WO2020149651A1 - Preparation method of super absorbent polymer - Google Patents

Preparation method of super absorbent polymer Download PDF

Info

Publication number
WO2020149651A1
WO2020149651A1 PCT/KR2020/000761 KR2020000761W WO2020149651A1 WO 2020149651 A1 WO2020149651 A1 WO 2020149651A1 KR 2020000761 W KR2020000761 W KR 2020000761W WO 2020149651 A1 WO2020149651 A1 WO 2020149651A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
meth
polymer
acrylate
grinding
Prior art date
Application number
PCT/KR2020/000761
Other languages
French (fr)
Korean (ko)
Inventor
우희창
송종훈
김기철
민윤재
김재율
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200005490A external-priority patent/KR20200089236A/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2020149651A1 publication Critical patent/WO2020149651A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Definitions

  • the present invention relates to a method for producing a super absorbent polymer capable of suppressing and reducing the generation of fine powder.
  • Super Absorbent Polymer is a synthetic polymer material that has the ability to absorb about 500 to 1,000 times its own weight.Sam (Super Absorbency Material), AGM (Absorbent Gel) for each developer Material).
  • the superabsorbent resin as described above began to be put into practical use as a sanitary tool, and now, in addition to sanitary products such as paper diapers for children, soil repair agents for horticulture, civil engineering, construction water supply materials, nursery sheets, freshness retention agents in the food distribution field, and It is widely used as a material for poultice. In most cases, these superabsorbent polymers are widely used in the field of hygiene materials such as diapers and sanitary napkins.
  • the superabsorbent polymer is prepared through a process of preparing a hydrogel polymer using a water-soluble ethylenically unsaturated monomer, followed by drying and pulverization. In this process, particles having a particle diameter of 150 ⁇ m or less are inevitably generated. Is becoming. These fine powders are known to occur at a rate of about 20 to 30% during the pulverization or transfer process during the manufacturing process of the super absorbent polymer. Since the fine powder affects the pressure absorbing capacity (AUP) and permeability of the super absorbent polymer, it is difficult to produce a super absorbent polymer having both properties simultaneously increased. For this reason, during the manufacturing process of the super absorbent polymer, particularly in the classification process, these fine powders are separated to produce the super absorbent polymer only with the remaining polymer particles.
  • AUP pressure absorbing capacity
  • permeability of the super absorbent polymer it is difficult to produce a super absorbent polymer having both properties simultaneously increased. For this reason, during the manufacturing process of the super absorb
  • the milling of the roll mill is excessively carried out to realize the particle size distribution, and accordingly, the fine powder of less than 150 ⁇ m is greatly increased. As a result, the ratio of fines recycling in the process is maintained. Therefore, the method has a problem in that the load of the drying/grinding/classifying process increases and the production amount decreases.
  • the present invention is to provide a method for manufacturing a superabsorbent polymer and an apparatus for producing a superabsorbent polymer capable of reducing and suppressing the generation of fine powder while maintaining excellent properties of the superabsorbent polymer.
  • the present invention (A) in the presence of an internal crosslinking agent and a polymerization initiator, at least a part of the polymerization step of crosslinking polymerization of a water-soluble ethylenically unsaturated monomer having an acidic group neutralized to form a hydrogel polymer; (B) a drying step of drying the hydrogel polymer to prepare a dry polymer; And (C) a grinding step of grinding the dry polymer;
  • the (C) grinding step includes (C1) a first grinding step and (C2) a second grinding step to pulverize the dry polymer, and (C2) the second grinding step is (C21) the An abnormal particle classification step of classifying the primary pulverized dry polymer into'abnormal particles' having a particle diameter equal to or larger than the target particle diameter and'normal particles' having a particle diameter smaller than the target particle diameter; And (C22) provides a method for producing a super absorbent polymer, comprising the step of pulverizing the abnormal particles, collecting and crushing
  • the present invention is an input unit 100 to which the dry polymer is added; A crushing unit 200 for pulverizing the introduced dry polymer; And an outlet portion 300 for discharging the pulverized dry polymer particles;
  • the crushing unit 200 includes a first crushing unit 210 and a second crushing unit 220 for pulverizing the dried polymer, and the second crushing unit 220 is the first An abnormal particle classifying portion 221 for classifying the dried polymer pulverized in the primary crushing unit 210 into'abnormal particles' having a particle diameter equal to or larger than the target particle diameter and'normal particles' having a particle diameter smaller than the target particle diameter; And an abnormal particle pulverization portion 222 that collects only the “abnormal particles” and pulverizes again.
  • polymer or “polymer” as used in the specification of the present invention means that the water-soluble ethylenically unsaturated monomer is in a polymerized state, and may cover all water content ranges or particle size ranges.
  • a polymer having a water content (moisture content) of about 40% by weight or more as a state after drying after polymerization may be referred to as a hydrogel polymer.
  • “superabsorbent polymer” means the polymer or base resin itself depending on the context, or additional processes for the polymer or the base resin, such as surface crosslinking, fine powder reassembly, drying, grinding, classification, etc. It is used to cover everything that has been made suitable for commercialization.
  • the (C) grinding step includes (C1) a first grinding step and (C2) a second grinding step to pulverize the dry polymer, and (C2) the second grinding step is (C21) the An abnormal particle classification step of classifying the primary pulverized dry polymer into'abnormal particles' having a particle diameter equal to or larger than the target particle diameter and'normal particles' having a particle diameter smaller than the target particle diameter; And (C22) a method for producing a super absorbent polymer, comprising the steps of pulverizing the abnormal particles, collecting
  • the method for producing a superabsorbent polymer according to the present invention in the process of forming and drying a hydrogel polymer, pulverizing and then classifying the dried dry polymer, crushing and classifying again only for particles having a certain size or more after the crushing step, preferably By pulverizing and classifying repeatedly about 2 or more times, or 2 to 5 times, or 2 to 4 times, or 3 to 4 times, particles of a certain size or less are prevented from being crushed together, and the particle size is about 150 ⁇ m. It is possible to minimize the amount of the following fine powder.
  • the present invention after pulverization, since the classification process using a classifier is essential, it is possible not only to reduce the amount of fines generated, but also to control the particle size according to the particle size in the classifier, so that the particle size of the final product can be easily adjusted. It is possible to provide a method for producing a superabsorbent polymer having physical properties equal to or higher than those of the prior art.
  • the present invention reduces the amount of fines generated by controlling the degree of separation by setting the separation target according to the particle size of the classifier during crushing, that is, the target particle size, thereby reducing the load of the fine powder reassembly, drying, pulverization and classification process.
  • the separation target according to the particle size of the classifier during crushing, that is, the target particle size
  • the target target particle size means a particle size that is a standard for classification for separating normal particles and abnormal particles in the abnormal particle classification step of the second grinding step.
  • the particles in a specific size range are classified through classification in each crushing step, and small-sized particles (for example, about By separating particles having a particle diameter of 200 ⁇ m or less, or about 150 ⁇ m or less), it is possible to selectively exclude such particles from being re-introduced into grinding.
  • the present invention is to arbitrarily select the size of the classifier used in this process according to the target particle size, easily adjust the particle size of the particles used in the final product to a specific range, thereby changing the properties of the super absorbent polymer. Can.
  • the polymerization step is a step of forming a hydrogel polymer, and is a step of crosslinking and polymerizing a monomer composition comprising an internal crosslinking agent and a water-soluble ethylenically unsaturated monomer having at least a partially neutralized acidic group.
  • the water-soluble ethylenically unsaturated monomer constituting the first crosslinked polymer may be any monomer commonly used in the production of super absorbent polymers.
  • the water-soluble ethylenically unsaturated monomer may be a compound represented by Formula 1 below:
  • R 1 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond
  • M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt.
  • the monomer may be at least one selected from the group consisting of acrylic acid, methacrylic acid, and monovalent metal salts, divalent metal salts, ammonium salts, and organic amine salts of these acids.
  • acrylic acid or a salt thereof is used as the water-soluble ethylenically unsaturated monomer, it is advantageous to obtain a superabsorbent polymer with improved absorbency.
  • the monomers include maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryloylethanesulfonic acid, 2-(meth)acryloylpropanesulfonic acid or 2-(metha) )Acrylamide-2-methyl propane sulfonic acid, (meth)acrylamide, N-substituted (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, methoxypolyethylene Glycol (meth)acrylate, polyethylene glycol (meth)acrylate, (N,N)-dimethylaminoethyl (meth)acrylate, (N,N)-dimethylaminopropyl (meth)acrylamide, and the like can be used.
  • the water-soluble ethylenically unsaturated monomer has an acidic group, and at least a portion of the acidic group may be neutralized.
  • the monomer may be partially neutralized with an alkali material such as sodium hydroxide, potassium hydroxide or ammonium hydroxide.
  • the degree of neutralization of the monomer may be about 40 to about 95 mol%, or about 40 to about 80 mol%, or about 45 to about 75 mol%.
  • the range of the degree of neutralization may vary depending on the final physical properties, but if the degree of neutralization is too high, the neutralized monomer may be precipitated and polymerization may be difficult to proceed smoothly. It may exhibit properties such as elastic rubber that are difficult to handle.
  • the concentration of the water-soluble ethylenically unsaturated monomer in the monomer composition may be appropriately adjusted in consideration of polymerization time and reaction conditions, and preferably about 20 to about 90% by weight, or about 40 to about 65% by weight Can.
  • This concentration range may be advantageous for controlling the grinding efficiency when pulverizing the polymer, which will be described later, while eliminating the need to remove unreacted monomers after polymerization by using the gel effect phenomenon that occurs in the polymerization reaction of a high concentration aqueous solution.
  • the concentration of the monomer is too low, the yield of the super absorbent polymer may be lowered.
  • the concentration of the monomer is too high, a part of the monomer may be precipitated or there may be a process problem such as poor crushing efficiency when pulverizing the polymerized hydrogel polymer, and physical properties of the super absorbent polymer may be deteriorated.
  • the internal crosslinking agent any compound can be used as long as it allows introduction of crosslinking during polymerization of the water-soluble ethylenically unsaturated monomer.
  • the internal crosslinking agent is N,N'-methylenebisacrylamide, trimethylolpropane tri(meth)acrylate, ethylene glycol di(meth)acrylate, polyethylene glycol (meth)acrylate, propylene glycol di( Meth)acrylate, polypropylene glycol (meth)acrylate, butanediol di(meth)acrylate, butylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, hexanediol di(meth) )Acrylate, triethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, dipentaerythritol pentaacrylate,
  • the internal crosslinking agent may be added in a concentration of about 0.001 to about 1% by weight relative to the monomer composition. That is, when the concentration of the internal crosslinking agent is too low, the absorption rate of the resin is lowered and the gel strength may be weakened, which is not preferable. Conversely, when the concentration of the internal cross-linking agent is too high, the absorbency of the resin is lowered, which may make it undesirable as an absorber.
  • a polymerization initiator generally used in the production of a super absorbent polymer may be included.
  • a thermal polymerization initiator or a photo polymerization initiator may be used depending on the polymerization method, and a thermal polymerization initiator may be used.
  • a thermal polymerization initiator may be additionally included.
  • thermal polymerization initiator one or more compounds selected from the group consisting of a persulfate-based initiator, an azo-based initiator, hydrogen peroxide, and ascorbic acid may be used.
  • a persulfate-based initiator sodium persulfate (Na 2 S 2 O 8 ), potassium persulfate (K 2 S 2 O 8 ), ammonium persulfate (A mmonium persulfate; (NH 4 ) 2 S 2 O 8 ) and the like.
  • 2,2-azobis-(2-amidinopropane) dihydrochloride (2,2-azobis(2-amidinopropane) dihydrochloride), 2,2-azobis-(N, N-dimethylene)isobutyramidine dihydrochloride (2,2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride), 2-(carbamoyl azo)isobutyronitrile (2-(carbamoylazo)isobutylonitril), 2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride), 4, For example, 4-azobis-(4-cyanovaleric acid) (4,4-azobis-(4-cyanovaleric acid)).
  • thermal polymerization initiators are disclosed on page 203 of the Odian book “Principle of Polymerization (Wiley, 1981)", which can be referred to.
  • ascorbic acid and potassium persulfate are used as the thermal polymerization initiator.
  • photo polymerization initiator examples include, for example, benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal ( One or more compounds selected from the group consisting of Benzyl Dimethyl Ketal, acyl phosphine and alpha-aminoketone may be used.
  • acylphosphine a commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide) can be used.
  • More various photopolymerization initiators are disclosed on page 115 of Reinhold Schwalm's book "UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)", which can be referred to.
  • the polymerization initiator may be added in a concentration of about 0.001 to 1% by weight relative to the monomer composition. That is, when the concentration of the polymerization initiator is too low, the polymerization rate may be slow, and residual monomers in the final product may be extracted in large quantities, which is not preferable. Conversely, when the concentration of the polymerization initiator is higher than the above range, the polymer chains forming the network are shortened, and thus the content of the water-soluble component is increased and the pressure absorption capacity is lowered, so that the physical properties of the resin may be deteriorated, which is not preferable.
  • the polymerization step can be carried out in the presence of a blowing agent.
  • the foaming agent foams during polymerization to form pores in the hydrogel polymer to increase the surface area.
  • the foaming agent may be an inorganic foaming agent or an organic foaming agent.
  • inorganic blowing agents include sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, calcium bicarbonate, and calcium bicarbonate. , Magnesium bicarbonate or magnesium carbonate.
  • examples of the organic blowing agent are azodicarbonamide (ADCA), dinitroso pentamethylene tetramine (DPT), p,p'-oxybisbenzenesulfonylhydrazide (p,p' -oxybisbenzenesulfonylhydrazide (OBSH), and p-toluenesulfonyl hydrazide (TSH).
  • ADCA azodicarbonamide
  • DPT dinitroso pentamethylene tetramine
  • DPT dinitroso pentamethylene tetramine
  • p,p'-oxybisbenzenesulfonylhydrazide p,p' -oxybisbenzenesulfonylhydrazide
  • TSH p-toluenesulfonyl hydrazide
  • the blowing agent is preferably used in an amount of about 0.001 to about 1% by weight based on the weight of the water-soluble ethylenically unsaturated monomer.
  • the amount of the blowing agent exceeds about 1% by weight, the pores become too large, the gel strength of the super absorbent polymer falls and the density becomes small, which may cause problems in distribution and storage.
  • the monomer composition may further include additives such as a surfactant, a thickener, a plasticizer, a storage stabilizer, and an antioxidant, if necessary.
  • additives such as a surfactant, a thickener, a plasticizer, a storage stabilizer, and an antioxidant, if necessary.
  • such a monomer composition may be prepared in the form of a solution in which a raw material such as the above-described monomer is dissolved in a solvent.
  • a raw material such as the above-described monomer is dissolved in a solvent.
  • a usable solvent any material that can dissolve the aforementioned raw materials can be used without limitation of its configuration.
  • the solvent includes water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate , Methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene, xylene, butyrolactone, carbitol, methyl cellosolve acetate, N,N-dimethylacetamide, or mixtures thereof, and the like can be used.
  • the formation of a hydrogel polymer through polymerization of the monomer composition may be performed by a conventional polymerization method, and the process is not particularly limited.
  • the polymerization method is largely divided into thermal polymerization and photo polymerization according to the type of polymerization energy source.
  • the thermal polymerization is performed, the polymerization method may be performed in a reactor having a stirring axis such as a kneader, and photo polymerization In the case of proceeding, it may proceed in a reactor equipped with a movable conveyor belt.
  • a hydrogel polymer may be obtained by introducing the monomer composition into a reactor such as a kneader equipped with a stirring shaft, and supplying hot air to it or heating the reactor to thermally polymerize it.
  • a reactor such as a kneader equipped with a stirring shaft
  • the hydrogel polymer discharged to the reactor outlet may be obtained as particles of several millimeters to several centimeters.
  • the resulting hydrogel polymer can be obtained in various forms depending on the concentration and injection speed of the monomer composition to be injected, and a hydrogel polymer having a particle diameter of 2 to 50 mm (average weight) is usually obtained.
  • a hydrogel polymer in the form of a sheet may be obtained.
  • the thickness of the sheet may vary depending on the concentration and injection rate of the monomer composition to be injected. In order to ensure the production speed and the like while allowing the entire sheet to be evenly polymerized, it is usually adjusted to a thickness of 0.5 to 5 cm. desirable.
  • the normal water content of the hydrogel polymer obtained in this way may be about 40 to about 80% by weight.
  • water content in the present specification refers to a value obtained by subtracting the weight of the polymer in the dry state from the weight of the water-containing gel polymer as the amount of moisture occupied with respect to the total weight of the hydrogel polymer. Specifically, it is defined as a calculated value by measuring a weight loss due to evaporation of water in the polymer during the drying process by raising the temperature of the polymer through infrared heating.
  • the drying condition is a method of raising the temperature from room temperature to about 180°C and then maintaining it at about 180°C.
  • the total drying time is set to about 20 minutes, including about 5 minutes in the temperature rising step, to measure the water content.
  • the drying step is a step of drying the hydrogel polymer prepared in the polymerization step to make a dry polymer.
  • the hydrogel polymer having a water content of about 40 to about 80% by weight is pulverized in a hydrogel state, as described above, to improve drying efficiency.
  • a gel grinding or gel disintegration step, which promotes improvement, may optionally be performed.
  • Such gel grinding, or gel disintegration is a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, and a cutter mill.
  • Disc mill, shred crusher, crusher, chopper, and disc cutter may be performed using any one selected from the group of grinding machines.
  • the gel grinding step may be performed such that the particle diameter of the hydrogel polymer after grinding is about 2 mm to about 10 mm. It is not technically easy to adjust the particle size after gel grinding to be small due to the high water content of the hydrogel polymer, and when the particle diameter is too small after pulverization, a phenomenon that the pulverized hydrogel polymers aggregate again may appear. On the other hand, if the particle size is too large after gel grinding, the effect of increasing the efficiency of the subsequent drying step may be insignificant.
  • the hydrous gel-like polymer that has been subjected to gel grinding as described above or has not undergone a gel grinding step is introduced into a drying step and dried.
  • the drying temperature of the drying step may be about 50 to about 250 °C. If the drying temperature is too low, a drying time may be too long, and a problem of deterioration in physical properties of the superabsorbent polymer to be formed may occur. When the drying temperature is too high, only the polymer surface is dried due to a fast drying rate, which is achieved later. Fine powder may be generated in the pulverization process, and there is a fear that the physical properties of the superabsorbent polymer finally formed may be deteriorated.
  • the drying may be carried out at a temperature of about 150 to about 200 °C, more preferably at a temperature of about 160 to about 190 °C.
  • process efficiency and the like may be considered, and may be performed for about 20 minutes to about 15 hours, but the present invention is not necessarily limited thereto.
  • the device used in the drying may be selected and used without limitation of its configuration.
  • the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation.
  • the water content of the polymer after the drying step, that is, the dry polymer may be from about 0.05 to about 10% by weight.
  • the crushing step is a step of pulverizing the dried polymer dried in the drying step to prepare a base resin in the form of particles, and may be divided into a first crushing step and a second crushing step.
  • the present invention in order to reduce the generation of fine powder, it is characterized in that, among the particles pulverized through the first pulverization, only abnormal particles having a particle diameter equal to or larger than a target particle diameter are again pulverized.
  • the first grinding may correspond to coarse grinding
  • the second grinding may correspond to fine grinding
  • both the first pulverization and the second pulverization may correspond to a fine grinding process.
  • both the first and second pulverization correspond to fine grinding
  • it may be further performed by further comprising a separate coarse pulverization process prior to the first pulverization.
  • the particles of the pulverized base resin after co-grinding may be preferable in terms of the efficiency of crushing in a particle size range of about 800 ⁇ m to about 5000 ⁇ m.
  • the present invention can be carried out using a continuous roll mill and classifier.
  • the grinding step may be performed using a single roll mill, or a multi-stage roll mill, and a classifier.
  • the classifier is provided with a classifier having the same size as the target particle size, and performs the primary classification with'normal particles' having a particle size larger than the target particle size and'normal particles' having a particle diameter less than the target particle size. do.
  • the target target particle size as described above, in the second particle classification step of the second pulverization step, means a particle diameter that is a reference for classification for separating normal particles and abnormal particles, from about 200 to about 850 It can be selected in the range of ⁇ m. Preferably, it may be selected from a range of about 200 ⁇ m or more, or about 300 ⁇ m or more, or about 420 ⁇ m or more, about 850 ⁇ m or less, or about 800 ⁇ m or less, or about 750 ⁇ m or less, or about 700 ⁇ m or less.
  • the pulverization conditions in each pulverization step can be relaxed and proceed. Accordingly, it is possible to increase the'ratio of particles having a relatively large particle size', which is a target in each grinding step, and as a result, the generation of fine powder in each grinding step can be further reduced.
  • the proportion of abnormal particles having a particle diameter equal to or greater than the target target particle diameter is about 60 wt% or more, or about 80 wt%, relative to the total weight of the whole crushed particles
  • the pulverization conditions of the first pulverization may be adjusted to be greater than or equal to or greater than about 90 wt%, less than or equal to about 99 wt%, or less than about 95 wt%.
  • the pulverization conditions of the first pulverization can be adjusted to be 5.0 wt% or less, or about 1.0 wt% or less.
  • the fine particles having a particle diameter of less than about 150 ⁇ m or less than about 180 ⁇ m among the particles prepared in the grinding step may be discarded or reassembled by adding water to circulate to the drying step.
  • the second pulverization step is a step of classifying and pulverizing the first pulverized particles in the pulverization step. In order to distinguish it from the first pulverization step described above, it is referred to as'secondary pulverization' in this specification. .
  • the second pulverization may refer to the first pulverization step of pulverization.
  • the first pulverization is the first pulverization step of the fine grinding
  • the second pulverization means the second pulverization stage of the fine grinding.
  • the second grinding process is performed at least once, or at least twice, or 2 to 5 times, or 3 to 4 times, and by using the grinder and classifier together in each grinding step, the target particle size
  • the smaller particles can be prevented from being further crushed together with particles larger than the target particle size, thereby reducing the generation of fines.
  • the first pulverization corresponds to coarse pulverization
  • the first and second angular crushing steps of the present invention use a continuous multi-stage roll mill, or a continuous single roll mill, wherein the sequential roll mill is the bottom of the crushing stage or the last stage.
  • the sequential roll mill is the bottom of the crushing stage or the last stage.
  • the present invention can be carried out by using the multi-stage roll as described above, but the gap width of each stage of the roll forming the multi-stage roll is different from the top to the bottom.
  • the second grinding it is preferable to use a device having a narrower roll gap width than the first grinding, and the second grinding is repeated two or more times. In the case, it is preferable to use a narrower roll gap width as the order is added.
  • the gap width may refer to the distance between the rolls in the configuration of each stage constituting the multi-stage roll.
  • stepwise narrowing the distance between the roll mills to increase the degree of crushing, normal particles among the crushed products crushed in each step do not proceed to further grinding, only additional grinding By putting in the step, excessive pulverization can be reduced, and accordingly, the amount of fine powder can be reduced.
  • the roll used for grinding may consist of two.
  • the gap width refers to the distance between two rolls. The narrower the gap width of the roll, the smaller the size distribution of the pulverized particles.
  • the gap width of the upper roll mill can be fixedly positioned to be, for example, about 4.0 to about 5.0 mm, and the gap width of the lower roll mill is, for example, about 1.5 mm It can be made as follows. That is, it is preferable to perform grinding and classification while gradually reducing the width of the roll gap by the second number of times of grinding. For example, it is preferable to adjust the gap width of the single roll mill forming the bottom while narrowing the gap width by about 0.3 mm to about 0.6 mm, depending on the number of times the second milling is performed.
  • a re-classification step may be added to classify the particles into particles having a particle diameter of about 150 to about 850 ⁇ m again and smaller particles, among which about 150 to Particles having a particle diameter of about 850 ⁇ m can be used as the final product.
  • it may include a step of separating particles having a particle diameter of less than 150 ⁇ m, that is, fine particles or fine powder, re-assembled by adding water, and circulating to the drying step.
  • the reassembly method may be performed according to a method well known in the art, but is not limited to the method.
  • the surface of the single roll mill may exhibit a corrugated roll surface, but is not limited thereto.
  • the rotational speed of a single roll mill constituting each stage may be 2 m/s to 15 m/s.
  • the present invention may include a step of crosslinking the surface of the prepared particles as necessary.
  • the present invention can use the normal particles obtained through the above-described method as a base resin powder. Therefore, the present invention may further include forming a surface crosslinking layer by further crosslinking the surface of the base resin powder in the presence of a surface crosslinking agent.
  • the step of heat-treating the prepared particles may further include surface crosslinking.
  • the surface crosslinking solution may include any one or more surface crosslinking agents selected from the group consisting of compounds having two or more epoxy rings, and compounds having two or more hydroxys.
  • the surface crosslinking solution includes both compounds having two or more epoxy rings and compounds having two or more hydroxys.
  • the surface crosslinking solution contains a compound having two or more epoxy rings and a compound having two or more hydroxy groups in a ratio of 1:1.1 to 1:5.
  • Examples of the compound having two or more epoxy rings ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl Diyl ether, 1,4-butanediol diglycidyl ether, 1,4-cyclohexanedimethanol diglycidyl ether, hexahydrophthalic anhydride diglycidyl ether, neopentyl glycol diglycidyl ether, And at least one compound selected from the group consisting of bisphenol a diglycidyl ether and N,N-diglycidyl aniline.
  • ethylene glycol diglycidyl ether is used.
  • propylene glycol is used.
  • the surface crosslinking agent is preferably used in an amount of 1 part by weight or less based on 100 parts by weight of the base resin.
  • the amount of the surface crosslinking agent used means the total amount of the surface crosslinking agent when two or more are used.
  • the surface crosslinking agent is preferably used in an amount of 0.01 parts by weight or more, 0.02 parts by weight or more, 0.03 parts by weight or more, 0.04 parts by weight or more, or 0.05 parts by weight or more based on 100 parts by weight of the base resin.
  • the surface crosslinking solution is water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, Methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene, xylene, butyrolactone, carbitol, methyl cellosolve acetate and N, It may further include one or more solvents selected from the group consisting of N-dimethylacetamide. Preferably, water is included. The solvent may be used in 0.5 to 10 parts by weight relative to 100 parts by weight of the base resin powder.
  • the surface crosslinking solution may further include aluminum sulfate.
  • the aluminum sulfate may be included in 0.02 to 0.3 parts by weight based on 100 parts by weight of the base resin powder.
  • the surface crosslinking solution may include an inorganic filler.
  • the inorganic filler may include silica, aluminum oxide, or silicate.
  • the inorganic filler may be included in an amount of 0.01 to 0.5 parts by weight based on 100 parts by weight of the base resin powder.
  • the surface crosslinking solution may further include a thickener.
  • a thickener When the surface of the base resin powder is further crosslinked in the presence of a thickener in this way, deterioration in physical properties can be minimized even after grinding.
  • one or more selected from polysaccharides and hydroxy-containing polymers may be used as the thickener.
  • the polysaccharide a gum-based thickener and a cellulose-based thickener may be used.
  • the gum-based thickener examples include xanthan gum, arabic gum, karaya gum, tragacanth gum, ghatti gum, guar gum (guar gum), locust bean gum (locust bean gum) and silylium seed gum, and the like
  • specific examples of the cellulose-based thickener include hydroxypropyl methyl cellulose, carboxymethyl cellulose, and methyl cellulose , Hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxyethylmethylcellulose, hydroxymethylpropylcellulose, hydroxyethylhydroxypropylcellulose, ethylhydroxyethylcellulose and methylhydroxypropylcellulose Can.
  • specific examples of the hydroxy-containing polymer include polyethylene glycol and polyvinyl alcohol.
  • the surface crosslinking solution and the base resin are mixed in a reaction tank, a method of spraying a surface crosslinking solution on the base resin, and the surface resin and the surface crosslinking in a continuously operated mixer.
  • a method of continuously supplying and mixing the liquid may be used.
  • the surface crosslinking may be performed under a temperature of 100 to 250°C, and may be continuously performed after the drying and pulverizing steps proceeding at a relatively high temperature. At this time.
  • the surface crosslinking reaction may be performed for 1 to 120 minutes, or 1 to 100 minutes, or 10 to 60 minutes. That is, while inducing a minimum amount of the surface crosslinking reaction, the polymer particles may be damaged during excessive reaction to prevent the physical properties from being deteriorated, and thus the conditions of the surface crosslinking reaction may be performed.
  • the input unit 100 to which the dry polymer is introduced A crushing unit 200 for pulverizing the introduced dry polymer; And an outlet portion 300 for discharging the pulverized dry polymer particles;
  • the crushing unit 200 includes a first crushing unit 210 and a second crushing unit 220 for pulverizing the dried polymer, and the second crushing unit 220 is the first An abnormal particle classifying portion 221 for classifying the dried polymer pulverized in the primary crushing unit 210 into'abnormal particles' having a particle diameter equal to or larger than the target particle diameter and'normal particles' having a particle diameter smaller than the target particle diameter; And an abnormal particle pulverization portion 222 that collects only the “abnormal particles” and crushes them again.
  • FIG. 1 shows a super absorbent fabrication apparatus according to an embodiment of the present invention.
  • the input unit 100 is introduced to the dry polymer;
  • the crushing unit 200 includes a first crushing unit 210 and a second crushing unit 220 for pulverizing the dried polymer, and the second crushing unit 220 is the first An abnormal particle classifying portion 221 for classifying the dried polymer pulverized in the primary crushing unit 210 into'abnormal particles' having a particle diameter equal to or larger than the target particle diameter and'normal particles' having a particle diameter smaller than the target particle diameter; And it can be seen that it comprises an abnormal particle crushing portion 222, which collects only the'abnormal particles' and crushes it again.
  • the second pulverization unit includes one or more or two or more.
  • the crushing unit includes a roll mill, and the roll gap width in the roll mill forming each stage included in the first crushing unit and the second crushing unit has a structure that becomes narrower from top to bottom. It may be preferable, and if the second pulverization part is included in two or more, it may also be desirable to have a structure in which the width of the roll gap in the roll mill forming each stage becomes narrower as the order is added.
  • abnormal particle classification portion may be located at the bottom of each stage single roll mill.
  • the base resin dried through the input unit 100 is introduced, and is moved to the first crushing unit 210.
  • the second pulverization unit is an abnormality in which the dry polymer pulverized in the first pulverization unit 210 is classified into'abnormal particles' having a particle diameter equal to or larger than a target particle diameter and'normal particles' having a particle diameter smaller than a target particle diameter. It includes a particle classification portion 221, and such a classification portion may be specifically configured in the form of a classification body.
  • the abnormal particle classification part 221 In the case of abnormal particles, through the abnormal particle classification part 221, only'abnormal particles' are collected and crushed again, to the abnormal particle crushing part 222 It is injected, and in the case of normal particles, it passes directly through the particle classification portion 221 in the form of a sieve, and is moved to the discharge portion.
  • the abnormal particles introduced into the abnormal particle crushing portion 222 are again crushed by a roll mill.
  • the base resin particles pulverized again in the abnormal particle crushing portion 222 again pass through the abnormal particle classification portion 221, in which, in the case of abnormal particles, only ⁇ abnormal particles'' are collected and crushed again, 222), and in the case of normal particles, may pass directly through the particle classification portion 221 in the form of a sieve, and may be moved to the discharge portion.
  • the second crushing unit may include one or more.
  • the present invention in the process of forming a hydrogel polymer to form a super absorbent polymer, and then classifying it after drying, pulverize large particles of a certain size or more, and filter particles of a certain size or less through classification after each step to filter the particles It can block crushing and minimize the formation of particles of 150 ⁇ m or less.
  • the present invention can be repeated several times to change the particle size of the final superabsorbent polymer product by varying the particle size of the classification after each step of pulverization and at the time of classification.
  • the superabsorbent polymer production method according to the present invention while implementing a narrow particle size distribution in the grinding process of the dried polymer, reducing the amount of fine powder, it is possible to reduce the load of the fine powder reassembly, drying, grinding and classification process.
  • FIG. 1 schematically shows an apparatus for manufacturing a super absorbent polymer according to an embodiment of the present invention.
  • the monomer composition was supplied at a speed of 500 to 2000 mL/min on a rotating conveyor belt in which a belt of 10 cm in width and 2 m in length continuously moves at a speed of 50 cm/min. Then, simultaneously with the supply of the monomer composition, irradiated with ultraviolet light having an intensity of 10 mW/cm 2 , a polymerization reaction was performed for 60 seconds to prepare a hydrogel polymer.
  • the hydrogel polymer having the polymerization reaction completed is cut to a size of 0.1 to 1.0 cm ⁇ 0.1 to 1.0 cm through a screw-type extruder (meat chopper: hole size 16 mm) mounted inside the cylindrical grinder, and an air-flow oven is used. And dried at 195°C for 40 minutes.
  • Grinding stage primary grinding (including coarse grinding) and classification stage
  • the dried polymer was ground using a two-stage roll mill (GRAN-U-LIZERTM, MPE). After grinding, the grinding conditions were adjusted so that the particle ratio of 600 ⁇ m or more became 90% or more.
  • the pulverized polymer particles were classified using a classifying sieve, and then separated into particles of 600 ⁇ m or more and particles of less than 600 ⁇ m.
  • the standards of classifiers are classified using 4750 ⁇ m, 3350 ⁇ m, 2000 ⁇ m, 850 ⁇ m, 710 ⁇ m, 600 ⁇ m, 425 ⁇ m, 300 ⁇ m, 180 ⁇ m, and 150 ⁇ m pan based on ASTM standards. After pulverization, the particle size of the particles was measured.
  • the roll gap width of the top roll was about 5.0 mm, and the roll gap width of the bottom roll was about 4.0 mm.
  • particles having a particle diameter of 600 ⁇ m or more among the particles that were first coarsely pulverized in the above step were pulverized using a single roll mill.
  • the pulverized particles were separated into particles having a particle diameter of 600 ⁇ m or more (ie, abnormal particles) and particles having a particle diameter of less than 600 ⁇ m (ie, normal particles) using a classifier disposed at the rear end.
  • the normal particles were discharged as they were, and only the abnormal particles were selected, and then put again in a single roll mill to perform grinding.
  • the pulverized particles were separated into abnormal particles having a particle diameter of 600 ⁇ m or more and normal particles having a particle diameter of less than 600 ⁇ m through a classifier placed at the rear end of the roll mill.
  • the normal particles were discharged as they were, and only the abnormal particles were selected, and then again put into a single roll mill to perform grinding.
  • the crushing was repeated three times and the classification process was repeated two times.
  • the roll gap width of the single roll mill was 1.0 mm, 0.4 mm, and again 0.19 mm. .
  • the particles collected in the above are classified by a standard network of ASTM standard by a conventional method, to separate coarse powder having a particle diameter of 850 ⁇ m or more and fine powder having a particle size of 150 ⁇ m or less, and 150 ⁇ m or more and 850 as particles for product production. Only particles smaller than ⁇ m were selected.
  • Example 1 in the fine grinding and classifying step, the target particle size was set to 425 ⁇ m, not 600 ⁇ m, and the roll gap width of the single roll mill was 1.0 mm, 0.4 mm, and again 0.17 mm in three pulverization processes. , It proceeded in the same manner as in Example 1, except that the width of the roll gap was narrowed according to the number of times of each progress.
  • Example 1 in the pulverizing and classifying step, two pulverizing and one classifying processes were repeated, and the roll gap width of a single roll mill was 0.6 mm and 0.16 mm in each of the two pulverizing processes. Accordingly, the procedure was the same as in Example 1, except that the width of the roll gap was narrowed.
  • Example 1 in the pulverizing and classifying step, four pulverizing and three classifying processes were repeated, and the roll gap width of a single roll mill in two pulverizing processes was 1.5 mm, 0.8 mm, 0.4 mm, and 0.18 mm. Furnace, the process was performed in the same manner as in Example 1, except that the width of the roll gap was narrowed according to the number of times of each progress.
  • Example 1 without performing a separate classification process after pulverization, all the pulverized particles are introduced into a subsequent roll mill, and in three fine grinding processes, the roll gap width of a single roll mill is 1.0 mm, 0.4 mm, 0.16. In mm, the procedure was the same as in Example 1, except that the width of the roll gap was narrowed according to the number of times of each progress.
  • a mesh sieve of 850 ⁇ m, 710 ⁇ m, 600 ⁇ m, 425 ⁇ m, 300 ⁇ m, 180 ⁇ m, and 150 ⁇ m Pan of ASTM standard was used, and vibration was applied for 10 minutes at an amplitude of 1.5 mm/'g' to classify particles. After that, the weight of the particles on the top of each sieve was measured to obtain the particle size.
  • Example 1 Example 2
  • Example 3 Example 4 20 mesh phase (>850 ⁇ m) 0.1 0.0 0.1 0.1 0.1 30 mesh phase (600 ⁇ m or more but less than 850 ⁇ m) 2.5 3.4 3.2 3.2 3.0 40 mesh phase (425 ⁇ m or more and less than 600 ⁇ m) 24.4 36.9 24.6 31.8 36.5 50 mesh phase (300 ⁇ m or more but less than 425 ⁇ m) 25.2 21.6 28.9 23.1 22.5 100 mesh phase (more than 150 ⁇ m less than 300 ⁇ m) 22.3 18.2 22.0 19.9 18.1 100 mesh pass (less than 150 ⁇ m) 25.5 19.9 21.2 21.9 19.8 Differentiation rate* 34.2 24.8 26.9 28.0 24.6 * A value obtained by dividing the weight (g) of particles having a particle diameter of less than 150 ⁇ m by the weight (g) of particles (normal particles) having a particle diameter of 150 ⁇ m or more to less than 850 ⁇ m.
  • particles having a size of 600 ⁇ m or more and less than 850 ⁇ m are about 2.5 wt%
  • particles having a size of 425 ⁇ m or more and less than 600 ⁇ m are about 24.4 wt%
  • 300 ⁇ m Particles having a size of more than 425 ⁇ m were about 25.2% by weight
  • particles having a size of 150 ⁇ m or more and less than 300 ⁇ m constituted 22.4% by weight The ratio of fine powder generation to normal particles having a particle diameter of 150 ⁇ m or more and less than 850 ⁇ m was about 34.3% by weight.
  • the term fine powder refers to particles having a size of less than 150 ⁇ m.
  • particles having a size of 600 ⁇ m or more and less than 850 ⁇ m are about 3.4% by weight
  • particles having a size of 425 ⁇ m or more and less than 600 ⁇ m are about 36.9% by weight
  • 300 ⁇ m or more and having a size of less than 425 ⁇ m The particles were about 21.5% by weight, and particles having a size of 150 ⁇ m or more and less than 300 ⁇ m were about 18.2% by weight.
  • Example 1 when compared with Comparative Example 1, the proportion of particles having a size of 425 ⁇ m or more and less than 600 ⁇ m was increased, and a ratio of particles having a size of 150 ⁇ m or more and less than 425 ⁇ m was decreased.
  • the ratio of fine particles to the normal particles was about 24.9% by weight, showing an effect of decreasing by about 27% compared to Comparative Example 1. This is thought to be caused by separating particles having a particle diameter of less than about 600 ⁇ m through classification in the fine grinding process and blocking them from being added to a further grinding process.
  • particles having a size of 600 ⁇ m or more and less than 850 ⁇ m are about 3.2 wt%
  • particles having a size of 425 ⁇ m or more and less than 600 ⁇ m are about 24.6 wt%
  • particles having a size of 300 ⁇ m or more and less than 425 ⁇ m Was about 28.9% by weight
  • particles having a size of 150 ⁇ m or more and less than 300 ⁇ m were about 22.0%.
  • the ratio of fine powder generation to normal particles was about 27% by weight, showing an effect of about 21% reduction compared to Comparative Example 1.
  • the particle size of the pulverized particles can be adjusted by varying the classification criteria of the classified particles in the fine grinding process, that is, the target particle size.
  • the ratio of fine particles to the normal particles was about 28.2% by weight and about 24.8% by weight, respectively.
  • the number of times the pulverization and classification was repeatedly performed in the pulverization process it was confirmed that the amount of pulverization was decreased and the reduction rate according to the number of times was decreased.
  • Example 1 Example 2
  • Example 3 Example 4 Apparent density (g/ml) 0.50 0.48 0.47 0.50 0.48 Vortex (sec) 23.7 24.1 23.0 23.8 24.7
  • the embodiment of the present invention can improve productivity by reducing the generation of fine powders while realizing existing physical properties.

