JP6169860B2 - Cathode catalyst layer and method for producing polymer electrolyte fuel cell - Google Patents
Cathode catalyst layer and method for producing polymer electrolyte fuel cell Download PDFInfo
- Publication number
- JP6169860B2 JP6169860B2 JP2013037701A JP2013037701A JP6169860B2 JP 6169860 B2 JP6169860 B2 JP 6169860B2 JP 2013037701 A JP2013037701 A JP 2013037701A JP 2013037701 A JP2013037701 A JP 2013037701A JP 6169860 B2 JP6169860 B2 JP 6169860B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst layer
- cathode catalyst
- layer
- fuel cell
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims description 96
- 239000000446 fuel Substances 0.000 title claims description 26
- 239000005518 polymer electrolyte Substances 0.000 title claims description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000002245 particle Substances 0.000 claims description 37
- 239000002243 precursor Substances 0.000 claims description 36
- 229920000554 ionomer Polymers 0.000 claims description 34
- 239000012528 membrane Substances 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 239000003792 electrolyte Substances 0.000 claims description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 description 23
- 239000007789 gas Substances 0.000 description 23
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 229910052697 platinum Inorganic materials 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000011148 porous material Substances 0.000 description 5
- 238000006722 reduction reaction Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920000557 Nafion® Polymers 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- NOWPEMKUZKNSGG-UHFFFAOYSA-N azane;platinum(2+) Chemical class N.N.N.N.[Pt+2] NOWPEMKUZKNSGG-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- -1 osnium Chemical compound 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Catalysts (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
本発明は、カソード触媒層及び固体高分子型燃料電池の製造方法に関する。 The present invention, the cathode catalyst layer and a method for manufacturing a polymer electrolyte fuel cell.
固体高分子型燃料電池は、電解質膜と、その両側に配置されたカソード触媒層及びアノード触媒層とを備える。カソード触媒層は、カーボン粒子等の表面に金属触媒を担持した触媒担持粒子及びアイオノマーから構成される(特許文献1参照)。 The polymer electrolyte fuel cell includes an electrolyte membrane and a cathode catalyst layer and an anode catalyst layer disposed on both sides thereof. The cathode catalyst layer is composed of catalyst-carrying particles and ionomers that carry a metal catalyst on the surface of carbon particles or the like (see Patent Document 1).
アノード触媒層で発生し、電解質膜を透過したプロトンは、さらにカソード触媒層のアイオノマーを透過して、金属触媒の表面に到達する。また、カソード触媒層に供給された酸素も、アイオノマーを透過して、金属触媒の表面に到達する。そして、金属触媒の表面において、酸素、プロトン、及び電子から水を生じさせる還元反応が行われる。還元反応で生じた水(水蒸気)は、アイオノマーを透過してカソード触媒層の外へ排出される。 Protons generated in the anode catalyst layer and transmitted through the electrolyte membrane further pass through the ionomer in the cathode catalyst layer and reach the surface of the metal catalyst. Further, oxygen supplied to the cathode catalyst layer also passes through the ionomer and reaches the surface of the metal catalyst. And the reduction reaction which produces water from oxygen, a proton, and an electron is performed in the surface of a metal catalyst. Water (water vapor) generated by the reduction reaction passes through the ionomer and is discharged out of the cathode catalyst layer.
従来の固体高分子型燃料電池は、その電池特性が十分ではなかった。その理由の一つとして、カソード触媒層のアイオノマーにおける水(水蒸気)や酸素の透過性が十分でないことが考えられる。本発明は以上の点に鑑みなされたものであり、上記の課題を解決できるカソード触媒層及び固体高分子型燃料電池の製造方法を提供することを目的とする。 Conventional polymer electrolyte fuel cells have insufficient battery characteristics. One reason may be that water (water vapor) or oxygen permeability in the ionomer of the cathode catalyst layer is not sufficient. The present invention has been made in view of the above, and an object thereof is to provide a method of manufacturing a cathode catalyst layer and a polymer electrolyte fuel cell capable of solving the aforementioned problems.
本発明のカソード触媒層の製造方法は、触媒担持粒子及びアイオノマーを含む前駆体層を形成する工程と、前記前駆体層に超音波を照射する工程とを含むことを特徴とする。本発明により製造されたカソード触媒層は、アイオノマーに微細な孔を有する。この孔は、超音波の照射により、アイオノマーの一部が脱落したり、アイオノマーが凝集することで生じたと推測できる。 The method for producing a cathode catalyst layer of the present invention includes a step of forming a precursor layer containing catalyst-carrying particles and an ionomer, and a step of irradiating the precursor layer with ultrasonic waves. The cathode catalyst layer produced according to the present invention has fine pores in the ionomer. It can be inferred that this hole was caused by a part of the ionomer dropping off or agglomeration of the ionomer by irradiation with ultrasonic waves.
