JP6169860B2 - Cathode catalyst layer and method for producing polymer electrolyte fuel cell - Google Patents

Cathode catalyst layer and method for producing polymer electrolyte fuel cell Download PDF

Info

Publication number
JP6169860B2
JP6169860B2 JP2013037701A JP2013037701A JP6169860B2 JP 6169860 B2 JP6169860 B2 JP 6169860B2 JP 2013037701 A JP2013037701 A JP 2013037701A JP 2013037701 A JP2013037701 A JP 2013037701A JP 6169860 B2 JP6169860 B2 JP 6169860B2
Authority
JP
Japan
Prior art keywords
catalyst layer
cathode catalyst
layer
fuel cell
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013037701A
Other languages
Japanese (ja)
Other versions
JP2014165148A (en
Inventor
雅夫 石鍋
雅夫 石鍋
健一 今枝
健一 今枝
宮本 年昭
年昭 宮本
中島 宏
中島  宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Electronics Co Ltd
Chubu University Educational Foundation
Original Assignee
Honda Electronics Co Ltd
Chubu University Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Electronics Co Ltd, Chubu University Educational Foundation filed Critical Honda Electronics Co Ltd
Priority to JP2013037701A priority Critical patent/JP6169860B2/en
Publication of JP2014165148A publication Critical patent/JP2014165148A/en
Application granted granted Critical
Publication of JP6169860B2 publication Critical patent/JP6169860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、カソード触媒層及び固体高分子型燃料電池製造方法に関する。 The present invention, the cathode catalyst layer and a method for manufacturing a polymer electrolyte fuel cell.

固体高分子型燃料電池は、電解質膜と、その両側に配置されたカソード触媒層及びアノード触媒層とを備える。カソード触媒層は、カーボン粒子等の表面に金属触媒を担持した触媒担持粒子及びアイオノマーから構成される(特許文献1参照)。   The polymer electrolyte fuel cell includes an electrolyte membrane and a cathode catalyst layer and an anode catalyst layer disposed on both sides thereof. The cathode catalyst layer is composed of catalyst-carrying particles and ionomers that carry a metal catalyst on the surface of carbon particles or the like (see Patent Document 1).

アノード触媒層で発生し、電解質膜を透過したプロトンは、さらにカソード触媒層のアイオノマーを透過して、金属触媒の表面に到達する。また、カソード触媒層に供給された酸素も、アイオノマーを透過して、金属触媒の表面に到達する。そして、金属触媒の表面において、酸素、プロトン、及び電子から水を生じさせる還元反応が行われる。還元反応で生じた水(水蒸気)は、アイオノマーを透過してカソード触媒層の外へ排出される。   Protons generated in the anode catalyst layer and transmitted through the electrolyte membrane further pass through the ionomer in the cathode catalyst layer and reach the surface of the metal catalyst. Further, oxygen supplied to the cathode catalyst layer also passes through the ionomer and reaches the surface of the metal catalyst. And the reduction reaction which produces water from oxygen, a proton, and an electron is performed in the surface of a metal catalyst. Water (water vapor) generated by the reduction reaction passes through the ionomer and is discharged out of the cathode catalyst layer.

特開2011−222192号公報JP 2011-222192 A

従来の固体高分子型燃料電池は、その電池特性が十分ではなかった。その理由の一つとして、カソード触媒層のアイオノマーにおける水(水蒸気)や酸素の透過性が十分でないことが考えられる。本発明は以上の点に鑑みなされたものであり、上記の課題を解決できるカソード触媒層及び固体高分子型燃料電池製造方法を提供することを目的とする。 Conventional polymer electrolyte fuel cells have insufficient battery characteristics. One reason may be that water (water vapor) or oxygen permeability in the ionomer of the cathode catalyst layer is not sufficient. The present invention has been made in view of the above, and an object thereof is to provide a method of manufacturing a cathode catalyst layer and a polymer electrolyte fuel cell capable of solving the aforementioned problems.

本発明のカソード触媒層の製造方法は、触媒担持粒子及びアイオノマーを含む前駆体層を形成する工程と、前記前駆体層に超音波を照射する工程とを含むことを特徴とする。本発明により製造されたカソード触媒層は、アイオノマーに微細な孔を有する。この孔は、超音波の照射により、アイオノマーの一部が脱落したり、アイオノマーが凝集することで生じたと推測できる。   The method for producing a cathode catalyst layer of the present invention includes a step of forming a precursor layer containing catalyst-carrying particles and an ionomer, and a step of irradiating the precursor layer with ultrasonic waves. The cathode catalyst layer produced according to the present invention has fine pores in the ionomer. It can be inferred that this hole was caused by a part of the ionomer dropping off or agglomeration of the ionomer by irradiation with ultrasonic waves.

本発明により製造されたカソード触媒層を備えた固体高分子型燃料電池では、上記の孔を通して、触媒担持粒子の表面で生じた水(水蒸気)が排出されやすくなり、また、カソード触媒層に供給された酸素が触媒担持粒子に到達しやすくなる。その結果、固体高分子型燃料電池の電池特性が向上する。   In the polymer electrolyte fuel cell provided with the cathode catalyst layer produced according to the present invention, water (water vapor) generated on the surface of the catalyst-supporting particles is easily discharged through the above-mentioned holes, and is supplied to the cathode catalyst layer. The generated oxygen easily reaches the catalyst-carrying particles. As a result, the cell characteristics of the polymer electrolyte fuel cell are improved.