Abstract

A preparation method of a super absorbent polymer, according to the present invention, wherein: in a process of grinding and classifying, following the formation and drying of a hydrogel polymer, the amount of fines generated which are 150 µm or smaller may be minimized by blocking particles having a specific size or smaller from also being included in the grinding; the particle size of a final product may be easily adjusted according to a target particle diameter setting of a classifier; and a super absorbent polymer exhibiting physical properties equal to or greater than those of conventional super absorbent polymers may be prepared.

Description

고흡수성 수지의 제조 방법Manufacturing method of super absorbent polymer
관련 출원(들)과의 상호 인용Cross-citation with relevant application(s)
본 출원은 2019년 01월 16일자 한국 특허 출원 제 10-2019-0005757호 및 2020년 01월 15일자 한국 특허 출원 제 10-2020-0005490호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2019-0005757 on January 16, 2019 and Korean Patent Application No. 10-2020-0005490 on January 15, 2020. All content disclosed in the literature is incorporated as part of this specification.
본 발명은 미분 발생을 억제 및 감소시킬 수 있는 고흡수성 수지의 제조 방법에 관한 것이다.The present invention relates to a method for producing a super absorbent polymer capable of suppressing and reducing the generation of fine powder.
고흡수성 수지(Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이기저귀 등 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다. 가장 많은 경우에, 이러한 고흡수성 수지는 기저귀나 생리대 등 위생재 분야에서 널리 사용되고 있다.Super Absorbent Polymer (SAP) is a synthetic polymer material that has the ability to absorb about 500 to 1,000 times its own weight.Sam (Super Absorbency Material), AGM (Absorbent Gel) for each developer Material). The superabsorbent resin as described above began to be put into practical use as a sanitary tool, and now, in addition to sanitary products such as paper diapers for children, soil repair agents for horticulture, civil engineering, construction water supply materials, nursery sheets, freshness retention agents in the food distribution field, and It is widely used as a material for poultice. In most cases, these superabsorbent polymers are widely used in the field of hygiene materials such as diapers and sanitary napkins.
상기 고흡수성 수지는 수용성 에틸렌계 불포화 단량체를 이용한 함수겔상 중합체를 제조한 후 건조 및 분쇄하는 공정 등을 통해 제조되는데, 이 공정에서 불가피하게 150 ㎛ 이하의 입경을 갖는 입자를 미분(fines)이 발생되고 있다. 이러한 미분은 고흡수성 수지의 제조 과정 중 분쇄 또는 이송 과정에서 약 20 내지 30%의 비율로 발생하는 것으로 알려져 있다. 상기 미분은 고흡수성 수지의 가압흡수능(AUP)과 투수성 (Permeability)에 영향을 미치기 때문에, 두 물성을 동시에 높인 고흡수성 수지를 제조하는데 어려움이 있다. 이 때문에, 고흡수성 수지의 제조 과정 중, 특히 분급 과정에서는 이러한 미분을 분리하여 나머지 고분자 입자로만 고흡수성 수지를 제조하게 된다.The superabsorbent polymer is prepared through a process of preparing a hydrogel polymer using a water-soluble ethylenically unsaturated monomer, followed by drying and pulverization. In this process, particles having a particle diameter of 150 μm or less are inevitably generated. Is becoming. These fine powders are known to occur at a rate of about 20 to 30% during the pulverization or transfer process during the manufacturing process of the super absorbent polymer. Since the fine powder affects the pressure absorbing capacity (AUP) and permeability of the super absorbent polymer, it is difficult to produce a super absorbent polymer having both properties simultaneously increased. For this reason, during the manufacturing process of the super absorbent polymer, particularly in the classification process, these fine powders are separated to produce the super absorbent polymer only with the remaining polymer particles.
그러나, 흡수속도가 빠른 특성을 나타내기 위해 특정 입자 크기의 비율을 증가시켜야 하는 제품에서는, 해당 입도분포를 구현하기 위해 롤 밀의 분쇄를 과도하게 진행하고 있으며, 이에 따라 150 ㎛ 미만의 미분이 크게 증가되어 공정상 미분 재순환 비율이 높게 유지되고 있다. 따라서, 상기 방법은 건조/분쇄/분급공정의 부하가 증가해 생산량이 저하되는 문제점이 발생하고 있다.However, in products in which a specific particle size ratio needs to be increased in order to exhibit a property with a fast absorption rate, the milling of the roll mill is excessively carried out to realize the particle size distribution, and accordingly, the fine powder of less than 150 μm is greatly increased. As a result, the ratio of fines recycling in the process is maintained. Therefore, the method has a problem in that the load of the drying/grinding/classifying process increases and the production amount decreases.
본 발명은 고흡수성 수지의 우수한 물성을 유지하면서도 미분 발생을 감소시키고 억제할 수 있는 고흡수성 수지의 제조 방법 및 고흡수성 수지의 제조 장치를 제공하고자 한다. The present invention is to provide a method for manufacturing a superabsorbent polymer and an apparatus for producing a superabsorbent polymer capable of reducing and suppressing the generation of fine powder while maintaining excellent properties of the superabsorbent polymer.
본 발명은 (A) 내부 가교제 및 중합 개시제 존재 하에, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 함수겔상 중합체를 형성하는 중합 단계; (B) 상기 함수겔상 중합체를 건조하여 건조 중합체를 제조하는 건조 단계; 및 (C) 상기 건조 중합체를 분쇄하는 분쇄 단계를 포함하고; 상기 (C) 분쇄 단계는, 상기 건조 중합체를 분쇄하는 (C1) 제1차 분쇄 단계 및 (C2) 제2차 분쇄 단계를 포함하며, 상기 (C2) 제2차 분쇄 단계는, (C21) 상기 1차 분쇄된 건조 중합체를, 목표 대상 입경 이상의 입경을 가지는 ‘이상 입자’ 및 목표 대상 입경 미만의 입경을 가지는 ‘정상 입자’로 분급하는 이상 입자 분급 단계; 및 (C22) 상기 ‘이상 입자’만을 모아 다시 분쇄하는, 이상 입자 분쇄 단계를 포함하는, 고흡수성 수지의 제조 방법을 제공한다.The present invention (A) in the presence of an internal crosslinking agent and a polymerization initiator, at least a part of the polymerization step of crosslinking polymerization of a water-soluble ethylenically unsaturated monomer having an acidic group neutralized to form a hydrogel polymer; (B) a drying step of drying the hydrogel polymer to prepare a dry polymer; And (C) a grinding step of grinding the dry polymer; The (C) grinding step includes (C1) a first grinding step and (C2) a second grinding step to pulverize the dry polymer, and (C2) the second grinding step is (C21) the An abnormal particle classification step of classifying the primary pulverized dry polymer into'abnormal particles' having a particle diameter equal to or larger than the target particle diameter and'normal particles' having a particle diameter smaller than the target particle diameter; And (C22) provides a method for producing a super absorbent polymer, comprising the step of pulverizing the abnormal particles, collecting and crushing only the'abnormal particles'.
또한, 본 발명은 건조 중합체가 투입되는 투입부(100); 상기 투입된 건조 중합체를 분쇄하는 분쇄부(200); 및 분쇄된 건조 중합체 입자를 배출하는 배출부(300)를 포함하고; 상기 분쇄부(200)는, 상기 투입된 건조 중합체를 분쇄하는 제1차 분쇄부(210) 및 제2차 분쇄부(220)를 포함하며, 상기 제2차 분쇄부(220)는, 상기 제1차 분쇄부(210)에서 분쇄된 건조 중합체를, 목표 대상 입경 이상의 입경을 가지는 ‘이상 입자’ 및 목표 대상 입경 미만의 입경을 가지는 ‘정상 입자’로 분급하는 이상 입자 분급 부분(221); 및 상기 ‘이상 입자’만을 모아 다시 분쇄하는, 이상 입자 분쇄 부분(222)을 포함하는, 고흡수성 수지의 제조 장치를 제공한다. In addition, the present invention is an input unit 100 to which the dry polymer is added; A crushing unit 200 for pulverizing the introduced dry polymer; And an outlet portion 300 for discharging the pulverized dry polymer particles; The crushing unit 200 includes a first crushing unit 210 and a second crushing unit 220 for pulverizing the dried polymer, and the second crushing unit 220 is the first An abnormal particle classifying portion 221 for classifying the dried polymer pulverized in the primary crushing unit 210 into'abnormal particles' having a particle diameter equal to or larger than the target particle diameter and'normal particles' having a particle diameter smaller than the target particle diameter; And an abnormal particle pulverization portion 222 that collects only the “abnormal particles” and pulverizes again.
이하, 발명의 구체적인 구현예들에 따른 고흡수성 수지의 제조 방법에 대하여 보다 상세하게 설명하기로 한다.Hereinafter, a method of manufacturing a super absorbent polymer according to specific embodiments of the present invention will be described in more detail.
그에 앞서, 본 명세서에 사용되는 전문 용어는 단지 특정 구현예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 그리고, 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. Prior to this, the terminology used in this specification is only for referring to specific embodiments, and is not intended to limit the present invention. And, the singular forms used herein also include plural forms unless the phrases express an opposite meaning.
본 명세서에서 사용되는 '포함' 또는 '함유'의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 또는 성분의 부가를 제외시키는 것은 아니다.As used herein, the meaning of'comprising' or'containing' embodies a specific property, region, integer, step, action, element or component, and of other specific properties, areas, integers, steps, action, elements, or components. It does not exclude addition.
본 발명의 명세서에 사용되는 용어 "중합체", 또는 "고분자"는 수용성 에틸렌계 불포화 단량체가 중합된 상태인 것을 의미하며, 모든 수분 함량 범위 또는 입경 범위를 포괄할 수 있다. 상기 중합체 중, 중합 후 건조 전 상태의 것으로 함수율(수분 함량)이 약 40 중량% 이상의 중합체를 함수겔상 중합체로 지칭할 수 있다. The term "polymer" or "polymer" as used in the specification of the present invention means that the water-soluble ethylenically unsaturated monomer is in a polymerized state, and may cover all water content ranges or particle size ranges. Among the polymers, a polymer having a water content (moisture content) of about 40% by weight or more as a state after drying after polymerization may be referred to as a hydrogel polymer.
또한, "고흡수성 수지"는 문맥에 따라 상기 중합체 또는 베이스 수지 자체를 의미하거나, 또는 상기 중합체나 상기 베이스 수지에 대해 추가의 공정, 예를 들어 표면 가교, 미분 재조립, 건조, 분쇄, 분급 등을 거쳐 제품화에 적합한 상태로 한 것을 모두 포괄하는 것으로 사용된다.In addition, "superabsorbent polymer" means the polymer or base resin itself depending on the context, or additional processes for the polymer or the base resin, such as surface crosslinking, fine powder reassembly, drying, grinding, classification, etc. It is used to cover everything that has been made suitable for commercialization.
발명의 일 구현예에 따르면, (A) 내부 가교제 및 중합 개시제 존재 하에, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 함수겔상 중합체를 형성하는 중합 단계; (B) 상기 함수겔상 중합체를 건조하여 건조 중합체를 제조하는 건조 단계; 및 (C) 상기 건조 중합체를 분쇄하는 분쇄 단계를 포함하고; 상기 (C) 분쇄 단계는, 상기 건조 중합체를 분쇄하는 (C1) 제1차 분쇄 단계 및 (C2) 제2차 분쇄 단계를 포함하며, 상기 (C2) 제2차 분쇄 단계는, (C21) 상기 1차 분쇄된 건조 중합체를, 목표 대상 입경 이상의 입경을 가지는 ‘이상 입자’ 및 목표 대상 입경 미만의 입경을 가지는 ‘정상 입자’로 분급하는 이상 입자 분급 단계; 및 (C22) 상기 ‘이상 입자’만을 모아 다시 분쇄하는, 이상 입자 분쇄 단계를 포함하는, 고흡수성 수지의 제조 방법이 제공된다.According to one embodiment of the invention, (A) in the presence of an internal crosslinking agent and a polymerization initiator, at least a part of the polymerization step of crosslinking polymerization of a water-soluble ethylenically unsaturated monomer having a neutralized acidic group to form a hydrogel polymer; (B) a drying step of drying the hydrogel polymer to prepare a dry polymer; And (C) a grinding step of grinding the dry polymer; The (C) grinding step includes (C1) a first grinding step and (C2) a second grinding step to pulverize the dry polymer, and (C2) the second grinding step is (C21) the An abnormal particle classification step of classifying the primary pulverized dry polymer into'abnormal particles' having a particle diameter equal to or larger than the target particle diameter and'normal particles' having a particle diameter smaller than the target particle diameter; And (C22) a method for producing a super absorbent polymer, comprising the steps of pulverizing the abnormal particles, collecting and crushing only the'abnormal particles'.
본 발명에 따른 고흡수성 수지의 제조 방법은, 함수겔상 중합체를 형성하고 건조하여, 건조된 건조 중합체를 분쇄한 후 분급하는 과정에서, 분쇄 단계 후 일정 크기 이상의 입자에 대해서만 다시 분쇄 및 분급하며, 바람직하게 약 2 회 이상 혹은 2회 내지 5회, 또는 2회 내지 4회, 또는 3회 내지 4회로 분쇄 및 분급을 반복 진행함으로써, 특정 크기 이하의 입자들이 함께 분쇄되는 것을 차단하여 입경이 약 150 ㎛ 이하인 미분의 발생량을 최소화할 수 있다. The method for producing a superabsorbent polymer according to the present invention, in the process of forming and drying a hydrogel polymer, pulverizing and then classifying the dried dry polymer, crushing and classifying again only for particles having a certain size or more after the crushing step, preferably By pulverizing and classifying repeatedly about 2 or more times, or 2 to 5 times, or 2 to 4 times, or 3 to 4 times, particles of a certain size or less are prevented from being crushed together, and the particle size is about 150 μm. It is possible to minimize the amount of the following fine powder.
특히, 본 발명은 분쇄 후, 분급기를 이용한 분급 공정을 필수로 진행하므로, 종래보다 미분 발생량을 줄일 수 있을 뿐 아니라, 분급기에서 입자 크기에 따라 입도 조절이 가능하여 최종 제품의 입도를 쉽게 조절할 수 있고 기존과 동등 이상의 물성을 나타내는 고흡수성 수지의 제조 방법을 제공할 수 있다.In particular, the present invention, after pulverization, since the classification process using a classifier is essential, it is possible not only to reduce the amount of fines generated, but also to control the particle size according to the particle size in the classifier, so that the particle size of the final product can be easily adjusted. It is possible to provide a method for producing a superabsorbent polymer having physical properties equal to or higher than those of the prior art.
또한, 본 발명은 분쇄 시 분급기의 입자 크기에 따른 분리 기준, 즉 목표 대상 입경을 설정하여 분쇄도 조절을 통해 미분 발생량을 감소시켜, 미분 재조립, 건조, 분쇄 및 분급 공정의 부하를 저감할 수 있다. In addition, the present invention reduces the amount of fines generated by controlling the degree of separation by setting the separation target according to the particle size of the classifier during crushing, that is, the target particle size, thereby reducing the load of the fine powder reassembly, drying, pulverization and classification process. Can.
상술한 바와 같이, 본 명세서에서 목표 대상 입경이라 함은, 제2차 분쇄 단계의 이상 입자 분급 단계에서, 정상 입자와 이상 입자를 분리하기 위한 분급의 기준이 되는 입경을 의미한다. As described above, in this specification, the target target particle size means a particle size that is a standard for classification for separating normal particles and abnormal particles in the abnormal particle classification step of the second grinding step.
본 발명의 일 구현 예에 따르면, 상기와 같은 방법을 통해 각 분쇄 단계에서 분급을 통해 특정 크기 범위의 입자를 분급하고, 재분쇄 시 미분을 발생시킬 수 있는 작은 크기의 입자(예를 들어, 약 200 ㎛ 이하, 혹은 약 150 ㎛ 이하의 입경을 가진 입자)를 분리하여, 이러한 입자들이 분쇄에 다시 투입되는 것을 선택적으로 배제시킬 수 있다.According to an embodiment of the present invention, through the above-described method, the particles in a specific size range are classified through classification in each crushing step, and small-sized particles (for example, about By separating particles having a particle diameter of 200 µm or less, or about 150 µm or less), it is possible to selectively exclude such particles from being re-introduced into grinding.
또한, 본 발명은 이러한 과정에서 사용되는 분급 체의 규격을 목표 대상 입경에 따라 임의로 선택하여, 최종 제품에 사용되는 입자의 입도를 특정 범위로 쉽게 조절하고, 이에 따라 고흡수성 수지의 물성을 변경시킬 수 있다.In addition, the present invention is to arbitrarily select the size of the classifier used in this process according to the target particle size, easily adjust the particle size of the particles used in the final product to a specific range, thereby changing the properties of the super absorbent polymer. Can.
이하, 본 발명을 단계 별로 상세히 설명한다. Hereinafter, the present invention will be described in detail for each step.
(중합 단계)(Polymerization step)
상기 중합 단계는, 함수겔상 중합체를 형성하는 단계로서, 내부 가교제, 및 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 포함하는 단량체 조성물을 가교 중합하는 단계이다. The polymerization step is a step of forming a hydrogel polymer, and is a step of crosslinking and polymerizing a monomer composition comprising an internal crosslinking agent and a water-soluble ethylenically unsaturated monomer having at least a partially neutralized acidic group.
상기 제1 가교 중합체를 구성하는 수용성 에틸렌계 불포화 단량체는 고흡수성 수지의 제조에 통상적으로 사용되는 임의의 단량체일 수 있다. 비제한적인 예로, 상기 수용성 에틸렌계 불포화 단량체는 하기 화학식 1로 표시되는 화합물일 수 있다: The water-soluble ethylenically unsaturated monomer constituting the first crosslinked polymer may be any monomer commonly used in the production of super absorbent polymers. As a non-limiting example, the water-soluble ethylenically unsaturated monomer may be a compound represented by Formula 1 below:
[화학식 1][Formula 1]
R 1-COOM 1 R 1 -COOM 1
상기 화학식 1에서, In Chemical Formula 1,
R 1는 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고, R 1 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond,
M 1는 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다.M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt.
바람직하게는, 상기 단량체는 아크릴산, 메타크릴산, 및 이들 산의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 이처럼 수용성 에틸렌계 불포화 단량체로 아크릴산 또는 그 염을 사용할 경우 흡수성이 향상된 고흡수성 수지를 얻을 수 있어 유리하다. 이 밖에도 상기 단량체로는 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타아크릴로일에탄술폰산, 2-(메트)아크릴로일프로판술폰산 또는 2-(메타)아크릴아미드-2-메틸 프로판 술폰산, (메트)아크릴아미드, N-치환(메트)아크릴레이트, 2-히드록시에틸 (메트)아크릴레이트, 2-히드록시프로필 (메트)아크릴레이트, 메톡시폴리에틸렌글리콜 (메트)아크릴레이트, 폴리에틸렌 글리콜 (메트)아크릴레이트, (N,N)-디메틸아미노에틸 (메트)아크릴레이트, (N,N)-디메틸아미노프로필 (메트)아크릴아미드 등이 사용될 수 있다.Preferably, the monomer may be at least one selected from the group consisting of acrylic acid, methacrylic acid, and monovalent metal salts, divalent metal salts, ammonium salts, and organic amine salts of these acids. When acrylic acid or a salt thereof is used as the water-soluble ethylenically unsaturated monomer, it is advantageous to obtain a superabsorbent polymer with improved absorbency. In addition, the monomers include maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryloylethanesulfonic acid, 2-(meth)acryloylpropanesulfonic acid or 2-(metha) )Acrylamide-2-methyl propane sulfonic acid, (meth)acrylamide, N-substituted (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, methoxypolyethylene Glycol (meth)acrylate, polyethylene glycol (meth)acrylate, (N,N)-dimethylaminoethyl (meth)acrylate, (N,N)-dimethylaminopropyl (meth)acrylamide, and the like can be used.
여기서, 상기 수용성 에틸렌계 불포화 단량체는 산성기를 가지며, 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 알칼리 물질로 부분적으로 중화시킨 것이 사용될 수 있다.Here, the water-soluble ethylenically unsaturated monomer has an acidic group, and at least a portion of the acidic group may be neutralized. Preferably, the monomer may be partially neutralized with an alkali material such as sodium hydroxide, potassium hydroxide or ammonium hydroxide.