本発明により製造されたカソード触媒層を備えた固体高分子型燃料電池では、上記の孔を通して、触媒担持粒子の表面で生じた水(水蒸気)が排出されやすくなり、また、カソード触媒層に供給された酸素が触媒担持粒子に到達しやすくなる。その結果、固体高分子型燃料電池の電池特性が向上する。 In the polymer electrolyte fuel cell provided with the cathode catalyst layer produced according to the present invention, water (water vapor) generated on the surface of the catalyst-supporting particles is easily discharged through the above-mentioned holes, and is supplied to the cathode catalyst layer. The generated oxygen easily reaches the catalyst-carrying particles. As a result, the cell characteristics of the polymer electrolyte fuel cell are improved.
本発明の実施形態を説明する。
触媒担持粒子は、粒子の表面(粒子が多孔質である場合は孔内も含む)に触媒を担持したものである。粒子としては、例えば、多孔質炭素粒子(カーボン粒子)等を用いることができる。粒子の直径は特に限定されないが、例えば、0.005〜0.1μmの範囲が好ましい。
An embodiment of the present invention will be described.
The catalyst-carrying particles are obtained by carrying a catalyst on the surface of the particles (including the inside of the pores when the particles are porous). As the particles, for example, porous carbon particles (carbon particles) can be used. Although the diameter of particle | grains is not specifically limited, For example, the range of 0.005-0.1 micrometer is preferable.
触媒としては、例えば、金属触媒又は合金触媒が挙げられる。具体的には、アルミニウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、ガリウム、モリブテン、ルテニウム、ロジウム、パラジウム、タングステン、オスニウム、イリジウム、白金、又はそれらの合金が挙げられる。 Examples of the catalyst include a metal catalyst or an alloy catalyst. Specifically, aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, gallium, molybdenum, ruthenium, rhodium, palladium, tungsten, osnium, iridium, platinum, or an alloy thereof can be given.
アイオノマーは、プロトン伝導性を有する高分子材料である。アイオノマーとしては、例えば、含フッ素高分子を骨格として少なくともスルホン酸基、ホスホン基、及びリン酸基のうちの一種を有するポリマー(例えば、ナフィオン(登録商標))、ポリオレフィンのような炭化水素を骨格とするポリマー等が挙げられる。 An ionomer is a polymer material having proton conductivity. Examples of the ionomer include a polymer having at least one of a sulfonic acid group, a phosphonic group, and a phosphoric acid group with a fluorine-containing polymer as a skeleton (for example, Nafion (registered trademark)), and a hydrocarbon such as a polyolefin with a skeleton. And the like.
前駆体層は、触媒担持粒子とアイオノマーとから成るものであってもよいし、それ以外の成分を適宜含んでいてもよい。前駆体層において、触媒担持粒子とアイオノマーとの比率(重量比)は特に限定されず、プロトン伝導性等の特性に応じて適宜設定できる。 The precursor layer may be composed of catalyst-supporting particles and ionomers, and may appropriately contain other components. In the precursor layer, the ratio (weight ratio) between the catalyst-carrying particles and the ionomer is not particularly limited, and can be appropriately set according to characteristics such as proton conductivity.
前駆体層とカソード触媒層との関係は、例えば、前駆体層に超音波を照射することで物理的変化(例えばアイオノマーの一部の脱落等)が生じたものがカソード触媒層という関係であってもよいし、前駆体層に超音波を照射することで化学的変化(例えばアイオノマーにおける分子鎖間の集積、結晶化等)が生じたものがカソード触媒層という関係であってもよいし、前駆体層に超音波を照射することで物理的変化及び化学的変化が生じたものがカソード触媒層という関係であってもよい。 The relationship between the precursor layer and the cathode catalyst layer is, for example, a relationship in which a physical change (for example, a part of the ionomer is dropped) occurs when the precursor layer is irradiated with ultrasonic waves. Alternatively, the cathode catalyst layer may be one in which chemical changes (for example, accumulation between molecular chains in an ionomer, crystallization, etc.) are caused by irradiating the precursor layer with ultrasonic waves, The cathode catalyst layer may be a structure in which a physical change and a chemical change are generated by irradiating the precursor layer with ultrasonic waves.
超音波の周波数は、10kHz〜1MHzの範囲が好ましい。この範囲内であることにより、カソード触媒層に適切な大きさ、密度で孔を形成することができる。超音波の照射強度が強いほど、また、照射時間が長いほど、前駆体層に孔が形成されやすくなる。超音波の照射時間は、例えば、1〜60分間とすることができる。また、超音波のパワー(出力)は、0.05W/cm2以上であることが好ましい。この範囲であることにより、キャビテーションが発生し易くなる。なお、上述した超音波のパワーの単位は、超音波発生装置の槽の底面における単位面積当りのパワーである。 The ultrasonic frequency is preferably in the range of 10 kHz to 1 MHz. By being within this range, it is possible to form holes with an appropriate size and density in the cathode catalyst layer. The stronger the ultrasonic irradiation intensity and the longer the irradiation time, the easier the holes are formed in the precursor layer. The irradiation time of ultrasonic waves can be set to 1 to 60 minutes, for example. The ultrasonic power (output) is preferably 0.05 W / cm 2 or more. By being in this range, cavitation tends to occur. Note that the unit of ultrasonic power described above is the power per unit area on the bottom surface of the tank of the ultrasonic generator.
