do.

前記課題を解決するために、本発明者らが鋭意検討した結果、特定の粉砕手段を用いると吸水性能を損なわずに均一な微小粒径に粉砕された吸水剤が得られ、吸水倍率(FGA)及び吸水速度が向上すること、更に特定の組成であると耐塩性が著しく向上することを見出し、本発明を完成した。   As a result of intensive studies by the present inventors in order to solve the above-mentioned problems, when a specific pulverizing means is used, a water-absorbing agent pulverized into a uniform fine particle size without impairing the water-absorbing performance can be obtained. ) And the water absorption rate, and the salt resistance was remarkably improved with a specific composition, and the present invention was completed.

すなわち、乾式粉砕機を用いて吸水性樹脂を粉砕する方法であって、少なくとも2種の形式の異なる衝撃式粉砕機を用いる吸水性樹脂の粉砕方法であり、該粉砕方法を有する吸水性樹脂の製造方法である。   That is, a method of pulverizing a water absorbent resin using a dry pulverizer, wherein the water absorbent resin is pulverized using at least two types of different impact pulverizers. It is a manufacturing method.

また、従来は評価が困難であった体積平均粒子径が150μm以下の微小な吸水性樹脂粉末の吸水性能を測定するために、無機化合物粉末を混合した、測定用混合サンプルを用いる測定方法も同時に見出した。   Moreover, in order to measure the water absorption performance of a fine water absorbent resin powder having a volume average particle diameter of 150 μm or less, which has been difficult to evaluate in the past, a measurement method using a measurement mixed sample mixed with an inorganic compound powder is also used. I found it.

本発明の粉砕方法は、吸水性能を損なわず、更に特定の組成の吸水剤であれば、耐塩性が著しく向上する。   The pulverization method of the present invention does not impair the water absorption performance, and the salt resistance is remarkably improved if the water absorption agent has a specific composition.

〔1〕用語の定義
(a)「吸水性樹脂」
本明細書において、「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を意味し、以下の物性を有するものをいう。すなわち、無加圧下吸水倍率(CRC)が、必須に5g/g以上、好ましくは10〜100g/g、さらに好ましくは20〜80g/gであり、また、水可溶分(Extractables)が、必須に0〜50重量%、好ましくは0〜30重量%、さらに好ましくは0〜20重量%、特に好ましくは0〜10重量%である高分子ゲル化剤をいう。
[1] Definition of terms (a) "Water absorbent resin"
In the present specification, the “water-absorbing resin” means a water-swellable, water-insoluble polymer gelling agent, and has the following physical properties. That is, the water absorption capacity (CRC) under no pressure is essentially 5 g / g or more, preferably 10 to 100 g / g, more preferably 20 to 80 g / g, and water-soluble components (Extractables) are essential. 0 to 50% by weight, preferably 0 to 30% by weight, more preferably 0 to 20% by weight, and particularly preferably 0 to 10% by weight.

なお、吸水性樹脂とは全量(100%)が重合体に限定されず、上記性能を維持する範囲において添加剤(後述など)を含んでいてもよい。すなわち、吸水性樹脂及び添加剤を含む吸水性樹脂組成物であっても、本発明では吸水性樹脂と総称する。吸水性樹脂が吸水性樹脂組成物である場合の、吸水性樹脂の含有量は、全体に対して、好ましくは70〜99重量%であり、より好ましくは80〜99重量%であり、さらに好ましくは90〜99重量%である。吸水性樹脂以外のその他の成分としては、吸水速度や粉末(粒子)の耐衝撃性の観点から水が好ましく、必要により後述の添加剤が含まれる。   The total amount (100%) of the water-absorbent resin is not limited to the polymer, and may contain additives (described later) within the range that maintains the above performance. That is, even a water absorbent resin composition containing a water absorbent resin and an additive is generically referred to as a water absorbent resin in the present invention. When the water absorbent resin is a water absorbent resin composition, the content of the water absorbent resin is preferably 70 to 99% by weight, more preferably 80 to 99% by weight, and still more preferably. Is 90 to 99% by weight. As other components other than the water absorbent resin, water is preferable from the viewpoint of water absorption speed and impact resistance of the powder (particles), and if necessary, additives described later are included.

また、本発明に用いられる吸水性樹脂としては、好ましくは、ポリカルボン酸系吸水性樹脂又はポリスルホン酸系吸水性樹脂であり、さらには下記の吸水性樹脂A又は吸水性樹脂B、あるいは吸水性樹脂Aと吸水性樹脂Bとを含む吸水性樹脂であるとより好ましい。   The water-absorbing resin used in the present invention is preferably a polycarboxylic acid-based water-absorbing resin or a polysulfonic acid-based water-absorbing resin, and further, the following water-absorbing resin A or water-absorbing resin B, or water-absorbing resin It is more preferable that it is a water absorbent resin containing the resin A and the water absorbent resin B.

(a−1)吸水性樹脂A
中和率50モル%以上のポリアクリル酸(塩)系架橋重合体(ただしアクリル酸以外の繰り返し単位は全体の0〜50モル%さらには下記範囲)が80質量%以上含まれている吸水性樹脂。
(A-1) Water absorbent resin A
Water-absorbing property containing a polyacrylic acid (salt) -based crosslinked polymer having a neutralization rate of 50 mol% or more (however, the repeating unit other than acrylic acid is 0 to 50 mol% of the whole, and further the following range). resin.

(a−2)吸水性樹脂
スルホン酸基含有単量体(特にスルホン酸基含有単量体アクリルアミド単量体)及びその塩を20〜90mol%、アクリル酸、アクリル酸塩のいずれか1種以上を80〜10mol%含むモノマー(その他単量体は全単量体中0〜50モル%)を共重合して得られる架橋重合体が80質量%以上含まれている吸水性樹脂
(b)「EDANA」及び「ERT」
「EDANA」は、European Disposables and Nonwovens Associationsの略称であり、「ERT」は、欧州標準(ほぼ世界標準)の吸水性樹脂の測定法(ERT/EDANA Recomeded Test Method)の略称である。本明細書においては、特に断りのない限り、ERT原本(公知文献:2002年改定)に基づいて、吸水性樹脂の物性を測定する。
(A-2) Water absorbent resin B
Monomer containing 20 to 90 mol% of a sulfonic acid group-containing monomer (particularly a sulfonic acid group-containing monomer acrylamide monomer) and a salt thereof, and 80 to 10 mol% of any one or more of acrylic acid and acrylate ( (B) “EDANA” and “ERT” (b) “EDANA” and “ERT” containing 80% by mass or more of a cross-linked polymer obtained by copolymerizing other monomers (0 to 50 mol% in all monomers)
“EDANA” is an abbreviation for European Disposables and Nonwovens Associations, and “ERT” is an abbreviation for a method for measuring water-absorbent resin (ERT / EDANA Recommended Test Method) of European standards (almost world standards). In this specification, unless otherwise specified, the physical properties of the water-absorbent resin are measured based on the ERT original (known document: revised in 2002).

(c)微小粒度吸収倍率(FGA)
本発明の微小粒度吸収倍率は、EDANA法(ERT442.2−02(2002))に準拠し、以下(c−1)に一部測定方法を変更して測定した。
(C) Fine particle size absorption ratio (FGA)
The fine particle size absorptivity of the present invention was measured in accordance with the EDANA method (ERT442.2-02 (2002)), with the measurement method partially changed to (c-1) below.

(c−1)人工海水吸収倍率(ASW−FSC;無加圧吸収倍率)
本発明の吸水性樹脂の人工海水吸水倍率(Artifical Sea Water Free Swell Capacity、ASW−FSCと称することがある)は、人工海水を用いた微小粒度吸収倍率である。尚、人工海水は下記組成である。
(C-1) Artificial seawater absorption rate (ASW-FSC; non-pressure absorption rate)
The artificial seawater absorption capacity (sometimes referred to as Artificial Sea Water Free Swell Capacity, ASW-FSC) of the water-absorbent resin of the present invention is a fine particle size absorption capacity using artificial seawater. Artificial seawater has the following composition.

<人工海水組成>
イオン交換水1kgに対する、添加試薬及び各添加量は下記の通りである。
<Artificial seawater composition>
The added reagent and each added amount with respect to 1 kg of ion-exchanged water are as follows.

MgCl・6HO:9.474(g)
CaCl・2HO:1.326(g)
NaSO :3.505(g)
KCl :0.597(g)
NaCl :20.747(g)
(d)人工海水吸収速度(ASW−Vortex)
本発明の吸水性樹脂の吸収速度(Artifical Sea Water Vortex Time、ASW−Vortexと称することがある)は、JIS法(JIS K 7224「高吸水性樹脂の吸水速度試験方法」)に準拠して測定した。なお、本発明においては測定溶液を上記組成の人工海水に変更して測定した。
MgCl 2 · 6H 2 O: 9.474 (g)
CaCl 2 · 2H 2 O: 1.326 (g)
Na 2 SO 4 : 3.505 (g)
KCl: 0.597 (g)
NaCl: 20.747 (g)
(D) Artificial seawater absorption rate (ASW-Vortex)
The absorption rate of the water-absorbent resin of the present invention (Artificial Sea Water Vortex Time, sometimes referred to as ASW-Vortex) is measured according to the JIS method (JIS K 7224 “Test method for water absorption rate of superabsorbent resin”). did. In the present invention, the measurement solution was changed to artificial seawater having the above composition.

(e)含水率
本発明の吸水性樹脂の含水率は、EDANA法(ERT430.2−02)に準拠して測定した。なお、本発明においては、乾燥温度を180℃に変更して測定した。
(E) Water content The water content of the water-absorbent resin of the present invention was measured according to the EDANA method (ERT430.2-02). In the present invention, the drying temperature was changed to 180 ° C. for measurement.

(f)粒度
本発明の吸水性樹脂の粒度は光散乱粒度測定装置(HORIBA社製 LA−920)により測定した。
(F) Particle size The particle size of the water-absorbent resin of the present invention was measured with a light scattering particle size measuring device (LA-920, manufactured by HORIBA).

(g)「吸水剤」
本明細書において、「吸水剤」とは、吸水性樹脂を主成分とする水性液のゲル化剤を意味する。なお、該水性液としては、水に限らず、尿、血液、糞、廃液、湿気や蒸気、氷、水と有機溶媒及び/又は無機溶媒との混合物、雨水、地下水、海水等であってもよく、水を含めば特に制限されるものではない。これらの中でも、海水や塩、特に2価の塩を含有する地下水がより好ましい。本発明に係る吸水性樹脂の含有量は、吸水材の重量全体に対して、好ましくは70〜99重量%であり、より好ましくは80〜99重量%であり、更に好ましくは90〜99重量%である。吸水性樹脂以外のその他の成分としては、吸水速度や粉末(粒子)の耐衝撃性の観点から、水が好ましく、必要により後述の添加剤が含まれる。
(G) "Water absorbent"
In the present specification, the “water-absorbing agent” means an aqueous liquid gelling agent mainly composed of a water-absorbing resin. The aqueous liquid is not limited to water, but may be urine, blood, feces, waste liquid, moisture or steam, ice, a mixture of water and an organic solvent and / or an inorganic solvent, rainwater, groundwater, seawater, etc. Well, it is not particularly limited if water is included. Among these, seawater and salt, especially groundwater containing a divalent salt are more preferable. The content of the water-absorbing resin according to the present invention is preferably 70 to 99% by weight, more preferably 80 to 99% by weight, still more preferably 90 to 99% by weight, based on the entire weight of the water-absorbing material. It is. As other components other than the water absorbent resin, water is preferable from the viewpoint of water absorption speed and impact resistance of the powder (particles), and if necessary, additives described later are included.

(h)「その他」
本明細書において、範囲を示す「X〜Y」は、「X以上Y以下」であることを意味する。また、重量の単位である「t(トン)」は、「Metric ton(メトリック トン)」であることを意味する。
(H) “Others”
In this specification, “X to Y” indicating a range means “X or more and Y or less”. Further, “t (ton)” which is a unit of weight means “Metric ton” (metric ton).

さらに、吸水性樹脂の物性の測定は、特に注釈のない限り、温度:20〜25℃(単に「室温」、あるいは「常温」と称することもある)、相対湿度:40〜50%の条件下で実施している。   Further, the physical properties of the water-absorbent resin are measured under the conditions of temperature: 20 to 25 ° C. (simply referred to as “room temperature” or “room temperature”) and relative humidity: 40 to 50% unless otherwise specified. It is implemented in.

〔2〕吸水性樹脂の製造方法
(1)重合工程
本工程は、単量体水溶液を重合して含水ゲル状架橋重合体を得る工程である。
[2] Method for Producing Water Absorbent Resin (1) Polymerization Step This step is a step in which a monomer aqueous solution is polymerized to obtain a hydrogel crosslinked polymer.

(a)単量体(架橋剤を除く)
(a)−1.吸水性樹脂A
本発明に係る吸水性樹脂Aは、その原料(単量体)として、好ましくは、アクリル酸(塩)、及びアクリル酸(塩)を主成分として使用する。
(A) Monomer (excluding crosslinking agent)
(A) -1. Water absorbent resin A
The water-absorbent resin A according to the present invention preferably uses acrylic acid (salt) and acrylic acid (salt) as main components as the raw material (monomer).

前記単量体は、少なくとも一部が中和されていることが好ましく、吸水性樹脂の吸水性能の観点から、アルカリ金属塩、アンモニウム塩、アミン塩から選ばれる一価塩が好ましく、アルカリ金属塩がより好ましく、ナトリウム塩、リチウム塩、カリウム塩から選ばれる塩がさらに好ましく、ナトリウム塩が特に好ましい。   The monomer is preferably at least partially neutralized, and from the viewpoint of water absorption performance of the water-absorbent resin, a monovalent salt selected from alkali metal salts, ammonium salts, and amine salts is preferable. Is more preferable, a salt selected from a sodium salt, a lithium salt, and a potassium salt is more preferable, and a sodium salt is particularly preferable.

前記単量体塩を調製する為の塩基性物質としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属の水酸化物や、炭酸(水素)ナトリウム、炭酸(水素)カリウム等の炭酸(水素)塩等の塩基性炭酸塩が好ましく、水酸化ナトリウムが特に好ましい。   Examples of the basic substance for preparing the monomer salt include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide, sodium carbonate (hydrogen), potassium carbonate (hydrogen) and the like. Basic carbonates such as carbonic acid (hydrogen) salts are preferred, and sodium hydroxide is particularly preferred.

前記単量体の中和率は、好ましくは10〜100モル%、より好ましくは30〜100モル%、さらに好ましくは40〜100モル%、特に好ましくは50〜100モル%である。また、中和時の温度(中和温度)としては、特に制限されないが、好ましくは10〜100℃、さらに好ましくは30〜90℃で適宜決定される。この他、中和処理の好ましい条件等は、欧州特許第574260号明細書に例示されており、該公報に記載の条件も本発明に適応され得る。   The neutralization rate of the monomer is preferably 10 to 100 mol%, more preferably 30 to 100 mol%, still more preferably 40 to 100 mol%, and particularly preferably 50 to 100 mol%. Moreover, it does not restrict | limit especially as temperature at the time of neutralization (neutralization temperature), Preferably it is 10-100 degreeC, More preferably, it determines suitably at 30-90 degreeC. In addition, preferable conditions for the neutralization treatment are exemplified in EP 574260, and the conditions described in the publication can also be applied to the present invention.

上述した単量体(下記の架橋剤を含む)は、通常、水溶液で重合され、中和後の固形分濃度は、通常10〜90質量%、好ましくは20〜80質量%、さらに好ましくは30〜70質量%、特に好ましくは35〜60質量%である。   The above-described monomers (including the following crosslinking agent) are usually polymerized in an aqueous solution, and the solid content concentration after neutralization is usually 10 to 90% by mass, preferably 20 to 80% by mass, and more preferably 30. It is -70 mass%, Most preferably, it is 35-60 mass%.