이때, 상기 단량체의 중화도는 약 40 내지 약 95 몰%, 또는 약 40 내지 약 80 몰%, 또는 약 45 내지 약 75 몰%일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 달라질 수 있지만, 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다.In this case, the degree of neutralization of the monomer may be about 40 to about 95 mol%, or about 40 to about 80 mol%, or about 45 to about 75 mol%. The range of the degree of neutralization may vary depending on the final physical properties, but if the degree of neutralization is too high, the neutralized monomer may be precipitated and polymerization may be difficult to proceed smoothly. It may exhibit properties such as elastic rubber that are difficult to handle.
또한, 상기 단량체 조성물 중 상기 수용성 에틸렌계 불포화 단량체의 농도는 중합 시간 및 반응 조건 등을 고려하여 적절히 조절될 수 있으며, 바람직하게는 약 20 내지 약 90 중량%, 또는 약 40 내지 약 65 중량%일 수 있다. 이러한 농도 범위는 고농도 수용액의 중합 반응에서 나타나는 겔 효과 현상을 이용하여 중합 후 미반응 단량체를 제거할 필요가 없도록 하면서도, 후술할 중합체의 분쇄시 분쇄 효율을 조절하기 위해 유리할 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮아질 수 있다. 반대로, 상기 단량체의 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄시 분쇄 효율이 떨어지는 등 공정상 문제가 생길 수 있고, 고흡수성 수지의 물성이 저하될 수 있다.In addition, the concentration of the water-soluble ethylenically unsaturated monomer in the monomer composition may be appropriately adjusted in consideration of polymerization time and reaction conditions, and preferably about 20 to about 90% by weight, or about 40 to about 65% by weight Can. This concentration range may be advantageous for controlling the grinding efficiency when pulverizing the polymer, which will be described later, while eliminating the need to remove unreacted monomers after polymerization by using the gel effect phenomenon that occurs in the polymerization reaction of a high concentration aqueous solution. However, if the concentration of the monomer is too low, the yield of the super absorbent polymer may be lowered. Conversely, if the concentration of the monomer is too high, a part of the monomer may be precipitated or there may be a process problem such as poor crushing efficiency when pulverizing the polymerized hydrogel polymer, and physical properties of the super absorbent polymer may be deteriorated.
또한, 상기 내부 가교제로는 상기 수용성 에틸렌계 불포화 단량체의 중합시 가교 결합의 도입을 가능케 하는 것이라면 어떠한 화합물도 사용 가능하다. 비제한적인 예로, 상기 내부 가교제는 N,N'-메틸렌비스아크릴아미드, 트리메틸롤프로판 트리(메트)아크릴레이트, 에틸렌글리콜 다이(메트)아크릴레이트, 폴리에틸렌글리콜(메트)아크릴레이트, 프로필렌글리콜 다이(메트)아크릴레이트, 폴리프로필렌글리콜(메트)아크릴레이트, 부탄다이올다이(메트)아크릴레이트, 부틸렌글리콜다이(메트)아크릴레이트, 다이에틸렌글리콜 다이(메트)아크릴레이트, 헥산다이올다이(메트)아크릴레이트, 트리에틸렌글리콜 다이(메트)아크릴레이트, 트리프로필렌글리콜 다이(메트)아크릴레이트, 테트라에틸렌글리콜 다이(메트)아크릴레이트, 다이펜타에리스리톨 펜타아크릴레이트, 글리세린 트리(메트)아크릴레이트, 펜타에리스톨 테트라아크릴레이트, 트리아릴아민, 에틸렌글리콜 디글리시딜 에테르, 프로필렌 글리콜, 글리세린, 또는 에틸렌카보네이트와 같은 다관능성 가교제가 단독 사용 또는 2 이상 병용될 수 있으며, 이에 제한되는 것은 아니다. Further, as the internal crosslinking agent, any compound can be used as long as it allows introduction of crosslinking during polymerization of the water-soluble ethylenically unsaturated monomer. As a non-limiting example, the internal crosslinking agent is N,N'-methylenebisacrylamide, trimethylolpropane tri(meth)acrylate, ethylene glycol di(meth)acrylate, polyethylene glycol (meth)acrylate, propylene glycol di( Meth)acrylate, polypropylene glycol (meth)acrylate, butanediol di(meth)acrylate, butylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, hexanediol di(meth) )Acrylate, triethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, dipentaerythritol pentaacrylate, glycerin tri(meth)acrylate, penta Multifunctional crosslinking agents such as erythritol tetraacrylate, triarylamine, ethylene glycol diglycidyl ether, propylene glycol, glycerin, or ethylene carbonate may be used alone or in combination of two or more, but are not limited thereto.
이러한 내부 가교제는 상기 단량체 조성물에 대하여 약 0.001 내지 약 1 중량%의 농도로 첨가될 수 있다. 즉, 상기 내부 가교제의 농도가 지나치게 낮을 경우 수지의 흡수 속도가 낮아지고 겔 강도가 약해질 수 있어 바람직하지 않다. 반대로, 상기 내부 가교제의 농도가 지나치게 높을 경우 수지의 흡수력이 낮아져 흡수체로서는 바람직하지 않게 될 수 있다.The internal crosslinking agent may be added in a concentration of about 0.001 to about 1% by weight relative to the monomer composition. That is, when the concentration of the internal crosslinking agent is too low, the absorption rate of the resin is lowered and the gel strength may be weakened, which is not preferable. Conversely, when the concentration of the internal cross-linking agent is too high, the absorbency of the resin is lowered, which may make it undesirable as an absorber.
또한, 상기 중합 단계에서, 고흡수성 수지의 제조에 일반적으로 사용되는 중합 개시제가 포함될 수 있다. 비제한적인 예로, 상기 중합 개시제로는 중합 방법에 따라 열 중합 개시제 또는 광 중합 개시제 등이 사용될 수 있으며, 특히 열 중합 개시제가 사용될 수 있다. 다만, 광 중합 방법에 의하더라도, 자외선 조사 등에 의해 일정량의 열이 발생하고, 또한 발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 열 중합 개시제가 추가로 포함될 수 있다.In addition, in the polymerization step, a polymerization initiator generally used in the production of a super absorbent polymer may be included. As a non-limiting example, as the polymerization initiator, a thermal polymerization initiator or a photo polymerization initiator may be used depending on the polymerization method, and a thermal polymerization initiator may be used. However, even by the photopolymerization method, since a certain amount of heat is generated by ultraviolet irradiation or the like and a certain amount of heat is generated according to the progress of the exothermic polymerization reaction, a thermal polymerization initiator may be additionally included.
상기 열 중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소, 및 아스코르빈산으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다. 구체적으로, 과황산염계 개시제로는 과황산나트륨(Sodium persulfate; Na 2S 2O 8), 과황산칼륨(Potassium persulfate; K 2S 2O 8), 과황산암모늄(A mmonium persulfate; (NH 4) 2S 2O 8) 등을 예로 들 수 있다. 또한, 아조(Azo)계 개시제로는 2,2-아조비스-(2-아미디노프로판)이염산염(2,2-azobis(2-amidinopropane) dihydrochloride), 2,2-아조비스-(N,N-디메틸렌)이소부티라마이딘 디하이드로클로라이드(2,2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride), 2-(카바모일아조)이소부티로니트릴(2-(carbamoylazo)isobutylonitril), 2,2-아조비스[2-(2-이미다졸린-2-일)프로판] 디하이드로클로라이드(2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride), 4,4-아조비스-(4-시아노발레릭 산)(4,4-azobis-(4-cyanovaleric acid)) 등을 예로 들 수 있다. 보다 다양한 열 중합 개시제에 대해서는 Odian 저서인 "Principle of Polymerization(Wiley, 1981년)"의 203 페이지에 개시되어 있으며, 이를 참조할 수 있다. 바람직하게는, 상기 열 중합 개시제로 아스코르빈산 및 과황산칼륨을 사용한다. As the thermal polymerization initiator, one or more compounds selected from the group consisting of a persulfate-based initiator, an azo-based initiator, hydrogen peroxide, and ascorbic acid may be used. Specifically, as the persulfate-based initiator, sodium persulfate (Na 2 S 2 O 8 ), potassium persulfate (K 2 S 2 O 8 ), ammonium persulfate (A mmonium persulfate; (NH 4 ) 2 S 2 O 8 ) and the like. In addition, as the azo-based initiator, 2,2-azobis-(2-amidinopropane) dihydrochloride (2,2-azobis(2-amidinopropane) dihydrochloride), 2,2-azobis-(N, N-dimethylene)isobutyramidine dihydrochloride (2,2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride), 2-(carbamoyl azo)isobutyronitrile (2-(carbamoylazo)isobutylonitril), 2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride), 4, For example, 4-azobis-(4-cyanovaleric acid) (4,4-azobis-(4-cyanovaleric acid)). More various thermal polymerization initiators are disclosed on page 203 of the Odian book "Principle of Polymerization (Wiley, 1981)", which can be referred to. Preferably, ascorbic acid and potassium persulfate are used as the thermal polymerization initiator.
상기 광 중합 개시제로는, 예를 들어, 벤조인 에테르(benzoin ether), 디알킬아세토페논(dialkyl acetophenone), 하이드록실 알킬케톤(hydroxyl alkylketone), 페닐글리옥실레이트(phenyl glyoxylate), 벤질디메틸케탈(Benzyl Dimethyl Ketal), 아실포스핀(acyl phosphine) 및 알파-아미노케톤(α-aminoketone)으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다. 그 중 아실포스핀의 구체 예로서, 상용하는 lucirin TPO, 즉, 2,4,6-트리메틸-벤조일-트리메틸 포스핀 옥사이드(2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)가 사용될 수 있다. 보다 다양한 광 중합 개시제에 대해서는 Reinhold Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)"의 115 페이지에 개시되어 있으며, 이를 참조할 수 있다.Examples of the photo polymerization initiator include, for example, benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal ( One or more compounds selected from the group consisting of Benzyl Dimethyl Ketal, acyl phosphine and alpha-aminoketone may be used. Among them, as a specific example of acylphosphine, a commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide) can be used. . More various photopolymerization initiators are disclosed on page 115 of Reinhold Schwalm's book "UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)", which can be referred to.
이러한 중합 개시제는 상기 단량체 조성물에 대하여 약 0.001 내지 1 중량%의 농도로 첨가될 수 있다. 즉, 상기 중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고 최종 제품에 잔존 모노머가 다량으로 추출될 수 있어 바람직하지 않다. 반대로, 상기 중합 개시제의 농도가 상기 범위 보다 높을 경우 네트워크를 이루는 고분자 체인이 짧아져 수가용 성분의 함량이 높아지고 가압 흡수능이 낮아지는 등 수지의 물성이 저하될 수 있어 바람직하지 않다.The polymerization initiator may be added in a concentration of about 0.001 to 1% by weight relative to the monomer composition. That is, when the concentration of the polymerization initiator is too low, the polymerization rate may be slow, and residual monomers in the final product may be extracted in large quantities, which is not preferable. Conversely, when the concentration of the polymerization initiator is higher than the above range, the polymer chains forming the network are shortened, and thus the content of the water-soluble component is increased and the pressure absorption capacity is lowered, so that the physical properties of the resin may be deteriorated, which is not preferable.
또한, 상기 중합 단계는 발포제의 존재 하에 수행할 수 있다. 상기 발포제는 중합시 발포가 일어나 함수겔상 중합체 내 기공을 형성하여 표면적을 늘리는 역할을 한다. 상기 발포제는 무기 발포제, 또는 유기 발포제를 사용할 수 있다. 무기 발포제의 예로는, 소디움 비카보네이트(sodium bicarbonate), 소디움 카보네이트(sodium carbonate), 포타슘 비카보네이트(potassium bicarbonate), 포타슘 카보네이트(potassium carbonate), 칼슘 비카보네이트(calcium bicarbonate), 칼슘 카보네이트(calcium bicarbonate), 마그네슘 비카보네이트(magnesiumbicarbonate) 또는 마그네슘 카보네이트(magnesium carbonate)를 들 수 있다. 또한, 유기 발포제의 예로는 아조디카본아미드(azodicarbonamide, ADCA), 디니트로소펜타메틸렌테트라민(dinitroso pentamethylene tetramine, DPT), p,p'-옥시비스벤젠술포닐하이드라지드(p,p'-oxybisbenzenesulfonylhydrazide, OBSH), 및 p-톨루엔술포닐 하이드라지드(p-toluenesulfonyl hydrazide, TSH)를 들 수 있다.In addition, the polymerization step can be carried out in the presence of a blowing agent. The foaming agent foams during polymerization to form pores in the hydrogel polymer to increase the surface area. The foaming agent may be an inorganic foaming agent or an organic foaming agent. Examples of inorganic blowing agents include sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, calcium bicarbonate, and calcium bicarbonate. , Magnesium bicarbonate or magnesium carbonate. In addition, examples of the organic blowing agent are azodicarbonamide (ADCA), dinitroso pentamethylene tetramine (DPT), p,p'-oxybisbenzenesulfonylhydrazide (p,p' -oxybisbenzenesulfonylhydrazide (OBSH), and p-toluenesulfonyl hydrazide (TSH).
또한, 상기 발포제는 상기 수용성 에틸렌계 불포화 단량체 중량 대비 약 0.001 내지 약 1 중량%로 사용하는 것이 바람직하다. 상기 발포제의 사용량이 약 1 중량%를 초과할 경우에는 기공이 너무 많아져 고흡수성 수지의 겔 강도가 떨어지고 밀도가 작아져 유통과 보관에 문제를 초래할 수 있다.In addition, the blowing agent is preferably used in an amount of about 0.001 to about 1% by weight based on the weight of the water-soluble ethylenically unsaturated monomer. When the amount of the blowing agent exceeds about 1% by weight, the pores become too large, the gel strength of the super absorbent polymer falls and the density becomes small, which may cause problems in distribution and storage.
이 밖에도, 상기 단량체 조성물에는 필요에 따라 계면 활성제, 증점제, 가소제, 보존 안정제, 산화 방지제 등의 첨가제가 더 포함될 수 있다.In addition, the monomer composition may further include additives such as a surfactant, a thickener, a plasticizer, a storage stabilizer, and an antioxidant, if necessary.
그리고, 이러한 단량체 조성물은 전술한 단량체 등의 원료 물질이 용매에 용해된 용액의 형태로 준비될 수 있다. 이때 사용 가능한 용매로는 전술한 원료 물질들을 용해시킬 수 있는 것이라면 그 구성의 한정 없이 사용될 수 있다. 예를 들어, 상기 용매로는 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로헥사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 톨루엔, 자일렌, 부티로락톤, 카르비톨, 메틸셀로솔브아세테이트, N,N-디메틸아세트아미드, 또는 이들의 혼합물 등이 사용될 수 있다.And, such a monomer composition may be prepared in the form of a solution in which a raw material such as the above-described monomer is dissolved in a solvent. At this time, as a usable solvent, any material that can dissolve the aforementioned raw materials can be used without limitation of its configuration. For example, the solvent includes water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate , Methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene, xylene, butyrolactone, carbitol, methyl cellosolve acetate, N,N-dimethylacetamide, or mixtures thereof, and the like can be used.
그리고, 상기 단량체 조성물의 중합을 통한 함수겔상 중합체의 형성은 통상적인 중합 방법으로 수행될 수 있으며, 그 공정은 특별히 한정되지 않는다. 비제한적인 예로, 상기 중합 방법은 중합 에너지원의 종류에 따라 크게 열 중합과 광 중합으로 나뉘는데, 상기 열 중합을 진행하는 경우에는 니더(kneader)와 같은 교반축을 가진 반응기에서 진행될 수 있으며, 광 중합을 진행하는 경우에는 이동 가능한 컨베이어 벨트가 구비된 반응기에서 진행될 수 있다.And, the formation of a hydrogel polymer through polymerization of the monomer composition may be performed by a conventional polymerization method, and the process is not particularly limited. As a non-limiting example, the polymerization method is largely divided into thermal polymerization and photo polymerization according to the type of polymerization energy source. When the thermal polymerization is performed, the polymerization method may be performed in a reactor having a stirring axis such as a kneader, and photo polymerization In the case of proceeding, it may proceed in a reactor equipped with a movable conveyor belt.
일 예로, 교반축이 구비된 니더와 같은 반응기에 상기 단량체 조성물을 투입하고, 여기에 열풍을 공급하거나 반응기를 가열하여 열 중합함으로써 함수겔상 중합체를 얻을 수 있다. 이때, 반응기에 구비된 교반축의 형태에 따라 반응기 배출구로 배출되는 함수겔상 중합체는 수 밀리미터 내지 수 센티미터의 입자로 얻어질 수 있다. 구체적으로, 얻어지는 함수겔상 중합체는 주입되는 단량체 조성물의 농도 및 주입속도 등에 따라 다양한 형태로 얻어질 수 있는데, 통상 (중량 평균) 입경이 2 내지 50 mm인 함수겔상 중합체가 얻어질 수 있다.For example, a hydrogel polymer may be obtained by introducing the monomer composition into a reactor such as a kneader equipped with a stirring shaft, and supplying hot air to it or heating the reactor to thermally polymerize it. At this time, depending on the type of agitation shaft provided in the reactor, the hydrogel polymer discharged to the reactor outlet may be obtained as particles of several millimeters to several centimeters. Specifically, the resulting hydrogel polymer can be obtained in various forms depending on the concentration and injection speed of the monomer composition to be injected, and a hydrogel polymer having a particle diameter of 2 to 50 mm (average weight) is usually obtained.
그리고, 다른 일 예로, 이동 가능한 컨베이어 벨트가 구비된 반응기에서 상기 단량체 조성물에 대한 광 중합을 진행하는 경우에는 시트 형태의 함수겔상 중합체가 얻어질 수 있다. 이때 상기 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도에 따라 달라질 수 있는데, 시트 전체가 고르게 중합될 수 있도록 하면서도 생산 속도 등을 확보하기 위하여, 통상적으로 0.5 내지 5 cm의 두께로 조절되는 것이 바람직하다.And, as another example, when the photopolymerization of the monomer composition in a reactor equipped with a movable conveyor belt is performed, a hydrogel polymer in the form of a sheet may be obtained. At this time, the thickness of the sheet may vary depending on the concentration and injection rate of the monomer composition to be injected. In order to ensure the production speed and the like while allowing the entire sheet to be evenly polymerized, it is usually adjusted to a thickness of 0.5 to 5 cm. desirable.
이때 이와 같은 방법으로 얻어진 함수겔상 중합체의 통상 함수율은 약 40 내지 약 80 중량%일 수 있다. 한편, 본 명세서 전체에서 "함수율"은 전체 함수겔상 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔상 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게 감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 180℃까지 온도를 상승시킨 뒤 약 180℃에서 유지하는 방식으로 총 건조시간은 온도 상승 단계 약 5분을 포함하여 약 20분으로 설정하여, 함수율을 측정한다.At this time, the normal water content of the hydrogel polymer obtained in this way may be about 40 to about 80% by weight. On the other hand, "water content" in the present specification refers to a value obtained by subtracting the weight of the polymer in the dry state from the weight of the water-containing gel polymer as the amount of moisture occupied with respect to the total weight of the hydrogel polymer. Specifically, it is defined as a calculated value by measuring a weight loss due to evaporation of water in the polymer during the drying process by raising the temperature of the polymer through infrared heating. At this time, the drying condition is a method of raising the temperature from room temperature to about 180°C and then maintaining it at about 180°C. The total drying time is set to about 20 minutes, including about 5 minutes in the temperature rising step, to measure the water content.
(건조 단계)(Drying step)
상기 건조 단계는, 상기 중합 단계에서 제조한 함수겔상 중합체를 건조하여, 건조 중합체를 만드는 단계이다. The drying step is a step of drying the hydrogel polymer prepared in the polymerization step to make a dry polymer.
이와 별개로, 발명의 일 예에 따르면, 상기와 같이 함수겔상 중합체를 건조하기 이전에, 상술한 바와 같이 함수율이 약 40 내지 약 80 중량%인 함수겔상 중합체를 함수겔 상태에서 분쇄하여, 건조 효율 향상을 도모하는, 겔 분쇄 혹은 겔 해쇄 단계가 선택적으로 실행될 수도 있다. Separately, according to an example of the invention, before drying the hydrogel polymer as described above, the hydrogel polymer having a water content of about 40 to about 80% by weight is pulverized in a hydrogel state, as described above, to improve drying efficiency. A gel grinding or gel disintegration step, which promotes improvement, may optionally be performed.
이러한 겔 분쇄, 혹은 겔 해쇄는, 수직형 절단기(Vertical pulverizer), 터보 커터(Turbo cutter), 터보 글라인더(Turbo grinder), 회전 절단식 분쇄기(Rotary cutter mill), 절단식 분쇄기(Cutter mill), 원판 분쇄기(Disc mill), 조각 파쇄기(Shred crusher), 파쇄기(Crusher), 초퍼(chopper) 및 원판식 절단기(Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 사용하여 진행될 수 있다. Such gel grinding, or gel disintegration, is a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, and a cutter mill. , Disc mill, shred crusher, crusher, chopper, and disc cutter may be performed using any one selected from the group of grinding machines.