また、超音波の照射強度及び照射時間は、アイオノマーに直径0.1〜1000μmの孔が生じる範囲であることが好ましい。この場合、カソード触媒層を使用した固体高分子型燃料電池の電池性能が一層向上する。 Moreover, it is preferable that the irradiation intensity | strength and irradiation time of an ultrasonic wave are the ranges which a 0.1-1000 micrometers diameter hole produces in an ionomer. In this case, the cell performance of the polymer electrolyte fuel cell using the cathode catalyst layer is further improved.
カソード触媒層は、触媒担持粒子とアイオノマーとから成るものであってもよいし、それ以外の成分を適宜含んでいてもよい。カソード触媒層において、触媒担持粒子とアイオノマーとの比率(重量比)は特に限定されず、プロトン伝導性等の特性に応じて適宜設定できる。カソード触媒層は、前駆体層に超音波の照射のみを行って成るものであってもよいし、超音波の照射の工程の前又は後に、さらにその他の工程を行って成るものであってもよい。
<実施例>
1.固体高分子型燃料電池1の構成
固体高分子型燃料電池1の構成を図1〜図3に基づいて説明する。図1に示すように、固体高分子型燃料電池1は、電解質膜3、カソード触媒層5、アノード触媒層7、ガス拡散層9、11、及びセパレータ13、15を備えている。ここで、電解質膜3、カソード触媒層5、及びアノード触媒層7から成る部分をMEA(膜/電極接合体)17とする。
The cathode catalyst layer may be composed of catalyst-supported particles and ionomers, and may optionally contain other components. In the cathode catalyst layer, the ratio (weight ratio) between the catalyst-supporting particles and the ionomer is not particularly limited, and can be appropriately set according to characteristics such as proton conductivity. The cathode catalyst layer may be formed by performing only ultrasonic irradiation on the precursor layer, or may be formed by performing other steps before or after the ultrasonic irradiation step. Good.
<Example>
1. Configuration of Solid Polymer Fuel Cell 1 The configuration of the solid polymer fuel cell 1 will be described with reference to FIGS. As shown in FIG. 1, the polymer electrolyte fuel cell 1 includes an electrolyte membrane 3, a cathode catalyst layer 5, an anode catalyst layer 7, gas diffusion layers 9 and 11, and separators 13 and 15. Here, a portion composed of the electrolyte membrane 3, the cathode catalyst layer 5, and the anode catalyst layer 7 is referred to as MEA (membrane / electrode assembly) 17.
電解質膜3は、プロトン伝導性を有する高分子材料(ナフィオン(登録商標))から成る膜である。カソード触媒層5は、電解質膜3における一方の面と、ガス拡散層9とによって両側から挟まれた位置に設けられている。 The electrolyte membrane 3 is a membrane made of a polymer material (Nafion (registered trademark)) having proton conductivity. The cathode catalyst layer 5 is provided at a position sandwiched from both sides by one surface of the electrolyte membrane 3 and the gas diffusion layer 9.
カソード触媒層5は、図2及び図3に示すように、触媒担持粒子19及びアイオノマー21から成る層である。触媒担持粒子19は、直径約0.01μmのカーボン粒子23の表面に白金触媒25を担持したものである。白金触媒25の担持量は1mg/cm2である。 As shown in FIGS. 2 and 3, the cathode catalyst layer 5 is a layer composed of catalyst-supporting particles 19 and an ionomer 21. The catalyst-carrying particles 19 are obtained by carrying a platinum catalyst 25 on the surface of carbon particles 23 having a diameter of about 0.01 μm. The supported amount of the platinum catalyst 25 is 1 mg / cm 2 .
アイオノマー21は、白金触媒25を覆うように、触媒担持粒子19の外表面に設けられている。アイオノマー21は、電解質膜3と同じ材料から成る。カソード触媒層5におけるアイオノマー21の体積比は25wt%である。 The ionomer 21 is provided on the outer surface of the catalyst-carrying particles 19 so as to cover the platinum catalyst 25. The ionomer 21 is made of the same material as the electrolyte membrane 3. The volume ratio of the ionomer 21 in the cathode catalyst layer 5 is 25 wt%.