固体高分子型燃料電池1の構成を表す説明図である。1 is an explanatory diagram showing a configuration of a polymer electrolyte fuel cell 1. FIG. カソード触媒層5及びその周辺の構成を表す説明図である。It is explanatory drawing showing the structure of the cathode catalyst layer 5 and its periphery. 触媒担持粒子19及びアイオノマー21の構成を表す説明図である。FIG. 3 is an explanatory diagram illustrating configurations of catalyst-carrying particles 19 and ionomers 21. ガス拡散層9及び前駆体層27(カソード触媒層5)の構成を表す説明図である。It is explanatory drawing showing the structure of the gas diffusion layer 9 and the precursor layer 27 (cathode catalyst layer 5). 前駆体層27に超音波を照射する工程を表す説明図である。It is explanatory drawing showing the process of irradiating the precursor layer 27 with an ultrasonic wave. (1)は超音波を照射していない前駆体層27を倍率50倍の実態顕微鏡で観察した結果を表す写真であり、(2)は超音波を20分間照射したカソード触媒層5を倍率50倍の実態顕微鏡で観察した結果を表す写真である。(1) is a photograph showing the result of observing the precursor layer 27 not irradiated with ultrasonic waves with an actual microscope with a magnification of 50 times, and (2) is a magnification of the cathode catalyst layer 5 irradiated with ultrasonic waves for 20 minutes at a magnification of 50. It is a photograph showing the result observed with the actual condition microscope of 2 times. (1)は超音波を照射していない前駆体層27を倍率5000倍の電子顕微鏡で観察した結果を表す写真であり、(2)は超音波を20分間照射したカソード触媒層5を倍率5000倍の電子顕微鏡で観察した結果を表す写真である。(1) is a photograph showing a result of observing the precursor layer 27 not irradiated with ultrasonic waves with an electron microscope with a magnification of 5000 times, and (2) is a magnification of 5000 times with the cathode catalyst layer 5 irradiated with ultrasonic waves for 20 minutes. It is a photograph showing the result observed with the double electron microscope. 固体高分子型燃料電池1のI−V特性を表すグラフである。4 is a graph showing IV characteristics of the polymer electrolyte fuel cell 1. 固体高分子型燃料電池1のI−P特性を表すグラフである。3 is a graph showing the IP characteristics of the polymer electrolyte fuel cell 1.

本発明の実施形態を説明する。
触媒担持粒子は、粒子の表面(粒子が多孔質である場合は孔内も含む)に触媒を担持したものである。粒子としては、例えば、多孔質炭素粒子(カーボン粒子)等を用いることができる。粒子の直径は特に限定されないが、例えば、0.005〜0.1μmの範囲が好ましい。
An embodiment of the present invention will be described.
The catalyst-carrying particles are obtained by carrying a catalyst on the surface of the particles (including the inside of the pores when the particles are porous). As the particles, for example, porous carbon particles (carbon particles) can be used. Although the diameter of particle | grains is not specifically limited, For example, the range of 0.005-0.1 micrometer is preferable.

触媒としては、例えば、金属触媒又は合金触媒が挙げられる。具体的には、アルミニウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、ガリウム、モリブテン、ルテニウム、ロジウム、パラジウム、タングステン、オスニウム、イリジウム、白金、又はそれらの合金が挙げられる。   Examples of the catalyst include a metal catalyst or an alloy catalyst. Specifically, aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, gallium, molybdenum, ruthenium, rhodium, palladium, tungsten, osnium, iridium, platinum, or an alloy thereof can be given.

アイオノマーは、プロトン伝導性を有する高分子材料である。アイオノマーとしては、例えば、含フッ素高分子を骨格として少なくともスルホン酸基、ホスホン基、及びリン酸基のうちの一種を有するポリマー(例えば、ナフィオン(登録商標))、ポリオレフィンのような炭化水素を骨格とするポリマー等が挙げられる。   An ionomer is a polymer material having proton conductivity. Examples of the ionomer include a polymer having at least one of a sulfonic acid group, a phosphonic group, and a phosphoric acid group with a fluorine-containing polymer as a skeleton (for example, Nafion (registered trademark)), and a hydrocarbon such as a polyolefin with a skeleton. And the like.

前駆体層は、触媒担持粒子とアイオノマーとから成るものであってもよいし、それ以外の成分を適宜含んでいてもよい。前駆体層において、触媒担持粒子とアイオノマーとの比率(重量比)は特に限定されず、プロトン伝導性等の特性に応じて適宜設定できる。   The precursor layer may be composed of catalyst-supporting particles and ionomers, and may appropriately contain other components. In the precursor layer, the ratio (weight ratio) between the catalyst-carrying particles and the ionomer is not particularly limited, and can be appropriately set according to characteristics such as proton conductivity.