이때 겔 분쇄 단계는, 분쇄 후 함수겔상 중합체의 입경이 약 2 mm 내지 약 10 mm로 되도록 진행할 수 있다. 겔 분쇄 후 입경을 작게 조절하는 것은 함수겔상 중합체의 높은 함수율로 인해 기술적으로 용이하지 않으며, 또한 분쇄 후 입경을 지나치게 작게 하는 경우, 분쇄된 함수겔상 중합체가 다시 서로 응집되는 현상이 나타날 수도 있다. 한편, 겔 분쇄 후 입경을 지나치게 크게 하는 경우, 경우, 추후 이루어지는 건조 단계의 효율 증대 효과가 미미할 수 있다.At this time, the gel grinding step may be performed such that the particle diameter of the hydrogel polymer after grinding is about 2 mm to about 10 mm. It is not technically easy to adjust the particle size after gel grinding to be small due to the high water content of the hydrogel polymer, and when the particle diameter is too small after pulverization, a phenomenon that the pulverized hydrogel polymers aggregate again may appear. On the other hand, if the particle size is too large after gel grinding, the effect of increasing the efficiency of the subsequent drying step may be insignificant.
상기와 같이 겔 분쇄되거나, 혹은 겔 분쇄 단계를 거치지 않은 함수겔상 중합체는, 건조 단계에 투입되어, 건조된다. The hydrous gel-like polymer that has been subjected to gel grinding as described above or has not undergone a gel grinding step is introduced into a drying step and dried.
이때 상기 건조 단계의 건조 온도는 약 50 내지 약 250℃일 수 있다. 건조 온도가 너무 낮은 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하되는 문제점이 발생할 수 있고, 건조 온도가 지나치게 높은 경우, 빠른 건조 속도로 인해 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. At this time, the drying temperature of the drying step may be about 50 to about 250 ℃. If the drying temperature is too low, a drying time may be too long, and a problem of deterioration in physical properties of the superabsorbent polymer to be formed may occur. When the drying temperature is too high, only the polymer surface is dried due to a fast drying rate, which is achieved later. Fine powder may be generated in the pulverization process, and there is a fear that the physical properties of the superabsorbent polymer finally formed may be deteriorated.
보다 바람직하게 상기 건조는 약 150 내지 약 200℃의 온도에서, 더욱 바람직하게는 약 160 내지 약 190℃의 온도에서 진행될 수 있다. 한편, 건조 시간의 경우에는 공정 효율 등을 고려하여, 약 20분 내지 약 15시간 동안 진행될 수 있으나, 본 발명이 반드시 이에 한정되지는 않는다. More preferably, the drying may be carried out at a temperature of about 150 to about 200 ℃, more preferably at a temperature of about 160 to about 190 ℃. On the other hand, in the case of drying time, process efficiency and the like may be considered, and may be performed for about 20 minutes to about 15 hours, but the present invention is not necessarily limited thereto.
상기 건조에서 사용되는 장치는, 본 발명이 속하는 기술 분야에서 일반적으로 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체, 즉 건조 중합체의 함수율은 약 0.05 내지 약 10 중량%일 수 있다. The device used in the drying, as long as it is generally used in the technical field to which the present invention pertains, may be selected and used without limitation of its configuration. Specifically, the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation. The water content of the polymer after the drying step, that is, the dry polymer may be from about 0.05 to about 10% by weight.
(분쇄 단계)(Grinding step)
상기 분쇄 단계는, 상기 건조 단계에서 건조된 건조 중합체를 분쇄하여 입자 형태의 베이스 수지로 제조하는 단계로, 제1차 분쇄 및 제2차 분쇄 단계로 나뉠 수 있다. The crushing step is a step of pulverizing the dried polymer dried in the drying step to prepare a base resin in the form of particles, and may be divided into a first crushing step and a second crushing step.
본 발명에서는 미분 발생을 줄이기 위하여, 상기 제1차 분쇄를 통하여 분쇄된 입자 중, 목표 대상 입경 이상의 입경을 가지는 이상 입자 만을 다시 분쇄하는 것을 특징으로 한다.In the present invention, in order to reduce the generation of fine powder, it is characterized in that, among the particles pulverized through the first pulverization, only abnormal particles having a particle diameter equal to or larger than a target particle diameter are again pulverized.
일반적으로 베이스 수지 분쇄 시에는, 분쇄의 효율을 향상시키기 위하여, 분쇄 입경을 달리 설정하여 조분쇄 및 미분쇄를 별도로 진행하는 경우가 많다. In general, in the case of pulverizing the base resin, in order to improve the efficiency of pulverization, coarse pulverization and fine pulverization are often performed separately by setting different pulverization particle sizes.
본 발명의 일 측면에 따른 제조 방법에서는, i) 상기 제1차 분쇄가 조분쇄에 해당할 수 있고, 상기 제2차 분쇄가 미분쇄에 해당할 수 있다. 혹은, ii) 상기 제1차 분쇄 및 제2차 분쇄 모두 미분쇄 과정에 해당할 수도 있다. In the manufacturing method according to an aspect of the present invention, i) the first grinding may correspond to coarse grinding, and the second grinding may correspond to fine grinding. Alternatively, ii) both the first pulverization and the second pulverization may correspond to a fine grinding process.
발명의 일 실시예에 다른 제조 방법에서, 상기 제1 및 제2 분쇄가 모두 미분쇄에 해당하는 ii)의 경우, 제1차 분쇄에 앞서 별도의 조분쇄 과정을 더 포함하여 진행할 수도 있다. 별도의 조분쇄 과정을 더 포함하는 경우, 조분쇄 후 분쇄된 베이스 수지의 입자는, 약 800 ㎛ 내지 약 5000 ㎛의 입경 범위에 있는 것이 분쇄의 효율성 측면에서 바람직할 수 있다. In a manufacturing method according to an embodiment of the present invention, in the case of ii) in which both the first and second pulverization correspond to fine grinding, it may be further performed by further comprising a separate coarse pulverization process prior to the first pulverization. When further comprising a separate co-grinding process, the particles of the pulverized base resin after co-grinding may be preferable in terms of the efficiency of crushing in a particle size range of about 800 μm to about 5000 μm.
본 발명은 연속된 롤 밀 및 분급기를 이용하여 수행할 수 있다. 일례로, 상기 분쇄 단계는 단일 롤 밀, 혹은 다단 롤 밀, 및 분급기를 이용하여 수행할 수 있다.The present invention can be carried out using a continuous roll mill and classifier. In one example, the grinding step may be performed using a single roll mill, or a multi-stage roll mill, and a classifier.
상기 분급기는 목표 대상 입경과 동일한 규격의 분급 체를 구비한 형태로, 목표 대상 입경 이상의 입경을 가지는 ‘이상 입자’ 및 목표 대상 입경 미만의 입경을 가지는 ‘정상 입자’로 1차 분급하는 단계를 수행한다.The classifier is provided with a classifier having the same size as the target particle size, and performs the primary classification with'normal particles' having a particle size larger than the target particle size and'normal particles' having a particle diameter less than the target particle size. do.
이 때, 상기 목표 대상 입경은, 전술한 바와 같이, 제2차 분쇄 단계의 이상 입자 분급 단계에서, 정상 입자와 이상 입자를 분리하기 위한 분급의 기준이 되는 입경을 의미로, 약 200 내지 약 850 ㎛의 범위에서 선택될 수 있다. 바람직하게는 약 200 ㎛ 이상, 또는 약 300 ㎛ 이상, 또는 약 420 ㎛ 이상, 약 850 ㎛ 이하, 또는 약 800 ㎛ 이하, 또는 약 750 ㎛ 이하, 또는 약 700 ㎛ 이하인 범위에서 선택될 수 있다. At this time, the target target particle size, as described above, in the second particle classification step of the second pulverization step, means a particle diameter that is a reference for classification for separating normal particles and abnormal particles, from about 200 to about 850 It can be selected in the range of μm. Preferably, it may be selected from a range of about 200 μm or more, or about 300 μm or more, or about 420 μm or more, about 850 μm or less, or about 800 μm or less, or about 750 μm or less, or about 700 μm or less.
종래 고흡수성 수지의 제조에서는 입경 150 ㎛ 내지 850 ㎛ (180 내지 850 ㎛, 또는 300 내지 850 ㎛)의 입자를 제조하기 위해, 연속적인 분쇄를 진행하는데, 이에 따라 상기 입경을 가지는 입자를 제조할 수 있으나, 제1차 분쇄 단계에서 일정 크기 이하로 분쇄된 입자들, 즉 정상 범위에 속하는 입자 혹은 그보다 더 작은 입자들 역시 다음 단계의 분쇄에 다시 투입되기 때문에, 상대적으로 미분의 발생이 높아지는 문제가 있다. In the manufacture of a conventional super absorbent polymer, in order to produce particles having a particle diameter of 150 μm to 850 μm (180 to 850 μm, or 300 to 850 μm), continuous grinding is performed, and accordingly, particles having the particle size can be produced. However, since particles crushed to a certain size or less in the first crushing step, that is, particles falling within a normal range or smaller particles, are also re-injected into crushing in the next step, there is a problem that the generation of relatively fine powder is relatively high. .
그러나 본 발명에서는, 각 분쇄 단계 사이에 이상 입자와 정상 입자를 분리하고, 이 중 이상 입자만을 다시 이후의 분쇄 단계에 투입하기 때문에, 각 분쇄 단계에서의 분쇄 조건을 기존보다 완화하여 진행할 수 있으며, 이에 따라, 각 분쇄 단계에서 목표로 하는 ‘상대적으로 입경이 큰 입자의 비율’을 높일 수 있고, 이러한 결과로 각 분쇄 단계에서 미분의 발생을 더욱 더 줄일 수 있다. However, in the present invention, since the abnormal particles and the normal particles are separated between each pulverization step, and only the abnormal particles are added to the subsequent pulverization step, the pulverization conditions in each pulverization step can be relaxed and proceed. Accordingly, it is possible to increase the'ratio of particles having a relatively large particle size', which is a target in each grinding step, and as a result, the generation of fine powder in each grinding step can be further reduced.
바람직하게는, 상기 제1차 분쇄 단계를 통하여 제조되는 입자에서, 상기 목표 대상 입경 이상의 입경을 가지는 이상 입자의 비율이, 전체 분쇄된 입자의 총 중량 대비 약 60 wt% 이상, 또는 약 80 wt% 이상, 또는 약 90 wt% 이상, 약 99 wt% 이하, 혹은 약 95 wt% 이하가 되도록 제1차 분쇄의 분쇄 조건을 조절할 수 있다. Preferably, in the particles produced through the first pulverization step, the proportion of abnormal particles having a particle diameter equal to or greater than the target target particle diameter is about 60 wt% or more, or about 80 wt%, relative to the total weight of the whole crushed particles The pulverization conditions of the first pulverization may be adjusted to be greater than or equal to or greater than about 90 wt%, less than or equal to about 99 wt%, or less than about 95 wt%.
그리고, 상기 분쇄 단계를 통하여 제조되는 입자에서, 입경이 약 180 ㎛ 미만, 또는, 약 150 ㎛ 미만인 입자, 즉, 미세 입자 혹은 미분은, 전체 분쇄된 입자의 총 중량 대비 약 10.0 wt% 이하, 약 5.0 wt% 이하, 또는 약 1.0 wt% 이하가 되도록 제1차 분쇄의 분쇄 조건을 조절할 수 있다. In addition, in the particles produced through the pulverizing step, particles having a particle diameter of less than about 180 μm, or less than about 150 μm, that is, fine particles or fine powder, about 10.0 wt% or less, based on the total weight of the total pulverized particles, about The pulverization conditions of the first pulverization can be adjusted to be 5.0 wt% or less, or about 1.0 wt% or less.
상기 분쇄 단계에서 제조된 입자 중 입경이 약 150 ㎛ 또는, 약 180 ㎛ 미만인 미분은, 폐기하거나, 또는 물을 첨가하여 재조립하여 상기 건조 단계로 순환할 수도 있다. The fine particles having a particle diameter of less than about 150 μm or less than about 180 μm among the particles prepared in the grinding step may be discarded or reassembled by adding water to circulate to the drying step.
상기 제2차 분쇄 단계는, 상기 분쇄 단계에서 제1차 분쇄된 입자를 분급하고 다시 분쇄하는 단계로서, 상술할 제1차 분쇄 단계와 구분하기 위하여, 본 명세서에서는 ‘제2차 분쇄’라 한다.The second pulverization step is a step of classifying and pulverizing the first pulverized particles in the pulverization step. In order to distinguish it from the first pulverization step described above, it is referred to as'secondary pulverization' in this specification. .
전술한 바와 같이, 상기 제1차 분쇄가 조분쇄에 해당하는 경우, 제2차 분쇄는, 미분쇄의 첫 번째 분쇄 단계를 의미할 수 있다. 그리고, 상기 제1차 분쇄가 아닌, 별도의 조분쇄 단계를 거친 경우라면, 제1차 분쇄가 미분쇄의 첫 번째 분쇄 단계이고, 제2차 분쇄는, 미분쇄의 두 번째 분쇄 단계를 의미할 수 있다.As described above, when the first pulverization corresponds to coarse pulverization, the second pulverization may refer to the first pulverization step of pulverization. In addition, if the first pulverization is performed in a separate co-grinding step, the first pulverization is the first pulverization step of the fine grinding, and the second pulverization means the second pulverization stage of the fine grinding. Can.
상술한 바와 같이, 제1차 분쇄 단계에서는 기존에 비해 상대적으로 입경이 큰 입자 비율이 높기 때문에, 입경 150 ㎛ 내지 850um(180 내지 850 ㎛, 또는 300 내지 850 ㎛)의 입자를 제조하기 위해서는, 추가 분쇄가 필요하다. As described above, in the first grinding step, since the proportion of particles having a relatively large particle size is higher than in the prior art, in order to prepare particles having a particle size of 150 μm to 850 μm (180 to 850 μm, or 300 to 850 μm), additional Grinding is necessary.
이때 본 발명에서는 상기 제2차 분쇄 과정을 1회이상, 또는 2회 이상, 또는 2회 내지 5회, 또는 3회 내지 4회 수행하고, 각 분쇄 단계에서 분쇄기와 분급기를 함께 사용함으로써, 목표 대상 입경 미만의 작은 입자들이, 목표 대상 입경보다 큰 입자들과 함께 추가로 분쇄되는 것을 방지하여, 미분 발생을 줄일 수 있다.At this time, in the present invention, the second grinding process is performed at least once, or at least twice, or 2 to 5 times, or 3 to 4 times, and by using the grinder and classifier together in each grinding step, the target particle size The smaller particles can be prevented from being further crushed together with particles larger than the target particle size, thereby reducing the generation of fines.
전술한 바와 같이, 상기 제1차 분쇄가 조분쇄에 해당하는 경우, 제2차 분쇄, 즉 별도의 미분쇄는 2회 이상 수행되는 것이 더 바람직할 수 있다. As described above, when the first pulverization corresponds to coarse pulverization, it may be more preferable to perform the second pulverization, that is, separate fine pulverization two or more times.
바람직한 구현예에 따라, 본 발명의 제1 및 제2차 각 분쇄 단계는 연속된 다단 롤 밀, 혹은 연속된 단일 롤 밀을 사용하되, 상기 연속된 롤 밀에서 분쇄 각 단의 아래, 혹은 마지막 단 전 단계에서 분급기를 도입함으로써, 상술한 목표 대상 입경 이상의 입경을 가지는 이상 입자만을 다음 단계의 롤 밀에 투입한다. 이를 통해 목표 대상 입경보다 작은 입경을 가지는, 정상 입자들이 하단의 롤 밀에 다시 투입되어 분쇄될 수 있는 가능성을 차단하여, 해당 과정에서의 미분 발생을 억제하는 것을 특징으로 한다.According to a preferred embodiment, the first and second angular crushing steps of the present invention use a continuous multi-stage roll mill, or a continuous single roll mill, wherein the sequential roll mill is the bottom of the crushing stage or the last stage. By introducing the classifier in the previous step, only the abnormal particles having a particle size equal to or more than the target particle size described above are introduced into the roll mill of the next step. Through this, it is characterized in that it suppresses the generation of fine powders in the corresponding process by blocking the possibility of normal particles having a particle size smaller than the target target particle size being re-injected into the lower roll mill and crushed.
또한, 본 발명은 상기와 같이 다단식 롤을 사용하면서도, 다단식 롤을 이루는 각 단의 롤의 간극 폭을 상단에서 하단으로 갈수록 서로 다르게 하여 진행할 수 있다. In addition, the present invention can be carried out by using the multi-stage roll as described above, but the gap width of each stage of the roll forming the multi-stage roll is different from the top to the bottom.
구체적으로, 발명의 일 실시예에 따르면, 상기 제2차 분쇄에서는, 상기 상기 제1차 분쇄보다, 롤 간극 폭이 좁은 장치를 사용하는 것이 바람직하고, 또한 제2차 분쇄가 2회 이상 반복되는 경우, 차수를 더해감에 따라, 롤 간극 폭이 더 좁은 것을 사용하는 것이 바람직하다. Specifically, according to one embodiment of the invention, in the second grinding, it is preferable to use a device having a narrower roll gap width than the first grinding, and the second grinding is repeated two or more times. In the case, it is preferable to use a narrower roll gap width as the order is added.
본 발명에서, 상기 간극 폭은 다단 롤을 구성하는 각 단의 구성에서, 롤 사이의 거리를 지칭할 수 있다. In the present invention, the gap width may refer to the distance between the rolls in the configuration of each stage constituting the multi-stage roll.
즉, 본 발명의 일 실시예에 따르면, 단계적으로 롤 밀 간의 간격을 좁혀, 분쇄 정도를 높이되, 각 단계에서 분쇄된 분쇄 결과물 중 정상 입자들은 더 이상 분쇄를 진행하지 않고, 이상 입자만을 추가 분쇄 단계에 투입하여, 과도한 분쇄를 줄일 수 있으며, 이에 따라 미분 발생량을 감소 시킬 수 있다. That is, according to one embodiment of the present invention, stepwise narrowing the distance between the roll mills to increase the degree of crushing, normal particles among the crushed products crushed in each step do not proceed to further grinding, only additional grinding By putting in the step, excessive pulverization can be reduced, and accordingly, the amount of fine powder can be reduced.
발명의 일 구현예에 따라, 분쇄에 사용되는 롤은 2개로 구성될 수 있다. 여기서, 상기 간극 폭은 2개의 롤 사이의 거리를 지칭한다. 롤의 간극 폭이 좁아질수록 분쇄되어 나오는 입자의 크기 분포가 작아지게 된다. According to one embodiment of the invention, the roll used for grinding may consist of two. Here, the gap width refers to the distance between two rolls. The narrower the gap width of the roll, the smaller the size distribution of the pulverized particles.
연속식 다단 롤을 사용하는 경우, 바람직하게, 상단 롤 밀의 간극 폭은, 예를 들어, 약 4.0 내지 약 5.0 mm이 되도록 고정하여 위치할 수 있고, 하단 롤 밀의 간극 폭은 예를 들어 약 1.5 mm 이하가 되도록 할 수 있다. 즉, 제2차 분쇄 횟수만큼 롤 간극 폭을 조금씩 줄이면서 분쇄 및 분급을 진행하는 것이 바람직하다. 예를 들어, 제2차 분쇄를 진행하는 횟수에 따라, 약 0.3 mm 내지 약 0.6 mm씩 간극 폭을 좁히면서 하단을 이루는 단일 롤 밀의 간극 폭을 조절하는 것이 바람직하다. When using a continuous multi-stage roll, preferably, the gap width of the upper roll mill can be fixedly positioned to be, for example, about 4.0 to about 5.0 mm, and the gap width of the lower roll mill is, for example, about 1.5 mm It can be made as follows. That is, it is preferable to perform grinding and classification while gradually reducing the width of the roll gap by the second number of times of grinding. For example, it is preferable to adjust the gap width of the single roll mill forming the bottom while narrowing the gap width by about 0.3 mm to about 0.6 mm, depending on the number of times the second milling is performed.
또한, 상기 제2차 분쇄로 제조되는 입자에서, 입자의 입경이 약 150 내지 약 850 ㎛인 입자, 및 그보다 작은 입자로 다시 분급하는, 재분급 단계를 추가할 수 있고, 이 중 상기 약 150 내지 약 850 ㎛의 입경을 가지는 입자를 최종 제품으로 사용할 수 있다. In addition, in the particles produced by the second pulverization, a re-classification step may be added to classify the particles into particles having a particle diameter of about 150 to about 850 μm again and smaller particles, among which about 150 to Particles having a particle diameter of about 850 μm can be used as the final product.
또, 본 발명의 경우 상기 분쇄 단계에서 얻어진 입자 중 입경 150 ㎛ 미만인 입자, 즉, 미세 입자 또는 미분을 분리하고 물을 첨가하여 재조립후 상기 건조 단계로 순환시키는 단계를 포함할 수 있다. 상기 재조립 방법은 이 분야에 잘 알려진 방법에 따라 수행될 수 있는 바, 상기 방법에 한정되는 것은 아니다.In addition, in the case of the present invention, it may include a step of separating particles having a particle diameter of less than 150 μm, that is, fine particles or fine powder, re-assembled by adding water, and circulating to the drying step. The reassembly method may be performed according to a method well known in the art, but is not limited to the method.
또, 본 발명에서, 상기 단일 롤 밀의 표면은 물결 모양 (corrugated roll surface)을 나타낼 수 있으나, 이에 한정되는 것은 아니다. 또한, 각 단을 구성하는 단일 롤 밀의 회전속도는 2 m/s 내지 15 m/s 일 수 있다.In addition, in the present invention, the surface of the single roll mill may exhibit a corrugated roll surface, but is not limited thereto. In addition, the rotational speed of a single roll mill constituting each stage may be 2 m/s to 15 m/s.