なお、アノード触媒層7で発生したプロトンは、電解質膜3を透過し、さらにアイオノマー21を透過して、触媒担持粒子19の表面に到達する。また、カソード触媒層5に供給された酸素も、アイオノマー21を透過して、触媒担持粒子19の表面に到達する。そして、触媒担持粒子19の表面において、酸素、プロトン、及び電子から水を生じさせる還元反応が行われる。還元反応で生じた水(水蒸気)は、アイオノマー21を透過してカソード触媒層5の外へ排出される。 The protons generated in the anode catalyst layer 7 pass through the electrolyte membrane 3 and further pass through the ionomer 21 and reach the surface of the catalyst-supporting particles 19. The oxygen supplied to the cathode catalyst layer 5 also passes through the ionomer 21 and reaches the surface of the catalyst-supporting particles 19. A reduction reaction that generates water from oxygen, protons, and electrons is performed on the surface of the catalyst-supporting particles 19. Water (water vapor) generated by the reduction reaction passes through the ionomer 21 and is discharged out of the cathode catalyst layer 5.
アノード触媒層7は、電解質膜3におけるカソード触媒層5とは反対側の面と、ガス拡散層11とによって両側から挟まれた位置に設けられている。アノード触媒層7は、周知の組成及び構造を有する。なお、アノード触媒層7では、燃料ガスに含まれる水素からプロトンと電子を生じる酸化反応が進行する。酸化反応で生じたプロトンは、電解質膜3を透過し、カソード触媒層5に至る。 The anode catalyst layer 7 is provided at a position sandwiched between the opposite surface of the electrolyte membrane 3 from the cathode catalyst layer 5 and the gas diffusion layer 11. The anode catalyst layer 7 has a known composition and structure. In the anode catalyst layer 7, an oxidation reaction that generates protons and electrons from hydrogen contained in the fuel gas proceeds. Protons generated by the oxidation reaction pass through the electrolyte membrane 3 and reach the cathode catalyst layer 5.
ガス拡散層9は、カソード触媒層5における電解質膜3とは反対側の面に設けられたカーボンペイパー(電子伝導性の多孔質材料から成る層の一例)である。また、ガス拡散層11は、アノード触媒層7における電解質膜3とは反対側の面に設けられたカーボンペイパーである。ガス拡散層9、11を構成するカーボンペイパーは、東レ株式会社製のカーボンペイパー060(商品名)である。 The gas diffusion layer 9 is carbon paper (an example of a layer made of an electron conductive porous material) provided on the surface of the cathode catalyst layer 5 opposite to the electrolyte membrane 3. The gas diffusion layer 11 is carbon paper provided on the surface of the anode catalyst layer 7 opposite to the electrolyte membrane 3. The carbon paper constituting the gas diffusion layers 9 and 11 is carbon paper 060 (trade name) manufactured by Toray Industries, Inc.
セパレータ13は、ガス拡散層9の外側に設けられている。セパレータ13のガス拡散層9側には、酸素を含む空気を流通させるための流路や、冷却水路が形成されている。
セパレータ15は、ガス拡散層11の外側に設けられている。セパレータ15のガス拡散層11側には、燃料ガス(例えば水素、炭化水素)を流通させるための流路や、冷却水路が形成されている。
The separator 13 is provided outside the gas diffusion layer 9. On the gas diffusion layer 9 side of the separator 13, a flow path for circulating air containing oxygen and a cooling water path are formed.
The separator 15 is provided outside the gas diffusion layer 11. On the gas diffusion layer 11 side of the separator 15, a flow path for circulating a fuel gas (for example, hydrogen or hydrocarbon) and a cooling water path are formed.
2.カソード触媒層5及び固体高分子型燃料電池1の製造方法
カソード触媒層5及び固体高分子型燃料電池1の製造方法を図4、図5に基づき説明する。
2. Method for Producing Cathode Catalyst Layer 5 and Polymer Electrolyte Fuel Cell 1 A method for producing the cathode catalyst layer 5 and polymer electrolyte fuel cell 1 will be described with reference to FIGS.
まず、カーボン粒子23を、テトラアミン白金塩溶液中に分散させた後に溶媒を蒸発させて乾燥し、還元処理した。この方法により、カーボン粒子23の表面に白金触媒25が担持された触媒担持粒子19が製造された。なお、触媒担持粒子19の製造は、共沈法、イオン交換法等の周知の方法を用いてもよい。 First, the carbon particles 23 were dispersed in a tetraamine platinum salt solution, and then the solvent was evaporated and dried, followed by reduction treatment. By this method, catalyst-carrying particles 19 in which a platinum catalyst 25 was carried on the surface of the carbon particles 23 were produced. The catalyst-carrying particles 19 may be manufactured using a known method such as a coprecipitation method or an ion exchange method.
次に、触媒担持粒子19を溶剤中に投入し、さらに、アイオノマー21を含む溶液を混合した。この混合液を、超音波ホモジナイザー、ジェットミル、ビーズミル等を用いて攪拌し、アイオノマー21を分散させた。この分散後の混合液を触媒インクとした。 Next, the catalyst-supporting particles 19 were put in a solvent, and a solution containing the ionomer 21 was further mixed. This mixed solution was stirred using an ultrasonic homogenizer, a jet mill, a bead mill or the like to disperse the ionomer 21. The mixed liquid after dispersion was used as a catalyst ink.