前駆体層とカソード触媒層との関係は、例えば、前駆体層に超音波を照射することで物理的変化(例えばアイオノマーの一部の脱落等)が生じたものがカソード触媒層という関係であってもよいし、前駆体層に超音波を照射することで化学的変化(例えばアイオノマーにおける分子鎖間の集積、結晶化等)が生じたものがカソード触媒層という関係であってもよいし、前駆体層に超音波を照射することで物理的変化及び化学的変化が生じたものがカソード触媒層という関係であってもよい。   The relationship between the precursor layer and the cathode catalyst layer is, for example, a relationship in which a physical change (for example, a part of the ionomer is dropped) occurs when the precursor layer is irradiated with ultrasonic waves. Alternatively, the cathode catalyst layer may be one in which chemical changes (for example, accumulation between molecular chains in an ionomer, crystallization, etc.) are caused by irradiating the precursor layer with ultrasonic waves, The cathode catalyst layer may be a structure in which a physical change and a chemical change are generated by irradiating the precursor layer with ultrasonic waves.

超音波の周波数は、10kHz〜1MHzの範囲が好ましい。この範囲内であることにより、カソード触媒層に適切な大きさ、密度で孔を形成することができる。超音波の照射強度が強いほど、また、照射時間が長いほど、前駆体層に孔が形成されやすくなる。超音波の照射時間は、例えば、1〜60分間とすることができる。また、超音波のパワー(出力)は、0.05W/cm2以上であることが好ましい。この範囲であることにより、キャビテーションが発生し易くなる。なお、上述した超音波のパワーの単位は、超音波発生装置の槽の底面における単位面積当りのパワーである。 The ultrasonic frequency is preferably in the range of 10 kHz to 1 MHz. By being within this range, it is possible to form holes with an appropriate size and density in the cathode catalyst layer. The stronger the ultrasonic irradiation intensity and the longer the irradiation time, the easier the holes are formed in the precursor layer. The irradiation time of ultrasonic waves can be set to 1 to 60 minutes, for example. The ultrasonic power (output) is preferably 0.05 W / cm 2 or more. By being in this range, cavitation tends to occur. Note that the unit of ultrasonic power described above is the power per unit area on the bottom surface of the tank of the ultrasonic generator.

また、超音波の照射強度及び照射時間は、アイオノマーに直径0.1〜1000μmの孔が生じる範囲であることが好ましい。この場合、カソード触媒層を使用した固体高分子型燃料電池の電池性能が一層向上する。   Moreover, it is preferable that the irradiation intensity | strength and irradiation time of an ultrasonic wave are the ranges which a 0.1-1000 micrometers diameter hole produces in an ionomer. In this case, the cell performance of the polymer electrolyte fuel cell using the cathode catalyst layer is further improved.

カソード触媒層は、触媒担持粒子とアイオノマーとから成るものであってもよいし、それ以外の成分を適宜含んでいてもよい。カソード触媒層において、触媒担持粒子とアイオノマーとの比率(重量比)は特に限定されず、プロトン伝導性等の特性に応じて適宜設定できる。カソード触媒層は、前駆体層に超音波の照射のみを行って成るものであってもよいし、超音波の照射の工程の前又は後に、さらにその他の工程を行って成るものであってもよい。
<実施例>
1.固体高分子型燃料電池1の構成
固体高分子型燃料電池1の構成を図1〜図3に基づいて説明する。図1に示すように、固体高分子型燃料電池1は、電解質膜3、カソード触媒層5、アノード触媒層7、ガス拡散層9、11、及びセパレータ13、15を備えている。ここで、電解質膜3、カソード触媒層5、及びアノード触媒層7から成る部分をMEA(膜/電極接合体)17とする。
The cathode catalyst layer may be composed of catalyst-supported particles and ionomers, and may optionally contain other components. In the cathode catalyst layer, the ratio (weight ratio) between the catalyst-supporting particles and the ionomer is not particularly limited, and can be appropriately set according to characteristics such as proton conductivity. The cathode catalyst layer may be formed by performing only ultrasonic irradiation on the precursor layer, or may be formed by performing other steps before or after the ultrasonic irradiation step. Good.
<Example>
1. Configuration of Solid Polymer Fuel Cell 1 The configuration of the solid polymer fuel cell 1 will be described with reference to FIGS. As shown in FIG. 1, the polymer electrolyte fuel cell 1 includes an electrolyte membrane 3, a cathode catalyst layer 5, an anode catalyst layer 7, gas diffusion layers 9 and 11, and separators 13 and 15. Here, a portion composed of the electrolyte membrane 3, the cathode catalyst layer 5, and the anode catalyst layer 7 is referred to as MEA (membrane / electrode assembly) 17.

電解質膜3は、プロトン伝導性を有する高分子材料(ナフィオン(登録商標))から成る膜である。カソード触媒層5は、電解質膜3における一方の面と、ガス拡散層9とによって両側から挟まれた位置に設けられている。   The electrolyte membrane 3 is a membrane made of a polymer material (Nafion (registered trademark)) having proton conductivity. The cathode catalyst layer 5 is provided at a position sandwiched from both sides by one surface of the electrolyte membrane 3 and the gas diffusion layer 9.

カソード触媒層5は、図2及び図3に示すように、触媒担持粒子19及びアイオノマー21から成る層である。触媒担持粒子19は、直径約0.01μmのカーボン粒子23の表面に白金触媒25を担持したものである。白金触媒25の担持量は1mg/cm2である。 As shown in FIGS. 2 and 3, the cathode catalyst layer 5 is a layer composed of catalyst-supporting particles 19 and an ionomer 21. The catalyst-carrying particles 19 are obtained by carrying a platinum catalyst 25 on the surface of carbon particles 23 having a diameter of about 0.01 μm. The supported amount of the platinum catalyst 25 is 1 mg / cm 2 .

アイオノマー21は、白金触媒25を覆うように、触媒担持粒子19の外表面に設けられている。アイオノマー21は、電解質膜3と同じ材料から成る。カソード触媒層5におけるアイオノマー21の体積比は25wt%である。   The ionomer 21 is provided on the outer surface of the catalyst-carrying particles 19 so as to cover the platinum catalyst 25. The ionomer 21 is made of the same material as the electrolyte membrane 3. The volume ratio of the ionomer 21 in the cathode catalyst layer 5 is 25 wt%.

なお、アノード触媒層7で発生したプロトンは、電解質膜3を透過し、さらにアイオノマー21を透過して、触媒担持粒子19の表面に到達する。また、カソード触媒層5に供給された酸素も、アイオノマー21を透過して、触媒担持粒子19の表面に到達する。そして、触媒担持粒子19の表面において、酸素、プロトン、及び電子から水を生じさせる還元反応が行われる。還元反応で生じた水(水蒸気)は、アイオノマー21を透過してカソード触媒層5の外へ排出される。   The protons generated in the anode catalyst layer 7 pass through the electrolyte membrane 3 and further pass through the ionomer 21 and reach the surface of the catalyst-supporting particles 19. The oxygen supplied to the cathode catalyst layer 5 also passes through the ionomer 21 and reaches the surface of the catalyst-supporting particles 19. A reduction reaction that generates water from oxygen, protons, and electrons is performed on the surface of the catalyst-supporting particles 19. Water (water vapor) generated by the reduction reaction passes through the ionomer 21 and is discharged out of the cathode catalyst layer 5.

アノード触媒層7は、電解質膜3におけるカソード触媒層5とは反対側の面と、ガス拡散層11とによって両側から挟まれた位置に設けられている。アノード触媒層7は、周知の組成及び構造を有する。なお、アノード触媒層7では、燃料ガスに含まれる水素からプロトンと電子を生じる酸化反応が進行する。酸化反応で生じたプロトンは、電解質膜3を透過し、カソード触媒層5に至る。   The anode catalyst layer 7 is provided at a position sandwiched between the opposite surface of the electrolyte membrane 3 from the cathode catalyst layer 5 and the gas diffusion layer 11. The anode catalyst layer 7 has a known composition and structure. In the anode catalyst layer 7, an oxidation reaction that generates protons and electrons from hydrogen contained in the fuel gas proceeds. Protons generated by the oxidation reaction pass through the electrolyte membrane 3 and reach the cathode catalyst layer 5.

ガス拡散層9は、カソード触媒層5における電解質膜3とは反対側の面に設けられたカーボンペイパー(電子伝導性の多孔質材料から成る層の一例)である。また、ガス拡散層11は、アノード触媒層7における電解質膜3とは反対側の面に設けられたカーボンペイパーである。ガス拡散層9、11を構成するカーボンペイパーは、東レ株式会社製のカーボンペイパー060(商品名)である。   The gas diffusion layer 9 is carbon paper (an example of a layer made of an electron conductive porous material) provided on the surface of the cathode catalyst layer 5 opposite to the electrolyte membrane 3. The gas diffusion layer 11 is carbon paper provided on the surface of the anode catalyst layer 7 opposite to the electrolyte membrane 3. The carbon paper constituting the gas diffusion layers 9 and 11 is carbon paper 060 (trade name) manufactured by Toray Industries, Inc.

セパレータ13は、ガス拡散層9の外側に設けられている。セパレータ13のガス拡散層9側には、酸素を含む空気を流通させるための流路や、冷却水路が形成されている。
セパレータ15は、ガス拡散層11の外側に設けられている。セパレータ15のガス拡散層11側には、燃料ガス(例えば水素、炭化水素)を流通させるための流路や、冷却水路が形成されている。
The separator 13 is provided outside the gas diffusion layer 9. On the gas diffusion layer 9 side of the separator 13, a flow path for circulating air containing oxygen and a cooling water path are formed.
The separator 15 is provided outside the gas diffusion layer 11. On the gas diffusion layer 11 side of the separator 15, a flow path for circulating a fuel gas (for example, hydrogen or hydrocarbon) and a cooling water path are formed.

2.カソード触媒層5及び固体高分子型燃料電池1の製造方法
カソード触媒層5及び固体高分子型燃料電池1の製造方法を図4、図5に基づき説明する。
2. Method for Producing Cathode Catalyst Layer 5 and Polymer Electrolyte Fuel Cell 1 A method for producing the cathode catalyst layer 5 and polymer electrolyte fuel cell 1 will be described with reference to FIGS.

まず、カーボン粒子23を、テトラアミン白金塩溶液中に分散させた後に溶媒を蒸発させて乾燥し、還元処理した。この方法により、カーボン粒子23の表面に白金触媒25が担持された触媒担持粒子19が製造された。なお、触媒担持粒子19の製造は、共沈法、イオン交換法等の周知の方法を用いてもよい。   First, the carbon particles 23 were dispersed in a tetraamine platinum salt solution, and then the solvent was evaporated and dried, followed by reduction treatment. By this method, catalyst-carrying particles 19 in which a platinum catalyst 25 was carried on the surface of the carbon particles 23 were produced. The catalyst-carrying particles 19 may be manufactured using a known method such as a coprecipitation method or an ion exchange method.

次に、触媒担持粒子19を溶剤中に投入し、さらに、アイオノマー21を含む溶液を混合した。この混合液を、超音波ホモジナイザー、ジェットミル、ビーズミル等を用いて攪拌し、アイオノマー21を分散させた。この分散後の混合液を触媒インクとした。   Next, the catalyst-supporting particles 19 were put in a solvent, and a solution containing the ionomer 21 was further mixed. This mixed solution was stirred using an ultrasonic homogenizer, a jet mill, a bead mill or the like to disperse the ionomer 21. The mixed liquid after dispersion was used as a catalyst ink.

次に、図4に示すように、ガス拡散層9上に触媒インクを塗布し、乾燥させることで、ガス拡散層9上に前駆体層27を形成した。前駆体層27は、カソード触媒層5と同様に、触媒担持粒子19及びアイオノマー21から成る層である。ただし、前駆体層27は、後述する超音波の照射を受けていない。   Next, as shown in FIG. 4, a catalyst ink was applied on the gas diffusion layer 9 and dried to form a precursor layer 27 on the gas diffusion layer 9. Similarly to the cathode catalyst layer 5, the precursor layer 27 is a layer composed of the catalyst-supporting particles 19 and the ionomer 21. However, the precursor layer 27 has not been irradiated with ultrasonic waves described later.

次に、図5に示すように、ガス拡散層9及び前駆体層27を治具101に取り付けた。治具101は平板状の本体部103と、その一方の面に取り付けられた棒状の把持部105とから成る。ガス拡散層9及び前駆体層27は、本体部103のうち、把持部105とは反対側の平面(以下、取り付け面103aとする)に取り付けた。このとき、ガス拡散層9及び前駆体層27の向きは、ガス拡散層9が取り付け面103aに対向する向きとした。   Next, as shown in FIG. 5, the gas diffusion layer 9 and the precursor layer 27 were attached to the jig 101. The jig 101 includes a flat plate-like main body portion 103 and a rod-like gripping portion 105 attached to one surface thereof. The gas diffusion layer 9 and the precursor layer 27 were attached to a plane (hereinafter, referred to as an attachment surface 103 a) on the opposite side to the grip portion 105 in the main body portion 103. At this time, the direction of the gas diffusion layer 9 and the precursor layer 27 was set so that the gas diffusion layer 9 was opposed to the mounting surface 103a.

次に、治具101の本体部103を、超音波発生装置107の槽109内に挿入した。槽109には水110が入れられており、本体部103は水110の中に没する。超音波発生装置107は、槽109の底面111から超音波113を照射することができる。   Next, the main body 103 of the jig 101 was inserted into the tank 109 of the ultrasonic generator 107. Water 110 is placed in the tank 109, and the main body 103 is submerged in the water 110. The ultrasonic generator 107 can irradiate the ultrasonic wave 113 from the bottom surface 111 of the tank 109.

治具101は、その取り付け面103aが底面111と対向するように固定した。よって、取り付け面103aに取り付けられた前駆体層27は、水110の中で底面111と対向する。前駆体層27と底面111との距離は、超音波113の照射強度が極大となる距離に調整した。   The jig 101 was fixed so that its mounting surface 103a faces the bottom surface 111. Therefore, the precursor layer 27 attached to the attachment surface 103 a faces the bottom surface 111 in the water 110. The distance between the precursor layer 27 and the bottom surface 111 was adjusted to a distance that maximized the irradiation intensity of the ultrasonic wave 113.

そして、前駆体層27に周波数28kHzの超音波113を照射し、照射後の前駆体層27をカソード触媒層5とした。超音波の照射時間は、0分間、6分間、12分間、15分間、及び20分間のうちのいずれかとした。また、超音波のパワーは0.3W/cm2とした。なお、このパワーは、底面111の単位面積当りの値である。 Then, the precursor layer 27 was irradiated with ultrasonic waves 113 having a frequency of 28 kHz, and the precursor layer 27 after irradiation was used as the cathode catalyst layer 5. The irradiation time of ultrasonic waves was any one of 0 minutes, 6 minutes, 12 minutes, 15 minutes, and 20 minutes. The ultrasonic power was 0.3 W / cm 2 . This power is a value per unit area of the bottom surface 111.

すなわち、超音波を0分間照射した(照射していない)前駆体層27、6分間照射したカソード触媒層5、12分間照射したカソード触媒層5、15分間照射したカソード触媒層5、及び20分間照射したカソード触媒層5をそれぞれ取得した。以上の工程により、ガス拡散層9及びカソード触媒層5が製造できた。   That is, the precursor layer 27 irradiated with ultrasonic waves for 0 minutes (not irradiated), the cathode catalyst layer 5 irradiated for 6 minutes, the cathode catalyst layer 5 irradiated for 12 minutes, the cathode catalyst layer 5 irradiated for 15 minutes, and the 20 minutes Each of the irradiated cathode catalyst layers 5 was obtained. Through the above steps, the gas diffusion layer 9 and the cathode catalyst layer 5 were manufactured.

次に、ガス拡散層9及びカソード触媒層5と、固体高分子型燃料電池1における他の構成とを周知の方法で組み合わせて、固体高分子型燃料電池1を製造した。このとき、カソード触媒層5と電解質膜3との接合は、ホットプレスにより行った。ホットプレスの条件は以下のとおりとした。   Next, the polymer electrolyte fuel cell 1 was manufactured by combining the gas diffusion layer 9 and the cathode catalyst layer 5 with other components in the polymer electrolyte fuel cell 1 by a known method. At this time, the cathode catalyst layer 5 and the electrolyte membrane 3 were joined by hot pressing. The conditions for hot pressing were as follows.

プレス圧力:100Kg/cm2
プレス温度:130℃
プレス時間:1時間
3.カソード触媒層5の評価
超音波を20分間照射したカソード触媒層5を倍率50倍の実態顕微鏡で観察した。その画像を図6(2)に示す。このカソード触媒層5には、超音波の照射に起因するアイオノマー21の脱落で生じたと推測される250×250μmの大きさの孔が生じていた。一方、超音波を照射していない前駆体層27も倍率50倍の実態顕微鏡で観察した。その画像を図6(1)に示す。前駆体層27には、上記の孔は生じていなかった。
Press pressure: 100 kg / cm 2
Press temperature: 130 ° C
Press time: 1 hour Evaluation of Cathode Catalyst Layer 5 The cathode catalyst layer 5 irradiated with ultrasonic waves for 20 minutes was observed with an actual microscope at a magnification of 50 times. The image is shown in FIG. In the cathode catalyst layer 5, holes with a size of 250 × 250 μm, which are presumed to have occurred due to the dropping of the ionomer 21 due to the irradiation of ultrasonic waves, were generated. On the other hand, the precursor layer 27 not irradiated with ultrasonic waves was also observed with a real microscope at a magnification of 50 times. The image is shown in FIG. In the precursor layer 27, the above holes were not generated.

また、超音波を20分間照射したカソード触媒層5を倍率5000倍の電子顕微鏡で観察した。その画像を図7(2)に示す。このカソード触媒層5には、直径0.1〜1μm程度の孔が生じていた。この孔は、超音波の照射によりアイオノマー21が凝集することで形成されたと推測される。一方、超音波を照射していない前駆体層27も倍率5000倍の電子顕微鏡で観察した。その画像を図7(1)に示す。前駆体層27には、上記の直径0.1〜1μm程度の孔は生じていなかった。   Further, the cathode catalyst layer 5 irradiated with ultrasonic waves for 20 minutes was observed with an electron microscope at a magnification of 5000 times. The image is shown in FIG. The cathode catalyst layer 5 had pores having a diameter of about 0.1 to 1 μm. This hole is presumed to be formed by the aggregation of the ionomer 21 by ultrasonic irradiation. On the other hand, the precursor layer 27 not irradiated with ultrasonic waves was also observed with an electron microscope with a magnification of 5000 times. The image is shown in FIG. In the precursor layer 27, the above-described hole having a diameter of about 0.1 to 1 μm was not generated.

4.固体高分子型燃料電池1の評価
固体高分子型燃料電池1のI−V特性及びI−P特性を測定した。測定は、カソード触媒層5の製造工程における超音波の照射時間が0分間、6分間、12分間、15分間、及び20分間のそれぞれの場合において行った。
4). Evaluation of the polymer electrolyte fuel cell 1 The IV characteristic and the IP characteristic of the polymer electrolyte fuel cell 1 were measured. The measurement was performed in each case where the ultrasonic irradiation time in the production process of the cathode catalyst layer 5 was 0 minutes, 6 minutes, 12 minutes, 15 minutes, and 20 minutes.

その結果を図8及び図9に示す。I−V特性を表す図8の横軸は電流(単位はA)であり、縦軸は電圧(単位はV)である。I−P特性を表す図9の横軸は電流(単位はA)であり、縦軸は電力(単位はW)である。また、図8及び図9において「R」は超音波の照射時間が0分間の場合を表し、「6m」は超音波の照射時間が6分間の場合を表し、「12m」は超音波の照射時間が12分間の場合を表し、「15m」は超音波の照射時間が15分間の場合を表し、「20m」は超音波の照射時間が20分間の場合を表す。   The results are shown in FIGS. The horizontal axis of FIG. 8 representing the IV characteristic is current (unit is A), and the vertical axis is voltage (unit is V). The horizontal axis of FIG. 9 representing the IP characteristic is current (unit is A), and the vertical axis is power (unit is W). 8 and 9, “R” represents the case where the ultrasonic irradiation time is 0 minute, “6 m” represents the case where the ultrasonic irradiation time is 6 minutes, and “12 m” represents the ultrasonic irradiation. The time is 12 minutes, “15 m” represents the case where the ultrasonic irradiation time is 15 minutes, and “20 m” represents the case where the ultrasonic irradiation time is 20 minutes.

図8、図9に示すように、カソード触媒層5の製造工程において、超音波を十分な時間(例えば12分間以上)照射すれば、超音波を照射しない場合よりも、固体高分子型燃料電池1の電池特性(特に電圧降下特性)が顕著に向上した。   As shown in FIGS. 8 and 9, in the manufacturing process of the cathode catalyst layer 5, when the ultrasonic wave is irradiated for a sufficient time (for example, 12 minutes or more), the solid polymer fuel cell is more than when the ultrasonic wave is not irradiated. No. 1 battery characteristics (particularly voltage drop characteristics) were remarkably improved.

電池特性が顕著に向上した理由は以下のように推測できる。超音波の照射により、上述したとおり、カソード触媒層5を構成するアイオノマー21に孔が生じる。この孔により、触媒担持粒子19の表面で生じた水(水蒸気)が排出されやすくなり、また、セパレータ13により供給される酸素が触媒担持粒子19に到達しやすくなる結果、固体高分子型燃料電池1の電池特性が顕著に向上したと考えられる。   The reason why the battery characteristics are remarkably improved can be estimated as follows. By irradiation with ultrasonic waves, as described above, holes are formed in the ionomer 21 constituting the cathode catalyst layer 5. This hole facilitates the discharge of water (water vapor) generated on the surface of the catalyst-carrying particles 19, and the oxygen supplied by the separator 13 easily reaches the catalyst-carrying particles 19. As a result, the polymer electrolyte fuel cell It is considered that the battery characteristics of No. 1 were remarkably improved.

尚、本発明は前記実施の形態になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
例えば、カソード触媒層5は、ガス拡散層9とは別に製造してもよい。すなわち、ガス拡散層9以外の基材上に前駆体層27を形成し、超音波照射によってカソード触媒層5を製造してから、カソード触媒層5を基材から剥がしてもよい。その後、カソード触媒層5をガス拡散層9及び電解質膜3に接合することができる。
In addition, this invention is not limited to the said embodiment at all, and it cannot be overemphasized that it can implement with a various aspect in the range which does not deviate from this invention.
For example, the cathode catalyst layer 5 may be manufactured separately from the gas diffusion layer 9. That is, the precursor layer 27 may be formed on a substrate other than the gas diffusion layer 9 and the cathode catalyst layer 5 may be manufactured by ultrasonic irradiation, and then the cathode catalyst layer 5 may be peeled off from the substrate. Thereafter, the cathode catalyst layer 5 can be bonded to the gas diffusion layer 9 and the electrolyte membrane 3.

また、超音波の照射条件(例えば、超音波113の周波数、超音波113の照射時間、超音波発生装置107の出力、底面111と前駆体層27(カソード触媒層5)との距離、超音波113の射出方向と前駆体層27(カソード触媒層5)の面とが成す角度、槽109に入れる液体の種類や温度等)は、カソード触媒層5の状態(孔の有無、孔の数、孔の大きさ)や、固体高分子型燃料電池1の特性をフィードバックして、調整することができる。   Also, ultrasonic irradiation conditions (for example, the frequency of the ultrasonic wave 113, the irradiation time of the ultrasonic wave 113, the output of the ultrasonic wave generator 107, the distance between the bottom surface 111 and the precursor layer 27 (cathode catalyst layer 5), ultrasonic wave The angle formed by the injection direction of 113 and the surface of the precursor layer 27 (cathode catalyst layer 5), the type of liquid to be placed in the tank 109, the temperature, etc.) are the states of the cathode catalyst layer 5 (the presence or absence of holes, the number of holes, The size of the pores) and the characteristics of the polymer electrolyte fuel cell 1 can be fed back and adjusted.

1…固体高分子型燃料電池、3…電解質膜、5…カソード触媒層、
7…アノード触媒層、9、11…ガス拡散層、13、15…セパレータ、
17…MEA、19…触媒担持粒子、21…アイオノマー、
23…カーボン粒子、25…白金触媒、27…前駆体層、
101…治具、103…本体部、103a…取り付け面、
105…把持部、107…超音波発生装置、109…槽、
110…水、111…底面、113…超音波
DESCRIPTION OF SYMBOLS 1 ... Solid polymer fuel cell, 3 ... Electrolyte membrane, 5 ... Cathode catalyst layer,
7 ... anode catalyst layer, 9, 11 ... gas diffusion layer, 13, 15 ... separator,
17 ... MEA, 19 ... catalyst carrying particles, 21 ... ionomer,
23 ... carbon particles, 25 ... platinum catalyst, 27 ... precursor layer,
101 ... Jig, 103 ... Main body, 103a ... Mounting surface,
105 ... Gripping part, 107 ... Ultrasonic generator, 109 ... Tank,
110 ... water, 111 ... bottom surface, 113 ... ultrasound

Claims (5)

触媒担持粒子及びアイオノマーを含むカソード前駆体層を形成する工程と、
電解質膜に接合していない前記カソード前駆体層に水中で超音波を照射する工程と、
を含むことを特徴とするカソード触媒層の製造方法。
Forming a cathode precursor layer comprising catalyst-supported particles and an ionomer;
Irradiating the cathode precursor layer not bonded to the electrolyte membrane with ultrasonic waves in water ;
A process for producing a cathode catalyst layer, comprising:
前記超音波の周波数が10kHz〜1MHzの範囲内であることを特徴とする請求項1に記載のカソード触媒層の製造方法。   2. The method for producing a cathode catalyst layer according to claim 1, wherein the frequency of the ultrasonic wave is within a range of 10 kHz to 1 MHz. 前記超音波の照射は、前記カソード前駆体層に、直径0.1〜1000μmの孔が生じる強度及び時間で行うことを特徴とする請求項1又は2に記載のカソード触媒層の製造方法。 3. The method for producing a cathode catalyst layer according to claim 1, wherein the ultrasonic irradiation is performed at a strength and a time at which holes having a diameter of 0.1 to 1000 μm are formed in the cathode precursor layer. 前記触媒担持粒子が、金属触媒を担持したカーボン粒子であることを特徴とする請求項1〜3のいずれか1項に記載のカソード触媒層の製造方法。   The method for producing a cathode catalyst layer according to any one of claims 1 to 3, wherein the catalyst-carrying particles are carbon particles carrying a metal catalyst. カソード触媒層を備える固体高分子型燃料電池の製造方法であって、
前記カソード触媒層を、請求項1〜4のいずれか1項に記載のカソード触媒層の製造方法で製造することを特徴とする固体高分子型燃料電池の製造方法。
A method for producing a polymer electrolyte fuel cell comprising a cathode catalyst layer,
A method for producing a polymer electrolyte fuel cell, wherein the cathode catalyst layer is produced by the method for producing a cathode catalyst layer according to any one of claims 1 to 4.
JP2013037701A 2013-02-27 2013-02-27 Cathode catalyst layer and method for producing polymer electrolyte fuel cell Active JP6169860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013037701A JP6169860B2 (en) 2013-02-27 2013-02-27 Cathode catalyst layer and method for producing polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013037701A JP6169860B2 (en) 2013-02-27 2013-02-27 Cathode catalyst layer and method for producing polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2014165148A JP2014165148A (en) 2014-09-08
JP6169860B2 true JP6169860B2 (en) 2017-07-26

Family

ID=51615555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013037701A Active JP6169860B2 (en) 2013-02-27 2013-02-27 Cathode catalyst layer and method for producing polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP6169860B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7403080B2 (en) * 2018-12-17 2023-12-22 パナソニックIpマネジメント株式会社 fuel cell cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3249227B2 (en) * 1993-02-10 2002-01-21 田中貴金属工業株式会社 Manufacturing method of gas diffusion electrode
JPH08148167A (en) * 1994-11-17 1996-06-07 Tokyo Gas Co Ltd Jointed body of polymeric electrolytic film and electrode, and jointing method therefor
JPH08185866A (en) * 1994-12-28 1996-07-16 Matsushita Electric Ind Co Ltd Solid high polymer type fuel cell and manufacture of its electrode
JP5304125B2 (en) * 2008-09-16 2013-10-02 凸版印刷株式会社 Membrane electrode assembly production method, membrane electrode assembly, and polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP2014165148A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
Chen et al. Dual single‐atomic Ni‐N4 and Fe‐N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis
Perivoliotis et al. Recent advancements in metal-based hybrid electrocatalysts supported on graphene and related 2D materials for the oxygen reduction reaction
JP7029420B2 (en) An electrode catalyst layer for a carbon dioxide electrolytic cell, and an electrolytic cell and an electrolytic device for carbon dioxide electrolysis provided with the electrode catalyst layer.
JP5298405B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
Wang et al. Pt–MoO 3–RGO ternary hybrid hollow nanorod arrays as high-performance catalysts for methanol electrooxidation
Qiao et al. Hollow Pd/Te nanorods for the effective electrooxidation of methanol
CA2865387C (en) Cathode electrode for fuel cell
Bao et al. Core–shell structured PtRu nanoparticles@ FeP promoter with an efficient nanointerface for alcohol fuel electrooxidation
Braesch et al. A high performance direct borohydride fuel cell using bipolar interfaces and noble metal-free Ni-based anodes
JP6802363B2 (en) Carbon material for catalyst carrier of polymer electrolyte fuel cell and its manufacturing method
Cui et al. Self-assembled phosphomolybdic acid–polyaniline–graphene composite-supported efficient catalyst towards methanol oxidation
JP2007335338A (en) Method for manufacturing electrode catalyst for fuel cell, electrode catalyst for fuel cell and polymer electrolyte fuel cell equipped with the same
Luo et al. PtFe nanotubes/graphene hybrid: facile synthesis and its electrochemical properties
Liu et al. Edge-segregated ternary Pd–Pt–Ni spiral nanosheets as high-performance bifunctional oxygen redox electrocatalysts for rechargeable zinc–air batteries
Pajootan et al. Controllable dry synthesis of binder-free nanostructured platinum electrocatalysts supported on multi-walled carbon nanotubes and their performance in the oxygen reduction reaction
Wang et al. Core-shell Co/CoO integrated on 3D nitrogen doped reduced graphene oxide aerogel as an enhanced electrocatalyst for the oxygen reduction reaction
Naik et al. Bifunctional intermetallic PdZn nanoparticle-loaded deficient TiO 2 nanosheet electrocatalyst for electrochemical water splitting
JP2011159517A (en) Method for manufacturing fuel cell catalyst layer
JP2020047432A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JP2013215701A (en) Method for manufacturing core-shell catalyst and method for manufacturing membrane electrode assembly
JP5900015B2 (en) Fuel cell
JP6169860B2 (en) Cathode catalyst layer and method for producing polymer electrolyte fuel cell
Mahmoodi et al. Novel electrocatalysts for borohydride fuel cells: enhanced power generation by optimizing anodic core–shell nanoparticles on reduced graphene oxide
JP2011222192A (en) Electrode for fuel cell and its manufacturing method
JP2020047430A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170629

R150 Certificate of patent or registration of utility model

Ref document number: 6169860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250