(기타 단계)(Other steps)
또한, 본 발명은 필요에 따라 상기 제조한 입자의 표면을 가교하는 단계를 포함할 수 있다. In addition, the present invention may include a step of crosslinking the surface of the prepared particles as necessary.
즉, 본 발명은 상술한 방법으로 통해 얻어진 정상 입자를 베이스 수지 분말로 사용할 수 있다. 그러므로, 본 발명은 표면 가교제의 존재 하에 상기 베이스 수지 분말의 표면을 추가 가교하여 표면 가교층을 형성하는 단계를 더 포함할 수 있다.That is, the present invention can use the normal particles obtained through the above-described method as a base resin powder. Therefore, the present invention may further include forming a surface crosslinking layer by further crosslinking the surface of the base resin powder in the presence of a surface crosslinking agent.
구체적으로, 표면 가교액의 존재 하에, 상기 제조한 입자를 열처리하여 표면 가교하는 단계를 추가로 포함할 수 있다. Specifically, in the presence of a surface crosslinking solution, the step of heat-treating the prepared particles may further include surface crosslinking.
상기 표면 가교액은 2개 이상의 에폭시 고리를 가지는 화합물, 및 2개 이상의 하이드록시를 가지는 화합물로 구성되는 군으로부터 선택되는 어느 하나 이상의 표면 가교제를 포함할 수 있다. The surface crosslinking solution may include any one or more surface crosslinking agents selected from the group consisting of compounds having two or more epoxy rings, and compounds having two or more hydroxys.
바람직하게는, 상기 표면 가교액은 2개 이상의 에폭시 고리를 가지는 화합물 및 2개 이상의 하이드록시를 가지는 화합물을 모두 포함한다. 이 경우, 상기 표면 가교액은 2개 이상의 에폭시 고리를 가지는 화합물 및 2개 이상의 하이드록시를 가지는 화합물을 1:1.1 내지 1:5 중량비로 포함한다. Preferably, the surface crosslinking solution includes both compounds having two or more epoxy rings and compounds having two or more hydroxys. In this case, the surface crosslinking solution contains a compound having two or more epoxy rings and a compound having two or more hydroxy groups in a ratio of 1:1.1 to 1:5.
상기 2개 이상의 에폭시 고리를 가지는 화합물의 예로는, 에틸렌글리콜 디글리시딜 에테르, 폴리에틸렌글리콜 디글리시딜 에테르, 글리세롤 폴리글리시딜 에테르, 프로필렌글리콜 디글리시딜 에테르, 폴리프로필렌 글리콜 디글리시딜 에테르, 1,4-부탄디올 디글리시딜 에테르, 1,4-싸이클로헥산디메탄올 디글리시딜 에테르, 헥사하이드로프탈릭 안하이드라이드 디글리시딜 에테르, 네오펜틸 글리콜 디글리시딜 에테르, 비스페놀 에이 디글리시딜 에테르, 및 N,N-디글리시딜아닐린으로 구성되는 군으로부터 선택된 1종 이상의 화합물을 들 수 있다. 바람직하게는, 에틸렌글리콜 디글리시딜 에테르를 사용한다. Examples of the compound having two or more epoxy rings, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl Diyl ether, 1,4-butanediol diglycidyl ether, 1,4-cyclohexanedimethanol diglycidyl ether, hexahydrophthalic anhydride diglycidyl ether, neopentyl glycol diglycidyl ether, And at least one compound selected from the group consisting of bisphenol a diglycidyl ether and N,N-diglycidyl aniline. Preferably, ethylene glycol diglycidyl ether is used.
상기 2개 이상의 하이드록시를 가지는 화합물의 예로는, 에틸렌글리콜, 다이에틸렌글리콜, 프로필렌글리콜, 트리에틸렌 글리콜, 테트라 에틸렌 글리콜, 프로판 다이올, 다이프로필렌글리콜, 폴리프로필렌글리콜, 글리세린, 폴리글리세린, 부탄다이올, 헵탄다이올, 헥산다이올, 트리메틸롤프로판, 펜타에리스리톨, 및 소르비톨로 구성되는 군으로부터 선택된 1종 이상의 화합물을 들 수 있다. 바람직하게는 프로필렌글리콜을 사용한다. Examples of the compound having two or more hydroxy, ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol, tetraethylene glycol, propane diol, dipropylene glycol, polypropylene glycol, glycerin, polyglycerin, butanedi And one or more compounds selected from the group consisting of all, heptanediol, hexanediol, trimethylolpropane, pentaerythritol, and sorbitol. Preferably, propylene glycol is used.
이때, 상기 표면 가교제는, 상기 베이스 수지 100 중량부에 대하여 1 중량부 이하로 사용하는 것이 바람직하다. 여기서, 상기 표면 가교제의 사용량은 상기 표면 가교제가 2종 이상 사용되는 경우에는 이의 총량을 의미한다. 상기 표면 가교제 사용량이 1 중량부를 초과할 경우에는 과도한 표면 가교가 진행되어 고흡수성 수지의 각종 물성 특히 건조도가 나빠질 수 있다. 또한, 상기 표면 가교제는, 상기 베이스 수지 100 중량부에 대하여 0.01 중량부 이상, 0.02 중량부 이상, 0.03 중량부 이상, 0.04 중량부 이상, 또는 0.05 중량부 이상 사용하는 것이 바람직하다. At this time, the surface crosslinking agent is preferably used in an amount of 1 part by weight or less based on 100 parts by weight of the base resin. Here, the amount of the surface crosslinking agent used means the total amount of the surface crosslinking agent when two or more are used. When the surface crosslinking agent is used in an amount of more than 1 part by weight, excessive surface crosslinking may occur, and various properties of the super absorbent polymer, particularly, dryness may be deteriorated. In addition, the surface crosslinking agent is preferably used in an amount of 0.01 parts by weight or more, 0.02 parts by weight or more, 0.03 parts by weight or more, 0.04 parts by weight or more, or 0.05 parts by weight or more based on 100 parts by weight of the base resin.
또한, 상기 표면 가교액은 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로헥사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 톨루엔, 크실렌, 부틸로락톤, 카르비톨, 메틸셀로솔브아세테이트 및 N,N-디메틸아세트아미드로 이루어진 군에서 선택된 1종 이상의 용매를 더 포함할 수 있다. 바람직하게는, 물을 포함한다. 상기 용매는 상기 베이스 수지 분말 100 중량부 대비 0.5 내지 10 중량부로 사용할 수 있다. In addition, the surface crosslinking solution is water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, Methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene, xylene, butyrolactone, carbitol, methyl cellosolve acetate and N, It may further include one or more solvents selected from the group consisting of N-dimethylacetamide. Preferably, water is included. The solvent may be used in 0.5 to 10 parts by weight relative to 100 parts by weight of the base resin powder.
또한, 상기 표면 가교액은 알루미늄 황산염을 추가로 포함할 수 있다. 상기 알루미늄 황산염은 상기 베이스 수지 분말의 100 중량부를 기준으로, 0.02 내지 0.3 중량부로 포함될 수 있다.In addition, the surface crosslinking solution may further include aluminum sulfate. The aluminum sulfate may be included in 0.02 to 0.3 parts by weight based on 100 parts by weight of the base resin powder.
또한, 상기 표면 가교액은 무기 충전제를 포함할 수 있다. 상기 무기 충전제로는 실리카, 알루미늄 옥사이드, 또는 실리케이트를 포함할 수 있다. 상기 무기 충전제는 상기 베이스 수지 분말의 100 중량부를 기준으로, 0.01 내지 0.5 중량부로 포함될 수 있다. In addition, the surface crosslinking solution may include an inorganic filler. The inorganic filler may include silica, aluminum oxide, or silicate. The inorganic filler may be included in an amount of 0.01 to 0.5 parts by weight based on 100 parts by weight of the base resin powder.
또한, 상기 표면 가교액은 증점제를 추가로 포함할 수 있다. 이렇게 증점제 존재 하에 베이스 수지 분말의 표면을 추가로 가교하면 분쇄 후에도 물성 저하를 최소화할 수 있다. 구체적으로, 상기 증점제로는 다당류 및 히드록시 함유 고분자 중 선택된 1 종 이상이 사용될 수 있다. 상기 다당류로는 검 계열 증점제와 셀룰로오스 계열 증점제 등이 사용될 수 있다. 상기 검 계열 증점제의 구체적인 예로는, 잔탄 검(xanthan gum), 아라빅 검(arabic gum), 카라야 검(karaya gum), 트래거캔스 검(tragacanth gum), 가티 검(ghatti gum), 구아 검(guar gum), 로커스트 빈 검(locust bean gum) 및 사일리움 씨드 검(psyllium seed gum) 등을 들 수 있고, 상기 셀룰로오스 계열 증점제의 구체적인 예로는, 히드록시프로필메틸셀룰로오스, 카르복시메틸셀룰로오스, 메틸셀룰로오스, 히드록시메틸셀룰로오스, 히드록시에틸셀룰로오스, 히드록시프로필셀룰로오스, 히드록시에틸메틸셀룰로오스, 히드록시메틸프로필셀룰로오스, 히드록시에틸히드록시프로필셀룰로오스, 에틸히드록시에틸셀룰로오스 및 메틸히드록시프로필셀룰로오스 등을 들 수 있다. 한편, 상기 히드록시 함유 고분자의 구체적인 예로는 폴리에틸렌글리콜 및 폴리비닐알코올 등을 들 수 있다. In addition, the surface crosslinking solution may further include a thickener. When the surface of the base resin powder is further crosslinked in the presence of a thickener in this way, deterioration in physical properties can be minimized even after grinding. Specifically, one or more selected from polysaccharides and hydroxy-containing polymers may be used as the thickener. As the polysaccharide, a gum-based thickener and a cellulose-based thickener may be used. Specific examples of the gum-based thickener include xanthan gum, arabic gum, karaya gum, tragacanth gum, ghatti gum, guar gum (guar gum), locust bean gum (locust bean gum) and silylium seed gum, and the like, and specific examples of the cellulose-based thickener include hydroxypropyl methyl cellulose, carboxymethyl cellulose, and methyl cellulose , Hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxyethylmethylcellulose, hydroxymethylpropylcellulose, hydroxyethylhydroxypropylcellulose, ethylhydroxyethylcellulose and methylhydroxypropylcellulose Can. Meanwhile, specific examples of the hydroxy-containing polymer include polyethylene glycol and polyvinyl alcohol.
한편, 상기 표면 가교를 수행하기 위해서는, 상기 표면 가교액과 상기 베이스 수지를 반응조에 넣고 혼합하는 방법, 상기 베이스 수지에 표면 가교 용액을 분사하는 방법, 연속적으로 운전되는 믹서에 상기 베이스 수지와 표면 가교액을 연속적으로 공급하여 혼합하는 방법 등이 이용될 수 있다.On the other hand, in order to perform the surface crosslinking, the surface crosslinking solution and the base resin are mixed in a reaction tank, a method of spraying a surface crosslinking solution on the base resin, and the surface resin and the surface crosslinking in a continuously operated mixer. A method of continuously supplying and mixing the liquid may be used.
그리고, 상기 표면 가교는 100 내지 250℃의 온도 하에서 진행될 수 있으며, 비교적 고온으로 진행되는 상기 건조 및 분쇄 단계 이후에 연속적으로 이루어질 수 있다. 이때. 상기 표면 가교 반응은 1 내지 120분, 또는 1 내지 100분, 또는 10 내지 60분 동안 진행될 수 있다. 즉, 최소 한도의 표면 가교 반응을 유도하면서도 과도한 반응시 중합체 입자가 손상되어 물성이 저하되는 것을 방지하기 위하여 전술한 표면 가교 반응의 조건으로 진행될 수 있다.In addition, the surface crosslinking may be performed under a temperature of 100 to 250°C, and may be continuously performed after the drying and pulverizing steps proceeding at a relatively high temperature. At this time. The surface crosslinking reaction may be performed for 1 to 120 minutes, or 1 to 100 minutes, or 10 to 60 minutes. That is, while inducing a minimum amount of the surface crosslinking reaction, the polymer particles may be damaged during excessive reaction to prevent the physical properties from being deteriorated, and thus the conditions of the surface crosslinking reaction may be performed.
(장치)(Device)
한편, 본 발명의 다른 일 측면에 따르면, 건조 중합체가 투입되는 투입부(100); 상기 투입된 건조 중합체를 분쇄하는 분쇄부(200); 및 분쇄된 건조 중합체 입자를 배출하는 배출부(300)를 포함하고; 상기 분쇄부(200)는, 상기 투입된 건조 중합체를 분쇄하는 제1차 분쇄부(210) 및 제2차 분쇄부(220)를 포함하며, 상기 제2차 분쇄부(220)는, 상기 제1차 분쇄부(210)에서 분쇄된 건조 중합체를, 목표 대상 입경 이상의 입경을 가지는 ‘이상 입자’ 및 목표 대상 입경 미만의 입경을 가지는 ‘정상 입자’로 분급하는 이상 입자 분급 부분(221); 및 상기 ‘이상 입자’만을 모아 다시 분쇄하는, 이상 입자 분쇄 부분(222)을 포함하는, 고흡수성 수지의 제조 장치가 제공된다. On the other hand, according to another aspect of the present invention, the input unit 100 to which the dry polymer is introduced; A crushing unit 200 for pulverizing the introduced dry polymer; And an outlet portion 300 for discharging the pulverized dry polymer particles; The crushing unit 200 includes a first crushing unit 210 and a second crushing unit 220 for pulverizing the dried polymer, and the second crushing unit 220 is the first An abnormal particle classifying portion 221 for classifying the dried polymer pulverized in the primary crushing unit 210 into'abnormal particles' having a particle diameter equal to or larger than the target particle diameter and'normal particles' having a particle diameter smaller than the target particle diameter; And an abnormal particle pulverization portion 222 that collects only the “abnormal particles” and crushes them again.
도 1은, 본 발명의 일 실시예에 따른 고흡수성 제조 장치를 도시한 것이다. 1 shows a super absorbent fabrication apparatus according to an embodiment of the present invention.
도 1을 참고하면, 본 발명의 다른 일 실시예에 따른 고흡수성 수지 제조 장치에서, 건조 중합체가 투입되는 투입부(100); 상기 투입된 건조 중합체를 분쇄하는 분쇄부(200); 및 분쇄된 건조 중합체 입자를 배출하는 배출부(300)를 포함하고; 상기 분쇄부(200)는, 상기 투입된 건조 중합체를 분쇄하는 제1차 분쇄부(210) 및 제2차 분쇄부(220)를 포함하며, 상기 제2차 분쇄부(220)는, 상기 제1차 분쇄부(210)에서 분쇄된 건조 중합체를, 목표 대상 입경 이상의 입경을 가지는 ‘이상 입자’ 및 목표 대상 입경 미만의 입경을 가지는 ‘정상 입자’로 분급하는 이상 입자 분급 부분(221); 및 상기 ‘이상 입자’만을 모아 다시 분쇄하는, 이상 입자 분쇄 부분(222)을 포함하는 것을 확인할 수 있다. Referring to Figure 1, in the super absorbent polymer manufacturing apparatus according to another embodiment of the present invention, the input unit 100 is introduced to the dry polymer; A crushing unit 200 for pulverizing the introduced dry polymer; And an outlet portion 300 for discharging the pulverized dry polymer particles; The crushing unit 200 includes a first crushing unit 210 and a second crushing unit 220 for pulverizing the dried polymer, and the second crushing unit 220 is the first An abnormal particle classifying portion 221 for classifying the dried polymer pulverized in the primary crushing unit 210 into'abnormal particles' having a particle diameter equal to or larger than the target particle diameter and'normal particles' having a particle diameter smaller than the target particle diameter; And it can be seen that it comprises an abnormal particle crushing portion 222, which collects only the'abnormal particles' and crushes it again.
이 때, 상기 제2차 분쇄부는, 1개 이상, 또는 2개 이상을 포함하는 것이 바람직할 수 있다. At this time, it may be preferable that the second pulverization unit includes one or more or two or more.
그리고, 상기 분쇄부는, 롤 밀을 포함하고, 제1차 분쇄부 및 제2차 분쇄부에 포함된 각 단을 이루는 롤 밀에서의 롤 간극 폭이, 상단에서 하단으로 갈수록 좁아지는 구조를 가지는 것이 바람직할 수 있으며, 만일 제2차 분쇄부가 2 이상 포함되는 경우 역시, 차수를 더해감에 각 단을 이루는 롤 밀에서의 롤 간극 폭이 갈수록 좁아지는 구조를 가지는 것이 바람직할 수 있다. In addition, the crushing unit includes a roll mill, and the roll gap width in the roll mill forming each stage included in the first crushing unit and the second crushing unit has a structure that becomes narrower from top to bottom. It may be preferable, and if the second pulverization part is included in two or more, it may also be desirable to have a structure in which the width of the roll gap in the roll mill forming each stage becomes narrower as the order is added.
그리고, 상기 이상 입자 분급 부분은, 각 단 단일 롤 밀의 하단에 위치할 수 있다. In addition, the abnormal particle classification portion may be located at the bottom of each stage single roll mill.
구체적으로, 본 발명의 일 실시예에 따른 장치를 설명하면, 먼저, 투입부(100)를 통해 건조된 베이스 수지가 투입되고, 제1차 분쇄부(210)로 이동된다. Specifically, when explaining the device according to an embodiment of the present invention, first, the base resin dried through the input unit 100 is introduced, and is moved to the first crushing unit 210.
상기 제1차 분쇄부를 통과하면서 1차 분쇄된 베이스 수지는 하단의 제2차 분쇄부(220)로 이동된다. 제2차 분쇄부는, 상기 제1차 분쇄부(210)에서 분쇄된 건조 중합체를, 목표 대상 입경 이상의 입경을 가지는 ‘이상 입자’ 및 목표 대상 입경 미만의 입경을 가지는 ‘정상 입자’로 분급하는 이상 입자 분급 부분(221)을 포함하며, 이러한 분급 부분은, 구체적으로, 분급 체의 형태로 구성될 수 있다. While passing through the primary grinding unit, the primary milled base resin is moved to the secondary grinding unit 220 at the bottom. The second pulverization unit is an abnormality in which the dry polymer pulverized in the first pulverization unit 210 is classified into'abnormal particles' having a particle diameter equal to or larger than a target particle diameter and'normal particles' having a particle diameter smaller than a target particle diameter. It includes a particle classification portion 221, and such a classification portion may be specifically configured in the form of a classification body.
상기 제1차 분쇄부(210)에서 분쇄된 베이스 수지 입자 중, 이상 입자의 경우, 이상 입자 분급 부분(221)을 통해, ‘이상 입자’만을 모아 다시 분쇄하는, 이상 입자 분쇄 부분(222)으로 투입되고, 정상 입자의 경우, 체 형태의 입자 분급 부분(221)을 바로 통과하여, 배출부로 이동된다. Among the base resin particles pulverized in the primary crushing unit 210, in the case of abnormal particles, through the abnormal particle classification part 221, only'abnormal particles' are collected and crushed again, to the abnormal particle crushing part 222 It is injected, and in the case of normal particles, it passes directly through the particle classification portion 221 in the form of a sieve, and is moved to the discharge portion.
이상 입자 분쇄 부분(222)으로 투입된 이상 입자들은, 다시 롤 밀에 의해 분쇄 된다. The abnormal particles introduced into the abnormal particle crushing portion 222 are again crushed by a roll mill.
이상 입자 분쇄 부분(222)에서 다시 분쇄된 베이스 수지 입자는, 다시 이상 입자 분급 부분(221)을 통과하며, 이 중 이상 입자의 경우, ‘이상 입자’만을 모아 다시 분쇄하는, 이상 입자 분쇄 부분(222)으로 재투입되고, 정상 입자의 경우, 체 형태의 입자 분급 부분(221)을 바로 통과하여, 배출부로 이동될 수 있다. The base resin particles pulverized again in the abnormal particle crushing portion 222 again pass through the abnormal particle classification portion 221, in which, in the case of abnormal particles, only ``abnormal particles'' are collected and crushed again, 222), and in the case of normal particles, may pass directly through the particle classification portion 221 in the form of a sieve, and may be moved to the discharge portion.
이러한 제2차 분쇄부가 1개 이상 포함될 수 있다는 내용에 대해서는 전술한 바 있다. It has been described above that the second crushing unit may include one or more.
본 발명은 고흡수성 수지를 제조하기 위해 함수겔상 중합체를 형성하고 건조 후 분급하는 과정에서, 일정 크기 이상의 큰 입자를 미분쇄하고, 각 단계 후 분급을 통해 특정 크기 이하의 입자들을 걸러내어 해당 입자들이 분쇄되는 것을 차단하고 150 ㎛ 이하의 입자들이 형성되는 것을 최소화할 수 있다.The present invention, in the process of forming a hydrogel polymer to form a super absorbent polymer, and then classifying it after drying, pulverize large particles of a certain size or more, and filter particles of a certain size or less through classification after each step to filter the particles It can block crushing and minimize the formation of particles of 150 μm or less.
나아가, 본 발명은 상기 과정을 수 차례 반복 진행하여, 미분쇄 각 단계 후 및 분급 시에 분급 입자 크기를 달리하여 최종 고흡수성 수지 제품의 입도를 변화시킬 수 있다. 또한, 본 발명에 따른 고흡수성 수지 제조 방법은, 건조된 중합체의 분쇄 과정에서 좁은 입도 분포를 구현하면서도 미분 발생량을 감소시켜, 미분 재조립, 건조, 분쇄 및 분급 공정의 부하를 저감할 수 있다.Furthermore, the present invention can be repeated several times to change the particle size of the final superabsorbent polymer product by varying the particle size of the classification after each step of pulverization and at the time of classification. In addition, the superabsorbent polymer production method according to the present invention, while implementing a narrow particle size distribution in the grinding process of the dried polymer, reducing the amount of fine powder, it is possible to reduce the load of the fine powder reassembly, drying, grinding and classification process.
도 1은 본 발명의 일 실시예에 따른 고흡수성 수지의 제조 장치를 간략히 도시한 것이다.1 schematically shows an apparatus for manufacturing a super absorbent polymer according to an embodiment of the present invention.
이하, 발명의 이해를 돕기 위하여 바람직한 실시예들이 제시된다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다.Hereinafter, preferred embodiments are presented to aid in understanding of the invention. However, the following examples are only for illustrating the present invention, and the present invention is not limited thereto.
실시예 1Example 1
중합 단계 Polymerization step