得られる吸水性樹脂の諸物性を改善するために、単量体水溶液に澱粉、ポリアクリル酸(塩)、ポリエチレンイミン等の水溶性樹脂や吸水性樹脂、更に各種の発泡剤(炭酸塩、アゾ化合物、気泡等)、界面活性剤、後述の添加剤を任意成分として添加してもよい。その添加量としては、単量体合計量に対して、前記水溶性樹脂又は吸水性樹脂は、0〜50質量%が好ましく、0〜20質量%がより好ましく、0〜10質量%が特に好ましく、0〜3質量%が最も好ましい。また、前記発泡剤、界面活性剤等は、0〜5質量%が好ましく、0〜1質量%がより好ましい。   In order to improve various physical properties of the water-absorbing resin obtained, water-soluble resins such as starch, polyacrylic acid (salt), polyethyleneimine, water-absorbing resins, and various foaming agents (carbonates, azo Compounds, bubbles, etc.), surfactants, and additives described below may be added as optional components. As the addition amount, the water-soluble resin or water-absorbent resin is preferably 0 to 50% by mass, more preferably 0 to 20% by mass, and particularly preferably 0 to 10% by mass with respect to the total amount of monomers. 0 to 3% by mass is most preferable. Moreover, 0-5 mass% is preferable and, as for the said foaming agent, surfactant, etc., 0-1 mass% is more preferable.

また、キレート剤、ヒドロキシカルボン酸、還元性無機塩を単量体水溶液に添加する場合、その添加量は、吸水性樹脂に対して、10〜5000質量ppmが好ましく、10〜1000質量ppmがより好ましく、50〜1000質量ppmがさらに好ましく、100〜1000質量ppmが特に好ましい。   Moreover, when adding a chelating agent, hydroxycarboxylic acid, and a reducing inorganic salt to monomer aqueous solution, the addition amount is preferable 10-5000 mass ppm with respect to a water absorbing resin, and 10-1000 mass ppm is more. Preferably, 50 to 1000 ppm by mass is more preferable, and 100 to 1000 ppm by mass is particularly preferable.

特に、キレート剤を添加することによって、得られる吸水性樹脂の色安定性(高温高湿条件下で長期間保存した場合の色安定性)や耐尿性(ゲル劣化防止)の向上を達成することができる。上記キレート剤としては、米国特許第6599989号明細書や国際公開第2008/090961号パンフレット等に例示されているものを適用することができ、その中でも、アミノカルボン酸系金属キレート剤や多価リン酸系化合物が好ましい。   In particular, by adding a chelating agent, the resulting water-absorbent resin can be improved in color stability (color stability when stored for a long time under high temperature and high humidity conditions) and urine resistance (preventing gel degradation). be able to. Examples of the chelating agent include those exemplified in US Pat. No. 6,599,989 and International Publication No. 2008/090961, and among them, aminocarboxylic acid metal chelating agents and polyvalent phosphorus Acid compounds are preferred.

また、アクリル酸(塩)を主成分として用いる場合、アクリル酸(塩)以外の親水性又は疎水性不飽和単量体(以下、「他の単量体」とも称する)を含んでいてもよい。このような他の単量体としては、例えば、メタクリル酸、(無水)マレイン酸、(メタ)アクリロキシアルカンスルホン酸、N−ビニル−2−ピロリドン、N−ビニルアセトアミド、(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ステアリルアクリレートやそれらの塩等が挙げられる。該単量体の添加量は、所望の性能により異なるが、全単量体の質量に対して、好ましくは50質量%以下、より好ましくは0〜20質量%である。   When acrylic acid (salt) is used as a main component, it may contain a hydrophilic or hydrophobic unsaturated monomer other than acrylic acid (salt) (hereinafter also referred to as “other monomer”). . Examples of such other monomers include methacrylic acid, (anhydrous) maleic acid, (meth) acryloxyalkanesulfonic acid, N-vinyl-2-pyrrolidone, N-vinylacetamide, (meth) acrylamide, N -Isopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, stearyl acrylate and their salts It is done. Although the addition amount of this monomer changes with desired performance, Preferably it is 50 mass% or less with respect to the mass of all the monomers, More preferably, it is 0-20 mass%.

なお、アクリル酸(塩)を主成分とするとはその合計量が全単量体(架橋剤を除く)中で50〜100モル%、さらには70〜100モル%、特に90〜100モル%を意味する。
(a)−2.吸水性樹脂B
本発明に係る吸水性樹脂Bは、その原料(単量体)として、好ましくは、スルホン酸基含有単量体(特にスルホン酸基含有単量体アクリルアミド単量体)とアクリル酸(塩)の共重合体であり、代表的には、2−アクリルアミド−2−メチルプロパンスルホン酸(塩)(以下、AMPS(塩)とする)及びアクリル酸(塩)、又は2−スルホエチル−メタクリレート(塩)(以下、SEMS(塩)とする)及びアクリルアミド及びアクリル酸(塩)、又は2−スルホエチル−メタクリレート(塩)(以下、SEMS(塩)とする)を主成分として使用する。(両者の合計は50〜100モル%でその他単量体は全単量体中0〜50モル%、さらには0〜30モル%、0〜10モル%) 前記単量体の酸基は、少なくとも一部が中和されていることが好ましく、吸水性樹脂の吸水性能の観点から、アルカリ金属塩、アンモニウム塩、アミン塩から選ばれる一価塩が好ましく、アルカリ金属塩がより好ましく、ナトリウム塩、リチウム塩、カリウム塩から選ばれる塩がさらに好ましく、ナトリウム塩が特に好ましい。
When acrylic acid (salt) is the main component, the total amount is 50 to 100 mol%, further 70 to 100 mol%, particularly 90 to 100 mol% in all monomers (excluding the crosslinking agent). means.
(A) -2. Water absorbent resin B
The water-absorbent resin B according to the present invention is preferably composed of a sulfonic acid group-containing monomer (particularly a sulfonic acid group-containing monomer acrylamide monomer) and acrylic acid (salt) as a raw material (monomer). Copolymers, typically 2-acrylamido-2-methylpropanesulfonic acid (salt) (hereinafter referred to as AMPS (salt)) and acrylic acid (salt), or 2-sulfoethyl-methacrylate (salt) (Hereinafter referred to as SEMS (salt)) and acrylamide and acrylic acid (salt), or 2-sulfoethyl-methacrylate (salt) (hereinafter referred to as SEMS (salt)) are used as main components. (The total of both is 50 to 100 mol%, and other monomers are 0 to 50 mol%, more preferably 0 to 30 mol%, and 0 to 10 mol% in all monomers) The acid group of the monomer is It is preferable that at least a part is neutralized, and from the viewpoint of water absorption performance of the water-absorbent resin, monovalent salts selected from alkali metal salts, ammonium salts, and amine salts are preferable, alkali metal salts are more preferable, sodium salts Further, a salt selected from lithium salt and potassium salt is more preferable, and sodium salt is particularly preferable.

前記単量体塩を調製する為の塩基性物質としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属の水酸化物や、炭酸(水素)ナトリウム、炭酸(水素)カリウム等の炭酸(水素)塩等の塩基性炭酸塩が好ましく、水酸化ナトリウムが特に好ましい。   Examples of the basic substance for preparing the monomer salt include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide, sodium carbonate (hydrogen), potassium carbonate (hydrogen) and the like. Basic carbonates such as carbonic acid (hydrogen) salts are preferred, and sodium hydroxide is particularly preferred.

前記単量体(ないし重合後に後中和する場合の重合体の)の中和率は、好ましくは10〜100モル%、より好ましくは30〜100モル%、さらに好ましくは40〜100モル%、特に好ましくは50〜100モル%である。また、中和時の温度(中和温度)としては、特に制限されないが、好ましくは10〜100℃、さらに好ましくは30〜90℃で適宜決定される。この他、中和処理の好ましい条件等は、欧州特許第574260号明細書に例示されており、該公報に記載の条件も本発明に適応され得る。   The neutralization rate of the monomer (or the polymer when post-neutralized after polymerization) is preferably 10 to 100 mol%, more preferably 30 to 100 mol%, still more preferably 40 to 100 mol%, Most preferably, it is 50-100 mol%. Moreover, it does not restrict | limit especially as temperature at the time of neutralization (neutralization temperature), Preferably it is 10-100 degreeC, More preferably, it determines suitably at 30-90 degreeC. In addition, preferable conditions for the neutralization treatment are exemplified in EP 574260, and the conditions described in the publication can also be applied to the present invention.

上述した単量体(下記の架橋剤を含む)は、通常、水溶液で重合され、中和後の固形分濃度は、通常10〜90質量%、好ましくは20〜80質量%、さらに好ましくは30〜70質量%、特に好ましくは35〜60質量%である。   The above-described monomers (including the following crosslinking agent) are usually polymerized in an aqueous solution, and the solid content concentration after neutralization is usually 10 to 90% by mass, preferably 20 to 80% by mass, and more preferably 30. It is -70 mass%, Most preferably, it is 35-60 mass%.

得られる吸水性樹脂の諸物性を改善するために、単量体水溶液に澱粉、ポリアクリル酸(塩)、ポリエチレンイミン等の水溶性樹脂や吸水性樹脂、更に各種の発泡剤(炭酸塩、アゾ化合物、気泡等)、界面活性剤、後述の添加剤を任意成分として添加してもよい。その添加量としては、単量体合計量に対して、前記水溶性樹脂又は吸水性樹脂は、0〜50質量%が好ましく、0〜20質量%がより好ましく、0〜10質量%が特に好ましく、0〜3質量%が最も好ましい。また、前記発泡剤、界面活性剤等は、0〜5質量%が好ましく、0〜1質量%がより好ましい。   In order to improve various physical properties of the water-absorbing resin obtained, water-soluble resins such as starch, polyacrylic acid (salt), polyethyleneimine, water-absorbing resins, and various foaming agents (carbonates, azo Compounds, bubbles, etc.), surfactants, and additives described below may be added as optional components. As the addition amount, the water-soluble resin or water-absorbent resin is preferably 0 to 50% by mass, more preferably 0 to 20% by mass, and particularly preferably 0 to 10% by mass with respect to the total amount of monomers. 0 to 3% by mass is most preferable. Moreover, 0-5 mass% is preferable and, as for the said foaming agent, surfactant, etc., 0-1 mass% is more preferable.

また、キレート剤、ヒドロキシカルボン酸、還元性無機塩を単量体水溶液に添加する場合、その添加量は、吸水性樹脂に対して、10〜5000質量ppmが好ましく、10〜1000質量ppmがより好ましく、50〜1000質量ppmがさらに好ましく、100〜1000質量ppmが特に好ましい。   Moreover, when adding a chelating agent, hydroxycarboxylic acid, and a reducing inorganic salt to monomer aqueous solution, the addition amount is preferable 10-5000 mass ppm with respect to a water absorbing resin, and 10-1000 mass ppm is more. Preferably, 50 to 1000 ppm by mass is more preferable, and 100 to 1000 ppm by mass is particularly preferable.

特に、キレート剤を添加することによって、得られる吸水性樹脂の色安定性(高温高湿条件下で長期間保存した場合の色安定性)や耐尿性(ゲル劣化防止)の向上を達成することができる。上記キレート剤としては、米国特許第6599989号明細書や国際公開第2008/090961号パンフレット等に例示されているものを適用することができ、その中でも、アミノカルボン酸系金属キレート剤や多価リン酸系化合物が好ましい。   In particular, by adding a chelating agent, the resulting water-absorbent resin can be improved in color stability (color stability when stored for a long time under high temperature and high humidity conditions) and urine resistance (preventing gel degradation). be able to. Examples of the chelating agent include those exemplified in US Pat. No. 6,599,989 and International Publication No. 2008/090961, and among them, aminocarboxylic acid metal chelating agents and polyvalent phosphorus Acid compounds are preferred.

また、AMPS及びアクリル酸(塩)を主成分として用いる場合、アクリル酸(塩)以外の親水性又は疎水性不飽和単量体(以下、「他の単量体」とも称する)を含んでいてもよい。このような他の単量体としては、例えば、メタクリル酸、(無水)マレイン酸、(メタ)アクリロキシアルカンスルホン酸、N−ビニル−2−ピロリドン、N−ビニルアセトアミド、(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ステアリルアクリレートやそれらの塩等が挙げられる。該単量体の添加量は、所望の性能により異なるが、全単量体の質量に対して、好ましくは50質量%以下、より好ましくは0〜20質量%である。   Further, when AMPS and acrylic acid (salt) are used as main components, a hydrophilic or hydrophobic unsaturated monomer other than acrylic acid (salt) (hereinafter also referred to as “other monomer”) is included. Also good. Examples of such other monomers include methacrylic acid, (anhydrous) maleic acid, (meth) acryloxyalkanesulfonic acid, N-vinyl-2-pyrrolidone, N-vinylacetamide, (meth) acrylamide, N -Isopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, stearyl acrylate and their salts It is done. Although the addition amount of this monomer changes with desired performance, Preferably it is 50 mass% or less with respect to the mass of all the monomers, More preferably, it is 0-20 mass%.

なお、AMPS及びアクリル酸(塩)を主成分とするとはその合計量が全単量体(架橋剤を除く)中で50〜100モル%、さらには70〜100モル%、特に90〜100モル%を意味する。また、AMPS及びアクリル酸(塩)はそれぞれ単独で用いてもよく、併用する場合のAMPS:アクリル酸(塩)のモル比は、0〜100:100〜0、好ましくは10〜90:10〜90、さらに好ましくは20〜80:80〜20である。   It should be noted that, when AMPS and acrylic acid (salt) are the main components, the total amount is 50 to 100 mol%, more preferably 70 to 100 mol%, particularly 90 to 100 mol in all monomers (excluding the crosslinking agent). Means%. In addition, AMPS and acrylic acid (salt) may be used alone, and when used in combination, the molar ratio of AMPS: acrylic acid (salt) is 0 to 100: 100 to 0, preferably 10 to 90:10. 90, more preferably 20-80: 80-20.

(b)架橋剤(内部架橋剤)
本発明では、吸水特性の観点から架橋剤(以下「内部架橋剤」と称することもある)を使用することが特に好ましい。内部架橋剤の使用量は、物性面から、架橋剤を除く全単量体に対して、0.001〜5モル%が好ましく、0.005〜2モル%がより好ましく、0.01〜1モル%がさらに好ましく、0.03〜0.5モル%が特に好ましい。
(B) Cross-linking agent (internal cross-linking agent)
In the present invention, it is particularly preferable to use a crosslinking agent (hereinafter sometimes referred to as “internal crosslinking agent”) from the viewpoint of water absorption characteristics. The amount of the internal crosslinking agent used is preferably from 0.001 to 5 mol%, more preferably from 0.005 to 2 mol%, more preferably from 0.01 to 1 with respect to all monomers excluding the crosslinking agent, from the viewpoint of physical properties. The mol% is more preferable, and 0.03 to 0.5 mol% is particularly preferable.

使用できる内部架橋剤としては、アクリル酸との重合性架橋剤や、カルボキシル基との反応性架橋剤、それらを併せ持った架橋剤等を例示することができる。具体的には、重合性架橋剤としては、N,N’−メチレンビスアクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリオキシエチレン)トリメチロールプロパントリ(メタ)アクリレート、ポリ(メタ)アリロキシアルカン等、分子内に重合性二重結合を少なくとも2個有する化合物が例示できる。反応性架橋剤としては、ポリグリシジルエーテル(エチレングリコールジグリシジルエーテル等)、多価アルコール(プロパンジオール、グリセリン、ソルビトール等)等の共有結合性架橋剤、アルミニウム等、多価金属化合物であるイオン結合性架橋剤が例示できる。これらの中でも、吸水特性の面から、アクリル酸との重合性架橋剤が好ましく、特に、アクリレート系、アリル系、アクリルアミド系の重合性架橋剤が好適に使用される。これらの内部架橋剤は1種のみを単独で用いてもよいし、2種以上を併用してもよい。   Examples of the internal crosslinking agent that can be used include a polymerizable crosslinking agent with acrylic acid, a reactive crosslinking agent with a carboxyl group, and a crosslinking agent having both of them. Specifically, N, N′-methylenebisacrylamide, (poly) ethylene glycol di (meth) acrylate, (polyoxyethylene) trimethylolpropane tri (meth) acrylate, poly (meth) are used as the polymerizable crosslinking agent. Examples include compounds having at least two polymerizable double bonds in the molecule, such as allyloxyalkanes. Examples of reactive cross-linking agents include covalent cross-linking agents such as polyglycidyl ether (ethylene glycol diglycidyl ether, etc.), polyhydric alcohols (propanediol, glycerin, sorbitol, etc.), and ionic bonds that are polyvalent metal compounds such as aluminum. An example of the functional cross-linking agent. Among these, from the viewpoint of water absorption properties, a polymerizable crosslinking agent with acrylic acid is preferable, and acrylate-based, allyl-based, and acrylamide-based polymerizable crosslinking agents are particularly preferably used. These internal crosslinking agents may be used alone or in combination of two or more.