次に、図4に示すように、ガス拡散層9上に触媒インクを塗布し、乾燥させることで、ガス拡散層9上に前駆体層27を形成した。前駆体層27は、カソード触媒層5と同様に、触媒担持粒子19及びアイオノマー21から成る層である。ただし、前駆体層27は、後述する超音波の照射を受けていない。 Next, as shown in FIG. 4, a catalyst ink was applied on the gas diffusion layer 9 and dried to form a precursor layer 27 on the gas diffusion layer 9. Similarly to the cathode catalyst layer 5, the precursor layer 27 is a layer composed of the catalyst-supporting particles 19 and the ionomer 21. However, the precursor layer 27 has not been irradiated with ultrasonic waves described later.
次に、図5に示すように、ガス拡散層9及び前駆体層27を治具101に取り付けた。治具101は平板状の本体部103と、その一方の面に取り付けられた棒状の把持部105とから成る。ガス拡散層9及び前駆体層27は、本体部103のうち、把持部105とは反対側の平面(以下、取り付け面103aとする)に取り付けた。このとき、ガス拡散層9及び前駆体層27の向きは、ガス拡散層9が取り付け面103aに対向する向きとした。 Next, as shown in FIG. 5, the gas diffusion layer 9 and the precursor layer 27 were attached to the jig 101. The jig 101 includes a flat plate-like main body portion 103 and a rod-like gripping portion 105 attached to one surface thereof. The gas diffusion layer 9 and the precursor layer 27 were attached to a plane (hereinafter, referred to as an attachment surface 103 a) on the opposite side to the grip portion 105 in the main body portion 103. At this time, the direction of the gas diffusion layer 9 and the precursor layer 27 was set so that the gas diffusion layer 9 was opposed to the mounting surface 103a.
次に、治具101の本体部103を、超音波発生装置107の槽109内に挿入した。槽109には水110が入れられており、本体部103は水110の中に没する。超音波発生装置107は、槽109の底面111から超音波113を照射することができる。 Next, the main body 103 of the jig 101 was inserted into the tank 109 of the ultrasonic generator 107. Water 110 is placed in the tank 109, and the main body 103 is submerged in the water 110. The ultrasonic generator 107 can irradiate the ultrasonic wave 113 from the bottom surface 111 of the tank 109.
治具101は、その取り付け面103aが底面111と対向するように固定した。よって、取り付け面103aに取り付けられた前駆体層27は、水110の中で底面111と対向する。前駆体層27と底面111との距離は、超音波113の照射強度が極大となる距離に調整した。 The jig 101 was fixed so that its mounting surface 103a faces the bottom surface 111. Therefore, the precursor layer 27 attached to the attachment surface 103 a faces the bottom surface 111 in the water 110. The distance between the precursor layer 27 and the bottom surface 111 was adjusted to a distance that maximized the irradiation intensity of the ultrasonic wave 113.
そして、前駆体層27に周波数28kHzの超音波113を照射し、照射後の前駆体層27をカソード触媒層5とした。超音波の照射時間は、0分間、6分間、12分間、15分間、及び20分間のうちのいずれかとした。また、超音波のパワーは0.3W/cm2とした。なお、このパワーは、底面111の単位面積当りの値である。 Then, the precursor layer 27 was irradiated with ultrasonic waves 113 having a frequency of 28 kHz, and the precursor layer 27 after irradiation was used as the cathode catalyst layer 5. The irradiation time of ultrasonic waves was any one of 0 minutes, 6 minutes, 12 minutes, 15 minutes, and 20 minutes. The ultrasonic power was 0.3 W / cm 2 . This power is a value per unit area of the bottom surface 111.
すなわち、超音波を0分間照射した(照射していない)前駆体層27、6分間照射したカソード触媒層5、12分間照射したカソード触媒層5、15分間照射したカソード触媒層5、及び20分間照射したカソード触媒層5をそれぞれ取得した。以上の工程により、ガス拡散層9及びカソード触媒層5が製造できた。 That is, the precursor layer 27 irradiated with ultrasonic waves for 0 minutes (not irradiated), the cathode catalyst layer 5 irradiated for 6 minutes, the cathode catalyst layer 5 irradiated for 12 minutes, the cathode catalyst layer 5 irradiated for 15 minutes, and the 20 minutes Each of the irradiated cathode catalyst layers 5 was obtained. Through the above steps, the gas diffusion layer 9 and the cathode catalyst layer 5 were manufactured.
次に、ガス拡散層9及びカソード触媒層5と、固体高分子型燃料電池1における他の構成とを周知の方法で組み合わせて、固体高分子型燃料電池1を製造した。このとき、カソード触媒層5と電解質膜3との接合は、ホットプレスにより行った。ホットプレスの条件は以下のとおりとした。 Next, the polymer electrolyte fuel cell 1 was manufactured by combining the gas diffusion layer 9 and the cathode catalyst layer 5 with other components in the polymer electrolyte fuel cell 1 by a known method. At this time, the cathode catalyst layer 5 and the electrolyte membrane 3 were joined by hot pressing. The conditions for hot pressing were as follows.