유리 반응기에 아크릴산 100 g, 31.5 중량%의 가성소다(NaOH) 용액 132.3 g, 캡슐형 발포제 0.39 g, 폴리에틸렌 글리콜 다이 아크릴레이트 0.002 g, 에틸렌글리콜 디글리시딜 에테르 0.12 g, 열 중합 개시제 과황산나트륨 0.17 g, 광 중합 개시제 (디페닐(2,4,6-트리메틸벤조일)포스핀 옥사이드) 0.008 g, 소디움 도데실 설페이트 수용액 0.036 g 및 물 50.0 g을 혼합하여 전체 고형분 농도가 43 중량%인 단량체 조성물을 제조하였다.100 g of acrylic acid in a glass reactor, 132.3 g of a 31.5% by weight caustic soda (NaOH) solution, 0.39 g of a capsule-type blowing agent, 0.002 g of polyethylene glycol diacrylate, 0.12 g of ethylene glycol diglycidyl ether, thermal polymerization initiator sodium persulfate 0.17 g, a photopolymerization initiator (diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide) 0.008 g, sodium dodecyl sulfate aqueous solution 0.036 g and 50.0 g of water to prepare a monomer composition having a total solids concentration of 43% by weight It was prepared.
상기 단량체 조성물을 폭 10 cm, 길이 2 m의 벨트가 50 cm/min의 속도로 연속 이동하는 회전식 컨베이어 벨트 상에 500 ~ 2000 mL/min의 속도로 공급하였다. 그리고, 상기 단량체 조성물의 공급과 동시에 10 mW/cm 2의 세기를 갖는 자외선을 조사하여 60 초 동안 중합 반응을 진행하여 함수겔상 중합체를 제조하였다.The monomer composition was supplied at a speed of 500 to 2000 mL/min on a rotating conveyor belt in which a belt of 10 cm in width and 2 m in length continuously moves at a speed of 50 cm/min. Then, simultaneously with the supply of the monomer composition, irradiated with ultraviolet light having an intensity of 10 mW/cm 2 , a polymerization reaction was performed for 60 seconds to prepare a hydrogel polymer.
겔 분쇄 및 건조 단계Gel grinding and drying steps
상기 중합 반응이 완료된 함수겔상 중합체를 원통형 분쇄기의 내부에 장착된 스크류형 압출기(미트 쵸퍼: 홀크기 16 mm)를 통해 0.1 내지 1.0 cm × 0.1 내지 1.0 cm의 크기로 절단하고 Air-flow oven을 이용하여 195℃에서 40분간 건조하였다.The hydrogel polymer having the polymerization reaction completed is cut to a size of 0.1 to 1.0 cm × 0.1 to 1.0 cm through a screw-type extruder (meat chopper: hole size 16 mm) mounted inside the cylindrical grinder, and an air-flow oven is used. And dried at 195°C for 40 minutes.
분쇄 단계: 1차 분쇄(조분쇄 포함) 및 분급 단계Grinding stage: primary grinding (including coarse grinding) and classification stage
건조된 중합체를 2단 롤 밀(GRAN-U-LIZERTM, MPE 사)을 사용하여 분쇄하였다. 분쇄 후 600 ㎛ 이상의 입자 비율이 90% 이상이 되도록 분쇄 조건을 조절하였다. The dried polymer was ground using a two-stage roll mill (GRAN-U-LIZERTM, MPE). After grinding, the grinding conditions were adjusted so that the particle ratio of 600 µm or more became 90% or more.
분쇄된 중합체 입자는 분급 체를 사용하여 분급한 뒤, 600 ㎛이상의 입자와 600 ㎛ 미만의 입자로 분리하였다. 또한 분급 시에는, 분급체의 규격을 ASTM 기준으로 4750 ㎛, 3350 ㎛, 2000 ㎛, 850 ㎛, 710 ㎛, 600 ㎛, 425 ㎛, 300 ㎛, 180 ㎛, 150 ㎛ pan을 이용하여 분급하고, 조분쇄 후 입자의 입도를 측정하였다. The pulverized polymer particles were classified using a classifying sieve, and then separated into particles of 600 µm or more and particles of less than 600 µm. In addition, when classifying, the standards of classifiers are classified using 4750 μm, 3350 μm, 2000 μm, 850 μm, 710 μm, 600 μm, 425 μm, 300 μm, 180 μm, and 150 μm pan based on ASTM standards. After pulverization, the particle size of the particles was measured.
사용된 2단 롤에서, 상단 롤의 롤 간극 폭은 약 5.0 mm, 하단 롤의 롤 간극 폭은 약 4.0 mm이 되도록 하였다. In the two-stage roll used, the roll gap width of the top roll was about 5.0 mm, and the roll gap width of the bottom roll was about 4.0 mm.
미분쇄 및 분급 단계Fine grinding and classification
상기 단계에서 분쇄/분급한 입자 중 입경이 600 ㎛ 이상인 입자만을 선택하여, 복수 회의 2차 분쇄(미분쇄) 및 분급 과정에 투입하였다. 미분쇄는 단일 롤 밀을 사용하였으며, 분급 시에는 분급 체 및 분급기를 이용하였다. In the above step, only particles having a particle diameter of 600 µm or more among the pulverized/classified particles were selected, and were subjected to a plurality of secondary pulverization (pulverization) and classification processes. A single roll mill was used for the fine grinding, and a classifier and a classifier were used for classifying.
구체적으로 상기 단계에서 1차로 조분쇄된 입자 중 입경 600 ㎛ 이상의 입자를 단일 롤 밀을 사용하여 분쇄하였다. 분쇄된 입자는 후단에 배치된 분급기를 이용하여 다시 입경 600 ㎛ 이상의 입자(즉, 이상 입자)와 입경 600 ㎛ 미만의 입자(즉, 정상 입자)로 분리하였다. Specifically, particles having a particle diameter of 600 µm or more among the particles that were first coarsely pulverized in the above step were pulverized using a single roll mill. The pulverized particles were separated into particles having a particle diameter of 600 µm or more (ie, abnormal particles) and particles having a particle diameter of less than 600 µm (ie, normal particles) using a classifier disposed at the rear end.
이후, 정상 입자는 그대로 배출시키고, 이상 입자만을 선택하여, 다시 단일 롤 밀에 투입하여 분쇄를 진행하였다. 분쇄된 입자는 다시 롤 밀의 후단에 배치된 분급기를 통해 입경 600 ㎛ 이상인 이상 입자와, 입경 600 ㎛ 미만인 정상 입자로 분리하였다. 정상 입자는 그대로 배출시키고, 이상 입자만을 선택하여, 다시 단일 롤 밀에 투입하여 분쇄를 진행하였다.Thereafter, the normal particles were discharged as they were, and only the abnormal particles were selected, and then put again in a single roll mill to perform grinding. The pulverized particles were separated into abnormal particles having a particle diameter of 600 µm or more and normal particles having a particle diameter of less than 600 µm through a classifier placed at the rear end of the roll mill. The normal particles were discharged as they were, and only the abnormal particles were selected, and then again put into a single roll mill to perform grinding.
상기와 같이 3회의 분쇄 2회의 분급 과정을 반복하여 진행하였으며, 이 때, 단일 롤 밀의 롤 간극 폭을 1.0 mm에서, 0.4 mm, 다시 0.19 mm로, 각 진행 횟수에 따라 롤 간극 폭이 좁아지도록 하였다. As described above, the crushing was repeated three times and the classification process was repeated two times. At this time, the roll gap width of the single roll mill was 1.0 mm, 0.4 mm, and again 0.19 mm. .
각 분쇄 및 분급 단계에서 분리된 입자들은 모두 취합하였다. All particles separated in each crushing and classification step were collected.
표면 가교Surface crosslinking
상기에서 취합된 입자들에 대하여, 통상의 방법으로 ASTM 규격의 표준 망체로 분급하여, 입경이 850 ㎛ 이상인 조분, 입경이 150 ㎛ 이하인 미분을 분리하고, 제품 제조를 위한 입자로 150 ㎛ 이상 및 850 ㎛ 미만인 입자만 선택하였다. The particles collected in the above are classified by a standard network of ASTM standard by a conventional method, to separate coarse powder having a particle diameter of 850 µm or more and fine powder having a particle size of 150 µm or less, and 150 µm or more and 850 as particles for product production. Only particles smaller than μm were selected.
상기 선택된 입자를 베이스 수지로 하여, 표면 가교를 진행하였다. Using the selected particles as a base resin, surface crosslinking was performed.
상기 베이스 수지 분말 100 g에 초순수 5.9 g, Methanol 5.0 g, Ethylene Glycol Diglycidyl Ether 0.034 g, 50% Polycarboxylic ether 0.2 g, 실리카(A200) 0.04 g, 23% Aluminium sulfate 용액 1.73 g의 표면 가교제 혼합용액을 투여하고 20초간 혼합하였다. 이를 140 ℃에서 35 분간 열처리하여 표면 가교를 진행한 후, 분급하여 150 ㎛ 내지 850 ㎛ 입경의 고흡수성 수지 입자를 제조하였다. To the base resin powder 100 g, ultrapure water 5.9 g, Methanol 5.0 g, Ethylene Glycol Diglycidyl Ether 0.034 g, 50% Polycarboxylic ether 0.2 g, silica (A200) 0.04 g, 23% aluminum sulfate solution 1.73 g surface crosslinking agent mixed solution And mixed for 20 seconds. This was heat-treated at 140° C. for 35 minutes to undergo surface crosslinking, and then classified to prepare superabsorbent polymer particles having a particle diameter of 150 μm to 850 μm.
실시예 2Example 2
실시예 1 중, 미분쇄 및 분급 단계에서, 목표 대상 입경을 600 ㎛가 아닌, 425 ㎛로 하고, 3회의 미분쇄 공정에서 단일 롤 밀의 롤 간극 폭을 1.0 mm에서, 0.4 mm, 다시 0.17 mm로, 각 진행 횟수에 따라 롤 간극 폭이 좁아지도록 한 것을 제외하고는, 실시예 1과 동일하게 진행하였다. In Example 1, in the fine grinding and classifying step, the target particle size was set to 425 µm, not 600 µm, and the roll gap width of the single roll mill was 1.0 mm, 0.4 mm, and again 0.17 mm in three pulverization processes. , It proceeded in the same manner as in Example 1, except that the width of the roll gap was narrowed according to the number of times of each progress.
실시예 3Example 3
실시예 1 중, 미분쇄 및 분급 단계에서, 2회의 미분쇄 및 1회의 분급 과정을 반복 진행하고, 2회의 미분쇄 공정에서 단일 롤 밀의 롤 간극 폭을 0.6 mm, 0.16 mm로, 각 진행 횟수에 따라 롤 간극 폭이 좁아지도록 한 것을 제외하고는, 실시예 1과 동일하게 진행하였다. In Example 1, in the pulverizing and classifying step, two pulverizing and one classifying processes were repeated, and the roll gap width of a single roll mill was 0.6 mm and 0.16 mm in each of the two pulverizing processes. Accordingly, the procedure was the same as in Example 1, except that the width of the roll gap was narrowed.
실시예 4Example 4
실시예 1 중, 미분쇄 및 분급 단계에서, 4회의 미분쇄 및 3회의 분급 과정을 반복 진행하고, 2회의 미분쇄 공정에서 단일 롤 밀의 롤 간극 폭을 1.5 mm, 0.8 mm, 0.4 mm, 0.18 mm로, 각 진행 횟수에 따라 롤 간극 폭이 좁아지도록 한 것을 제외하고는, 실시예 1과 동일하게 진행하였다. In Example 1, in the pulverizing and classifying step, four pulverizing and three classifying processes were repeated, and the roll gap width of a single roll mill in two pulverizing processes was 1.5 mm, 0.8 mm, 0.4 mm, and 0.18 mm. Furnace, the process was performed in the same manner as in Example 1, except that the width of the roll gap was narrowed according to the number of times of each progress.
비교예 1Comparative Example 1
실시예 1에서, 분쇄 이후 별도의 분급 과정을 진행하지 않고, 분쇄된 입자들을 모두 이후의 롤 밀로 투입하도록 하며, 3회의 미분쇄 공정에서, 단일 롤 밀의 롤 간극 폭을 1.0 mm, 0.4 mm, 0.16 mm로, 각 진행 횟수에 따라 롤 간극 폭이 좁아지도록 한 것을 제외하고는, 실시예 1과 동일하게 진행하였다. In Example 1, without performing a separate classification process after pulverization, all the pulverized particles are introduced into a subsequent roll mill, and in three fine grinding processes, the roll gap width of a single roll mill is 1.0 mm, 0.4 mm, 0.16. In mm, the procedure was the same as in Example 1, except that the width of the roll gap was narrowed according to the number of times of each progress.
실험예 1Experimental Example 1
실시예 및 비교예에서 얻어진 입자들을 취합하고, 분급용 체를 이용하여 입도를 측정하였다. The particles obtained in Examples and Comparative Examples were collected, and particle sizes were measured using a sieve for classification.
ASTM 규격의 850 ㎛, 710 ㎛, 600 ㎛, 425 ㎛, 300 ㎛, 180 ㎛, 150 ㎛ Pan의 Mesh 체를 사용하였으며, 1.5 mm/'g'의 진폭으로 10분간 진동을 걸어주어, 입자들을 분급한 후 각 체의 상부에 있는 입자의 무게를 측정하여 입도를 구하였다.A mesh sieve of 850 µm, 710 µm, 600 µm, 425 µm, 300 µm, 180 µm, and 150 µm Pan of ASTM standard was used, and vibration was applied for 10 minutes at an amplitude of 1.5 mm/'g' to classify particles. After that, the weight of the particles on the top of each sieve was measured to obtain the particle size.
분획 비율 (중량%)Fraction ratio (% by weight)
입자 크기Particle size 비교예1Comparative Example 1 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4
20메쉬 상(850 ㎛ 초과)20 mesh phase (>850 μm) 0.10.1 0.00.0 0.10.1 0.10.1 0.10.1
30메쉬 상(600 ㎛ 이상 850 ㎛ 미만)30 mesh phase (600 μm or more but less than 850 μm) 2.52.5 3.43.4 3.23.2 3.23.2 3.03.0
40메쉬 상(425 ㎛ 이상 600 ㎛ 미만)40 mesh phase (425 µm or more and less than 600 µm) 24.424.4 36.936.9 24.624.6 31.831.8 36.536.5
50메쉬 상(300 ㎛ 이상 425 ㎛ 미만)50 mesh phase (300 μm or more but less than 425 μm) 25.225.2 21.621.6 28.928.9 23.123.1 22.522.5
100메쉬 상(150 ㎛ 이상 300 ㎛ 미만)100 mesh phase (more than 150 ㎛ less than 300 ㎛) 22.322.3 18.218.2 22.022.0 19.919.9 18.118.1
100메쉬 통과(150 ㎛ 미만)100 mesh pass (less than 150 ㎛) 25.525.5 19.919.9 21.221.2 21.921.9 19.819.8
미분 발생 비율*Differentiation rate* 34.234.2 24.824.8 26.926.9 28.028.0 24.624.6
* 입경이 150 ㎛ 미만인 입자의 중량(g)을, 입경이 150 ㎛ 이상 내지 850 ㎛ 미만 ㎛ 입자(정상 입자)의 중량(g)으로 나눈 값* A value obtained by dividing the weight (g) of particles having a particle diameter of less than 150 μm by the weight (g) of particles (normal particles) having a particle diameter of 150 μm or more to less than 850 μm.
상기 표 1을 참고하면, 비교예 1에서 얻어진 중합체 입자의 입도 분석 결과, 600 ㎛ 이상, 850 ㎛ 미만인 입자는 약 2.5중량%, 425 ㎛ 이상 600 ㎛ 미만 크기의 입자는 약 24.4 중량%, 300 ㎛ 이상 425 ㎛ 미만 크기의 입자는 약 25.2 중량%, 150 ㎛ 이상 300 ㎛ 미만 크기의 입자는 ㎛ 22.4 중량%를 구성하였다. 입경이 150 ㎛ 이상 850 ㎛ 미만인 정상 입자에 대한 미분 발생 비율은 약 34.3 중량% 였다. 여기서 미분이라 함은 150 ㎛ 미만의 크기를 가지는 입자를 지칭한다.Referring to Table 1, as a result of particle size analysis of the polymer particles obtained in Comparative Example 1, particles having a size of 600 μm or more and less than 850 μm are about 2.5 wt%, particles having a size of 425 μm or more and less than 600 μm are about 24.4 wt%, 300 μm Particles having a size of more than 425 µm were about 25.2% by weight, and particles having a size of 150 µm or more and less than 300 µm constituted 22.4% by weight. The ratio of fine powder generation to normal particles having a particle diameter of 150 µm or more and less than 850 µm was about 34.3% by weight. The term fine powder refers to particles having a size of less than 150 μm.
반면, 실시예 1에서 얻어진 중합체 입자의 입도 분석 결과, 600 ㎛ 이상 850 ㎛ 미만인 입자는 약 3.4 중량%, 425 ㎛ 이상 600 ㎛ 미만 크기의 입자는 약 36.9 중량%, 300 ㎛ 이상 425 ㎛ 미만 크기의 입자는 약 21.5 중량%, 150 ㎛ 이상 300 ㎛ 미만 크기의 입자는 약 18.2 중량%였다. 따라서, 실시예 1은 비교예 1과 비교하였을 때 425 ㎛ 이상 600 ㎛ 미만 크기의 입자 비율은 증가하고 150 ㎛ 이상 425 ㎛ 미만 크기의 입자 비율은 감소하는 결과가 나타났다. 또한, 정상 입자에 대한 미분 발생 비율은 약 24.9 중량%로, 비교예 1 대비 약 27% 감소하는 효과가 나타났다. 이는 미분쇄 과정에서 분급을 통해 입경이 약 600 ㎛ 미만인 입자들을 분리하여, 추가 분쇄 과정에 투입하는 것을 차단한 것에서 기인하는 것으로 생각된다. On the other hand, as a result of analyzing the particle size of the polymer particles obtained in Example 1, particles having a size of 600 μm or more and less than 850 μm are about 3.4% by weight, particles having a size of 425 μm or more and less than 600 μm are about 36.9% by weight, 300 μm or more and having a size of less than 425 μm The particles were about 21.5% by weight, and particles having a size of 150 μm or more and less than 300 μm were about 18.2% by weight. Therefore, in Example 1, when compared with Comparative Example 1, the proportion of particles having a size of 425 µm or more and less than 600 µm was increased, and a ratio of particles having a size of 150 µm or more and less than 425 µm was decreased. In addition, the ratio of fine particles to the normal particles was about 24.9% by weight, showing an effect of decreasing by about 27% compared to Comparative Example 1. This is thought to be caused by separating particles having a particle diameter of less than about 600 μm through classification in the fine grinding process and blocking them from being added to a further grinding process.
실시예 2에서 얻어진 중합체 입자의 입도 분석 결과, 600 ㎛ 이상 850 ㎛ 미만의 입자는 약 3.2 중량%, 425 ㎛ 이상 600 ㎛ 미만 크기의 입자는 약 24.6 중량%, 300 ㎛ 이상 425 ㎛ 미만 크기의 입자는 약 28.9 중량%, 150 ㎛ 이상 300 ㎛ 미만 크기의 입자는 약 22.0%였다. 로 비교예 1과 비교하였을 때 유사한 입도분포를 나타내었다. 다만 정상 입자에 대한 미분 발생 비율이 약 27 중량%로 비교예 1 대비 약 21% 감소하는 효과가 나타났다. 이를 통해, 미분쇄 과정에서 분급 입자의 분급 기준, 즉 목표 대상 입경을 달리 함으로써, 분쇄되는 입자의 입도를 조절할 수 있다는 사실을 명확히 확인할 수 있었다. As a result of particle size analysis of the polymer particles obtained in Example 2, particles having a size of 600 μm or more and less than 850 μm are about 3.2 wt%, particles having a size of 425 μm or more and less than 600 μm are about 24.6 wt%, particles having a size of 300 μm or more and less than 425 μm Was about 28.9% by weight, and particles having a size of 150 μm or more and less than 300 μm were about 22.0%. As compared with Comparative Example 1, it showed a similar particle size distribution. However, the ratio of fine powder generation to normal particles was about 27% by weight, showing an effect of about 21% reduction compared to Comparative Example 1. Through this, it was clearly confirmed that the particle size of the pulverized particles can be adjusted by varying the classification criteria of the classified particles in the fine grinding process, that is, the target particle size.
상기 실시예 3 및 4에서 얻어진 중합체 입자의 입도 분석 결과, 정상 입자에 대한 미분 발생 비율은 각각 약 28.2 중량%, 약 24.8중량%였다. 미분쇄 과정에서 미분쇄 및 분급의 반복 진행 횟수가 많아질수록, 미분 발생량이 감소하고, 횟수 증가에 따른 감소 비율은 줄어드는 것을 확인할 수 있었다. As a result of the particle size analysis of the polymer particles obtained in Examples 3 and 4, the ratio of fine particles to the normal particles was about 28.2% by weight and about 24.8% by weight, respectively. As the number of times the pulverization and classification was repeatedly performed in the pulverization process, it was confirmed that the amount of pulverization was decreased and the reduction rate according to the number of times was decreased.
실험예 2Experimental Example 2
실시예 및 비교예에서 얻어진 입자 중, 정상 입자에 대하여, 이하의 물성을 측정하였다.Among the particles obtained in Examples and Comparative Examples, the following physical properties were measured for normal particles.
(1) 겉보기 밀도(bulk density, B/D)(1) Bulk density (B/D)
표준 유동도 측정 장치 오리피스를 통해 상기 실시예 및 비교예에서 제조한 입자 100 g을 흘려 체적 100 mL 용기에 받고, 상기 입자가 수평이 되도록 깎아내어, 상기 입자의 체적을 100 mL로 조절한 후, 용기를 제외한 입자만의 무게를 측정하였다. 그리고, 상기 입자만의 무게를 입자의 체적인 100 mL로 나누어 단위 체적당 입자의 무게에 해당하는 겉보기 밀도를 구하였다.After flowing 100 g of the particles prepared in Examples and Comparative Examples through a standard flow measurement device orifice to receive in a volume 100 mL container, and shaving the particles to be horizontal, adjusting the volume of the particles to 100 mL, The weight of only the particles excluding the container was measured. Then, the weight of only the particles was divided by 100 mL of the volume of the particles to obtain an apparent density corresponding to the weight of the particles per unit volume.
(2) 볼텍스(Vortex)(2) Vortex
100 mL 비커에, 0.9 중량%의 NaCl 용액 50 mL를 넣은 후, 교반기를 이용하여 600 rpm로 교반하면서, 상기 실시예 및 비교예에서 제조한 입자 2 g를 각각 첨가하였다. 그리고, 교반에 의해 생기는 액체의 소용돌이(vortex)가 없어져, 매끄러운 표면이 생길 때까지의 시간을 측정하고, 그 결과를 볼텍스 제거 시간으로 나타내었다. After adding 50 mL of a 0.9 wt% NaCl solution to a 100 mL beaker, 2 g of the particles prepared in Examples and Comparative Examples were added while stirring at 600 rpm using a stirrer. Then, the time until the vortex of the liquid generated by stirring disappeared and a smooth surface was formed was measured, and the result was expressed as the vortex removal time.
상기 결과를 하기 표 2에 나타내었다. The results are shown in Table 2 below.
물성Properties 비교예1Comparative Example 1 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4
겉보기 밀도(g/ml)Apparent density (g/ml) 0.500.50 0.480.48 0.470.47 0.500.50 0.480.48
볼텍스(초)Vortex (sec) 23.723.7 24.124.1 23.023.0 23.823.8 24.724.7
상기 표 2를 참고하면, 본 발명의 실시예는 비교예와 비교하여, 제품 물성에는 큰 차이가 없어, 기존의 물성을 구현하면서도 미분 발생을 줄여 생산성을 개선할 수 있음을 확인할 수 있다.Referring to Table 2, it can be seen that the embodiment of the present invention can improve productivity by reducing the generation of fine powders while realizing existing physical properties.