(c)重合開始剤
本発明で使用される重合開始剤としては、重合の形態によって適宜選択され、光分解型重合開始剤、熱分解型重合開始剤、レドックス系重合開始剤等を例示できる。重合開始剤の使用量は、全単量体に対して、0.0001〜1モル%が好ましく、0.001〜0.5モル%がより好ましい。
(C) Polymerization initiator As a polymerization initiator used by this invention, it selects suitably by the form of superposition | polymerization, A photodecomposition type polymerization initiator, a thermal decomposition type polymerization initiator, a redox type polymerization initiator etc. can be illustrated. The amount of the polymerization initiator used is preferably 0.0001 to 1 mol%, more preferably 0.001 to 0.5 mol%, based on all monomers.

光分解型重合開始剤としては、ベンゾイン誘導体、ベンジル誘導体、アセトフェノン誘導体、ベンゾフェノン誘導体、アゾ化合物等を例示することができる。   Examples of the photodegradable polymerization initiator include benzoin derivatives, benzyl derivatives, acetophenone derivatives, benzophenone derivatives, azo compounds, and the like.

熱分解型重合開始剤としては、過硫酸塩(過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム)、過酸化物(過酸化水素、t−ブチルパーオキシド、メチルエチルケトンパーオキシド)、アゾ化合物(2,2’−アゾビス(2−アミジノプロパン)ジヒドロクロリド、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]ジヒドロクロリド等)等を例示することができる。   Thermal decomposition polymerization initiators include persulfates (sodium persulfate, potassium persulfate, ammonium persulfate), peroxides (hydrogen peroxide, t-butyl peroxide, methyl ethyl ketone peroxide), azo compounds (2, 2 '-Azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, etc.) can be exemplified.

レドックス系重合開始剤としては、上記過硫酸塩や過酸化物に、L−アスコルビン酸や亜硫酸水素ナトリウム等の還元性化合物を併用し、両者を組み合わせた系を例示することができる。また、上記光分解型開始剤と熱分解型重合開始剤とを併用することも、好ましい態様として挙げることができる。   Examples of the redox polymerization initiator include a system in which a reducing compound such as L-ascorbic acid or sodium bisulfite is used in combination with the persulfate or peroxide, and both are combined. Moreover, it can also be mentioned as a preferable aspect to use the said photodegradable initiator and a thermal decomposable polymerization initiator together.

(d)重合方法
本発明の実施形態に係る重合方法は、通液性や吸水速度といった吸水性樹脂の物性や重合制御の容易さといった観点から、通常、水溶液重合又は逆相懸濁重合で行われる。これらの重合方法の中でも、従来、重合の制御や着色の改善が困難であった水溶液重合が好ましく、連続水溶液重合がより好ましく、高濃度・高温開始連続水溶液重合が特に好ましい。
(D) Polymerization method The polymerization method according to the embodiment of the present invention is usually carried out by aqueous solution polymerization or reverse phase suspension polymerization from the viewpoint of the properties of the water-absorbent resin such as liquid permeability and water absorption speed and ease of polymerization control. Is called. Among these polymerization methods, aqueous solution polymerization, which has heretofore been difficult to control polymerization or improve coloring, is preferable, continuous aqueous solution polymerization is more preferable, and high concentration / high temperature starting continuous aqueous solution polymerization is particularly preferable.

上記連続水溶液重合の好ましい形態として、例えば、連続ニーダー重合(米国特許第6987151号や同第6710141号等に記載)や、連続ベルト重合(米国特許第4893999号、同第6241928号や米国特許出願公開第2005/215734号等に記載)が挙げられる。   Preferable forms of the above-mentioned continuous aqueous solution polymerization include, for example, continuous kneader polymerization (described in US Pat. Nos. 6,987,151 and 6,710,141), continuous belt polymerization (US Pat. Nos. 4,893,999 and 6,241,928, and published US patent applications). No. 2005/215734 etc.).

これらの重合は、空気雰囲気下でも実施できるが、着色改善の観点から、好ましくは、窒素やアルゴン等の不活性気体雰囲気(例えば、酸素濃度1容積%以下)で行うことが好ましい。また、単量体又は単量体を含む溶液中の溶存酸素が、不活性気体で十分に置換(例えば、酸素1mg/L未満)された後に、重合に用いられることが好ましい。このように脱気しても単量体の安定性に優れ、重合前のゲル化も起らず、より高物性で高白色の吸水性樹脂を提供することができる。   These polymerizations can be carried out in an air atmosphere, but from the viewpoint of color improvement, it is preferably carried out in an inert gas atmosphere (for example, an oxygen concentration of 1% by volume or less) such as nitrogen or argon. Moreover, it is preferable to use it for superposition | polymerization, after the oxygen in the solution containing a monomer or a monomer is fully substituted with an inert gas (for example, less than 1 mg / L of oxygen). Thus, even if it deaerates, it is excellent in the stability of a monomer, gelatinization before superposition | polymerization does not occur, and it can provide a water absorbing resin with higher physical properties and high whiteness.

(2)ゲル細粒化工程
上記重合工程で得られた含水ゲル状架橋重合体(含水ゲル)は、そのまま乾燥を行っても良いが、吸水速度や通液性の面から、重合時又は重合後、必要により解砕機(ニーダー、ミートチョパー等)を用いてゲル解砕され粒子状にされる。すなわち、上記ゲル解砕後の粒子状含水ゲルの重量平均粒子径(ふるい分級で規定)は、好ましくは0.1〜10mm、より好ましくは0.5〜5mm、さらに好ましくは1〜3mmの範囲である。
(2) Gel refinement step The hydrogel crosslinked polymer (hydrogel) obtained in the above polymerization step may be dried as it is, but from the viewpoint of water absorption speed and liquid permeability, at the time of polymerization or polymerization Then, if necessary, the gel is crushed using a crusher (kneader, meat chopper, etc.) to form particles. That is, the weight average particle size (specified by sieve classification) of the particulate hydrogel after the gel crushing is preferably in the range of 0.1 to 10 mm, more preferably 0.5 to 5 mm, and still more preferably 1 to 3 mm. It is.

ゲル解砕時の含水ゲルの温度は、物性の面から、好ましくは40〜95℃、より好ましくは50〜80℃に保温あるいは加熱される。含水ゲルの樹脂固形分は、特に限定されるものではないが、物性の面から、好ましくは20〜80重量%、より好ましくは30〜70重量%、さらに好ましくは40〜60重量%である。   The temperature of the hydrogel at the time of gel crushing is preferably 40 to 95 ° C., more preferably 50 to 80 ° C., from the viewpoint of physical properties. The resin solid content of the hydrous gel is not particularly limited, but is preferably 20 to 80% by weight, more preferably 30 to 70% by weight, and still more preferably 40 to 60% by weight from the viewpoint of physical properties.

(3)乾燥工程
上記含水ゲル状架橋重合体は乾燥され、乾燥重合体とされる。その乾燥減量(粉末ないし粒子1gを180℃で3時間加熱)から求められる樹脂固形分は、好ましくは80重量%以上、より好ましくは85〜99重量%、さらに好ましくは90〜98重量%、特に好ましくは92〜97重量%の範囲に調整され乾燥重合体を得る。
(3) Drying step The hydrogel crosslinked polymer is dried to form a dry polymer. The resin solid content determined from the loss on drying (1 g of powder or particles is heated at 180 ° C. for 3 hours) is preferably 80% by weight or more, more preferably 85 to 99% by weight, still more preferably 90 to 98% by weight, particularly Preferably, it is adjusted to the range of 92 to 97% by weight to obtain a dry polymer.

乾燥温度は、特に限定されるものではないが、好ましくは100〜300℃の範囲内、より好ましくは150〜250℃の範囲内とすればよい。乾燥方法としては、加熱乾燥、熱風乾燥、減圧乾燥、赤外線乾燥、マイクロ波乾燥、ドラムドライヤー乾燥、疎水性有機溶媒との共沸脱水、高温の水蒸気を用いた高湿乾燥等、種々の方法を採用することができるが、好ましくは露点が40〜100℃、より好ましくは露点が50〜90℃の気体による熱風乾燥、特に通気バンド式乾燥機である。   The drying temperature is not particularly limited, but is preferably in the range of 100 to 300 ° C, more preferably in the range of 150 to 250 ° C. There are various drying methods such as heat drying, hot air drying, vacuum drying, infrared drying, microwave drying, drum dryer drying, azeotropic dehydration with hydrophobic organic solvents, and high humidity drying using high temperature steam. Although it can employ | adopt, Preferably it is a hot-air drying by a gas with a dew point of 40-100 degreeC, More preferably, a dew point of 50-90 degreeC, Especially a ventilation band type dryer.

乾燥重合体の形状は通常、粒子状又はその凝集物(例;ブロック状物;特許文献1を参照)、又は両者の混合物であり、特に限定されない。   The shape of the dry polymer is usually in the form of particles or aggregates thereof (eg, block-like product; see Patent Document 1) or a mixture of both, and is not particularly limited.

(4)粉砕工程及び分級工程
前記乾燥工程で得られた乾燥重合体は、そのまま粉砕工程に供給されてもよいが、凝集物が含まれている場合(特に通気バンド式乾燥機で乾燥してブロック状物となる場合)には、乾燥重合体(特にブロック状凝集物)は粒子径が0.1〜10mm、好ましくは0.5〜5mm、さらに好ましくは1〜3mmの粒子状に解砕(凝集をほぐし)されて、粉砕工程に供給されるのが好ましい。(以下、乾燥後のブロック状凝集物を粗く粉砕(一部凝集した程度に粉砕)すること粗粉砕とも呼ぶが、本願でいう0次粉砕工程に該当する。
(4) Pulverization step and classification step The dried polymer obtained in the drying step may be supplied to the pulverization step as it is, but when aggregates are contained (especially, it is dried with a ventilation band dryer). In the case of a block-like product), the dried polymer (particularly block-like aggregate) is crushed into particles having a particle size of 0.1 to 10 mm, preferably 0.5 to 5 mm, more preferably 1 to 3 mm. (Agglomeration is loosened) and it is preferably supplied to the pulverization step. (Hereinafter, coarsely pulverizing the block-shaped aggregates after drying (pulverization to a degree of partial aggregation) is also referred to as coarse pulverization, which corresponds to the zero-order pulverization step in the present application.

(任意の0次粉砕)
後述の少なくとも2種類の衝撃式粉砕機を用いた第1粉砕工程及び第2粉砕工程に加えて、好ましくは、1時粉砕のまえに0次粉砕工程を設けてなる。0次粉砕工程では粒子状又はその凝集物を粗く粉砕(一部凝集した程度に粉砕)して流動粉末ないし流動凝集物とすることであり、好ましくは、ふるい分級で重量平均0.1〜100mm程度(1〜100mm、さらには1〜10mm)に粗粉砕される。
(Arbitrary zero-order grinding)
In addition to the first pulverization step and the second pulverization step using at least two types of impact pulverizers, which will be described later, a zero-order pulverization step is preferably provided before the one-hour pulverization. In the zero-order pulverization step, the particles or aggregates thereof are coarsely pulverized (pulverized to the extent that they are partially agglomerated) to form a fluidized powder or fluidized agglomerate. Preferably, the weight average is 0.1 to 100 mm by sieve classification. Coarsely pulverized to a degree (1 to 100 mm, more preferably 1 to 10 mm).

粉砕工程(0次粉砕工程)に供給する際は、供給物である粒子状、その凝集物、前記解砕された凝集物、又はそれらの混合物の温度は、100℃以下であると好ましく、95℃以下がより好ましく、90℃以下が更に好ましく、85℃以下より更に好ましく、80℃以下が特に好ましい。下限は、結露しない温度であれば良く、通常、0℃以上が好ましく、20℃がより好ましく、30℃が更に好ましく、35℃以上が特に好ましい。前記温度範囲は、前記解砕に供給される前記乾燥重合体においても、同様である。前記温度範囲外では、粉砕効率(処理能力や粒度分布)の低下、凝集や付着の発生など起こることがあり、好ましくない。   When supplying to the pulverization step (zero-order pulverization step), the temperature of the particulate material, the aggregate thereof, the crushed aggregate, or a mixture thereof is preferably 100 ° C. or less, and 95 ° C or lower is more preferable, 90 ° C or lower is further preferable, 85 ° C or lower is further preferable, and 80 ° C or lower is particularly preferable. The lower limit may be any temperature that does not cause condensation, and is usually preferably 0 ° C. or higher, more preferably 20 ° C., still more preferably 30 ° C., and particularly preferably 35 ° C. or higher. The said temperature range is the same also in the said dry polymer supplied to the said crushing. Outside the above temperature range, the grinding efficiency (processing capacity and particle size distribution) may decrease, and aggregation and adhesion may occur.

前記温度範囲へ調整する方法は、特に制限が無く、高温の前記乾燥重合体を所定時間放置させ、あるいは前記の温度範囲の空気等の気体を接触させる等で行うことが出来る。   The method for adjusting to the temperature range is not particularly limited, and can be carried out by allowing the dry polymer at a high temperature to stand for a predetermined time or contacting a gas such as air in the temperature range.

通常、粒度のそろった粉砕品を高収率で得るためには、粉砕と分級とを繰り返すことが一般的である。例えば、0.1〜100mmの粒状物(好ましくは0次粉砕で)を150〜850μmの粉砕物とする場合、一度に全て850μm以下になるような条件で粉砕すると150μm以下の微粉砕物が多くなり、収率が低下する。そこで、850μm以上の大粒子が一定量発生するような条件で粉砕し、得られた粉砕物を分級した後、該大粒子を元の粉砕工程へ戻すか、別の粉砕工程へ送る等によって行われる。尚、大粒子の発生割合は、処理効率と収率とを勘案して適宜設定されている。0次粉砕としては後述の粉砕機、特に衝撃式粉砕機が使用され、特に一次粉砕および2次粉砕とのは異なる粉砕機、例えば、ベルト乾燥時の出口に平行に設置された横型粉砕機(回転歯を供えた粉砕機)が使用される。   Usually, in order to obtain a pulverized product with uniform particle size in a high yield, it is common to repeat pulverization and classification. For example, when a granular material of 0.1 to 100 mm (preferably by zero-order pulverization) is pulverized to 150 to 850 μm, if pulverized under the condition that all are 850 μm or less at a time, there are many finely pulverized products of 150 μm or less. And the yield decreases. Therefore, after pulverizing under the condition that a certain amount of large particles of 850 μm or more are generated and classifying the obtained pulverized product, the large particles are returned to the original pulverization process or sent to another pulverization process. Is called. In addition, the generation ratio of large particles is appropriately set in consideration of processing efficiency and yield. As the zero-order pulverization, a pulverizer described later, particularly an impact-type pulverizer, is used. In particular, a pulverizer different from the primary pulverization and the secondary pulverization, for example, a horizontal pulverizer installed in parallel with the outlet during belt drying ( A crusher with rotating teeth) is used.