プレス圧力:100Kg/cm2
プレス温度:130℃
プレス時間:1時間
3.カソード触媒層5の評価
超音波を20分間照射したカソード触媒層5を倍率50倍の実態顕微鏡で観察した。その画像を図6(2)に示す。このカソード触媒層5には、超音波の照射に起因するアイオノマー21の脱落で生じたと推測される250×250μmの大きさの孔が生じていた。一方、超音波を照射していない前駆体層27も倍率50倍の実態顕微鏡で観察した。その画像を図6(1)に示す。前駆体層27には、上記の孔は生じていなかった。
Press pressure: 100 kg / cm 2
Press temperature: 130 ° C
Press time: 1 hour Evaluation of Cathode Catalyst Layer 5 The cathode catalyst layer 5 irradiated with ultrasonic waves for 20 minutes was observed with an actual microscope at a magnification of 50 times. The image is shown in FIG. In the cathode catalyst layer 5, holes with a size of 250 × 250 μm, which are presumed to have occurred due to the dropping of the ionomer 21 due to the irradiation of ultrasonic waves, were generated. On the other hand, the precursor layer 27 not irradiated with ultrasonic waves was also observed with a real microscope at a magnification of 50 times. The image is shown in FIG. In the precursor layer 27, the above holes were not generated.
また、超音波を20分間照射したカソード触媒層5を倍率5000倍の電子顕微鏡で観察した。その画像を図7(2)に示す。このカソード触媒層5には、直径0.1〜1μm程度の孔が生じていた。この孔は、超音波の照射によりアイオノマー21が凝集することで形成されたと推測される。一方、超音波を照射していない前駆体層27も倍率5000倍の電子顕微鏡で観察した。その画像を図7(1)に示す。前駆体層27には、上記の直径0.1〜1μm程度の孔は生じていなかった。 Further, the cathode catalyst layer 5 irradiated with ultrasonic waves for 20 minutes was observed with an electron microscope at a magnification of 5000 times. The image is shown in FIG. The cathode catalyst layer 5 had pores having a diameter of about 0.1 to 1 μm. This hole is presumed to be formed by the aggregation of the ionomer 21 by ultrasonic irradiation. On the other hand, the precursor layer 27 not irradiated with ultrasonic waves was also observed with an electron microscope with a magnification of 5000 times. The image is shown in FIG. In the precursor layer 27, the above-described hole having a diameter of about 0.1 to 1 μm was not generated.
4.固体高分子型燃料電池1の評価
固体高分子型燃料電池1のI−V特性及びI−P特性を測定した。測定は、カソード触媒層5の製造工程における超音波の照射時間が0分間、6分間、12分間、15分間、及び20分間のそれぞれの場合において行った。
4). Evaluation of the polymer electrolyte fuel cell 1 The IV characteristic and the IP characteristic of the polymer electrolyte fuel cell 1 were measured. The measurement was performed in each case where the ultrasonic irradiation time in the production process of the cathode catalyst layer 5 was 0 minutes, 6 minutes, 12 minutes, 15 minutes, and 20 minutes.
その結果を図8及び図9に示す。I−V特性を表す図8の横軸は電流(単位はA)であり、縦軸は電圧(単位はV)である。I−P特性を表す図9の横軸は電流(単位はA)であり、縦軸は電力(単位はW)である。また、図8及び図9において「R」は超音波の照射時間が0分間の場合を表し、「6m」は超音波の照射時間が6分間の場合を表し、「12m」は超音波の照射時間が12分間の場合を表し、「15m」は超音波の照射時間が15分間の場合を表し、「20m」は超音波の照射時間が20分間の場合を表す。 The results are shown in FIGS. The horizontal axis of FIG. 8 representing the IV characteristic is current (unit is A), and the vertical axis is voltage (unit is V). The horizontal axis of FIG. 9 representing the IP characteristic is current (unit is A), and the vertical axis is power (unit is W). 8 and 9, “R” represents the case where the ultrasonic irradiation time is 0 minute, “6 m” represents the case where the ultrasonic irradiation time is 6 minutes, and “12 m” represents the ultrasonic irradiation. The time is 12 minutes, “15 m” represents the case where the ultrasonic irradiation time is 15 minutes, and “20 m” represents the case where the ultrasonic irradiation time is 20 minutes.
図8、図9に示すように、カソード触媒層5の製造工程において、超音波を十分な時間(例えば12分間以上)照射すれば、超音波を照射しない場合よりも、固体高分子型燃料電池1の電池特性(特に電圧降下特性)が顕著に向上した。 As shown in FIGS. 8 and 9, in the manufacturing process of the cathode catalyst layer 5, when the ultrasonic wave is irradiated for a sufficient time (for example, 12 minutes or more), the solid polymer fuel cell is more than when the ultrasonic wave is not irradiated. No. 1 battery characteristics (particularly voltage drop characteristics) were remarkably improved.