Claims (16)

  1. (A) 내부 가교제 및 중합 개시제 존재 하에, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 함수겔상 중합체를 형성하는 중합 단계; (B) 상기 함수겔상 중합체를 건조하여 건조 중합체를 제조하는 건조 단계; 및 (C) 상기 건조 중합체를 분쇄하는 분쇄 단계를 포함하고;(A) polymerization step of forming a hydrogel polymer by crosslinking polymerization of a water-soluble ethylenically unsaturated monomer having an acidic group at least partially neutralized in the presence of an internal crosslinking agent and a polymerization initiator; (B) a drying step of drying the hydrogel polymer to prepare a dry polymer; And (C) a grinding step of grinding the dry polymer;
    상기 (C) 분쇄 단계는, 상기 건조 중합체를 분쇄하는 (C1) 제1차 분쇄 단계 및 (C2) 제2차 분쇄 단계를 포함하며, The (C) grinding step includes (C1) a first grinding step and (C2) a second grinding step of grinding the dry polymer,
    상기 (C2) 제2차 분쇄 단계는, The second grinding step (C2),
    (C21) 상기 1차 분쇄된 건조 중합체를, 목표 대상 입경 이상의 입경을 가지는 ‘이상 입자’ 및 목표 대상 입경 미만의 입경을 가지는 ‘정상 입자’로 분급하는 이상 입자 분급 단계; 및 (C21) an abnormal particle classification step of classifying the primary pulverized dry polymer into “abnormal particles” having a particle diameter equal to or larger than the target particle diameter and “normal particles” having a particle diameter smaller than the target particle diameter; And
    (C22) 상기 ‘이상 입자’만을 모아 다시 분쇄하는, 이상 입자 분쇄 단계를 포함하는, (C22) comprising the step of pulverizing the abnormal particles, collecting and crushing only the'abnormal particles',
    고흡수성 수지의 제조 방법.Method for producing super absorbent polymer.
  2. 제1항에 있어서, 상기 분쇄 단계(C)는 연속된 다단 롤 밀 및 분급기를 이용하여 수행되는, 고흡수성 수지의 제조 방법.The method according to claim 1, wherein the grinding step (C) is performed using a continuous multi-stage roll mill and a classifier.
  3. 제1항에 있어서, 상기 제2차 분쇄 단계(C2)는, 1회 이상, 또는 2회 이상 연속 수행되는, 고흡수성 수지의 제조 방법.The method of claim 1, wherein the second grinding step (C2) is performed one or more times, or two or more times continuously.
  4. 제2항에 있어서, 상기 연속식 다단 롤 밀은 적어도 2단 이상을 포함하고, 각 단에 포함된 롤 밀의 롤 간극 폭이 상단에서 하단으로 갈수록 좁아지는 구조를 가지는, 고흡수성 수지의 제조 방법.The method of claim 2, wherein the continuous multi-stage roll mill includes at least two or more stages, and has a structure in which the roll gap width of the roll mill included in each stage narrows from top to bottom.
  5. 제2항에 있어서, 상기 분급기는 각 단의 롤 밀 하단에 위치하는, 고흡수성 수지의 제조 방법.The method of claim 2, wherein the classifier is located at the bottom of the roll mill of each stage.
  6. 제 1 항에 있어서, According to claim 1,
    상기 목표 대상 입경은, 200 내지 850 ㎛의 범위에서 선택되는, 고흡수성 수지의 제조 방법.The target particle size is selected from the range of 200 to 850 μm, a method for producing a super absorbent polymer.
  7. 제 1 항에 있어서,According to claim 1,
    상기 건조 단계 이전에, 수직형 절단기(Vertical pulverizer), 터보 커터(Turbo cutter), 터보 글라인더(Turbo grinder), 회전 절단식 분쇄기(Rotary cutter mill), 절단식 분쇄기(Cutter mill), 원판 분쇄기(Disc mill), 조각 파쇄기(Shred crusher), 파쇄기(Crusher), 초퍼(chopper) 및 원판식 절단기(Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 사용하여, 함수겔상 중합체를 절단하는, 겔 분쇄 단계를 포함하는, 고흡수성 수지의 제조 방법.Before the drying step, a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutter mill, and a disc grinder (Disc mill), shred crusher (Shred crusher), crushers (Crusher), chopper (chopper) and using a disc cutter of any one selected from the group of crushing machine consisting of, cutting the hydrogel polymer, A method for producing a super absorbent polymer comprising a gel grinding step.
  8. 제1항에 있어서, 분쇄 및 분급된 입자를 취합하고, 취합된 입자를 입경이 150 내지 850 ㎛인 정상 베이스 수지 입자와, 이보다 작은 미세 입자로 분급하는 단계를 더 포함하는, 고흡수성 수지의 제조 방법The method according to claim 1, further comprising the step of collecting the pulverized and classified particles, and classifying the collected particles into normal base resin particles having a particle diameter of 150 to 850 μm, and fine particles smaller than this. Way
  9. 제8항에 있어서,The method of claim 8,
    상기 미세 입자를 분리하고 물을 첨가하여 재조립 후 상기 건조 단계로 순환시키는 재조립 단계를 더 포함하는, 고흡수성 수지의 제조 방법.A method of manufacturing a superabsorbent polymer further comprising separating the fine particles and reassembling them by adding water to circulate to the drying step.
  10. 제1항에 있어서,According to claim 1,
    상기 수용성 에틸렌계 불포화 단량체는 아크릴산, 메타크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타크릴로일에탄술폰산, 2-(메트)아크릴로일프로판술폰산, 또는 2-(메트)아크릴아미드-2-메틸 프로판 술폰산의 음이온성 단량체와 이의 염; (메트)아크릴아미드, N-치환(메트)아크릴레이트, 2-히드록시에틸(메트)아크릴레이트, 2-히드록시프로필(메트)아크릴레이트, 메톡시폴리에틸렌글리콜(메트)아크릴레이트 또는 폴리에틸렌 글리콜(메트)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (N,N)-디메틸아미노에틸(메트)아크릴레이트 또는 (N,N)-디메틸아미노프로필(메트)아크릴아미드의 아미노기 함유 불포화 단량체와 그의 4급화물;로 이루어진 군에서 선택된 어느 하나 이상인, 고흡수성 수지의 제조 방법.The water-soluble ethylenically unsaturated monomers include acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryloylethanesulfonic acid, 2-(meth)acryloyl Propanesulfonic acid, or anionic monomers of 2-(meth)acrylamide-2-methyl propane sulfonic acid and salts thereof; (Meth)acrylamide, N-substituted (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, methoxypolyethylene glycol (meth)acrylate or polyethylene glycol ( Nonionic hydrophilic monomers of meth)acrylates; And an amino group-containing unsaturated monomer of (N,N)-dimethylaminoethyl (meth)acrylate or (N,N)-dimethylaminopropyl (meth)acrylamide, and a quaternary product thereof. Method for producing super absorbent polymer.
  11. 제1항에 있어서,According to claim 1,
    상기 중합 개시제는 열 중합 개시제 또는 광 중합 개시제를 포함하는 고흡수성 수지의 제조 방법.The polymerization initiator is a method for producing a super absorbent polymer comprising a thermal polymerization initiator or a photo polymerization initiator.
  12. 제1항에 있어서, 상기 내부가교제는 N,N'-메틸렌비스아크릴아미드, 트리메틸롤프로판 트리(메트)아크릴레이트, 에틸렌글리콜 다이(메트)아크릴레이트, 폴리에틸렌글리콜(메트)아크릴레이트, 프로필렌글리콜 다이(메트)아크릴레이트, 폴리프로필렌글리콜(메트)아크릴레이트, 부탄다이올다이(메트)아크릴레이트, 부틸렌글리콜다이(메트)아크릴레이트, 다이에틸렌글리콜 다이(메트)아크릴레이트, 헥산다이올다이(메트)아크릴레이트, 트리에틸렌글리콜 다이(메트)아크릴레이트, 트리프로필렌글리콜 다이(메트)아크릴레이트, 테트라에틸렌글리콜 다이(메트)아크릴레이트, 다이펜타에리스리톨 펜타아크릴레이트, 글리세린 트리(메트)아크릴레이트, 펜타에리스톨 테트라아크릴레이트, 트리아릴아민, 에틸렌글리콜 디글리시딜 에테르, 프로필렌 글리콜, 글리세린, 및 에틸렌카보네이트로 이루어진 군에서 선택된 1종 이상인, 고흡수성 수지의 제조 방법.The method of claim 1, wherein the internal crosslinking agent is N,N'-methylenebisacrylamide, trimethylolpropane tri(meth)acrylate, ethylene glycol di(meth)acrylate, polyethylene glycol (meth)acrylate, propylene glycol di (Meth)acrylate, polypropylene glycol (meth)acrylate, butanediol di(meth)acrylate, butylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, hexanediol di( Meth)acrylate, triethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, dipentaerythritol pentaacrylate, glycerin tri(meth)acrylate, A method for producing a superabsorbent polymer of at least one selected from the group consisting of pentaerythritol tetraacrylate, triarylamine, ethylene glycol diglycidyl ether, propylene glycol, glycerin, and ethylene carbonate.
  13. 건조 중합체가 투입되는 투입부; 상기 투입된 건조 중합체를 분쇄하는 분쇄부; 및 분쇄된 건조 중합체 입자를 배출하는 배출부를 포함하고; A dry polymer input; A crushing unit for pulverizing the introduced dry polymer; And an outlet for discharging the pulverized dry polymer particles;
    상기 분쇄부는, 상기 투입된 건조 중합체를 분쇄하는 제1차 분쇄부 및 제2차 분쇄부를 포함하며, The pulverization unit includes a first pulverization unit and a second pulverization unit for pulverizing the introduced dry polymer,
    상기 제2차 분쇄부는, 상기 제1차 분쇄부에서 분쇄된 건조 중합체를, 목표 대상 입경 이상의 입경을 가지는 ‘이상 입자’ 및 목표 대상 입경 미만의 입경을 가지는 ‘정상 입자’로 분급하는 이상 입자 분급 부분; 및 The second pulverization unit classifies the dry polymer pulverized in the first pulverization unit into'abnormal particles' having a particle diameter equal to or larger than the target particle size and'normal particles' having a particle diameter smaller than the target particle diameter. part; And
    상기 ‘이상 입자’만을 모아 다시 분쇄하는, 이상 입자 분쇄 부분을 포함하는, The ‘abnormal particles’ are collected and crushed again.
    고흡수성 수지의 제조 장치.A device for producing super absorbent polymers.
  14. 제13항에 있어서, The method of claim 13,
    상기 제2차 분쇄부를 1 이상, 또는 2 이상 포함하는, 고흡수성 수지의 제조 장치.An apparatus for producing a super absorbent polymer comprising at least one or more of the second pulverization parts.
  15. 제13항에 있어서, The method of claim 13,
    상기 분쇄부는, 롤 밀을 포함하며, 제1차 분쇄부 및 제2차 분쇄부에 포함된 각 단을 이루는 롤 밀에서의 롤 간극 폭이, 상단에서 하단으로 갈수록 좁아지는 구조를 가지는, 고흡수성 수지의 제조 장치.The crushing unit includes a roll mill, and has a structure in which the roll gap width in the roll mill forming each stage included in the first crushing unit and the second crushing unit narrows from top to bottom. Resin manufacturing apparatus.
  16. 제13항에 있어서, 상기 이상 입자 분급 부분은, 각 단의 롤 밀 하단에 위치하는, 고흡수성 수지의 제조 장치.The apparatus for manufacturing a superabsorbent polymer according to claim 13, wherein the abnormal particle classification portion is located at a lower end of a roll mill in each stage.
PCT/KR2020/000761 2019-01-16 2020-01-16 Preparation method of super absorbent polymer WO2020149651A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0005757 2019-01-16
KR20190005757 2019-01-16
KR1020200005490A KR20200089236A (en) 2019-01-16 2020-01-15 Preparation method of super absorbent polymer
KR10-2020-0005490 2020-01-15