(一次粉砕および2次粉砕)
本発明の粉砕方法は、特定の形式の複数の粉砕機を組み合わせる方法、すなわち複数の粉砕工程(一次粉砕および2次粉砕、好ましくはさらに上記0次粉砕)を有する方法である。その結果、従来行われていたような目的とする粒度にそろえるための分級と大粒子の粉砕とを繰り返すことなく、粒度のそろった粉砕品を高収率で得る事が出来る。
(Primary grinding and secondary grinding)
The pulverization method of the present invention is a method in which a plurality of pulverizers of a specific type are combined, that is, a method having a plurality of pulverization steps (primary pulverization and secondary pulverization, preferably further the above-described zeroth pulverization). As a result, a pulverized product having a uniform particle size can be obtained in a high yield without repeating the classification for achieving the target particle size and the pulverization of the large particles, which have been conventionally performed.

本発明で用いられる粉砕機は、少なくとも2種類の衝撃式粉砕機(一次粉砕および2次粉砕)で粉砕され、更に3種類目の乾式粉砕機(0次粉砕、1次粉砕以降の3次粉砕)として、圧縮、曲げ、せん断、衝撃、摩擦から選ばれる粉砕機を用いても良く、特に全て衝撃式粉砕機が好ましい。また、連続式及び回分式のいずれでもよく、具体的には、ボールミル、ハンマーミル、ピンミル、フラッシュミル、流動層式粉砕機(ジェットミル)等が挙げられる。尚、前記ボールミルは球状のみを用いる形式に限定されず、ロッドミル、コンパウドミルを含む広義の概念である。好ましい粉砕機としては、空中に浮遊又は落下状態の被粉砕物が衝撃により割れ、粉砕機の部品同士が接触しない形式の粉砕機であり、具体的には、ピンミル、フラッシュミル、流動層式粉砕機(ジェットミル)が挙げられる。前記好ましい3種類の粉砕機は、粉砕時の被粉砕物の温度上昇が少ないため、吸水性樹脂の変質が抑えられ、また粉砕機自体の磨耗や損傷がほとんど起こらないため、粉砕後の製品への異物混入が少ないという利点を有している。   The pulverizer used in the present invention is pulverized by at least two types of impact pulverizers (primary pulverization and secondary pulverization), and further, the third dry pulverizer (zero pulverization, primary pulverization and subsequent tertiary pulverization). ), A pulverizer selected from compression, bending, shearing, impact, and friction may be used, and an impact pulverizer is particularly preferable. Moreover, any of a continuous type and a batch type may be sufficient, and specifically, a ball mill, a hammer mill, a pin mill, a flash mill, a fluidized bed type grinder (jet mill), etc. are mentioned. In addition, the said ball mill is not limited to the type which uses only a spherical shape, It is a broad concept including a rod mill and a compound mill. A preferable pulverizer is a pulverizer of a type in which an object to be pulverized floating or falling in the air is broken by impact and the parts of the pulverizer do not contact each other, specifically, a pin mill, a flash mill, a fluidized bed type pulverizer. Machine (jet mill). The preferable three types of pulverizers have little increase in temperature of the material to be pulverized at the time of pulverization, so that the quality of the water-absorbent resin is suppressed, and the pulverizer itself is hardly worn or damaged. There is an advantage that there is little foreign matter contamination.

粉砕機の組合せは、粉砕前の粒度と目的とする粒度により異なるが、第1粉砕工程で用いられる粉砕機はハンマーミル又はピンミルが好ましく、ピンミルがより好ましい。第2粉砕工程で用いられる粉砕機はフラッシュミル又は流動層式粉砕機(ジェットミル)が好ましく、平均粒子径が50μm以下の粒子を得るためには、第2粉砕工程でフラッシュミルを、第3粉砕工程で流動層式粉砕機(ジェットミル)を用いるのが好ましい。   The combination of pulverizers varies depending on the particle size before pulverization and the target particle size, but the pulverizer used in the first pulverization step is preferably a hammer mill or a pin mill, and more preferably a pin mill. The pulverizer used in the second pulverization step is preferably a flash mill or a fluidized bed pulverizer (jet mill). In order to obtain particles having an average particle size of 50 μm or less, a flash mill is used in the second pulverization step. It is preferable to use a fluidized bed pulverizer (jet mill) in the pulverization step.

前記各粉砕機において、吸水性樹脂が吸湿すると、粉砕効率が低下するほか、装置内への付着や堆積の原因となる。そのため、粉砕室内壁温度は周囲温度より低い温度に冷却しないほうが望ましく、粉砕室内壁温度が150℃以下であれば特に冷却する必要は無い。   In each of the pulverizers, when the water-absorbing resin absorbs moisture, the pulverization efficiency is lowered, and it causes adhesion and accumulation in the apparatus. Therefore, it is desirable not to cool the pulverization indoor wall temperature to a temperature lower than the ambient temperature. If the pulverization indoor wall temperature is 150 ° C. or lower, there is no need to cool it.

尚、粉砕効率の面からは、粉砕室内壁温度を調整するのが好ましく、その温度は30〜150℃が好ましく、35〜120℃がより好ましく、40〜100℃が特に好ましい。   From the viewpoint of pulverization efficiency, it is preferable to adjust the pulverization inner wall temperature, preferably 30 to 150 ° C, more preferably 35 to 120 ° C, and particularly preferably 40 to 100 ° C.

また、粉砕室内の相対湿度は、70RH%以下が好ましく、50RH%以下がより好ましく、30RH%以下が更に好ましい。尚、ジェットミルのように気体を粉砕室へ供給する形式の粉砕機では、該気体の露点は0℃以下が好ましく、−5〜−80℃がより好ましく、−10〜−50℃が特に好ましい。その他の運転条件は、被粉砕物の粒度や処理量、粉砕機の大きさなどを勘案して適宜設定すればよい。   Further, the relative humidity in the grinding chamber is preferably 70 RH% or less, more preferably 50 RH% or less, and further preferably 30 RH% or less. In a pulverizer that supplies gas to the pulverization chamber such as a jet mill, the dew point of the gas is preferably 0 ° C. or less, more preferably −5 to −80 ° C., and particularly preferably −10 to −50 ° C. . Other operating conditions may be appropriately set in consideration of the particle size and processing amount of the material to be crushed, the size of the pulverizer, and the like.

また、前記1段目の粉砕機で得られた粉砕物を分級すると、より粒度をそろえることが出来て好ましい。該分級工程では、最終目的とする平均粒子径の10倍以上、より好ましくは15倍以上の大粒子を除去すればよく、また除去した大粒子は1段目の粉砕機に戻して、再粉砕しても良い。すなわち、第1の衝撃式粉砕機による第1粉砕工程、分級工程、形式の異なるの衝撃式粉砕機による第2粉砕工程を含む実施形態が好ましい。 In addition, it is preferable to classify the pulverized material obtained by the first-stage pulverizer because the particle sizes can be more uniform. In the classification step, large particles having an average particle diameter of 10 times or more, more preferably 15 times or more of the final target average particle diameter may be removed, and the removed large particles are returned to the first-stage pulverizer and re-pulverized. You may do it. That is, embodiments including the first of the first milling step by an impact grinder, classifying step, the second milling step in the form of different second impact mill is preferred.

更に、体積平均粒子径が1〜100μmの微小粒子を得るためには、前記第1粉砕工程処理品の体積平均粒子径が1000μm以下であるのが好ましく、150〜1000μmの範囲であるのがより好ましく、150〜700μmの範囲であるのが更に好ましい。そして、該体積平均粒子径に粉砕された第1粉砕工程処理品、粉砕後に任意に分級工程を含み、更に好ましくは前記分級工程処理品を、第2粉砕工程で体積平均粒子径が150μm未満に粉砕し、第3粉砕工程で体積平均粒子径が100μm以下に粉砕することで得られる
(粒度)
最終に目的とする体積平均粒子径としては1〜150μm、好ましくは1〜100μm、より好ましくは1〜80μm、更に好ましくは5〜50μm、特に好ましくは5〜30μmに調整される。また、粒度分布は変動係数(標準偏差σ÷体積平均粒子径)が小さいほどよく、通常、0.8以下、好ましくは0.7以下、特に好ましくは0.6以下に調整される。これらの測定方法については、光散乱粒度分布測定装置(HORIBA社製 LA−920)等を用いて測定される。体積平均粒子径を特定範囲にまで小さく且つ狭く制御することで、吸水速度のみならず、微小粒度吸水倍率が向上することが見出された。
Furthermore, in order to obtain fine particles having a volume average particle diameter of 1 to 100 μm, the volume average particle diameter of the first pulverized product is preferably 1000 μm or less, and more preferably in the range of 150 to 1000 μm. Preferably, it is in the range of 150 to 700 μm. Then, the first pulverized step treated product pulverized to the volume average particle size, optionally including a classification step after pulverization, and more preferably the classified step treated product has a volume average particle size of less than 150 μm in the second pulverizing step. It is obtained by crushing and crushing to a volume average particle size of 100 μm or less in the third crushing step (particle size)
The final volume average particle diameter is adjusted to 1 to 150 μm, preferably 1 to 100 μm, more preferably 1 to 80 μm, still more preferably 5 to 50 μm, and particularly preferably 5 to 30 μm. The particle size distribution is preferably as small as the coefficient of variation (standard deviation σ ÷ volume average particle diameter), and is usually adjusted to 0.8 or less, preferably 0.7 or less, and particularly preferably 0.6 or less. About these measuring methods, it measures using the light-scattering particle size distribution measuring apparatus (LA-920 by the HORIBA company) etc. It has been found that by controlling the volume average particle size to be small and narrow to a specific range, not only the water absorption rate but also the fine particle size water absorption magnification is improved.

(5)輸送工程及び循環工程
本発明では、粉砕工程−分級工程及びその前後は輸送装置で連結されてなるが、用いられる輸送装置としては、上記輸送工程で用いられる輸送機としては、例えば、ベルトコンベヤー、スクリューコンベヤー、チェーンコンベヤー、振動コンベヤー、ニューマチックコンベヤー等であり、その内壁面を外側から加熱する手段及び/又は保温する手段を備えたものを挙げることができる。これらの輸送工程では減圧又は加圧とされる。
(5) Transport process and circulation process In the present invention, the pulverization process-classification process and its front and back are connected by a transport device. As a transport device used, as a transport machine used in the transport process, for example, Examples thereof include a belt conveyor, a screw conveyor, a chain conveyor, a vibration conveyor, a pneumatic conveyor, and the like, which are provided with means for heating and / or keeping the inner wall surface from the outside. In these transport processes, the pressure is reduced or increased.

これらの輸送機のうちでも、空気輸送が好ましい。吸水性樹脂の空気輸送は国際公開第2007/104657号、同第2007/104674号、同第2007/104676号に例示されるが、空気輸送の中でも、好ましくは露点0℃以下で搬送されてなる。本発明の空気輸送は、加圧輸送であってもよいし、減圧輸送であってもよい。用いられる圧力は適宜決定されるが、例えば、−0.8bar〜10barの範囲である。   Of these transport aircraft, pneumatic transport is preferred. Pneumatic transportation of the water-absorbent resin is exemplified in International Publication Nos. 2007/104657, 2007/104674, and 2007/104676. Among pneumatic transportation, it is preferably transported at a dew point of 0 ° C. or less. . The pneumatic transportation of the present invention may be pressurized transportation or reduced pressure transportation. The pressure to be used is appropriately determined and is, for example, in the range of −0.8 bar to 10 bar.

(分級装置)
本発明に用いられる分級装置は、ふるい網面を有するものであれば特に限定されず、例えば、バイブレーティングスクリーンやシフタに分類されるものが挙げられる。バイブレーティングスクリーンには、傾斜形、ローヘッド(Low−head)形、ハムマー(Hum−mer)、レーブン(Rhewum)、タイロック(Ty−Rock)、ジャイレックス(Gyrex)、及び楕円振動(Eliptex)等があり、シフタにはレシプロ(Reciprocating)形、Exolon−grader、Traversator−sieb、Sauer−meyer、ジャイレトリーシフタ(Gyratory)、ジャイロシフタ、及びローテックススクリーン(Ro−tex)等がある。
(Classification device)
The classifying apparatus used in the present invention is not particularly limited as long as it has a sieve mesh surface, and examples thereof include those classified as a vibratory screen or a shifter. Vibrating screens include tilted, low-head, Hum-mer, Rheum, Ty-Rock, Gyrex, and elliptical vibration (Eliptex), etc. The shifter includes a reciprocating type, Exonon-grader, Traversator-sieb, Sauer-meyer, a gyratory shifter (Gyratory), a gyroshifter, and a rotex screen (Ro-tex).

(6)その他工程
上記以外に、必要により、蒸発モノマーのリサイクル工程、造粒工程、などを設けてもよい。さらには、経時色安定性効果やゲル劣化防止等のために、後述の添加剤を単量体ないしその重合物に使用してもよい。
(6) Other steps In addition to the above, an evaporation monomer recycling step, a granulation step, and the like may be provided as necessary. Furthermore, additives described later may be used for the monomer or a polymer thereof for the purpose of color stability with time and prevention of gel deterioration.

〔3〕吸水性樹脂の物性
本発明に係る製造方法で得られる吸水性樹脂は、吸収速度(Vortex)が10秒以内であることが好ましいが、当該吸水性樹脂を止水材、特に水膨張ゴムとして使用する場合には、上記の物性以外に、下記の(a)〜(d)の少なくとも1つ以上、好ましくは吸収速度(Vortex)を含めた2つ以上、より好ましくは3つ以上の物性を、所望する範囲に制御することが望まれる。これらの物性が下記の範囲を満たさない場合、本発明の効果が十分に得られず、高濃度で多価金属塩を含有する水性液体の吸収において、十分な性能を発揮せず、更に、本発明の製造方法を用いる効果が小さくなるおそれがある。
[3] Physical properties of water-absorbing resin The water-absorbing resin obtained by the production method according to the present invention preferably has an absorption rate (Vortex) of 10 seconds or less. When used as a rubber, in addition to the above physical properties, at least one of the following (a) to (d), preferably two or more including the absorption rate (Vortex), more preferably three or more It is desirable to control the physical properties within a desired range. When these physical properties do not satisfy the following ranges, the effects of the present invention are not sufficiently obtained, and the absorption of an aqueous liquid containing a polyvalent metal salt at a high concentration does not exhibit sufficient performance. There exists a possibility that the effect using the manufacturing method of invention may become small.

(a)人工海水吸収倍率(Aritifical Sea Water−Free Swell Capacity:ASW−FSC)(別称;微小粒度吸水倍率)
本発明の吸水性樹脂の人工海水吸収倍率(ASW−FSC)は、後述の微小粒度吸水倍率で規定され、10(g/g)以上が好ましく、15(g/g)以上がより好ましく、20(g/g)以上が更に好ましく、25(g/g)以上が特に好ましい。上限値は特に限定されないが、他の物性とのバランスから、50(g/g)以下が好ましく、45(g/g)以下がより好ましく、40(g/g)以下が更に好ましい。ASW−FSCは架橋密度(例えば架橋剤量の添加量抑制によりASW−FSC向上)や添加剤(例えば無機微粒子の添加によるASW−FSC向上)で制御できる。
(A) Artificial Sea Water-Free Swell Capacity (ASW-FSC) (also known as micro-particle water absorption capacity)
The artificial seawater absorption capacity (ASW-FSC) of the water-absorbent resin of the present invention is defined by the below-mentioned fine particle size water absorption capacity, preferably 10 (g / g) or more, more preferably 15 (g / g) or more, 20 (G / g) or more is more preferable, and 25 (g / g) or more is particularly preferable. Although an upper limit is not specifically limited, From a balance with other physical properties, 50 (g / g) or less is preferable, 45 (g / g) or less is more preferable, and 40 (g / g) or less is still more preferable. ASW-FSC can be controlled by a crosslinking density (for example, ASW-FSC improvement by suppressing the addition amount of the crosslinking agent) and an additive (for example, ASW-FSC improvement by adding inorganic fine particles).

(b)人工海水吸収速度(Aritifical Sea Water−Free Swell Vortex:ASW−Vortex)(別称;人工海水吸水速度)
本発明の吸水性樹脂の人工海水吸収速度(ASW−Vortex)は、後述の微小粒度吸水速度で規定され、30秒以下が好ましく、20秒以下がより好ましく、15秒以下が更に好ましく、10秒以下が特に好ましい。
(B) Artificial Sea Water-Free Swell Vortex (ASW-Vortex) (Also Known as Artificial Sea Water Absorption Rate)
The artificial seawater absorption rate (ASW-Vortex) of the water-absorbent resin of the present invention is defined by the below-mentioned fine particle size water absorption rate, preferably 30 seconds or less, more preferably 20 seconds or less, still more preferably 15 seconds or less, and more preferably 10 seconds. The following are particularly preferred:

また、本発明の吸水性樹脂の生理食塩水吸収速度(Saline−Vortex)も30秒以下が好ましく、20秒以下がより好ましく、15秒以下が更に好ましく、10秒以下が特に好ましい。下限は0を越えて、通常0.1秒、さらには1秒程度である。ASW−Vortexは吸収倍率(の上昇)、本発明の狭い粒度制御、発泡による表面積Up、中和率上昇、添加剤(特に水不溶性無機微粉末)などで制御できる。   Further, the physiological saline absorption rate (Saline-Vortex) of the water-absorbent resin of the present invention is preferably 30 seconds or less, more preferably 20 seconds or less, still more preferably 15 seconds or less, and particularly preferably 10 seconds or less. The lower limit exceeds 0, and is usually about 0.1 second, and further about 1 second. ASW-Vortex can be controlled by the absorption ratio (increase), the narrow particle size control of the present invention, the surface area Up due to foaming, the neutralization rate increase, and additives (particularly water-insoluble inorganic fine powder).

(c)含水率
本発明の吸水性樹脂の含水率(180℃で3時間)は、1重量%を超えて15重量%以下が好ましく、1〜13重量%がより好ましく、2〜10重量%が更に好ましく、1〜9重量%が特に好ましい。上記含水率を上記範囲に制御することで、粉体特性(例えば、流動性、搬送性、耐ダメージ性等)に優れた吸水性樹脂を得ることができる。含水率は乾燥の程度(温度、時間)や乾燥後の水添加や加熱処理で制御できる。
(C) Water content The water content of the water-absorbent resin of the present invention (3 hours at 180 ° C.) is preferably more than 1% by weight and 15% by weight or less, more preferably 1 to 13% by weight, and more preferably 2 to 10% by weight. Is more preferable, and 1 to 9% by weight is particularly preferable. By controlling the water content within the above range, it is possible to obtain a water-absorbent resin excellent in powder characteristics (for example, fluidity, transportability, damage resistance, etc.). The water content can be controlled by the degree of drying (temperature, time), water addition after drying, and heat treatment.

(d)粒子径
本発明の吸水性樹脂粒子は、破砕状不定形で、体積平均粒子径が1〜150μm、好ましくは1〜100μm、より好ましくは1〜80μm、更に好ましくは5〜50μm、特に好ましくは5〜30μmの微小粒子である。
(D) Particle diameter The water-absorbent resin particles of the present invention are crushed indeterminate and have a volume average particle diameter of 1 to 150 μm, preferably 1 to 100 μm, more preferably 1 to 80 μm, still more preferably 5 to 50 μm, particularly Preferably, the fine particles are 5 to 30 μm.

体積基準の粒子径が1μm未満の粒子は、凝集性が強くなり二次粒子が発生しやすくなるので、ゴムや止水テープ等との複合化が困難になり、また、二次粒子のまま複合化されると、一次粒子の脱落が起こるなど、本発明の効果が十分に発揮できない恐れがある。100μmを越える場合には、本発明で見出された吸水倍率の向上効果がほとんどなく、さらに海水等の高濃度の金属イオン存在下での吸水性能が不十分であるため好ましくない。かかる粒度の臨界的効果は実施例の表1及び図1に示される。   Particles with a volume-based particle diameter of less than 1 μm are more cohesive and more likely to generate secondary particles, making it difficult to combine with rubber, water-stopping tape, etc. If it is, the effect of the present invention may not be sufficiently exerted, for example, primary particles may fall off. In the case of exceeding 100 μm, there is almost no effect of improving the water absorption magnification found in the present invention, and further, the water absorption performance in the presence of high-concentration metal ions such as seawater is insufficient, which is not preferable. The critical effect of such particle size is shown in Table 1 of the Examples and FIG.

従って、変動係数(標準偏差σ÷体積平均粒子径)は小さいほうが好ましく、1.0以下であればよく、0.8以下が好ましく、0.7以下がより好ましく、0.6以下が更に好ましい。変動係数が1以上であると、1μm未満あるいは200μmの粒子を個数基準で10%以上含むため、本発明の効果が不十分になる恐れがある。かかる粒度の臨界的効果は実施例の表1及び図1に示される。   Accordingly, the coefficient of variation (standard deviation σ ÷ volume average particle diameter) is preferably small, and may be 1.0 or less, preferably 0.8 or less, more preferably 0.7 or less, and even more preferably 0.6 or less. . If the coefficient of variation is 1 or more, the effect of the present invention may be insufficient because particles of less than 1 μm or 200 μm are contained on a number basis by 10% or more. The critical effect of such particle size is shown in Table 1 of the Examples and FIG.

更に、体積平均粒子径−標準偏差≦1〜200μm≦体積平均粒子径+標準偏差であると好ましく、体積平均粒子径−標準偏差×2≦1〜200μm≦体積平均粒子径+標準偏差×2であるとより好ましく、体積平均粒子径−標準偏差×3≦1〜200μm≦体積平均粒子径+標準偏差×3であると更に好ましい。そして、該1〜200μmの範囲が、1〜150μmであるとより好ましく、1〜100μmであると更に好ましく、1〜50μmであると特に好ましい。   Furthermore, it is preferable that the volume average particle size−standard deviation ≦ 1 to 200 μm ≦ volume average particle size + standard deviation, and the volume average particle size−standard deviation × 2 ≦ 1 to 200 μm ≦ volume average particle size + standard deviation × 2. More preferably, the volume average particle size-standard deviation × 3 ≦ 1 to 200 μm ≦ volume average particle size + standard deviation × 3. And the range of 1-200 micrometers is more preferable in it being 1-150 micrometers, it is still more preferable in it being 1-100 micrometers, and it is especially preferable in it being 1-50 micrometers.

上記の体積平均粒子径、体積基準の粒子径、標準偏差の測定方法については、光散乱粒度分布測定装置(HORIBA社製 LA−920)等を用いメタノールを分散溶媒として湿式で測定される。   About the measuring method of said volume average particle diameter, a volume reference | standard particle diameter, and a standard deviation, it measures wet with methanol as a dispersion | distribution solvent using the light-scattering particle size distribution measuring apparatus (LA-920 by HORIBA).

上記粒子径に関する特性を有する本発明の吸水性樹脂粒子は、海水等の高濃度の金属イオン存在下での吸水速度及び吸水倍率が高く、ゴム等との複合化などに好適である。 Water-absorbent resin particles of the present invention having the characteristics related to the particle size, high absorption rate and absorption capacity at high concentrations in the presence of metal ions such as seawater, is suitable for such conjugation with rubber.

そして、本発明の粉砕方法を用いると、上記粒度に関する特性を有する吸水性樹脂粒子が、篩い分け等による粒度調整を行わずに、効率よく簡便に製造することができる。   And if the grinding | pulverization method of this invention is used, the water-absorbing-resin particle | grains which have the characteristic regarding the said particle size can be manufactured efficiently and simply, without performing the particle size adjustment by sieving.

〔3〕その他添加剤
さらに、目的に応じて、吸水性樹脂には酸化剤、酸化防止剤、水、多価金属化合物、シリカや金属石鹸等の水不溶性無機粉末、ポリアクリル酸微粒子等の有機粉末、消臭剤、抗菌剤、高分子ポリアミン、パルプや熱可塑性繊維などを吸水性樹脂中に0〜3質量%、好ましくは0〜1質量%添加してもよい。
[3] Other additives Furthermore, depending on the purpose, the water-absorbing resin may be an oxidizing agent, an antioxidant, water, a polyvalent metal compound, water-insoluble inorganic powder such as silica or metal soap, or organic such as polyacrylic acid fine particles. Powder, deodorant, antibacterial agent, polymer polyamine, pulp, thermoplastic fiber and the like may be added to the water absorbent resin in an amount of 0 to 3% by mass, preferably 0 to 1% by mass.

〔4〕微小粒度吸水性能測定方法
平均粒子径が100μm以下の吸水性樹脂粉末は、自己凝集性が高いため、従来の測定方法では正しい評価が行うことが出来ない。そのため、微小粒度吸水性樹脂のための評価方法を新たに開発した。
[4] Measuring method for water absorption performance with fine particle size Water-absorbing resin powder having an average particle size of 100 μm or less has high self-aggregation property, and thus cannot be correctly evaluated by the conventional measuring method. Therefore, a new evaluation method for fine particle water-absorbing resin was developed.

吸水性樹脂粉末と無機化合物粉末とを混合することで、自己凝集性が抑制されるので、吸水倍率や吸水速度を測る事ができる。用いられる無機酸化物粉末は、測定用液による膨潤性及びイオン乖離性を示さない無機酸化物粉末が好ましい。具体的には、二酸化ケイ素、酸化アルミニウム、酸化チタン、二酸化ジルコニウム、二酸化亜鉛、炭化ケイ素、チッ化ケイ素、シリカ−アルミナ、ゼオライト等が挙げられ、二酸化ケイ素、酸化アルミニウム、酸化チタン、二酸化ジルコニウム、二酸化亜鉛、炭化ケイ素、チッ化ケイ素が好ましく、二酸化ケイ素、酸化アルミニウム、酸化チタン、二酸化ジルコニウム、二酸化亜鉛がより好ましく、二酸化ケイ素、酸化アルミニウムが更に好ましく、二酸化ケイ素、特に親水性シリカが特に好ましい。親水性シリカは日本アエロジル社、Degussa社、トクヤマ社などから市販され、代表的にはトクヤマ製レオロシール−QS20ないしその相当品(同程度の組成、粒子径、比表面積など)が使用される。   By mixing the water-absorbing resin powder and the inorganic compound powder, self-aggregation is suppressed, so that the water absorption ratio and the water absorption speed can be measured. The inorganic oxide powder to be used is preferably an inorganic oxide powder that does not exhibit swelling and ion dissociation by the measurement liquid. Specific examples include silicon dioxide, aluminum oxide, titanium oxide, zirconium dioxide, zinc dioxide, silicon carbide, silicon nitride, silica-alumina, zeolite, etc., and silicon dioxide, aluminum oxide, titanium oxide, zirconium dioxide, Zinc, silicon carbide and silicon nitride are preferred, silicon dioxide, aluminum oxide, titanium oxide, zirconium dioxide and zinc dioxide are more preferred, silicon dioxide and aluminum oxide are further preferred, and silicon dioxide, particularly hydrophilic silica is particularly preferred. Hydrophilic silica is commercially available from Nippon Aerosil Co., Ltd., Degussa, Tokuyama Co., Ltd., etc., and typically, Toroyama's Leolosil-QS20 or its equivalent (same composition, particle size, specific surface area, etc.) is used.

前記無機粉末化合物の平均粒子径は、測定対象となる吸水性樹脂粉末の平均粒子径及び粒度分布により異なるが、吸水性樹脂粉末の平均粒子径と同じ又は小さいほうが好ましく、吸水性樹脂粉末の小粒径側のD10よりも小さいほうが好ましい。また、前記無機粉末化合物の平均粒子径の下限値は、前記混合サンプルを用いた測定方法との兼ね合いで決定すればよく、通常は、吸水性樹脂粉末の平均粒子径の1000000分の1以上である。具体的には、1nm〜100μmであり、1nm〜1μmが好ましく、1nm〜100nmがより好ましく、2nm〜50nmが更に好ましい。   The average particle size of the inorganic powder compound varies depending on the average particle size and particle size distribution of the water absorbent resin powder to be measured, but is preferably the same or smaller than the average particle size of the water absorbent resin powder. It is preferably smaller than D10 on the particle size side. The lower limit value of the average particle size of the inorganic powder compound may be determined in consideration of the measurement method using the mixed sample, and is usually 1 / 1,000,000 or more of the average particle size of the water absorbent resin powder. is there. Specifically, the thickness is 1 nm to 100 μm, preferably 1 nm to 1 μm, more preferably 1 nm to 100 nm, and still more preferably 2 nm to 50 nm.

混合割合は、測定対象となる吸水性樹脂粉末と用いる無機化合物と測定物性により適宜設定すればよく、通常は測定用混合サンプル中の無機化合物含有量として、20〜80質量%であり、20〜70質量%がより好ましく、20〜60質量%が更に好ましく、30〜60質量%がより更に好ましく、40〜60質量%が特に好ましい。無機化合物含有量が少ないと、自己凝集性の抑制効果が不十分である恐れがあり、多すぎると無機化合物による測定結果への影響が大きくなる事がある。   The mixing ratio may be appropriately set depending on the water-absorbent resin powder to be measured, the inorganic compound to be used, and the measured physical properties, and is usually 20 to 80% by mass as the inorganic compound content in the mixed sample for measurement. 70 mass% is more preferable, 20-60 mass% is still more preferable, 30-60 mass% is still more preferable, 40-60 mass% is especially preferable. If the content of the inorganic compound is small, the effect of suppressing the self-aggregation property may be insufficient. If the content is too large, the influence of the inorganic compound on the measurement result may be increased.

(測定用混合サンプル)
5gの吸水性樹脂と5gの親水性シリカ(トクヤマ製;レオロシール−QS20)を、ペイントシェーカー(株式会社東洋精機製作所、AC100V、単相60Hz、参考規格JIS K 5101−1−2:2004)で30分間混合して得る。
(Mixed sample for measurement)
30 g of 5 g of water-absorbing resin and 5 g of hydrophilic silica (manufactured by Tokuyama; Leolo Seal-QS20) in a paint shaker (Toyo Seiki Seisakusho Co., Ltd., AC 100 V, single phase 60 Hz, reference standard JIS K 5101-1-2: 2004) Get mixed for minutes.

(微小粒度吸水速度(別称;人工海水吸水速度))
本発明の人工海水吸収速度の測定方法であり、基本的な測定方法はVortex法に準じるが、測定に供するサンプルは、前記測定用混合サンプル0.8gを計量して用いる。
(Fine particle water absorption rate (also known as artificial seawater absorption rate))
This is a method for measuring the artificial seawater absorption rate of the present invention, and the basic measurement method is in accordance with the Vortex method, but the sample to be used for measurement is used by weighing 0.8 g of the measurement mixed sample.

吸水速度は、人工海水に対して30秒以下、20秒以下が好ましく、15秒以下がより好ましく、10秒以下が特に好ましい。   The water absorption speed is preferably 30 seconds or less and 20 seconds or less, more preferably 15 seconds or less, and particularly preferably 10 seconds or less with respect to artificial seawater.

(微小粒度吸水倍率:FGA(別称;人工吸水倍率))
本発明の人工海水吸水倍率の測定方法であり、基本的な測定方法は442.2−02(2002)ないし相当のWSP442.3(2010)で規定のAAP法において、重りを使用せずに無荷重下吸収倍率を測定する。詳細な測定方法は実施例で示す通りである。測定に供するサンプルは、前記測定用混合サンプル(0.2g)を用いる。
(Fine particle size water absorption ratio: FGA (also known as artificial water absorption ratio))
This is a method for measuring the artificial seawater absorption magnification of the present invention. The basic measurement method is the AAP method defined in 442.2-02 (2002) or the equivalent WSP 442.3 (2010), without using weights. Measure the absorption capacity under load. The detailed measurement method is as shown in the examples. The sample to be used for measurement is the mixed sample for measurement (0.2 g).

尚、測定時に吸水性樹脂に等量添加する無機化合物粉末(親水性シリカ:レオロシール−QS20)ないしその相当品)による影響を排除するため、予めブランク測定を行い求めた値を差し引いた値を求める。   In order to eliminate the influence of the inorganic compound powder (hydrophilic silica: Leolosil-QS20) or its equivalent added to the water-absorbent resin at the time of measurement, a value obtained by subtracting the value obtained by performing blank measurement in advance is obtained. .

〔5〕用途
本発明の吸水性樹脂の用途は特に限定されにないが、好ましくは、土木工事用止水材、トンネル工事のセグメント間止水材や光ケーブル用止水テープ等の産業用途に使用され得る。特に、水膨潤性ゴムなど、硬水や海水など多価金属イオンを含有する水性液体に接しても吸水速度が極めて速く、しかも長期に亘り特に優れた吸水性能が発揮される。
[5] Uses The use of the water-absorbent resin of the present invention is not particularly limited, but is preferably used for industrial uses such as water-stopping materials for civil engineering, inter-segment water-stopping materials for tunnel construction, and water-proof tapes for optical cables. Can be done. In particular, even when in contact with an aqueous liquid containing a polyvalent metal ion such as hard water or seawater such as water-swellable rubber, the water absorption speed is extremely fast, and particularly excellent water absorption performance is exhibited over a long period of time.

以下、実施例に従って発明を説明するが、本発明は実施例に限定され解釈させるものではない。また、本発明の特許請求の範囲や実施例に記載の諸物性はEDANA法および以下の測定法に従って求めた。   EXAMPLES Hereinafter, although an invention is demonstrated according to an Example, this invention is limited to an Example and is not interpreted. The physical properties described in the claims and examples of the present invention were determined according to the EDANA method and the following measurement methods.

(人工海水による微小粒度吸水速度)(別称;人工海水吸水速度)
吸水性樹脂5gと親水性シリカ(トクヤマ製;レオロシール−QS20)5gを225mlマヨネーズ瓶に仕込み、ペイントシェーカー(株式会社東洋精機製作所、AC100V、単相60Hz、参考規格JIS K 5101−1−2:2004)で30分間振とう混合し、測定用混合サンプル(約10g)を得る。なお、測定に用いる吸水性樹脂5gが予め他の添加剤(たとえば、シリカ、キレート剤、水など)を含んでいる場合もそのまま5g計量する。
(Fine-grain water absorption speed by artificial seawater) (Also known as artificial seawater absorption speed)
5 g of water-absorbing resin and 5 g of hydrophilic silica (manufactured by Tokuyama; Leoroseal-QS20) are charged into a 225 ml mayonnaise bottle, and paint shaker (Toyo Seiki Seisakusho, AC100V, single phase 60 Hz, reference standard JIS K 5101-1-2: 2004). ) For 30 minutes to obtain a mixed sample for measurement (about 10 g). In addition, even when 5 g of the water absorbent resin used for the measurement contains other additives (for example, silica, chelating agent, water, etc.) in advance, 5 g is measured as it is.

次いで、該測定用混合サンプル0.8gを薬包紙に計量し用意する。100mlビーカーに予め青色2号で色付けした、人工海水50g(30℃)と40mmのフッ素樹脂コートされたシリンダー型のスターラーバーをいれる。ビーカーをマグネチックスターラーにセットし、500rpmで攪拌しながら、先ほど用意した吸水性樹脂/シリカ混合サンプル0.8gを投入する。投入後、スターラーバーがゲルで隠れて見えなくなった所を終点とする。   Next, 0.8 g of the measurement mixed sample is weighed and prepared on a medicine wrapping paper. A cylindrical stirrer bar coated with 50 g of artificial seawater (30 ° C.) and 40 mm fluororesin coated in blue No. 2 in advance in a 100 ml beaker. A beaker is set on a magnetic stirrer, and while stirring at 500 rpm, 0.8 g of the water absorbent resin / silica mixed sample prepared earlier is charged. The end point is the point where the stirrer bar is hidden behind the gel and cannot be seen.

(生理食塩水による微小粒度吸水速度)(別称;生理食塩水吸水速度)
前記人工海水による微小粒度吸水速度の測定において、人工海水を30℃の生理食塩水(0.9質量%NaCl水溶液)に変更した以外は、同様の測定を行った。
(Small particle size water absorption rate by physiological saline) (Also known as physiological saline water absorption rate)
In the measurement of the fine particle size water absorption rate by the artificial seawater, the same measurement was performed except that the artificial seawater was changed to 30 ° C. physiological saline (0.9 mass% NaCl aqueous solution).

(人工海水による微小粒度吸水倍率(FGA))(別称;人工海水倍率)
以下に記載するFGA1は吸水性樹脂粉末/シリカの1/1(重量比)の人工海水吸水倍率(30分値)であり、FGAはFGA1からシリカ由来の吸水量を差し引いて補正した吸水性樹脂粉末事態の人工海水吸水倍率(30分値)である。
(Fine-grain water absorption ratio (FGA) by artificial seawater) (Also known as artificial seawater magnification)
FGA1 described below is an artificial seawater absorption ratio (30 minutes value) of 1/1 (weight ratio) of water absorbent resin powder / silica, and FGA is a water absorbent resin corrected by subtracting the water absorption amount derived from silica from FGA1. It is the artificial seawater absorption ratio (30 minutes value) in the powder state.

すなわち、ERT442.2−02(2002)ないし相当のWSP442.3(2010)の加圧下吸収倍率の測定法(測定原理および測定装置)において、下記に従い重りを用いず、人工海水に対する無荷重下で吸水倍率(g/g)を測定し微小粒度吸水倍率(FGA1,FGA)とした。   That is, in the measurement method (measurement principle and measuring apparatus) of the absorption capacity under pressure of ERT442.2-02 (2002) to the corresponding WSP442.3 (2010) without using a weight according to the following, under no load on artificial seawater The water absorption rate (g / g) was measured and used as the fine particle size water absorption rate (FGA1, FGA).

トレイ(SUS製 角型 D20cm×L20cm×H10mm)中央部にグラスフィルター(直径120mm 孔径JIS規格No.0 高さ5mm)を置き、人工海水200gを加える。グラスフィルターの上にろ紙(ADVANTEC社製 No.2 110mm)を載せた後、シリンダー(Machintek社製 C−207431−D−2 with screen(400mesh))を載せる。   A glass filter (diameter 120 mm, hole diameter JIS standard No. 0, height 5 mm) is placed in the center of the tray (SUS square D20 cm × L20 cm × H10 mm), and 200 g of artificial seawater is added. A filter paper (No. 2 110 mm manufactured by ADVANTEC) is placed on the glass filter, and then a cylinder (C-207431-D-2 with screen (400 mesh) manufactured by Machintek) is placed thereon.

前記測定用混合サンプル(WS 0.2g)をシリンダー内に均一に撒く。撒き終わってから30分間浸漬した後、シリンダーを静かに引き上げ、測定後のサンプルが入ったままのシリンダー全質量(WS1)を測定する。尚、ブランク測定として、親水性シリカのみ(WBS 0.1g)を仕込んだサンプルを測定する。   The mixed sample for measurement (WS 0.2 g) is uniformly spread in a cylinder. After soaking for 30 minutes, the cylinder is gently lifted, and the total mass (WS1) of the cylinder with the sample after measurement is measured. As a blank measurement, a sample charged with only hydrophilic silica (WBS 0.1 g) is measured.

上記の測定結果を用いて、以下の式により、吸水性樹脂の吸収倍率(g/g)を計算した。   Using the above measurement results, the absorption capacity (g / g) of the water-absorbent resin was calculated by the following formula.

WBC :シリンダー空筒質量(g)
WBS :ブランクテストに用いたシリカ質量(g)
WBS1:ブランクテストにおける浸漬30分後のシリンダー全質量(g)
WBS2:ブランクテストにおける吸水量(g)
=WBS1−WBC
FGAB:ブランクテストから求められるシリカ吸水倍率(g/g)
=WBS2/WBS
WSS1:測定用混合サンプル調製に用いたシリカ質量(g)
WSA1:測定用混合サンプル調製に用いた吸水性樹脂質量(g)
RSS1:測定用混合サンプル中のシリカ質量比(−)
=WSS1÷(WSS1+WSA1)
RSA1:測定用混合サンプル中の吸水性樹脂質量比(−)
=WSA1÷(WSS1+WSA1)
WS :測定に用いた測定用混合サンプル質量(g)
WSS :測定に用いた測定用混合サンプル中のシリカ質量(g)
=WS1×RSS1
WSA :測定に用いた測定用混合サンプル中の吸水性樹脂質量(g)
=WS1×RSA1
WS1 :浸漬30分後のシリンダー全質量(g)
WS2 :吸水量(g)
=WS1−(WBC+WS)
FGA1:測定用混合サンプルの微小粒度吸水倍率(g/g)
=WS2÷WS
FGA :微小粒度吸水倍率(g/g)
=(WS1−WBC−WSS×FGAB)÷WSA
(粒子径測定方法)
レーザー回析式粒度分布装置HORIBA社製 LA−920を使用し、分布形態:標準、粒子径基準:体積、グラフ形態:棒グラフ、に設定した後、試料バスにメタノールを入れて空気抜き及び光軸調整を行う。次にサンプルを試料バスに入れ、サンプルを投入したと同時に、超音波を2分かけた後、透過率が81〜88%になるようサンプル濃度を調整する。測定は、サンプル濃度調整後、再度超音波処理を2分行った後に実施する。
WBC: Cylinder empty cylinder mass (g)
WBS: Mass of silica used for blank test (g)
WBS1: Total mass of cylinder after immersion for 30 minutes in blank test (g)
WBS2: Water absorption in blank test (g)
= WBS1-WBC
FGAB: Silica water absorption capacity (g / g) required from blank test
= WBS2 / WBS
WSS1: Silica mass used for preparation of mixed sample for measurement (g)
WSA1: Water-absorbing resin mass (g) used for preparation of mixed sample for measurement
RSS1: Silica mass ratio (-) in the mixed sample for measurement
= WSS1 ÷ (WSS1 + WSA1)
RSA1: Mass ratio of water absorbent resin in the mixed sample for measurement (-)
= WSA1 ÷ (WSS1 + WSA1)
WS: Measurement mixed sample mass (g) used for measurement
WSS: Silica mass (g) in the mixed sample for measurement used for measurement
= WS1 x RSS1
WSA: Mass of water absorbent resin (g) in the mixed sample for measurement used for measurement
= WS1 x RSA1
WS1: Total cylinder mass (g) after 30 minutes of immersion
WS2: Water absorption (g)
= WS1- (WBC + WS)
FGA1: fine particle size water absorption ratio (g / g) of mixed sample for measurement
= WS2 ÷ WS
FGA: Fine particle size water absorption ratio (g / g)
= (WS1-WBC-WSS × FGAB) / WSA
(Particle size measurement method)
Using LA-920, a laser diffraction particle size distribution device manufactured by HORIBA, set the distribution form: standard, particle size standard: volume, graph form: bar graph, and then add methanol to the sample bath to remove air and adjust the optical axis. I do. Next, the sample is placed in the sample bath, and at the same time as the sample is loaded, after applying ultrasonic waves for 2 minutes, the sample concentration is adjusted so that the transmittance is 81 to 88%. The measurement is carried out after adjusting the sample concentration and again performing ultrasonic treatment for 2 minutes.

[実施例1]
重合工程(ベルト上での静置重合)、ゲル細粒化(解砕)工程、乾燥工程、粉砕工程、分級工程、及び各工程間の輸送工程の各装置が接続され、各工程を連続して行うことができる吸水性樹脂の連続製造装置を用いた。尚、生産能力は、1時間あたり約3500kgである。この連続製造装置を用いて、吸水性樹脂粉体を連続製造した。
[Example 1]
Each device of the polymerization process (stationary polymerization on the belt), gel granulation (pulverization) process, drying process, pulverization process, classification process, and transport process between each process is connected, and each process is continued. An apparatus for continuously producing a water-absorbing resin that can be carried out is used. The production capacity is about 3500 kg per hour. Using this continuous manufacturing apparatus, water-absorbing resin powder was continuously manufactured.

先ず、以下の組成からなる単量体水溶液(1)を作成した。   First, a monomer aqueous solution (1) having the following composition was prepared.

単量体水溶液(1)組成:アクリル酸:193.3質量部、48質量%水酸化ナトリウム水溶液:64.4質量部、メチレンビスアクリルアミド:1.26質量部、0.1質量%エチレンジアミンテトラ(メチレンホスホン酸)5ナトリウム水溶液:52質量部、脱イオン水:134質量部
次に、上記の単量体水溶液(1)を40℃に調整し、定量ポンプで連続フィードを行い、48質量%水酸化ナトリウム水溶液97.1質量部を、次いで、4質量%過硫酸ナトリウム水溶液8.05質量部をラインミキシングにて連続混合した。このラインミキシングにより得られた連続混合物を、両端に堰を有する平面ベルトに厚み約7.5mmで供給して、連続的に3分間重合を行い、含水ゲル状架橋重合体(1)を得た。
Monomer aqueous solution (1) Composition: acrylic acid: 193.3 parts by mass, 48% by mass sodium hydroxide aqueous solution: 64.4 parts by mass, methylenebisacrylamide: 1.26 parts by mass, 0.1% by mass ethylenediaminetetra ( Methylenephosphonic acid) 5-sodium aqueous solution: 52 parts by mass, deionized water: 134 parts by mass Next, the above monomer aqueous solution (1) was adjusted to 40 ° C., continuously fed with a metering pump, and 48% by mass water 97.1 parts by mass of an aqueous sodium oxide solution and then 8.05 parts by mass of a 4% by mass aqueous sodium persulfate solution were continuously mixed by line mixing. The continuous mixture obtained by this line mixing was supplied to a flat belt having weirs at both ends in a thickness of about 7.5 mm, and polymerized continuously for 3 minutes to obtain a hydrogel crosslinked polymer (1). .

得られた含水ゲル状架橋重合体(1)をベルト進行方向に対して垂直方向に、おおよそ等間隔に連続して切断した。次に、孔径22mmのミートチョッパーで約1.5mmに細分化した。この細分化されたゲルを連続通風バンド乾燥機の移動する多孔板上に約7cmの厚さで広げて載せ、185℃で30分間乾燥し、含水率4%の乾燥重合体(1)246質量部(乾燥工程での吸水性樹脂の総排出量)を得た。   The obtained hydrogel crosslinked polymer (1) was continuously cut at approximately equal intervals in the direction perpendicular to the belt traveling direction. Next, it was subdivided into about 1.5 mm with a meat chopper having a hole diameter of 22 mm. This finely divided gel was spread and placed on a perforated plate moving with a continuous ventilation band dryer in a thickness of about 7 cm, dried at 185 ° C. for 30 minutes, and a dry polymer (1) of 246 mass with a moisture content of 4%. Part (total amount of water-absorbent resin discharged in the drying step) was obtained.

乾燥重合体(1)は上記細粒化ゲルの乾燥物が凝集したブロック状(乾燥ベルト上での一枚板)であり、60℃に冷却後、乾燥機出口で解砕(0次粉砕)し約60℃の前記乾燥重合体(1)をピンミルに連続供給することで粉砕(1次粉砕)し、約60℃の粉砕物(1)を得た。該粉砕物(1)を目開き250μmの金属篩網を有する篩い分け装置で、250μmの篩を透過しなかった粒子(1J)と250μmの篩を透過した粒子(1K)とに連続的に分級した。実質未粉砕の篩オン品の前記粒子(1J)については再度ピンミルに供給し、粉砕(1次粉砕)した。   The dried polymer (1) is in the form of a block (one plate on the drying belt) in which the dried product of the finely divided gel is aggregated, and after cooling to 60 ° C., crushing at the outlet of the dryer (zero-order pulverization) The dried polymer (1) at about 60 ° C. was continuously fed to a pin mill and pulverized (primary pulverization) to obtain a pulverized product (1) at about 60 ° C. The pulverized product (1) is continuously classified into particles (1J) that did not pass through the 250 μm sieve and particles (1K) that passed through the 250 μm sieve using a sieving device having a metal sieve mesh with an opening of 250 μm. did. The particles (1J) of the substantially unmilled sieve-on product were supplied again to the pin mill and pulverized (primary pulverization).

前記粒子(1K)は引き続き、空気輸送により第2粉砕工程に送られ、フラッシュミルによりさらに細粒化された。フラッシュミルにより細粒化された後、第3粉砕工程のジェットミルへ空気輸送され、ジェット気流を用いた被粉砕物間の衝突による微粉化を行った。このときの装置の空気圧は0.35Mpaであった。   The particles (1K) were subsequently sent to the second pulverization step by pneumatic transportation and further refined by a flash mill. After being finely divided by a flash mill, it was pneumatically transported to the jet mill in the third pulverization step, and pulverization was performed by collision between objects to be pulverized using a jet stream. The air pressure of the device at this time was 0.35 Mpa.

こうして、異なる4つの粉砕工程を経て体積平均粒子径50μm、含水率4%の吸水性樹脂粉体(1)を得た。得られた吸水性樹脂粉体(1)について上記、微小粒度吸水速度及び微小粒度吸水倍率の測定方法にしたがって測定した。測定結果を表1に示す。   Thus, a water-absorbent resin powder (1) having a volume average particle diameter of 50 μm and a water content of 4% was obtained through four different pulverization steps. The obtained water-absorbent resin powder (1) was measured according to the measurement method of the fine particle size water absorption rate and fine particle size water absorption rate. The measurement results are shown in Table 1.

[実施例2]
2−アクリルアミド−2−メチルプロパンスルホン酸ナトリウム(AMPS)50%水溶液235.4質量部とアクリル酸43.2質量部、アクリル酸ナトリウム37%水溶液152.3質量部及び脱イオン水58.6質量部を混合した液にメチレンビスアクリルアミド1.5%水溶液15.0質量部を溶解し、反応液とした。
[Example 2]
Sodium 2-acrylamido-2-methylpropanesulfonate (AMPS) 50% aqueous solution 235.4 parts by mass, acrylic acid 43.2 parts by mass, sodium acrylate 37% aqueous solution 152.3 parts by mass and deionized water 58.6 parts by mass 15.0 parts by mass of a 1.5% aqueous solution of methylenebisacrylamide was dissolved in the mixed liquid to prepare a reaction solution.

次にこの反応液を窒素ガス(10L/min)で40分バブリングによる脱気処理後、シグマ型羽根を2本有するジャケット付きステンレス性双腕型ニーダーに、上記反応液を供給し、30℃に保ちながら系を窒素ガス置換した。続いて反応器を攪拌しながら、過硫酸ナトリウム21質量%水溶液2.0質量部及びL−アスコルビン酸2質量%水溶液2.1質量部を添加したところ、約1分後に重合が開始した。重合中の最高温度は80℃で、重合開始してから60分後に、一旦、攪拌を停止し、5質量%亜硫酸水素ナトリウム水溶液41.3質量部を加え10分間混合した後、含水ゲル状重合体を取り出した。   Next, the reaction solution was degassed by bubbling with nitrogen gas (10 L / min) for 40 minutes, and then the reaction solution was supplied to a jacketed stainless steel double-arm kneader having two sigma-type blades and heated to 30 ° C. The system was purged with nitrogen gas while maintaining. Subsequently, while stirring the reactor, 2.0 parts by mass of a 21% by mass aqueous solution of sodium persulfate and 2.1 parts by mass of a 2% by mass aqueous solution of L-ascorbic acid were added, and polymerization started about 1 minute later. The maximum temperature during the polymerization was 80 ° C., 60 minutes after the start of the polymerization, the stirring was once stopped, 41.3 parts by mass of a 5% by mass aqueous sodium hydrogen sulfite solution was added, and the mixture was mixed for 10 minutes. The coalescence was taken out.

得られた重合体は、その径が約5mmに細分化されていた。この細分化された含水ゲル状重合体を50メッシュ(目開300μm)の金網上に広げ、160℃で130分間乾燥し、含水率4%の乾燥重合体(2)を得た。   The obtained polymer was subdivided into about 5 mm in diameter. This finely divided hydrogel polymer was spread on a 50 mesh (mesh size 300 μm) wire mesh and dried at 160 ° C. for 130 minutes to obtain a dry polymer (2) having a moisture content of 4%.

約60℃の前記乾燥重合体(2)を乾燥機出口で同様に0次粉砕し、さらにピンミルに連続供給することで粉砕(一次粉砕)し、約60℃の粉砕物(2)を得た。該粉砕物(2)を目開き250μmの金属篩網を有する篩い分け装置で、250μmの篩を透過しなかった粒子(2J)と250μmの篩を透過した粒子(2K)とに連続的に分級した。前記粒子(2J)については再度ピンミルに供給し、粉砕(一次粉砕)した。   The dry polymer (2) at about 60 ° C. was similarly subjected to zero-order pulverization at the outlet of the dryer and further pulverized (primary pulverization) by continuously supplying it to a pin mill to obtain a pulverized product (2) at about 60 ° C. . The pulverized product (2) is continuously classified into particles (2J) that did not pass through the 250 μm sieve and particles (2K) that passed through the 250 μm sieve using a sieving device having a metal sieve mesh with an opening of 250 μm. did. The particles (2J) were again supplied to the pin mill and pulverized (primary pulverization).

前記粒子(2K)は引き続き、空気輸送により第2粉砕工程に送られ、フラッシュミルによりさらに細粒化された。フラッシュミルにより細粒化された後、第3粉砕工程のジェットミルへ空気輸送され、ジェット気流を用いた被粉砕物間の衝突による微粉化を行った。このときの装置の空気圧は0.60Mpaであった。   The particles (2K) were subsequently sent to the second pulverization step by pneumatic transportation and further refined by a flash mill. After being finely divided by a flash mill, it was pneumatically transported to the jet mill in the third pulverization step, and pulverization was performed by collision between objects to be pulverized using a jet stream. The air pressure of the device at this time was 0.60 Mpa.

こうして体積平均粒子径15.5μm、標準偏差8.6μm、最小粒子径1.510μm、最大粒子径58.953μm、含水率4%の吸水性樹脂粉末(2)を得た。得られた吸水性樹脂粉体(2)について上記、微小粒度吸水速度及び微小粒度吸水倍率の測定方法にしたがって測定した。測定結果を表1に示す。   Thus, a water-absorbent resin powder (2) having a volume average particle size of 15.5 μm, a standard deviation of 8.6 μm, a minimum particle size of 1.510 μm, a maximum particle size of 58.953 μm and a water content of 4% was obtained. The obtained water-absorbing resin powder (2) was measured according to the measurement method of the fine particle size water absorption rate and fine particle size water absorption rate. The measurement results are shown in Table 1.

[実施例3]
アクリルアミド40質量%水溶液276.7質量部とアクリル酸ナトリウム37質量%水溶液169.7質量部、2-スルホエチルメタクリル酸ナトリウム43質量%水溶液11.2重量部及び脱イオン水33.2質量部を混合した液にメチレンビスアクリルアミド1.5質量%水溶液22.9質量部を溶解し、反応液とした。
[Example 3]
276.7 parts by mass of a 40% by mass aqueous solution of acrylamide, 169.7 parts by mass of a 37% by mass aqueous solution of sodium acrylate, 11.2 parts by mass of an aqueous solution of 43% by mass of 2-sulfoethyl sodium methacrylate and 33.2 parts by mass of deionized water In the mixed solution, 22.9 parts by mass of a 1.5% by mass aqueous solution of methylenebisacrylamide was dissolved to obtain a reaction solution.

次にこの反応液を窒素ガス(10L/min)で40分バブリングを行い、脱気した。次いで、シグマ型羽根を2本有するジャケット付きステンレス性双腕型ニーダーに、上記反応液を供給し、30℃に保ちながら系内を窒素ガス置換した。続いて反応器を攪拌しながら、過硫酸ナトリウム21質量%水溶液3.8質量部及びL−アスコルビン酸2質量%水溶液3.9質量部を添加したところ、約1分後に重合が開始した。重合中の最高温度は110℃で、重合開始してから60分後に、一旦、攪拌を停止し、5質量%亜硫酸水素ナトリウム水溶液28.7質量部を加え10分間混合した後、含水ゲル状重合体を取り出した。   Next, this reaction solution was deaerated by bubbling with nitrogen gas (10 L / min) for 40 minutes. Next, the reaction solution was supplied to a stainless steel double-arm kneader with a jacket having two sigma type blades, and the inside of the system was replaced with nitrogen gas while maintaining the temperature at 30 ° C. Subsequently, while stirring the reactor, 3.8 parts by mass of a 21% by mass aqueous solution of sodium persulfate and 3.9 parts by mass of a 2% by mass aqueous solution of L-ascorbic acid were added, and polymerization started about 1 minute later. The maximum temperature during the polymerization was 110 ° C., 60 minutes after the start of the polymerization, the stirring was once stopped, 28.7 parts by mass of a 5% by mass aqueous sodium hydrogen sulfite solution was added, and the mixture was mixed for 10 minutes. The coalescence was taken out.

得られた重合体は、その径が約5mmに細分化されていた。この細分化された含水ゲル状重合体を50メッシュ(目開300μm)の金網上に広げ、160℃で130分間乾燥し、含水率4%の乾燥重合体(3)を得た。   The obtained polymer was subdivided into about 5 mm in diameter. This finely divided hydrogel polymer was spread on a 50 mesh (mesh size 300 μm) wire mesh and dried at 160 ° C. for 130 minutes to obtain a dry polymer (3) having a moisture content of 4%.

約60℃の前記乾燥重合体(3)を乾燥機出口で同様に0次粉砕し、さらにピンミルに連続供給することで粉砕(1次粉砕)し、約60℃の粉砕物(3)を得た。該粉砕物(3)を目開き250μmの金属篩網を有する篩い分け装置で、250μmの篩を透過しなかった粒子(3J)と250μmの篩を透過した粒子(3K)とに連続的に分級した。前記粒子(3J)については再度ピンミルに供給し、粉砕した。   The dry polymer (3) at about 60 ° C. is similarly subjected to zero-order pulverization at the outlet of the dryer and further pulverized (primary pulverization) by continuously supplying it to a pin mill to obtain a pulverized product (3) at about 60 ° C. It was. The pulverized product (3) is continuously classified into particles (3J) that did not pass through the 250 μm sieve and particles (3K) that passed through the 250 μm sieve using a sieving device having a metal sieve mesh with an opening of 250 μm. did. The particles (3J) were again supplied to the pin mill and pulverized.

250μmの篩を透過した粒子(3K)は引き続き、空気輸送により第2粉砕工程に送られ、フラッシュミルによりさらに細粒化された。フラッシュミルにより細粒化された後、第3粉砕工程のジェットミルへ空気輸送され、ジェット気流を用いた被粉砕物間の衝突による微粉化を行った。このときの装置の空気圧は0.60Mpaであった。   The particles (3K) that passed through the 250 μm sieve were subsequently sent to the second grinding step by pneumatic transport and further refined by a flash mill. After being finely divided by a flash mill, it was pneumatically transported to the jet mill in the third pulverization step, and pulverization was performed by collision between objects to be pulverized using a jet stream. The air pressure of the device at this time was 0.60 Mpa.

こうして、体積平均粒子径15.3μm、標準偏差6.7μm、最小粒子径1.510μm、最大粒子径44.938μm、含水率4%の吸水性樹脂粉末(3)を得た。得られた吸水性樹脂粉体(3)について上記、微小粒度吸水速度及び微小粒度吸水倍率の測定方法にしたがって測定した。測定結果を表1に示す。   Thus, a water absorbent resin powder (3) having a volume average particle size of 15.3 μm, a standard deviation of 6.7 μm, a minimum particle size of 1.510 μm, a maximum particle size of 44.938 μm and a water content of 4% was obtained. The obtained water-absorbent resin powder (3) was measured according to the measurement method of the fine particle size water absorption rate and fine particle size water absorption rate. The measurement results are shown in Table 1.

[比較例1]
実施例1において、ピンミルにより細粒化(一次粉砕)された後、第2粉砕工程に送らずに粉砕を終了した以外は、実施例1と同様の操作を行い、連続的に体積平均粒子径186μmの比較用吸水性樹脂粉体(1)を得た。
[Comparative Example 1]
In Example 1, the same operation as in Example 1 was carried out except that after pulverization (primary pulverization) by a pin mill and pulverization was completed without being sent to the second pulverization step, the volume average particle diameter was continuously obtained. A comparative water absorbent resin powder (1) of 186 μm was obtained.

得られた比較用吸水性樹脂粉体(1)について上記、微小粒度吸水速度及び微小粒度吸水倍率の測定方法にしたがって測定した。測定結果を表1に示す。   The obtained comparative water-absorbent resin powder (1) was measured according to the measurement method of the fine particle size water absorption rate and fine particle size water absorption rate. The measurement results are shown in Table 1.

[比較例2]
実施例2において、ピンミルにより細粒化(一次粉砕)された後、第2粉砕工程に送らずに粉砕を終了した以外は、実施例3と同様の操作を行い、連続的に体積平均粒子径181μmの比較用吸水性樹脂粉体(2)を得た。
[Comparative Example 2]
In Example 2, the same operation as in Example 3 was carried out except that the pulverization was terminated without being sent to the second pulverization step after being finely divided (primary pulverization) by a pin mill, and the volume average particle diameter was continuously obtained. A comparative water absorbent resin powder (2) of 181 μm was obtained.

得られた比較用吸水性樹脂粉体(2)について上記、微小粒度吸水速度及び微小粒度吸水倍率の測定方法にしたがって測定した。測定結果を表1に示す。   The obtained comparative water-absorbent resin powder (2) was measured according to the measurement method of the fine particle size water absorption rate and the fine particle size water absorption rate. The measurement results are shown in Table 1.

[実施例4]
実施例3において、フラッシュミルにより細粒化(2次粉砕)された後、第3粉砕工程のジェットミルへ空気輸送され、粒子径を50μmとするために、空気圧を0.25Mpaに変更した以外は、実施例3と同様の操作を行い、体積平均粒子径44.8μm、標準偏差30.78μm、最小粒子径1.981μm、最大粒子径133.103μm、の吸水性樹脂粉体(4)を得た。得られた吸水性樹脂粉体(4)について上記、微小粒度吸水速度及び微小粒度吸水倍率の測定方法にしたがって測定した。測定結果を表1に示す。
[Example 4]
In Example 3, after finely pulverizing (secondary pulverization) with a flash mill, the air was transported to the jet mill in the third pulverization step, and the air pressure was changed to 0.25 MPa to make the particle size 50 μm. Were the same as in Example 3 to obtain a water absorbent resin powder (4) having a volume average particle size of 44.8 μm, a standard deviation of 30.78 μm, a minimum particle size of 1.981 μm, and a maximum particle size of 133.103 μm. Obtained. The obtained water-absorbent resin powder (4) was measured according to the measurement method of the fine particle size water absorption rate and fine particle size water absorption rate. The measurement results are shown in Table 1.

[実施例5]
実施例3において、フラッシュミルにより細粒化(2次粉砕)された後、第3粉砕工程のジェットミルへ空気輸送され、ジェット気流を用いた被粉砕物間の衝突による微粉化を行う際に得られる粒子径を75μmにするために、空気圧を0.15Mpaに変更した以外は、実施例3と同様の操作を行い、連続的に体積平均粒子径75μmの吸水性樹脂粉体(5)を得た。得られた吸水性樹脂粉体(5)について上記、微小粒度吸水速度及び微小粒度吸水倍率の測定方法にしたがって測定した。測定結果を表1に示す。
[Example 5]
In Example 3, after finely pulverizing (secondary pulverization) by a flash mill, the air is transported to the jet mill in the third pulverization step, and pulverization is performed by collision between objects to be pulverized using a jet stream. The same operation as in Example 3 was performed except that the air pressure was changed to 0.15 MPa in order to obtain a particle size of 75 μm, and a water absorbent resin powder (5) having a volume average particle size of 75 μm was continuously obtained. Obtained. The obtained water-absorbent resin powder (5) was measured according to the method for measuring the fine particle size water absorption rate and fine particle size water absorption rate. The measurement results are shown in Table 1.

[実施例6]
実施例3において、フラッシュミルにより細粒化(2次粉砕)された後、第3粉砕工程に送らずに粉砕を終了した以外は、実施例3と同様の操作を行い、連続的に体積平均粒子径109μmの吸水性樹脂粉体(6)を得た。得られた吸水性樹脂粉体(6)について上記、微小粒度吸水速度及び微小粒度吸水倍率の測定方法にしたがって測定した。測定結果を表1に示す。
[Example 6]
In Example 3, the same operation as in Example 3 was carried out except that the pulverization was terminated without being sent to the third pulverization step after being finely divided by the flash mill (secondary pulverization), and the volume average was continuously obtained. Water-absorbing resin powder (6) having a particle diameter of 109 μm was obtained. The obtained water-absorbent resin powder (6) was measured according to the measurement method of the fine particle size water absorption rate and fine particle size water absorption rate. The measurement results are shown in Table 1.

[比較例3]
実施例3において、ピンミルにより細粒化(一次粉砕)された後、第2粉砕工程に送らずに粉砕を終了した以外は、実施例3と同様の操作を行い、連続的に体積平均粒子径191μmの比較用吸水性樹脂粉体(3)を得た。
[Comparative Example 3]
In Example 3, the same operation as in Example 3 was carried out except that the pulverization was completed without being sent to the second pulverization step after being finely divided (primary pulverization) by a pin mill, and the volume average particle diameter was continuously obtained. A comparative water absorbent resin powder (3) of 191 μm was obtained.

得られた比較用吸水性樹脂粉体(3)について上記、微小粒度吸水速度及び微小粒度吸水倍率の測定方法にしたがって測定した。測定結果を表1に示す。   The obtained comparative water-absorbent resin powder (3) was measured according to the measurement method of the fine particle size water absorption rate and fine particle size water absorption rate. The measurement results are shown in Table 1.

Figure 0006169926
Figure 0006169926

注1)表1の吸水速度で×は10分以上でも終点が見られないことを示す。   Note 1) In the water absorption rate in Table 1, × indicates that no end point is observed even after 10 minutes.

注2)FGA1は吸水性樹脂粉末/シリカの1/1(重量比)の人工海水吸水倍率(30分値)であり、FGAはFGA1からシリカ由来の吸水量(ブランクより吸水倍率16.8g/g)を差し引いて補正した吸水性樹脂粉末自体の人工海水吸水倍率(30分値)
(図1)

Figure 0006169926
Note 2) FGA1 is water absorption resin powder / silica 1/1 (weight ratio) artificial seawater absorption ratio (30 minutes value), FGA absorbs silica-derived water absorption from FGA1 (water absorption ratio of 16.8 g / g) Artificial seawater absorption ratio of the water-absorbent resin powder itself corrected by subtracting (30 minutes value)
(Figure 1)
Figure 0006169926

図1は、同じ重合体での体積平均粒子径と微小粒度吸水倍率とを比較した図である(実施例3〜6と比較例3)。   FIG. 1 is a diagram comparing the volume average particle size and the fine particle size water absorption ratio of the same polymer (Examples 3 to 6 and Comparative Example 3).

(まとめ)
表1及び図1に示す通り、実施例1(FGA=21.9g/g)と比較例1(同12.4g/g)との対比、実施例2(FGA=39.2g/g)と比較例2(同33.0g/g)との対比、図1にも示す実施例3〜6(FGA=32.6〜37.0g/g)と比較例3(同21.2g/g)との対比から明らかなように、同じ吸水性樹脂であっても粉砕後の体積平均粒径が臨界的に1〜150μmでは吸水速度、吸水倍率(FGA)とも大きく向上することが判る。より細かい粒子径で吸水速度が向上することは周知(非特許文献1)であるが、体積平均粒子径1〜150μmで人工海水吸水倍率(FGA)が向上することは知られていない。
(Summary)
As shown in Table 1 and FIG. 1, a comparison between Example 1 (FGA = 21.9 g / g) and Comparative Example 1 (12.4 g / g), Example 2 (FGA = 39.2 g / g) Comparison with Comparative Example 2 (33.0 g / g), Examples 3 to 6 (FGA = 32.6 to 37.0 g / g) and Comparative Example 3 (21.2 g / g) also shown in FIG. As is clear from the comparison, it can be seen that even with the same water-absorbing resin, when the volume average particle diameter after pulverization is critically 1 to 150 μm, both the water absorption speed and the water absorption ratio (FGA) are greatly improved. It is well known that the water absorption speed is improved with a finer particle diameter (Non-patent Document 1), but it is not known that the artificial seawater absorption magnification (FGA) is improved with a volume average particle diameter of 1 to 150 μm.

本発明では特定粒度に微粉砕すること、特にポリスルホン酸系(さらにはAMPS系吸水性樹脂)を特定粒度まで微粉砕することで、吸水速度及び吸水倍率を向上し、ゴムとの複合化などに好適な吸水性樹脂を得ることができる。   In the present invention, by finely pulverizing to a specific particle size, in particular, by pulverizing a polysulfonic acid-based (or AMPS water-absorbing resin) to a specific particle size, the water absorption speed and the water absorption ratio are improved, and it is combined with rubber. A suitable water absorbent resin can be obtained.

Claims (11)

乾式粉砕機を用いて吸水性樹脂の乾燥重合体を粉砕する方法であって、少なくとも2種の形式の異なる衝撃式粉砕機を用い、第粉砕工程と、該第1粉砕工程とは異なる衝撃式粉砕機を用いる第2粉砕工程と、を有しており、該粉砕方法によって得られる粒子の体積平均粒子径が1〜150μmであり、
前記第1粉砕工程処理品から大粒子を除去する分級工程を更に有しており、この除去した大粒子を該第一粉砕工程で再粉砕する吸水性樹脂の粉砕方法。
A method of pulverizing a dry polymer of a water absorbent resin using a dry pulverizer, wherein at least two different types of impact pulverizers are used, the first pulverization step and the impact different from the first pulverization step. and possess a second milling step using equation pulverizer, the volume average particle diameter of the particles obtained by the pulverizing method is 1-150 [mu] m,
A method for pulverizing a water-absorbing resin, further comprising a classification step of removing large particles from the processed product in the first pulverization step, and re-pulverizing the removed large particles in the first pulverization step .
前記第1粉砕工程処理品を、前記分級工程で処理した後、前記第2粉砕工程処理を行う、請求項1に記載の粉砕方法。 After the first milling step treated product was treated with the classification step, the second milling step process, grinding method according to claim 1. 前記第1粉砕工程処理品の体積平均粒子径が1000μm以下であり、第2粉砕工程処理品の体積平均粒子径が150μm以下である、請求項1又は2に記載の粉砕方法。 The pulverization method according to claim 1 or 2, wherein the volume average particle size of the first pulverized step processed product is 1000 µm or less, and the volume average particle size of the second pulverized step processed product is 150 µm or less. 前記第1粉砕工程及び前記第2粉砕工程で用いられる粉砕機とは異なる形式の衝撃式粉砕機を用いて、前記第2粉砕工程処理品を粉砕する第3粉砕工程を有する、請求項1〜3のいずれか1項に記載の粉砕方法。   It has a 3rd crushing process which grinds the 2nd crushing process processed goods using an impact type crusher of a form different from a crusher used in the 1st crushing process and the 2nd crushing process. 4. The grinding method according to any one of 3 above. 前記衝撃式粉砕機の1種に流動層式粉砕機が用いられることを特徴とする、請求項1〜4のいずれか1項に記載の粉砕方法。 Wherein the fluidized-bed pulverizer is used one of the impact mill, grinding method according to any one of claims 1 to 4. 前記第1粉砕工程〜前記第3粉砕工程の少なくとも1つの粉砕工程において、粉砕室内に露点0℃以下の気体を供給する、請求項〜5のいずれか1項に記載の粉砕方法。 The pulverization method according to any one of claims 3 to 5, wherein a gas having a dew point of 0 ° C or lower is supplied into the pulverization chamber in at least one of the first pulverization step to the third pulverization step. 前記乾燥重合体を解砕した後に前記第1粉砕工程に供給される、請求項1〜6のいずれか1項に記載の粉砕方法。 The dried polymer is supplied to the first milling step after crushing, grinding method according to any one of claims 1-6. 前記第1粉砕工程への供給物の温度が100℃以下である、請求項1〜7のいずれか1項に記載の粉砕方法。   The pulverization method according to any one of claims 1 to 7, wherein a temperature of a supply to the first pulverization step is 100 ° C or lower. 吸水性樹脂の乾燥重合体が通気バンド式乾燥機で乾燥され、かつ前記粉砕工程前にブロック状乾燥物の粗粉砕工程(0次粉砕)が設けられてなる、請求項1〜8のいずれか1項に記載の粉砕方法。 Dry polymer of the water-absorbing resin is dried at flow band dryer, and formed by coarse grinding process of a block-like dry product (0-order pulverization) is provided in front of the first grinding step, of the preceding claims The grinding method according to any one of the above. 請求項1〜のいずれか1項に記載の粉砕方法を有する吸水性樹脂粒子の製造方法。 Method for producing a water-absorbent resin particles having a grinding method according to any one of claims 1-9. 前記吸水性樹脂が、下記吸水性樹脂A及び/又は吸水性樹脂Bを含む事を特徴とする請求項10に記載の製造方法。
吸水性樹脂A:中和率50モル%以上のポリアクリル酸(塩)系架橋重合体(アクリル酸以外の繰り返し単位は全体の0〜50モル%)が80質量%以上含まれている吸水性樹脂
吸水性樹脂B:スルホン酸基含有アクリルアミド単量体及びその塩を20〜90mol%、アクリル酸、アクリル酸塩のいずれか1種以上を80〜10mol%含むモノマー(その他単量体は全単量体中0〜50モル%)を共重合して得られる架橋重合体が80質量%以上含まれている吸水性樹脂。
The manufacturing method according to claim 10, wherein the water absorbent resin includes the following water absorbent resin A and / or water absorbent resin B.
Water-absorbing resin A: Water-absorbing water containing 80% by mass or more of polyacrylic acid (salt) -based crosslinked polymer having a neutralization rate of 50% by mol or more (repeating units other than acrylic acid are 0 to 50% by mol of the whole) Resin Water-absorbing resin B: Monomer containing 20 to 90 mol% of sulfonic acid group-containing acrylamide monomer and salt thereof and 80 to 10 mol% of one or more of acrylic acid and acrylate (other monomers are all A water-absorbent resin containing 80% by mass or more of a crosslinked polymer obtained by copolymerization of 0 to 50 mol% in the monomer.
JP2013180125A 2013-08-30 2013-08-30 Water-absorbing resin with excellent water-absorbing resin pulverization method and salt resistance Active JP6169926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013180125A JP6169926B2 (en) 2013-08-30 2013-08-30 Water-absorbing resin with excellent water-absorbing resin pulverization method and salt resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013180125A JP6169926B2 (en) 2013-08-30 2013-08-30 Water-absorbing resin with excellent water-absorbing resin pulverization method and salt resistance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017127034A Division JP6362284B2 (en) 2017-06-29 2017-06-29 Water-absorbent resin particles with excellent salt resistance

Publications (2)

Publication Number Publication Date
JP2015048386A JP2015048386A (en) 2015-03-16
JP6169926B2 true JP6169926B2 (en) 2017-07-26

Family

ID=52698676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013180125A Active JP6169926B2 (en) 2013-08-30 2013-08-30 Water-absorbing resin with excellent water-absorbing resin pulverization method and salt resistance

Country Status (1)

Country Link
JP (1) JP6169926B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102500922B1 (en) 2016-05-31 2023-02-16 바스프 에스이 A belt dryer arrangement for drying an aqueous polymer gel and comminuting the dry polymer gel to provide dry polymer particles and a process for drying an aqueous polymer gel and comminution of the dry polymer gel to provide dry polymer particles
WO2018174175A1 (en) * 2017-03-24 2018-09-27 住友精化株式会社 Method for producing water-absorbing resin
WO2020101287A1 (en) 2018-11-13 2020-05-22 주식회사 엘지화학 Method for preparing superabsorbent polymer
KR102566284B1 (en) 2018-11-14 2023-08-10 주식회사 엘지화학 Method of preparation for super absorbent polymer
WO2020149651A1 (en) * 2019-01-16 2020-07-23 주식회사 엘지화학 Preparation method of super absorbent polymer
EP3954667A4 (en) 2019-04-09 2023-01-04 Nippon Shokubai Co., Ltd. Additive for cement, cement admixture, cement composition, molded article, and strength improvement method for molded article
US20230016075A1 (en) * 2019-12-13 2023-01-19 Sumitomo Seika Chemicals Co., Ltd. Method for producing water-absorbent resin particles and water-absorbent resin particles
EP4293058A1 (en) 2021-02-15 2023-12-20 Nippon Shokubai Co., Ltd. Shrinkage reducing agent and cement composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188425A (en) * 1993-12-27 1995-07-25 Sanyo Chem Ind Ltd Resin composition and wall covering material
JP2843779B2 (en) * 1994-05-13 1999-01-06 株式会社日本触媒 Composition for water-swellable rubber and water-swellable rubber
JP3979724B2 (en) * 1997-06-18 2007-09-19 株式会社日本触媒 Method for producing dried product of water absorbent resin granulated product
JP4141526B2 (en) * 1998-04-07 2008-08-27 株式会社日本触媒 Method for producing water absorbent resin
JP4199679B2 (en) * 2004-01-07 2008-12-17 株式会社日本触媒 Water-absorbing resin composition and method for producing the same, and absorbent body and absorbent article using the same
JP5046522B2 (en) * 2005-02-15 2012-10-10 株式会社日本触媒 Water absorbent resin and method for producing the same

Also Published As

Publication number Publication date
JP2015048386A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP6169926B2 (en) Water-absorbing resin with excellent water-absorbing resin pulverization method and salt resistance
JP5718817B2 (en) Method for producing water absorbent resin powder
US9669385B2 (en) Superabsorbent polymer
JP4640923B2 (en) Method for producing particulate water-absorbing resin composition
JP6157853B2 (en) Polyacrylic acid water-absorbing resin and method for producing the same
KR102195097B1 (en) Polyacrylate super-absorbent polymer and manufacturing method therefor
WO2011115221A1 (en) Method of producing absorbent resin
JP6577572B2 (en) Method for producing particulate water-absorbing agent mainly composed of polyacrylic acid (salt) water-absorbing resin
EP2546286A1 (en) Method for manufacturing a water-absorbing resin
WO2014084281A1 (en) Method for producing polyacrylic acid (salt)-based water-absorbing resin
JP6362284B2 (en) Water-absorbent resin particles with excellent salt resistance
JPWO2011090130A1 (en) Method for producing water absorbent resin
US11680142B2 (en) Process for producing superabsorbent polymer particles
CN111511876B (en) Water-absorbent resin powder for heat-generating element composition, and heat-generating element composition
EP3243843B1 (en) Method for preparing superabsorbent polymer treated with water dispersion solution containing microparticles
KR102528637B1 (en) Manufacturing method of superabsorbent
JP2005081204A (en) Method for manufacturing water absorbing resin composition
JP7520450B2 (en) Manufacturing method of superabsorbent resin
JP2023540766A (en) Super absorbent resin and its manufacturing method
JP2023540592A (en) Manufacturing method of super absorbent resin
JP2023543307A (en) Manufacturing method of super absorbent resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170629

R150 Certificate of patent or registration of utility model

Ref document number: 6169926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150