電池特性が顕著に向上した理由は以下のように推測できる。超音波の照射により、上述したとおり、カソード触媒層5を構成するアイオノマー21に孔が生じる。この孔により、触媒担持粒子19の表面で生じた水(水蒸気)が排出されやすくなり、また、セパレータ13により供給される酸素が触媒担持粒子19に到達しやすくなる結果、固体高分子型燃料電池1の電池特性が顕著に向上したと考えられる。 The reason why the battery characteristics are remarkably improved can be estimated as follows. By irradiation with ultrasonic waves, as described above, holes are formed in the ionomer 21 constituting the cathode catalyst layer 5. This hole facilitates the discharge of water (water vapor) generated on the surface of the catalyst-carrying particles 19, and the oxygen supplied by the separator 13 easily reaches the catalyst-carrying particles 19. As a result, the polymer electrolyte fuel cell It is considered that the battery characteristics of No. 1 were remarkably improved.
尚、本発明は前記実施の形態になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
例えば、カソード触媒層5は、ガス拡散層9とは別に製造してもよい。すなわち、ガス拡散層9以外の基材上に前駆体層27を形成し、超音波照射によってカソード触媒層5を製造してから、カソード触媒層5を基材から剥がしてもよい。その後、カソード触媒層5をガス拡散層9及び電解質膜3に接合することができる。
In addition, this invention is not limited to the said embodiment at all, and it cannot be overemphasized that it can implement with a various aspect in the range which does not deviate from this invention.
For example, the cathode catalyst layer 5 may be manufactured separately from the gas diffusion layer 9. That is, the precursor layer 27 may be formed on a substrate other than the gas diffusion layer 9 and the cathode catalyst layer 5 may be manufactured by ultrasonic irradiation, and then the cathode catalyst layer 5 may be peeled off from the substrate. Thereafter, the cathode catalyst layer 5 can be bonded to the gas diffusion layer 9 and the electrolyte membrane 3.
また、超音波の照射条件(例えば、超音波113の周波数、超音波113の照射時間、超音波発生装置107の出力、底面111と前駆体層27(カソード触媒層5)との距離、超音波113の射出方向と前駆体層27(カソード触媒層5)の面とが成す角度、槽109に入れる液体の種類や温度等)は、カソード触媒層5の状態(孔の有無、孔の数、孔の大きさ)や、固体高分子型燃料電池1の特性をフィードバックして、調整することができる。 Also, ultrasonic irradiation conditions (for example, the frequency of the ultrasonic wave 113, the irradiation time of the ultrasonic wave 113, the output of the ultrasonic wave generator 107, the distance between the bottom surface 111 and the precursor layer 27 (cathode catalyst layer 5), ultrasonic wave The angle formed by the injection direction of 113 and the surface of the precursor layer 27 (cathode catalyst layer 5), the type of liquid to be placed in the tank 109, the temperature, etc.) are the states of the cathode catalyst layer 5 (the presence or absence of holes, the number of holes, The size of the pores) and the characteristics of the polymer electrolyte fuel cell 1 can be fed back and adjusted.
1…固体高分子型燃料電池、3…電解質膜、5…カソード触媒層、
7…アノード触媒層、9、11…ガス拡散層、13、15…セパレータ、
17…MEA、19…触媒担持粒子、21…アイオノマー、
23…カーボン粒子、25…白金触媒、27…前駆体層、
101…治具、103…本体部、103a…取り付け面、
105…把持部、107…超音波発生装置、109…槽、
110…水、111…底面、113…超音波
DESCRIPTION OF SYMBOLS 1 ... Solid polymer fuel cell, 3 ... Electrolyte membrane, 5 ... Cathode catalyst layer,
7 ... anode catalyst layer, 9, 11 ... gas diffusion layer, 13, 15 ... separator,
17 ... MEA, 19 ... catalyst carrying particles, 21 ... ionomer,
23 ... carbon particles, 25 ... platinum catalyst, 27 ... precursor layer,
101 ... Jig, 103 ... Main body, 103a ... Mounting surface,
105 ... Gripping part, 107 ... Ultrasonic generator, 109 ... Tank,
110 ... water, 111 ... bottom surface, 113 ... ultrasound
Claims (5)
電解質膜に接合していない前記カソード前駆体層に水中で超音波を照射する工程と、
を含むことを特徴とするカソード触媒層の製造方法。 Forming a cathode precursor layer comprising catalyst-supported particles and an ionomer;
Irradiating the cathode precursor layer not bonded to the electrolyte membrane with ultrasonic waves in water ;
A process for producing a cathode catalyst layer, comprising:
前記カソード触媒層を、請求項1〜4のいずれか1項に記載のカソード触媒層の製造方法で製造することを特徴とする固体高分子型燃料電池の製造方法。 A method for producing a polymer electrolyte fuel cell comprising a cathode catalyst layer,
A method for producing a polymer electrolyte fuel cell, wherein the cathode catalyst layer is produced by the method for producing a cathode catalyst layer according to any one of claims 1 to 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013037701A JP6169860B2 (en) | 2013-02-27 | 2013-02-27 | Cathode catalyst layer and method for producing polymer electrolyte fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013037701A JP6169860B2 (en) | 2013-02-27 | 2013-02-27 | Cathode catalyst layer and method for producing polymer electrolyte fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014165148A JP2014165148A (en) | 2014-09-08 |
JP6169860B2 true JP6169860B2 (en) | 2017-07-26 |
Family