Publications (1)

Publication Number Publication Date
WO2020149651A1 true WO2020149651A1 (en) 2020-07-23

Family

ID=71613986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000761 WO2020149651A1 (en) 2019-01-16 2020-01-16 Preparation method of super absorbent polymer

Country Status (1)

Country Link
WO (1) WO2020149651A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522779A (en) * 2007-03-26 2010-07-08 株式会社日本触媒 Method for classifying particulate water-absorbing resin
WO2011034146A1 (en) * 2009-09-16 2011-03-24 株式会社日本触媒 Method for producing water absorbent resin powder
KR20110131131A (en) * 2010-05-28 2011-12-06 주식회사 엘지화학 Shredder for super adsorbent polymer and preparation method of super absorbent polymer using the same
JP2015048386A (en) * 2013-08-30 2015-03-16 株式会社日本触媒 Method for pulverizing water-absorbing resin, and water-absorbing resin having excellent salt resistance
KR20150090067A (en) * 2012-11-27 2015-08-05 가부시키가이샤 닛폰 쇼쿠바이 Method for producing polyacrylic acid(salt)-based water-absorbing resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522779A (en) * 2007-03-26 2010-07-08 株式会社日本触媒 Method for classifying particulate water-absorbing resin
WO2011034146A1 (en) * 2009-09-16 2011-03-24 株式会社日本触媒 Method for producing water absorbent resin powder
KR20110131131A (en) * 2010-05-28 2011-12-06 주식회사 엘지화학 Shredder for super adsorbent polymer and preparation method of super absorbent polymer using the same
KR20150090067A (en) * 2012-11-27 2015-08-05 가부시키가이샤 닛폰 쇼쿠바이 Method for producing polyacrylic acid(salt)-based water-absorbing resin
JP2015048386A (en) * 2013-08-30 2015-03-16 株式会社日本触媒 Method for pulverizing water-absorbing resin, and water-absorbing resin having excellent salt resistance

Similar Documents

Publication Publication Date Title
WO2016111447A1 (en) Super absorbent resin having improved solidification resistance, and method for preparing same
WO2016200041A1 (en) Method for preparing superabsorbent resin comprising fine powder re-assembled body of superabsorbent resin, and superabsorbent resin prepared thereby
WO2020122442A1 (en) Method for preparing superabsorbent polymer
WO2020226385A1 (en) Super absorbent polymer preparation method and super absorbent polymer
WO2021071246A1 (en) Method for producing super absorbent polymer
WO2020149651A1 (en) Preparation method of super absorbent polymer
WO2020122444A1 (en) Method for preparing super-absorbent polymer
WO2023287262A1 (en) Preparation method of super absorbent polymer
WO2020149691A1 (en) Super absorbent polymer and preparation method therefor
WO2023149681A1 (en) Apparatus for micronizing hydrogel of super absorbent polymer
WO2020067705A1 (en) Method for preparing super absorbent polymer, and super absorbent polymer
WO2020116760A1 (en) Method for preparing superabsorbent polymer
WO2015084060A1 (en) Superabsorbent polymer and preparation method therefor
WO2022080641A1 (en) Method for preparing super absorbent polymer
WO2021125871A1 (en) Preparation method of super absorbent polymer composition
WO2022119207A1 (en) Method for manufacturing super absorbent polymer
WO2021066313A1 (en) Super absorbent polymer composition and preparation method thereof
WO2020122426A1 (en) Super absorbent polymer and preparation method therefor
WO2020101287A1 (en) Method for preparing superabsorbent polymer
WO2021066340A1 (en) Method for producing super absorbent polymer
WO2021066503A1 (en) Superabsorbent polymer composition and preparation method therefor
WO2022124767A1 (en) Method for preparing super absorbent polymer
WO2023136481A1 (en) Method for preparing super absorbent polymer
WO2023096240A1 (en) Preparation method of super absorbent polymer
WO2020101150A1 (en) Method for preparing superabsorbent polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20741663

Country of ref document: EP

Kind code of ref document: A1