ID=51615555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013037701A Active JP6169860B2 (en) | 2013-02-27 | 2013-02-27 | Cathode catalyst layer and method for producing polymer electrolyte fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6169860B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7403080B2 (en) * | 2018-12-17 | 2023-12-22 | パナソニックIpマネジメント株式会社 | fuel cell cell |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3249227B2 (en) * | 1993-02-10 | 2002-01-21 | 田中貴金属工業株式会社 | Manufacturing method of gas diffusion electrode |
JPH08148167A (en) * | 1994-11-17 | 1996-06-07 | Tokyo Gas Co Ltd | Jointed body of polymeric electrolytic film and electrode, and jointing method therefor |
JPH08185866A (en) * | 1994-12-28 | 1996-07-16 | Matsushita Electric Ind Co Ltd | Solid high polymer type fuel cell and manufacture of its electrode |
JP5304125B2 (en) * | 2008-09-16 | 2013-10-02 | 凸版印刷株式会社 | Membrane electrode assembly production method, membrane electrode assembly, and polymer electrolyte fuel cell |
-
2013
- 2013-02-27 JP JP2013037701A patent/JP6169860B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014165148A (en) | 2014-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Dual single‐atomic Ni‐N4 and Fe‐N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis | |
Perivoliotis et al. | Recent advancements in metal-based hybrid electrocatalysts supported on graphene and related 2D materials for the oxygen reduction reaction | |
JP7029420B2 (en) | An electrode catalyst layer for a carbon dioxide electrolytic cell, and an electrolytic cell and an electrolytic device for carbon dioxide electrolysis provided with the electrode catalyst layer. | |
JP5298405B2 (en) | Manufacturing method of membrane electrode assembly for fuel cell | |
Wang et al. | Pt–MoO 3–RGO ternary hybrid hollow nanorod arrays as high-performance catalysts for methanol electrooxidation | |
Qiao et al. | Hollow Pd/Te nanorods for the effective electrooxidation of methanol | |
CA2865387C (en) | Cathode electrode for fuel cell | |
Bao et al. | Core–shell structured PtRu nanoparticles@ FeP promoter with an efficient nanointerface for alcohol fuel electrooxidation | |
Braesch et al. | A high performance direct borohydride fuel cell using bipolar interfaces and noble metal-free Ni-based anodes | |
JP6802363B2 (en) | Carbon material for catalyst carrier of polymer electrolyte fuel cell and its manufacturing method | |
Cui et al. | Self-assembled phosphomolybdic acid–polyaniline–graphene composite-supported efficient catalyst towards methanol oxidation | |
JP2007335338A (en) | Method for manufacturing electrode catalyst for fuel cell, electrode catalyst for fuel cell and polymer electrolyte fuel cell equipped with the same | |
Luo et al. | PtFe nanotubes/graphene hybrid: facile synthesis and its electrochemical properties | |
Liu et al. | Edge-segregated ternary Pd–Pt–Ni spiral nanosheets as high-performance bifunctional oxygen redox electrocatalysts for rechargeable zinc–air batteries | |
Pajootan et al. | Controllable dry synthesis of binder-free nanostructured platinum electrocatalysts supported on multi-walled carbon nanotubes and their performance in the oxygen reduction reaction | |
Wang et al. | Core-shell Co/CoO integrated on 3D nitrogen doped reduced graphene oxide aerogel as an enhanced electrocatalyst for the oxygen reduction reaction | |
Naik et al. | Bifunctional intermetallic PdZn nanoparticle-loaded deficient TiO 2 nanosheet electrocatalyst for electrochemical water splitting | |
JP2011159517A (en) | Method for manufacturing fuel cell catalyst layer | |
JP2020047432A (en) | Anode catalyst layer for fuel cell and fuel cell arranged by use thereof | |
JP2013215701A (en) | Method for manufacturing core-shell catalyst and method for manufacturing membrane electrode assembly | |
JP5900015B2 (en) | Fuel cell | |
JP6169860B2 (en) | Cathode catalyst layer and method for producing polymer electrolyte fuel cell | |
Mahmoodi et al. | Novel electrocatalysts for borohydride fuel cells: enhanced power generation by optimizing anodic core–shell nanoparticles on reduced graphene oxide | |
JP2011222192A (en) | Electrode for fuel cell and its manufacturing method | |
JP2020047430A (en) | Anode catalyst layer for fuel cell and fuel cell arranged by use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160315 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170316 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170629 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6169860 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |