JP6167836B2 - Wheel support hub unit - Google Patents

Wheel support hub unit Download PDF

Info

Publication number
JP6167836B2
JP6167836B2 JP2013214702A JP2013214702A JP6167836B2 JP 6167836 B2 JP6167836 B2 JP 6167836B2 JP 2013214702 A JP2013214702 A JP 2013214702A JP 2013214702 A JP2013214702 A JP 2013214702A JP 6167836 B2 JP6167836 B2 JP 6167836B2
Authority
JP
Japan
Prior art keywords
ring raceway
outer ring
hub
hardened layer
contact angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013214702A
Other languages
Japanese (ja)
Other versions
JP2015078717A (en
Inventor
石川 寛朗
寛朗 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2013214702A priority Critical patent/JP6167836B2/en
Publication of JP2015078717A publication Critical patent/JP2015078717A/en
Application granted granted Critical
Publication of JP6167836B2 publication Critical patent/JP6167836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Description

この発明は、自動車の車輪及びブレーキディスク等の制動用回転部材を懸架装置に対して回転自在に支持する為に使用する車輪支持用ハブユニットの改良に関する。   The present invention relates to an improvement of a hub unit for supporting a wheel used for rotatably supporting a rotating member for braking such as a wheel and a brake disk of an automobile with respect to a suspension device.

自動車の車輪及び制動用回転部材は、車輪支持用ハブユニットにより、懸架装置に対して回転自在に支持する。この様な車輪支持用ハブユニットには、自動車が旋回走行する際に大きなモーメントが加わる為、旋回走行時の安定性を確保する為には、大きなモーメント剛性を確保する必要がある。この為、従来から、車輪支持用ハブユニットとして、転動体を複列に配置すると共に、これら両列の転動体に、予圧並びに背面組み合わせ型の接触角を付与した構造が、一般的に使用されている。図3は、この様な車輪支持用ハブユニットの1例として、特許文献1に記載されたものを示している。この車輪支持用ハブユニット1は、ハブ2と、外輪3と、複数個の第一の玉4a、4aと、複数個の第二の玉4b、4bとを備えている。   The wheel of the automobile and the rotating member for braking are rotatably supported by the suspension device by the wheel supporting hub unit. Since a large moment is applied to such a wheel support hub unit when the automobile turns, it is necessary to ensure a large moment rigidity in order to ensure stability during turning. For this reason, conventionally, as a wheel support hub unit, a structure in which rolling elements are arranged in a double row, and a preload and a combined contact angle on the back surface are provided to the rolling elements in both rows is generally used. ing. FIG. 3 shows one described in Patent Document 1 as an example of such a wheel support hub unit. The wheel support hub unit 1 includes a hub 2, an outer ring 3, a plurality of first balls 4a and 4a, and a plurality of second balls 4b and 4b.

前記ハブ2は、ハブ本体5と内輪6とを組み合わせて成る。このうちのハブ本体5は、外周面の軸方向外端(軸方向に関して外とは、自動車への組み付け状態で車両の幅方向外側を言い、各図の左側。反対に、車両の幅方向中央側となる各図の右側を、軸方向に関して内と言う。本明細書及び特許請求の範囲全体で同じ。)寄り部分に取付フランジ7を、同じく軸方向中間部に外側内輪軌道8を、それぞれ直接形成されている。又、前記ハブ本体5の外周面の軸方向内端寄り部分には、小径段部9が形成されている。更に、このハブ本体5の外周面のうちで、前記取付フランジ7の基端寄り部分の軸方向内側面から前記小径段部9の軸方向内端寄り部分(図3に斜格子で示す部分)に、ハブ側硬化層10が形成されている。   The hub 2 is formed by combining a hub body 5 and an inner ring 6. Of these, the hub body 5 is an outer end in the axial direction of the outer peripheral surface (outside with respect to the axial direction means the outside in the width direction of the vehicle when assembled to the automobile, and the left side of each figure. The right side of each figure that is the side is said to be inward with respect to the axial direction, which is the same throughout the present specification and claims.) The mounting flange 7 is located at the near side, and the outer inner ring raceway 8 is also located at the middle in the axial direction. Directly formed. A small-diameter step portion 9 is formed on the outer peripheral surface of the hub body 5 near the inner end in the axial direction. Further, in the outer peripheral surface of the hub main body 5, the portion closer to the inner end in the axial direction of the small-diameter step portion 9 from the inner surface in the axial direction of the portion closer to the base end of the mounting flange 7 (the portion indicated by the oblique grid in FIG. 3) Further, the hub side hardened layer 10 is formed.

又、前記内輪6は、外周面に内側内輪軌道11が形成されている。この様な内輪6は、前記小径段部9に締り嵌めで外嵌固定されると共に、この内輪6の軸方向内端面を、前記ハブ本体5の軸方向内端部に形成したかしめ部12により抑え付けられている。尚、前記取付フランジ7には、複数本のスタッド13の基端部を固定し、この取付フランジ7に、ディスクロータやブレーキドラム等の制動用回転体や、車輪を構成するホイールを支持固定できる様にしている。   The inner ring 6 has an inner ring raceway 11 formed on the outer peripheral surface. Such an inner ring 6 is externally fixed to the small-diameter step portion 9 by an interference fit, and an axial inner end surface of the inner ring 6 is formed by a caulking portion 12 formed at an axial inner end portion of the hub body 5. It is suppressed. A base end portion of a plurality of studs 13 is fixed to the mounting flange 7, and a braking rotating body such as a disk rotor and a brake drum and a wheel constituting a wheel can be supported and fixed to the mounting flange 7. Like.

又、前記外輪3は、内周面の軸方向に離隔した位置に、それぞれの断面形状(母線形状)が円弧形である外側外輪軌道14と内側外輪軌道15とが形成されている。又、前記外輪3の外周面に、前記外輪3を懸架装置に結合固定する為の結合フランジ16が設けられている。又、前記外側、内側各外輪軌道14、15の転がり疲れ寿命を確保する為に、前記外輪3の内周面のうち、この外側外輪軌道14部分(図3の斜格子で示す部分のうちの左側部分)に外側硬化層17が、前記内側外輪軌道15部分(図3に斜格子で示す部分のうちの右側部分)に内側硬化層18が、それぞれ高周波焼き入れにより形成されている。尚、これら外側、内側各硬化層17、18の厚さ寸法(前記外側、内側各外輪軌道14、15の曲率半径方向の寸法)は、全長に亙りほぼ等しい。   The outer ring 3 is formed with an outer outer ring raceway 14 and an inner outer ring raceway 15 each having a circular cross section (bus shape) at positions spaced apart in the axial direction of the inner peripheral surface. A coupling flange 16 for coupling and fixing the outer ring 3 to a suspension device is provided on the outer peripheral surface of the outer ring 3. Further, in order to ensure the rolling fatigue life of the outer and inner outer ring raceways 14 and 15, the outer outer race 3 has an outer outer race track 14 portion (of the portion indicated by the oblique grid in FIG. 3). An outer hardened layer 17 is formed on the left side portion, and an inner hardened layer 18 is formed on the inner outer ring raceway 15 portion (the right side portion of the portion indicated by the oblique lattice in FIG. 3) by induction hardening. The thickness dimensions of the outer and inner hardened layers 17 and 18 (the dimensions in the curvature radius direction of the outer and inner outer ring raceways 14 and 15) are substantially equal over the entire length.

又、前記各第一の玉4a、4aは、前記外側内輪軌道8と、前記外側外輪軌道14との間に転動自在に設けられており、外側玉列19を構成している。
又、前記各第二の玉4b、4bは、前記内側内輪軌道11と前記内側外輪軌道15との間に転動自在に設けられており、内側玉列20を構成している。
この状態で、前記外側玉列19を構成する各第一の玉4a、4aに外側接触角θを付与すると共に、前記内側玉列20を構成する各第二の玉4b、4bに内側接触角θを付与する事により、これら外側、内側各玉列19、20を構成する前記各玉4a、4bに、予圧と共に背面組み合わせ型(DB型)の接触角を付与している。
Each of the first balls 4 a and 4 a is provided between the outer inner ring raceway 8 and the outer outer ring raceway 14 so as to freely roll, and constitutes an outer ball train 19.
Each of the second balls 4 b and 4 b is provided between the inner inner ring raceway 11 and the inner outer ring raceway 15 so as to freely roll, and constitutes an inner ball train 20.
In this state, the outer contact angle θ o is given to the first balls 4 a and 4 a constituting the outer ball row 19, and the inner contact with the second balls 4 b and 4 b constituting the inner ball row 20. By providing the angle θ i , a back combination type (DB type) contact angle is given to each of the balls 4a and 4b constituting the outer and inner ball arrays 19 and 20 together with a preload.

ところで、車両が走行する際、車輪支持用ハブユニットに加わるモーメントに基づいて、外輪軌道の表層下には、所謂動的せん断応力と静的せん断応力と呼ばれる2種類のせん断応力が発生する。
このうちの動的せん断応力は、外輪軌道の表層部から浅い位置に発生し、絶対値は小さいが振幅が大きい応力である為、転がり疲れ寿命に影響するものである。
一方、静的せん断応力は、前記動的せん断応力の最大値(動的最大せん断応力)が発生する位置よりも深い位置に発生し、絶対値が大きいが振幅が小さい応力である為、転がり疲れ寿命への影響は少ないが、外輪軌道表面に圧痕が発生する原因となる事が知られている。
従来、車輪支持用ハブユニットの負荷容量は、車両の通常走行時に発生するモーメントに基づく動的せん断応力が軸受の耐久性(転がり疲れ寿命)に対して支配的になる領域で設定されてきた。
一方、近年、扁平率が低いタイヤの普及により、車輪支持用ハブユニットには、例えば街路や駐車場のハンプ(段差)の乗り越えの際、駐車場の車止めにタイヤを当てる、或いは、縁石に乗り上げる際等に、タイヤのリム部が直接対象物と当たる事で、衝撃荷重が入力される事が多くなった。この衝撃荷重に基づいて、外輪軌道の表層化には静的せん断応力の最大値(静的最大せん断応力)が瞬間的に発生し、圧痕発生の原因となる。この様に、外輪軌道に圧痕が発生すると異音の原因となるばかりでなく、軸受に圧痕起点の剥離を発生させる可能性がある。
By the way, when the vehicle travels, two kinds of shear stresses called so-called dynamic shear stress and static shear stress are generated under the outer layer of the outer ring raceway based on the moment applied to the wheel support hub unit.
Among them, the dynamic shear stress is generated at a shallow position from the surface layer portion of the outer ring raceway, and is a stress having a small absolute value but a large amplitude, which affects the rolling fatigue life.
On the other hand, the static shear stress occurs at a position deeper than the position where the maximum value of the dynamic shear stress (dynamic maximum shear stress) is generated, and is a stress having a large absolute value but a small amplitude. Although it has little effect on the service life, it is known to cause indentation on the outer ring raceway surface.
Conventionally, the load capacity of the wheel supporting hub unit has been set in a region where the dynamic shear stress based on the moment generated during normal driving of the vehicle is dominant over the durability (rolling fatigue life) of the bearing.
On the other hand, in recent years, with the spread of tires with a low flatness ratio, for example, when a wheel support hub unit gets over a hump (step) in a street or a parking lot, the tire is applied to the parking stop of the parking lot or climbs on a curb In some cases, the impact load is often input because the tire rim directly hits the object. Based on this impact load, the maximum value of the static shear stress (static maximum shear stress) is instantaneously generated in the outer layer of the outer ring raceway, which causes indentation. In this way, when an indentation is generated on the outer ring raceway, it not only causes abnormal noise but also may cause separation of the indentation starting point in the bearing.

前述の様な車輪支持用ハブユニット1の場合、前記モーメントは、タイヤ設置点と車輪支持用ハブユニット1との位置関係により、外側玉列19及び内側玉列20に分配され、これら各玉列19、20を構成する第一、第二の各玉4a、4bにより支承される。
一方、前記衝撃荷重の多くは、鉛直方向成分が大きい為、前記内側玉列20を構成する各第二の玉4b、4bによって支承される。
従って、前記外側外輪軌道14の耐久性の向上を図る為には、前記外側硬化層17の厚さを、動的最大せん断応力が発生する深さを考慮して規定すれば事足りるが、前記内側外輪軌道15の耐久性の向上を図る場合には、前記内側硬化層18の厚さを、静的最大せん断応力が発生する深さを考慮して規定する必要がある。
尚、ヘルツの弾性接触理論によれば、静的最大せん断応力が発生する、外輪軌道の表層部からの深さ位置は、動的最大せん断応力が発生する深さ位置の約1.5倍程度深くなる事が知られている。
In the case of the wheel support hub unit 1 as described above, the moment is distributed to the outer ball array 19 and the inner ball array 20 according to the positional relationship between the tire installation point and the wheel support hub unit 1, and each of these ball arrays. 19 and 20 are supported by the first and second balls 4a and 4b.
On the other hand, most of the impact loads are supported by the second balls 4b and 4b constituting the inner ball array 20 because the vertical component is large.
Therefore, in order to improve the durability of the outer outer ring raceway 14, it is sufficient to define the thickness of the outer hardened layer 17 in consideration of the depth at which the dynamic maximum shear stress is generated. In order to improve the durability of the outer ring raceway 15, it is necessary to define the thickness of the inner hardened layer 18 in consideration of the depth at which the static maximum shear stress is generated.
According to Hertz's elastic contact theory, the depth position from the surface layer of the outer ring raceway where the static maximum shear stress occurs is about 1.5 times the depth position where the dynamic maximum shear stress occurs. It is known to be deep.

しかしながら、前記特許文献1に記載された車輪支持用ハブユニット1の場合、前記各外側、内側各硬化層17、18が、互いに前記外輪3の中心軸に直交する仮想平面に関して、ほぼ対称な形状を有しており、前記各硬化層17、18の厚さは互いにほぼ等しく、前記外側、内側各外輪軌道14、15に発生する各応力の最大値(動的最大せん断応力或いは静的最大せん断応力)の深さを考慮して規定されたものではない。尚、外側、内側各硬化層の厚さ寸法が全長に亙りほぼ等しい構造の場合、この厚さ寸法を、静的最大せん断応力が発生する深さに合わせて規定する事も考えられる。但し、この場合、静的最大せん断応力が殆ど発生しない外側硬化層の厚さ寸法が必要以上に大きくなり、この外側硬化層の外径側に存在する非硬化部分の厚さ寸法を確保し難くなる。この非硬化部分は、高周波焼入れ後にマルテンサイトに変態して膨張した前記外側硬化層部分を外径側から抑え付け、この外側硬化層部分に残留圧縮応力を生じさせ、この外側硬化層に金属疲労を発生し難しくする役目を有する。従って、前記非硬化部分の厚さ寸法の確保が難しくなる結果、この外側硬化層部分の転がり疲れ寿命が低下する可能性がある。   However, in the case of the wheel supporting hub unit 1 described in Patent Document 1, the outer and inner hardened layers 17 and 18 are substantially symmetrical with respect to a virtual plane orthogonal to the central axis of the outer ring 3. The thicknesses of the hardened layers 17 and 18 are substantially equal to each other, and the maximum value of each stress generated in the outer and inner outer ring raceways 14 and 15 (dynamic maximum shear stress or static maximum shear). It is not specified in consideration of the depth of stress. In the case of a structure in which the thickness dimension of each of the outer and inner hardened layers is substantially equal over the entire length, it is conceivable that the thickness dimension is defined according to the depth at which the static maximum shear stress is generated. However, in this case, the thickness of the outer hardened layer where static maximum shear stress hardly occurs is unnecessarily large, and it is difficult to secure the thickness of the non-hardened portion existing on the outer diameter side of the outer hardened layer. Become. This non-hardened portion suppresses the outer hardened layer portion that has been transformed into martensite and expanded after induction quenching from the outer diameter side, causes residual compressive stress in the outer hardened layer portion, and causes metal fatigue in the outer hardened layer. It has the role of generating and making it difficult. Therefore, as a result of difficulty in securing the thickness dimension of the non-cured portion, the rolling fatigue life of the outer cured layer portion may be reduced.

又、特許文献2には、外輪の内周面のうち、外側、内側各外輪軌道部分と、これら外側、内側各外輪軌道同士の間部分とに、軸方向に連続した硬化層が形成された車輪支持用ハブユニットに関する発明が記載されている。この様な発明によれば、前記外側、内側各外輪軌道同士の間部分の外径側に存在する非硬化層部分で発生する圧縮力を、前記外側、内側各外輪軌道部分の外側、内側各硬化層に伝えて、これら外側、内側各硬化層部分の残留圧縮応力を確保する事ができる。但し、この様な発明に関しても、外側、内側各硬化層の厚さを、外側、内側各外輪軌道に発生する応力(動的最大せん断応力或いは静的最大せん断応力)の深さに応じて規定してはいない。   Further, in Patent Document 2, a hardened layer that is continuous in the axial direction is formed on the outer and inner outer ring raceway portions and between the outer and inner outer ring raceways on the inner peripheral surface of the outer ring. An invention related to a wheel supporting hub unit is described. According to such an invention, the compressive force generated in the non-hardened layer portion existing on the outer diameter side of the portion between the outer and inner outer ring raceways is applied to the outer side and inner side of the outer and inner outer ring raceways. By transmitting to the hardened layer, it is possible to ensure the residual compressive stress of the outer and inner hardened layer portions. However, even in such an invention, the thickness of each outer and inner hardened layer is defined according to the depth of the stress (dynamic maximum shear stress or static maximum shear stress) generated in each outer and inner outer ring raceway. Not done.

特開2005−214229号公報JP 2005-214229 A 特開2008−64268号公報JP 2008-64268 A

本発明は、上述の様な事情に鑑み、外側、内側各外輪軌道のそれぞれに加わる力或いは荷重(モーメント或いは衝撃荷重)に基づき発生する応力の最大値(動的最大せん断応力或いは静的最大せん断応力)が発生する深さに基づいて、外側硬化層及び内側硬化層の厚さ寸法を規定する事により、前記外側、内側各外輪軌道の耐久性の向上を個別に、且つ、それぞれの軌道に就いて適正に図れる車輪支持用ハブユニットの構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention is based on the maximum value of the stress (dynamic maximum shear stress or static maximum shear) generated based on the force or load (moment or impact load) applied to each of the outer and inner outer ring raceways. By defining the thickness dimension of the outer hardened layer and the inner hardened layer based on the depth at which stress is generated, the durability of the outer and inner outer ring raceways can be improved individually and on each track. The invention was invented to realize a wheel support hub unit structure that can be properly achieved.

本発明の車輪支持用ハブユニットは、外輪と、ハブと、それぞれ複数個ずつの第一、第二の玉とを備えている。
このうちの外輪は、内周面に、それぞれの断面形状が円弧形である外側外輪軌道と内側外輪軌道とを有する。
又、前記ハブは、外周面の軸方向外端寄り部分に車輪を支持固定する為の取付フランジを、同じく軸方向中間部に外側内輪軌道を、同じく軸方向内端部に内側内輪軌道を、それぞれ有する。
又、前記各第一の玉は、前記外側内輪軌道と前記外側外輪軌道との間に転動自在に設けられており、外側玉列を構成している。
又、前記各第二の玉は、前記内側内輪軌道と前記内側外輪軌道との間に転動自在に設けられており、内側玉列を構成している。
又、前記外側玉列を構成する各第一の玉に外側接触角θを付与すると共に、前記内側玉列を構成する各第二の玉に内側接触角θを付与する事により、これら外側、内側各玉列を構成する各玉に、予圧と共に背面組み合わせ型の接触角を付与している。
更に、前記外輪の内周面のうち、前記外側外輪軌道部分に周方向に連続する外側硬化層を、前記内側外輪軌道部分に周方向に連続する内側硬化層を、軸方向に関するこれら外側、内側各硬化層同士の間部分に周方向に連続する中間硬化層を、軸方向に連続する状態で形成している。
The wheel support hub unit of the present invention includes an outer ring, a hub, and a plurality of first and second balls.
Among these, the outer ring has an outer outer ring raceway and an inner outer ring raceway, each of which has an arc shape on the inner peripheral surface.
Further, the hub has a mounting flange for supporting and fixing the wheel on the outer peripheral surface of the outer peripheral portion near the outer end in the axial direction, the outer ring race in the middle in the axial direction, and the inner ring race in the inner end in the axial direction. Have each.
Each of the first balls is provided between the outer inner ring raceway and the outer outer ring raceway so as to freely roll, and constitutes an outer ball train.
Each of the second balls is provided between the inner inner ring raceway and the inner outer ring raceway so as to roll freely, and constitutes an inner ball train.
In addition, the outer contact angle θ o is given to each first ball constituting the outer ball row, and the inner contact angle θ i is given to each second ball constituting the inner ball row. The contact angle of the back combination type is given to each ball constituting each outer and inner ball row together with the preload.
Further, of the inner peripheral surface of the outer ring, an outer hardened layer continuous in the circumferential direction with the outer outer ring raceway portion, and an inner hardened layer continuous in the circumferential direction with the inner outer ring raceway portion, the outer and inner sides in the axial direction. An intermediate cured layer that is continuous in the circumferential direction is formed between the cured layers in a state of being continuous in the axial direction.

特に、本発明の車輪支持用ハブユニットに於いては、前記内側硬化層の前記内側接触角θ方向の厚さ寸法Tが、前記外側硬化層の外側接触角θ方向の厚さ寸法Tよりも大きい(T>T)。
又、前記外側硬化層のうち、θ±10度の範囲に相当する部分の、前記外側外輪軌道の曲率半径方向に関する厚さ寸法が、軸方向内方に向かうほど大きくなる。
更に、前記内側硬化層のうち、θ±10度の範囲に相当する部分の、前記内側外輪軌道の曲率半径方向に関する厚さ寸法が、この内側外輪軌道の軸方向内方に向かうほど大きくなる。
In particular, in the wheel support hub unit of the present invention, the thickness dimension T i of the inner hardened layer in the inner contact angle θ i direction is equal to the thickness dimension of the outer hardened layer in the outer contact angle θ o direction. Greater than T o (T i > T o ).
Moreover, the thickness dimension in the radius direction of curvature of the outer outer ring raceway in the portion corresponding to the range of θ o ± 10 degrees in the outer hardened layer increases toward the inner side in the axial direction.
Furthermore, the thickness dimension in the radius direction of curvature of the inner outer ring raceway of the portion corresponding to the range of θ i ± 10 degrees in the inner hardened layer increases as it goes inward in the axial direction of the inner outer ring raceway. .

上述の様な本発明の車輪支持用ハブユニットを実施する場合に例えば、請求項2に記載した発明の様に、前記ハブを、ハブ本体と、このハブ本体の軸方向内端寄り部分に形成された小径段部に外嵌固定した内輪とにより構成する。
又、前記ハブ本体は、外周面の軸方向外端寄り部分に前記取付フランジを、同じく軸方向中間部に前記外側内輪軌道を、それぞれ直接形成したものとする。
更に、前記ハブ本体の外周面のうち、少なくとも前記外側内輪軌道部分にハブ側硬化層を形成する。
そして、前記内側硬化層の前記内側接触角θ方向の厚さ寸法、及び、前記外側硬化層の前記外側接触角θ方向の厚さ寸法を、前記ハブ側硬化層のこの外側接触角θ方向の厚さ寸法よりも大きくする。
又、上述の様な請求項2に記載した発明を実施する場合に例えば、請求項3に記載した発明の様に、前記外輪を構成する金属材料の炭素濃度を、前記ハブ本体を構成する金属材料の炭素濃度よりも高くする。
When the wheel support hub unit of the present invention as described above is implemented, for example, as in the invention described in claim 2, the hub is formed in a hub body and a portion near the inner end in the axial direction of the hub body. And an inner ring that is externally fitted and fixed to the small diameter step portion.
Further, the hub main body is formed by directly forming the mounting flange on the outer peripheral surface near the outer end in the axial direction, and the outer inner ring raceway in the intermediate portion in the axial direction.
Further, a hub-side hardened layer is formed on at least the outer inner ring raceway portion of the outer peripheral surface of the hub body.
Then, the thickness dimension of the inner cured layer in the inner contact angle θ i direction and the thickness dimension of the outer cured layer in the outer contact angle θ o direction are set as the outer contact angle θ of the hub-side cured layer. The thickness is larger than the thickness dimension in the o direction.
Further, when the invention described in claim 2 as described above is carried out, for example, as in the invention described in claim 3, the carbon concentration of the metal material constituting the outer ring is set to the metal constituting the hub body. Make it higher than the carbon concentration of the material.

上述の様に本発明の場合、内側外輪軌道部分に形成した内側硬化層の内側接触角θ方向の厚さ寸法Tを、外側外輪軌道部分に形成した外側硬化層の外側接触角θ方向の厚さ寸法Tよりも大きくしている。この為、旋回時のモーメントに基づいて発生する動的せん断応力に対する外側外輪軌道の耐久性の向上を図ると共に、瞬間的に発生する衝撃荷重に基づいて発生する静的せん断荷重に対する内側外輪軌道の耐久性の向上を図る事ができる。 As described above, in the case of the present invention, the thickness dimension T i in the inner contact angle θ i direction of the inner hardened layer formed on the inner outer ring raceway portion is set to the outer contact angle θ o of the outer hardened layer formed on the outer outer ring raceway portion. It is set to be larger than in the direction of the thickness dimension T o. Therefore, the durability of the outer outer ring raceway against the dynamic shear stress generated based on the moment during turning is improved, and the inner outer ring raceway against the static shear load generated based on the instantaneous impact load is improved. Durability can be improved.

上述の様に、前記外側、内側各外輪軌道部分に形成した外側、内側各硬化層の厚さ寸法を個別に規定している理由は、次の通りである。
前記外側外輪軌道は、旋回走行時のモーメントを主に支承する為、この外側外輪軌道の耐久性(外側硬化層の厚さ寸法)は、このモーメントに基づいて発生する動的せん断応力を考慮して規定するのが好ましい。即ち、この動的せん断応力の最大値は、前記外側外輪軌道の表層部から浅い位置に繰り返し発生する。この為、この動的せん断応力に対する耐久性を確保する場合、前記外側硬化層の厚さ寸法を、それほど大きくする必要はない。この様に、外側硬化層の厚さ寸法を必要以上に大きくしなければ、この外側硬化層よりも径方向外方に存在する非硬化部分を大きく確保して、この外側硬化層部分の残留圧縮応力を確保する事ができる。
As described above, the reason why the thickness dimensions of the outer and inner hardened layers formed on the outer and inner outer ring raceway portions are individually defined is as follows.
Since the outer outer ring raceway mainly supports moment during turning, the durability of the outer outer ring raceway (thickness dimension of the outer hardened layer) takes into account the dynamic shear stress generated based on this moment. Is preferably defined. That is, the maximum value of the dynamic shear stress is repeatedly generated at a shallow position from the surface layer portion of the outer outer ring raceway. For this reason, when ensuring the durability against the dynamic shear stress, it is not necessary to increase the thickness of the outer hardened layer so much. In this way, if the thickness dimension of the outer hardened layer is not increased more than necessary, a large non-hardened portion existing radially outward from the outer hardened layer is ensured, and the residual compression of the outer hardened layer portion is ensured. Stress can be secured.

一方、前記内側外輪軌道は、瞬間的に加わる衝撃荷重を主に支承する為、この内側外輪軌道の耐久性(内側硬化層の厚さ寸法)は、この衝撃荷重に基づいて発生する静的せん断応力を考慮して規定するのが好ましい。そして、この静的せん断応力の最大値は、前記内側外輪軌道の表層部から、動的せん断応力の最大値に比べて深い位置に発生する。この為、静的せん断応力に対する耐久性を確保する場合、内側硬化層の厚さ寸法を、動的せん断応力を考慮して規定した外側硬化層の厚さ寸法よりも大きくする必要がある。   On the other hand, the inner outer ring raceway mainly supports the impact load applied instantaneously. Therefore, the durability of the inner outer ring raceway (thickness dimension of the inner hardened layer) is a static shear generated based on this impact load. It is preferable to define in consideration of stress. The maximum value of the static shear stress is generated at a position deeper than the maximum value of the dynamic shear stress from the surface layer portion of the inner outer ring raceway. For this reason, when ensuring durability against static shear stress, it is necessary to make the thickness dimension of the inner hardened layer larger than the thickness dimension of the outer hardened layer defined in consideration of dynamic shear stress.

又、本発明の場合、前記外側硬化層のうち、θ±10度の範囲に相当する部分の、前記外側外輪軌道の曲率半径方向に関する厚さ寸法を、軸方向内方に向かうほど大きくすると共に、前記内側硬化層のうち、θ±10度の範囲に相当する部分の、前記内側外輪軌道の曲率半径方向に関する厚さ寸法を、軸方向内方に向かうほど大きくしている。この為、大きなモーメント荷重が加わり、前記外側玉列の接触角が大きくなる方向に変位した場合、或いは、衝撃荷重が加わり、前記内側玉列の各玉の接触角が小さくなる方向に変位した場合に、変位後の接触角位置に於ける、前記外側、内側各硬化層の厚さ寸法を適切に確保する事ができる。この結果、これら外側、内側各硬化層の厚さ寸法を全長(軸方向に関する全幅)に亙って大きくする事なく、前記外側、内側各外輪軌道の耐久性を、それぞれ十分に確保する事ができる。又、前記外側、内側各硬化層の厚さ寸法が徒に大きくならない為、前記外側、内側各硬化層の外径側に存在する非硬化層部分を大きく確保して、これら外側、内側各硬化層部分の残留圧縮応力を確保し易くなる。 In the present invention, the thickness of the outer hardened layer corresponding to the range of θ o ± 10 degrees in the radius direction of curvature of the outer outer ring raceway is increased toward the inner side in the axial direction. At the same time, the thickness of the inner hardened layer corresponding to the range of θ i ± 10 degrees in the radius direction of curvature of the inner outer ring raceway is increased toward the inner side in the axial direction. For this reason, when a large moment load is applied and the contact angle of the outer ball train is displaced in the direction of increasing, or when an impact load is applied and the contact angle of each ball of the inner ball train is displaced in the direction of decreasing. In addition, the thickness dimension of each of the outer and inner hardened layers at the contact angle position after displacement can be appropriately ensured. As a result, it is possible to sufficiently ensure the durability of the outer and inner outer ring raceways without increasing the thickness of the outer and inner hardened layers over the entire length (full width in the axial direction). it can. In addition, since the thickness dimension of the outer and inner hardened layers does not increase, the outer and inner hardened layers are secured on the outer diameter side of the outer and inner hardened layers. It becomes easy to ensure the residual compressive stress of the layer portion.

本発明の実施の形態の1例を示す、車輪支持用ハブユニットの断面図。Sectional drawing of the hub unit for wheel support which shows an example of embodiment of this invention. 同じく、図1のX部拡大図。Similarly, the X section enlarged view of FIG. 従来構造の1例を示す、車輪支持用ハブユニットの断面図。Sectional drawing of the hub unit for wheel support which shows an example of the conventional structure.

[実施の形態の1例]
図1〜2は、本発明の実施の形態の1例を示している。尚、本例の特徴は、車輪支持用ハブユニット1aを構成する外輪3aの内周面に形成した硬化層21(図1〜2に斜格子で示した部分)の構造を工夫した点にある。この特徴部分以外の構造は、前述した図3に示した従来の車輪支持用ハブユニット1の構造とほぼ同様である。従って、同等部分には同一符号を付して重複する説明を省略若しくは接略にし、以下、本例の特徴部分を中心に説明する。
[Example of Embodiment]
1 and 2 show an example of an embodiment of the present invention. The feature of this example is that the structure of the hardened layer 21 (the portion indicated by the oblique lattice in FIGS. 1 and 2) formed on the inner peripheral surface of the outer ring 3a constituting the wheel supporting hub unit 1a is devised. . The structure other than this characteristic portion is substantially the same as the structure of the conventional wheel supporting hub unit 1 shown in FIG. Accordingly, the same reference numerals are given to the equivalent parts, and overlapping explanations are omitted or omitted, and the following description will focus on the characteristic parts of this example.

本例の車輪支持用ハブユニット1aを構成する外輪3aには、前述の従来構造と同様、内周面の軸方向に離隔した位置に、それぞれの断面形状(母線形状)が円弧形である外側外輪軌道14aと、内側外輪軌道15aとが形成されている。又、前記外輪3aの外周面に、この外輪3aを懸架装置に結合固定する為の結合フランジ16が設けられている。   In the outer ring 3a constituting the wheel supporting hub unit 1a of the present example, each cross-sectional shape (bus shape) is an arc shape at a position spaced apart in the axial direction of the inner peripheral surface as in the conventional structure described above. An outer outer ring raceway 14a and an inner outer ring raceway 15a are formed. A coupling flange 16 for coupling and fixing the outer ring 3a to a suspension device is provided on the outer peripheral surface of the outer ring 3a.

又、前記外輪3aの内周面のうち、前記外側外輪軌道14a部分から前記内側外輪軌道15a部分に亙り、高周波焼入れにより硬化層21が形成されている。この様な硬化層21は、外側硬化層17aと、内側硬化層18aと、中間硬化層22とにより構成されている。
このうちの外側硬化層17aは、前記外輪3aの内周面のうち、前記外側外輪軌道14a部分に、全周に亙り形成されている。又、前記内側硬化層18aは、前記外輪3aの内周面のうち、前記内側外輪軌道15a部分に、全周に亙り形成されている。更に、前記中間硬化層22は、前記外輪3aの内周面のうち、軸方向に関するこれら外側、内側各硬化層17a、18a同士の間部分に、これら外側、内側各硬化層17a、18a同士を軸方向に連続させた状態で、全周に亙り形成されている。
Further, a hardened layer 21 is formed by induction hardening over the inner peripheral surface of the outer ring 3a from the outer outer ring raceway 14a to the inner outer ring raceway 15a. Such a hardened layer 21 includes an outer hardened layer 17a, an inner hardened layer 18a, and an intermediate hardened layer 22.
Of these, the outer hardened layer 17a is formed over the entire circumference of the outer peripheral raceway 14a portion of the inner peripheral surface of the outer ring 3a. The inner hardened layer 18a is formed over the entire circumference of the inner peripheral surface of the outer ring 3a on the inner outer ring raceway 15a. Further, the intermediate hardened layer 22 is formed by placing the outer and inner hardened layers 17a and 18a between the outer and inner hardened layers 17a and 18a in the axial direction on the inner peripheral surface of the outer ring 3a. It is formed over the entire circumference in a state of being continuous in the axial direction.

尚、本例の場合も、外側玉列19を構成する各第一の玉4a、4aに外側接触角θを付与すると共に、前記内側玉列20を構成する各第二の玉4b、4bに内側接触角θを付与する事により、これら外側、内側各玉列19、20を構成する前記各玉4a、4bに、予圧と共に背面組み合わせ型(DB型)の接触角(初期接触角)を付与している。 In the case of this example as well, the outer contact angle θ o is given to the first balls 4 a, 4 a constituting the outer ball row 19, and the second balls 4 b, 4 b constituting the inner ball row 20. By applying an inner contact angle θ i to the ball 4 a, 4 b constituting the outer and inner ball rows 19, 20, a contact angle (initial contact angle) of a rear combination type (DB type) together with a preload. Is granted.

又、本例の場合、前記内側硬化層18aの前記内側接触角θ方向に関する厚さ寸法T(図1〜2に一点鎖線αで示す位置の厚さ寸法)を、前記外側硬化層17aの外側接触角θ方向の厚さ寸法T(図1〜2に一点鎖線βで示す位置の厚さ寸法)よりも大きくしている(T<T)。尚、前述した様に、ヘルツの弾性接触理論によれば、衝撃荷重に基づく静的最大せん断応力が発生する外輪軌道の表層部からの深さ位置は、概ね外輪軌道と玉との接触楕円の短半径の0.6倍の位置となり、モーメントに基づく動的最大せん断応力が発生する深さ位置は、概ね外輪軌道と玉との接触楕円の短半径の0.4倍の位置となる事から、静的最大せん断応力が発生する深さ位置の方が、動的最大せん断応力が発生する深さ位置よりも約1.5倍程度深くなる。この様な観点から、T≒1.5Tとするのが好ましい。 And in this embodiment, the inner contact angle theta i direction about the thickness T i of the inner cured layer 18a (thickness of the position indicated by the chain line alpha 1 in Fig. 1-2), the outer hardened layer is made larger than the outer contact angle theta o direction thickness T o of 17a (thickness dimension of the position indicated by the chain line beta 1 in FIG. 1~2) (T o <T i ). As described above, according to Hertz's elastic contact theory, the depth position from the surface layer of the outer ring raceway where the static maximum shear stress based on the impact load is generated is approximately the contact ellipse between the outer ring raceway and the ball. The depth position where the dynamic maximum shear stress based on the moment occurs is 0.6 times the short radius, and the depth position where the outer ring raceway and the ball contact the ellipse is 0.4 times the short radius. The depth position where the static maximum shear stress is generated is approximately 1.5 times deeper than the depth position where the dynamic maximum shear stress is generated. From such a viewpoint, it is preferable that T i ≈1.5T o .

又、前記外側硬化層17aのうち、θ±10度の範囲に相当する部分の、前記外側外輪軌道14aの曲率半径方向に関する厚さ寸法を、軸方向内方に向かうほど大きくしている。即ち、前記外側硬化層17aのうち、θ−10度の位置(図1〜2に一点鎖線βで示す位置)に相当する部分の、前記外側外輪軌道14aの曲率半径方向に関する厚さ寸法をTo2とし、θ+10度の位置(図1〜2に一点鎖線βで示す位置)に相当する部分の、前記内側外輪軌道14aの曲率半径方向に関する厚さ寸法をTo3とした場合に、To2<T<To3の関係を満たす様にしている。
尚、モーメントの増加により各玉の接触角θが変化する際に、これら各玉で支承する荷重は、1/cosθに比例する。
車輪支持用ハブユニットの初期接触角(内側接触角θ、外側接触角θ)が一般的に30〜40度である事を考えれば、接触角が10度変化した場合の、前記各玉が支承する荷重の変化は、8〜19%であり、前述の様に接触楕円の大きさ(長半径及び短半径の長さ)は、玉が支承する荷重の1/3乗に比例する事を考慮すれば、T/To2は1.08〜1.12の範囲、To3/Tは1.13〜1.19の範囲となる。
In addition, the thickness dimension of the outer outer ring raceway 14a in the radius direction of curvature of the portion corresponding to the range of θ o ± 10 degrees in the outer hardened layer 17a is increased toward the inner side in the axial direction. That is, the thickness dimension in the radius direction of curvature of the outer outer ring raceway 14a at a portion corresponding to a position of θ o −10 degrees (position indicated by a one-dot chain line β2 in FIGS. 1 and 2 ) in the outer hardened layer 17a. If a and T o2, the portion corresponding to the position of theta o +10 degrees (the position shown in Figure 1-2 the dashed line beta 3), the thickness dimension about a curvature radius direction of the inner ring raceway 14a and the T o3 In addition, the relationship of T o2 <T o <T o3 is satisfied.
When the contact angle θ of each ball changes due to an increase in moment, the load supported by each ball is proportional to 1 / cos θ.
Considering that the initial contact angle (inner contact angle θ i , outer contact angle θ o ) of the wheel support hub unit is generally 30 to 40 degrees, each of the balls when the contact angle changes by 10 degrees The change in the load supported by the ball is 8-19%, and the size of the contact ellipse (long radius and short radius) is proportional to the 1/3 power of the load supported by the ball as described above. considering, T o / T o2 is in the range of 1.08~1.12, T o3 / T o is in the range of 1.13 to 1.19.

又、前記内側硬化層18aのうち、θ±10度の範囲に相当する部分の、前記内側外輪軌道15aの曲率半径方向に関する厚さ寸法を、この内側外輪軌道15aの軸方向内方に向かうほど大きくしている。即ち、前記内側硬化層18aのうち、θ−10度の位置(図1〜2に一点鎖線αで示す位置)に相当する部分の、前記内側外輪軌道15aの曲率半径方向に関する厚さ寸法をTi2とし、θ+10度の位置(図1〜2に一点鎖線αで示す位置)に相当する部分の、前記内側外輪軌道15aの曲率半径方向に関する厚さ寸法をTi3とした場合に、Ti3<T<Ti2の関係を満たす様にしている。
ラジアル荷重の増加により各玉の接触角θが変化する際に、これら各玉が支承する荷重は、cosθの3/2乗に比例する。
車輪支持用ハブユニットの初期接触角(内側接触角θ、外側接触角θ)が一般的に30〜40度であり、接触楕円の大きさ(長半径及び短半径の長さ)は、玉が支承する荷重の1/3乗に比例する事を考慮すれば、Ti2/Tは1.04〜1.06の範囲、T/Ti3は1.06〜1.08の範囲となる。
尚、前記外側硬化層17aの厚さ寸法と前記内側硬化層18aの厚さ寸法は、前述した様に、T≒1.5Tである為、前記各寸法を例えば、To2<T<To3<Ti3<T<Ti2の様な関係に規制する事もできる。
Further, the thickness dimension in the radius direction of curvature of the inner outer ring raceway 15a of the inner hardened layer 18a corresponding to the range of θ i ± 10 degrees is directed inward in the axial direction of the inner outer ring raceway 15a. It is getting bigger. That is, the thickness dimension of the inner hardened layer 18a in the radius direction of curvature of the inner outer ring raceway 15a at a portion corresponding to a position of θ i −10 degrees (position indicated by a one-dot chain line α2 in FIGS. 1 and 2 ). If a and T i2, the portion corresponding to the position of theta i +10 degrees (the position shown in Figure 1-2 the dashed line alpha 3), the thickness dimension about a curvature radius direction of the inner ring raceway 15a and the T i3 In addition, the relationship of T i3 <T i <T i2 is satisfied.
When the contact angle θ of each ball changes due to an increase in radial load, the load supported by each ball is proportional to the third power of cos θ.
The initial contact angle (inner contact angle θ i , outer contact angle θ o ) of the wheel supporting hub unit is generally 30 to 40 degrees, and the size of the contact ellipse (long radius and short radius) is T i2 / T i is in the range of 1.04 to 1.06, and T i / T i3 is in the range of 1.06 to 1.08, considering that the ball is proportional to the 1/3 power of the load supported by the ball. It becomes.
As described above, since the thickness dimension of the outer cured layer 17a and the thickness dimension of the inner cured layer 18a are T i ≈1.5T o , the above dimensions are, for example, T o2 <T o It is also possible to regulate the relationship such as <T o3 <T i3 <T i <T i2 .

又、本例の場合、前述した従来構造と同様に、車輪支持用ハブユニット1aを構成するハブ2aを、ハブ本体5aと内輪6aとを組み合わせて構成している。このうちのハブ本体5aは、外周面の軸方向外端寄り部分に取付フランジ7aを、同じく軸方向中間部に外側内輪軌道8aを、それぞれ直接形成されている。又、前記ハブ本体5aの外周面の軸方向内端寄り部分には、小径段部9aが形成されている。更に、このハブ本体5aの外周面のうちで、前記取付フランジ7aの基端寄り部分の軸方向内側面から前記小径段部9aの軸方向中間部に、ハブ側硬化層10a(図1〜2に斜格子で示す部分)が形成されている。   In the case of this example, the hub 2a constituting the wheel supporting hub unit 1a is configured by combining the hub main body 5a and the inner ring 6a as in the conventional structure described above. Of these, the hub main body 5a is directly formed with a mounting flange 7a on the outer circumferential surface of the outer peripheral surface near the outer end in the axial direction, and with an outer inner ring raceway 8a on the intermediate portion in the axial direction. A small-diameter step portion 9a is formed on the outer peripheral surface of the hub body 5a near the inner end in the axial direction. Further, in the outer peripheral surface of the hub main body 5a, the hub-side hardened layer 10a (FIGS. 1 and 2) extends from the axially inner surface of the portion near the proximal end of the mounting flange 7a to the axially intermediate portion of the small-diameter step portion 9a. (Parts indicated by diagonal lattices) are formed.

又、前記内輪6aは、外周面に内側内輪軌道11aが形成されている。この様な内輪6aは、前記小径段部9aに締り嵌めで外嵌固定されると共に、この内輪6aの軸方向内端面を、前記ハブ本体5aの軸方向内端部に形成したかしめ部12aにより抑え付けられている。尚、前記内輪6aは、全体を加熱した状態で焼き入れ油に浸漬する、所謂ずぶ焼き入れを施されている。   The inner ring 6a has an inner ring raceway 11a formed on the outer peripheral surface. Such an inner ring 6a is fitted and fixed to the small-diameter step 9a by an interference fit, and an inner end surface in the axial direction of the inner ring 6a is formed by a caulking portion 12a formed at an inner end portion in the axial direction of the hub body 5a. It is suppressed. The inner ring 6a is soaked soaked in quenching oil in a heated state.

又、本例の場合、前記外輪3aの内側硬化層18aの内側接触角θ方向の厚さ寸法T、及び、この外輪3aの外側硬化層17aの外側接触角θ方向の厚さ寸法Tを、前記ハブ側硬化層10aのこの外側接触角θ方向の厚さ寸法Tよりも大きくしている。即ち、前記厚さ寸法T、T、Tは、T<T<Tの関係を満たしている。 And in this embodiment, the inner contact angle theta i direction thickness T i of the inner cured layer 18a of the outer ring 3a, and the outer contact angle theta o direction thickness of the outer hardened layer 17a of the outer ring 3a the T o, is made larger than the outer contact angle theta o direction thickness T h of the hub-side hardened layer 10a. In other words, the thickness dimension T i, T o, T h satisfy the relation of T h <T o <T i .

この様に、前記ハブ側硬化層10aの外側接触角θ方向の厚さ寸法Tを、前記厚さT、T、と比べて小さくした理由は、次の通りである。
前記ハブ本体5aは、中空或いは中実の軸部材の外周面に前記外側内輪軌道8aが形成されている為、モーメント及び荷重を支承するのに有利な構造であり、又、前記ハブ本体5aのこの外側内輪軌道8aに相当する部分は、肉厚である為、この外側内輪軌道8a部分に圧縮応力を発生させ易い。この結果前記ハブ側硬化層10aの厚さ寸法Tをそれほど大きくしなくても、耐久性を確保し易い。従って、前記ハブ側硬化層10aに関する厚さ寸法Tを小さく抑えられる。
又、この外側内輪軌道8aと前記各玉4a、4aとの接触部分の接触楕円の短半径が小さく、動的最大せん断応力が発生する深さ(接触楕円の短半径の0.4倍程度の深さ)、及び、静的最大せん断応力が発生する深さ(接触楕円の短半径の0.6倍程度の深さ)が浅い為、前記ハブ側硬化層10aの厚さ寸法をそれほど大きくしなくても、前記両応力に対する耐久性を確保できる。
尚、本例の場合、前記外輪3aを構成する金属材料の炭素濃度を、前記ハブ本体5aを構成する金属材料の炭素濃度よりも高くしている。具体的には例えば、このハブ本体5aを、機械構造用炭素鋼(例えば、S53C〜S55C等)とし、前記外輪3aを炭素量0.6〜0.7%の中炭素鋼(例えば、SAE1070等)とする。
Thus, the outer contact angle theta o direction thickness T h of the hub-side cured layer 10a, reasons smaller than the thickness T i, T o, and is as follows.
The hub body 5a has an advantageous structure for supporting moment and load because the outer inner ring raceway 8a is formed on the outer peripheral surface of a hollow or solid shaft member. Since the portion corresponding to the outer inner ring raceway 8a is thick, it is easy to generate a compressive stress in the outer inner ring raceway 8a. Also the thickness T h of this result the hub-side hardened layer 10a without so large, easy to secure the durability. Accordingly, it is suppressed to a small thickness dimension T h about the hub-side hardened layer 10a.
Further, the short radius of the contact ellipse at the contact portion between the outer inner ring raceway 8a and each of the balls 4a, 4a is small, and the depth at which the dynamic maximum shear stress is generated (about 0.4 times the short radius of the contact ellipse). Depth) and the depth at which static maximum shear stress is generated (the depth of about 0.6 times the short radius of the contact ellipse) is shallow, so the thickness dimension of the hub-side hardened layer 10a is made so large. Even if it is not, the durability against both stresses can be ensured.
In this example, the carbon concentration of the metal material constituting the outer ring 3a is set higher than the carbon concentration of the metal material constituting the hub body 5a. Specifically, for example, the hub body 5a is made of carbon steel for machine structure (for example, S53C to S55C), and the outer ring 3a is medium carbon steel (for example, SAE1070 or the like) having a carbon content of 0.6 to 0.7%. ).

上述の様に本例の車輪支持用ハブユニット1aの場合、前記内側外輪軌道15a部分に形成した内側硬化層18aの、内側接触角θ方向の厚さ寸法Tを、前記外側外輪軌道14a部分に形成した外側硬化層17aの、外側接触角θ方向の厚さ寸法Tよりも大きくしている(T<T)。この為、旋回時のモーメントに基づいて発生する動的せん断応力に対する前記外側外輪軌道14aの耐久性の向上を図ると共に、瞬間的に発生する衝撃荷重に基づいて発生する静的せん断荷重に対する前記内側外輪軌道15aの耐久性の向上を図る事ができる。 If the wheel supporting hub unit 1a of the present embodiment as described above, the inner ring raceway 15a portion formed inner cured layer 18a, the inner contact angle theta i direction thickness T i, the outer ring raceway 14a the outer hardened layer 17a formed on the portion, is made larger than the outer contact angle theta o direction thickness T o (T o <T i ). For this reason, while improving the durability of the outer outer ring raceway 14a against dynamic shear stress generated based on the moment during turning, the inner side against the static shear load generated based on the impact load generated instantaneously. The durability of the outer ring raceway 15a can be improved.

上述の様に、前記外側、内側各外輪軌道14a、15a部分に形成した外側、内側各硬化層17a、18aの厚さ寸法を個別に規定している理由は、次の通りである。
前記外側外輪軌道14aは、旋回時のモーメントを主に支承する為、この外側外輪軌道14aの耐久性(外側硬化層17aの厚さ寸法)は、このモーメントに基づいて発生する動的最大せん断応力を考慮して規定するのが好ましい。そして、この動的せん断応力の最大値は、前記外側外輪軌道15aの表層部から浅い位置に繰り返し発生する。この為、この動的せん断応力に対する耐久性を確保する場合、前記外側硬化層17aの厚さ寸法を、それほど大きくする必要はない。この様に、この外側硬化層17aの厚さ寸法を必要以上に大きくしなければ、この外側硬化層よりも径方向外方に存在する非硬化部分を大きく確保して、この外側硬化層部分の残留圧縮応力を確保する事もできる。
As described above, the reason why the thickness dimensions of the outer and inner hardened layers 17a and 18a formed in the outer and inner outer ring raceways 14a and 15a are individually defined is as follows.
Since the outer outer ring raceway 14a mainly supports a moment during turning, the durability of the outer outer ring raceway 14a (thickness dimension of the outer hardened layer 17a) is the dynamic maximum shear stress generated based on this moment. Is preferably taken into consideration. The maximum value of the dynamic shear stress is repeatedly generated at a shallow position from the surface layer portion of the outer outer ring raceway 15a. For this reason, when ensuring the durability against the dynamic shear stress, it is not necessary to increase the thickness of the outer hardened layer 17a so much. Thus, if the thickness dimension of the outer hardened layer 17a is not increased more than necessary, a large non-hardened portion existing radially outward from the outer hardened layer is secured, and the outer hardened layer portion Residual compressive stress can be secured.

一方、前記内側外輪軌道15aは、瞬間的に加わる衝撃荷重を主に支承する為、この内側外輪軌道15aの耐久性(内側硬化層18aの厚さ寸法)は、この衝撃荷重に基づいて発生する静的せん断応力の最大値を考慮して規定するのが好ましい。そして、この静的せん断応力の最大値は、前記内側外輪軌道15aの表層部から、動的せん断応力の最大値と比べて深い位置に発生する。この為、この静的せん断応力に対する耐久性を確保する場合、前記内側硬化層18aの厚さ寸法を、動的せん断応力を考慮して規定した前記外側硬化層17aの厚さ寸法よりも大きくする必要がある。   On the other hand, since the inner outer ring raceway 15a mainly supports an impact load applied instantaneously, the durability of the inner outer ring raceway 15a (thickness dimension of the inner hardened layer 18a) is generated based on the impact load. It is preferable to define in consideration of the maximum value of the static shear stress. The maximum value of the static shear stress is generated at a position deeper than the maximum value of the dynamic shear stress from the surface layer portion of the inner outer ring raceway 15a. For this reason, when ensuring the durability against the static shear stress, the thickness of the inner hardened layer 18a is made larger than the thickness of the outer hardened layer 17a defined in consideration of the dynamic shear stress. There is a need.

又、本例の場合、前記外側硬化層17aのうち、θ±10度の範囲に相当する部分の、前記外側外輪軌道14aの曲率半径方向に関する厚さ寸法を、軸方向内方に向かうほど大きくすると共に、前記内側硬化層18aのうち、θ±10度の範囲に相当する部分の、前記内側外輪軌道15aの曲率半径方向に関する厚さ寸法を、この内側外輪軌道15aの軸方向内方に向かうほど大きくしている。この為、衝撃荷重が加わった際、前記外側玉列19の各玉4a、4aの接触角が大きくなる方向に変位し、前記内側玉列20の各玉4b、4bの接触角が小さくなる方向に変位した場合でも、変位後の接触角位置に於ける、前記外側、内側各硬化層17a、18aの厚さを適切に規制する事により、これら外側、内側各硬化層17a、18aの厚さを全長に亙って大きくする事なく、前記外側、内側各外輪軌道14a、15aそれぞれの耐久性を十分に確保する事ができる。この結果、前記外側、内側各硬化層17a、18aの外径側に存在する非硬化層部分を大きく確保して、これら外側、内側各硬化層17a、18a部分の残留圧縮応力を大きく確保できる。 In the case of this example, the thickness dimension in the radius direction of curvature of the outer outer ring raceway 14a in the portion corresponding to the range of θ o ± 10 degrees in the outer hardened layer 17a is increased inward in the axial direction. In addition, the thickness of the inner hardened layer 18a corresponding to the range of θ i ± 10 degrees in the radial direction of the curvature of the inner outer ring raceway 15a is set inward in the axial direction of the inner outer ring raceway 15a. The bigger it is For this reason, when an impact load is applied, the contact angles of the balls 4a, 4a of the outer ball array 19 are displaced in the direction of increasing, and the contact angles of the balls 4b, 4b of the inner ball array 20 are decreased. Even when displaced, the thicknesses of the outer and inner cured layers 17a and 18a are appropriately regulated by appropriately regulating the thicknesses of the outer and inner cured layers 17a and 18a at the contact angle positions after the displacement. It is possible to sufficiently ensure the durability of each of the outer and inner outer raceways 14a and 15a without increasing the overall length of the outer raceway. As a result, it is possible to secure a large uncured layer portion on the outer diameter side of each of the outer and inner cured layers 17a and 18a, and to ensure a large residual compressive stress in the outer and inner cured layers 17a and 18a.

又、本例の場合、前記外輪3aを構成する金属材料の炭素濃度を、前記ハブ本体5aを構成する金属材料の炭素濃度よりも高くしている。この様にして、例えば、熱処理の際の表面加熱温度を、前記外輪3aと前記ハブ本体5aとで同じ加熱温度にした場合でも、この外輪3aの方が深くまで硬化する様にしている。又、炭素濃度が高い前記外輪3aの方がマルテンサイトの比率が高くなり、この外輪3aに形成した前記外側、内側各硬化層17a、18aの硬度を、前記ハブ本体5aに形成したハブ側硬化層10aの硬度よりも高くし易い。更に、炭素量の多い金属材料を用いれば、この金属材料の強度が高くなり、残留圧縮応力を大きくする事もできる。この結果、前記外側、内側各硬化層17a、18aをバックアップして、内部起点破壊(例えば、ケースクラッシュ等)の発生を防止する事もできる。   In this example, the carbon concentration of the metal material constituting the outer ring 3a is set higher than the carbon concentration of the metal material constituting the hub body 5a. In this way, for example, even when the surface heating temperature at the time of heat treatment is the same heating temperature in the outer ring 3a and the hub body 5a, the outer ring 3a is hardened deeper. Further, the outer ring 3a having a higher carbon concentration has a higher martensite ratio, and the hardness of the outer and inner hardened layers 17a and 18a formed on the outer ring 3a is set to the hub side hardening formed on the hub body 5a. It is easy to make it higher than the hardness of the layer 10a. Furthermore, if a metal material having a large amount of carbon is used, the strength of the metal material is increased and the residual compressive stress can be increased. As a result, the outer and inner hardened layers 17a and 18a can be backed up to prevent internal origin breakage (for example, case crash).

1、1a 車輪支持用ハブユニット
2、2a ハブ
3、3a 外輪
4a、4b 玉
5、5a ハブ本体
6、6a 内輪
7、7a 取付フランジ
8、8a 外側内輪軌道
9、9a 小径段部
10、10a ハブ側硬化層
11、11a 内側内輪軌道
12、12a かしめ部
13 スタッド
14、14a 外側外輪軌道
15、15a 内側外輪軌道
16 結合フランジ
17、17a 外側硬化層
18、18a 内側硬化層
19 外側玉列
20 内側玉列
21 硬化層
22 中間硬化層
23 底部
24 軸方向内端縁
25 底部
26 軸方向外端縁
DESCRIPTION OF SYMBOLS 1, 1a Wheel support hub unit 2, 2a Hub 3, 3a Outer ring 4a, 4b Ball 5, 5a Hub main body 6, 6a Inner ring 7, 7a Mounting flange 8, 8a Outer inner ring raceway 9, 9a Small diameter step part 10, 10a Hub Side hardened layer 11, 11a Inner inner ring raceway 12, 12a Caulking portion 13 Stud 14, 14a Outer outer ring raceway 15, 15a Inner outer ring raceway 16 Coupling flange 17, 17a Outer hardened layer 18, 18a Inner hardened layer 19 Outer ball array 20 Inner ball Row 21 Hardened layer 22 Intermediate hardened layer 23 Bottom 24 Axial inner edge 25 Bottom 26 Axial outer edge

Claims (3)

内周面にそれぞれの断面形状が円弧形である、外側外輪軌道と内側外輪軌道とを有する外輪と、
外周面の軸方向外端寄り部分に車輪を支持固定する為の取付フランジを、同じく軸方向中間部に外側内輪軌道を、同じく軸方向内端部に内側内輪軌道を、それぞれ有するハブと、
前記外側外輪軌道と前記外側内輪軌道との間に転動自在に設けられた、外側玉列を構成する複数個の第一の玉と、
前記内側外輪軌道と前記内側内輪軌道との間に転動自在に設けられた、内側玉列を構成する複数個の第二の玉とを備え、
前記外側玉列を構成する各第一の玉に外側接触角θを付与すると共に、前記内側玉列を構成する各第二の玉に内側接触角θを付与する事により、これら外側、内側各玉列を構成する前記各玉に背面組み合わせ型の接触角を付与しており、
前記外輪の内周面のうち、前記外側外輪軌道部分に外側硬化層が、前記内側外輪軌道部分に内側硬化層が、軸方向に関するこれら外側、内側各硬化層同士の間部分に中間硬化層が、軸方向に連続した状態で形成されている車輪支持用ハブユニットに於いて、
前記内側硬化層の前記内側接触角θ方向の厚さ寸法Tが、前記外側硬化層の外側接触角θ方向の厚さ寸法Tよりも大きく、
前記外側硬化層のうち、θ±10度の範囲に相当する部分の、前記外側外輪軌道の曲率半径方向に関する厚さ寸法が、軸方向内方に向かうほど大きく、
前記内側硬化層のうち、θ±10度の範囲に相当する部分の、前記内側外輪軌道の曲率半径方向に関する厚さ寸法が、この内側外輪軌道の軸方向内方に向かうほど大きい事を特徴とする車輪支持用ハブユニット。
An outer ring having an outer outer ring raceway and an inner outer ring raceway, each of which has an arc shape on the inner peripheral surface;
A hub having a mounting flange for supporting and fixing the wheel on the outer peripheral surface of the outer peripheral surface near the outer end in the axial direction, an inner ring raceway in the middle in the axial direction, and an inner ring raceway in the inner end in the axial direction;
A plurality of first balls constituting an outer ball array, provided to be freely rollable between the outer outer ring raceway and the outer inner ring raceway;
A plurality of second balls constituting an inner ball array, which are provided between the inner outer ring raceway and the inner inner ring raceway so as to roll freely;
The outer contact angle θ o is given to each first ball constituting the outer ball row, and the inner contact angle θ i is given to each second ball constituting the inner ball row. A contact angle of the back combination type is given to each ball constituting each inner ball row,
Of the inner peripheral surface of the outer ring, an outer hardened layer is provided on the outer outer ring raceway portion, an inner hardened layer is provided on the inner outer ring raceway portion, and an intermediate hardened layer is provided between the outer and inner hardened layers in the axial direction. In the hub unit for supporting the wheel formed in a continuous state in the axial direction,
Wherein said inner contact angle theta i direction thickness T i of the inner hard layer, the larger than the outer contact angle theta o direction of the outer hardened layer thickness T o,
Of the outer hardened layer, the thickness dimension of the portion corresponding to the range of θ o ± 10 degrees in the radius direction of curvature of the outer outer ring raceway is larger toward the inner side in the axial direction,
Of the inner hardened layer, the thickness dimension of the portion corresponding to the range of θ i ± 10 degrees in the radius direction of curvature of the inner outer ring raceway is larger toward the inner side in the axial direction of the inner outer ring raceway. Wheel support hub unit.
前記ハブが、ハブ本体と、このハブ本体の軸方向内端寄り部分に形成された小径段部に外嵌固定された内輪とから成るものであって、
前記ハブ本体は、外周面の軸方向外端寄り部分に前記取付フランジを、同じく軸方向中間部に前記外側内輪軌道を、それぞれ直接形成されたものであり、
前記ハブ本体の外周面のうちで、少なくとも前記外側内輪軌道部分にハブ側硬化層が形成されており、
前記内側硬化層の前記内側接触角θ方向の厚さ寸法、及び、前記外側硬化層の前記外側接触角θ方向の厚さ寸法が、前記ハブ側硬化層のこの外側接触角θ方向の厚さ寸法よりも大きい、請求項1に記載した車輪支持用ハブユニット。
The hub is composed of a hub body and an inner ring that is externally fitted and fixed to a small-diameter step portion formed in the axially inner end portion of the hub body,
The hub main body is formed by directly forming the mounting flange at a portion near the outer peripheral end of the outer peripheral surface and the outer ring raceway at the intermediate portion in the axial direction.
Of the outer peripheral surface of the hub body, a hub side hardened layer is formed at least on the outer inner ring raceway portion,
The thickness dimension of the inner contact angle theta i direction of the inner cured layer, and the thickness dimension of the outer contact angle theta o direction of the outer hardened layer, the outer contact angle theta o direction of the hub side cured layer The wheel supporting hub unit according to claim 1, wherein the wheel supporting hub unit is larger than a thickness dimension of the wheel supporting hub unit.
前記外輪を構成する金属材料の炭素濃度が、前記ハブ本体を構成する金属材料の炭素濃度よりも高い、請求項2に記載した車輪支持用ハブユニット。

The wheel support hub unit according to claim 2, wherein a carbon concentration of a metal material constituting the outer ring is higher than a carbon concentration of a metal material constituting the hub body.

JP2013214702A 2013-10-15 2013-10-15 Wheel support hub unit Active JP6167836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013214702A JP6167836B2 (en) 2013-10-15 2013-10-15 Wheel support hub unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013214702A JP6167836B2 (en) 2013-10-15 2013-10-15 Wheel support hub unit

Publications (2)

Publication Number Publication Date
JP2015078717A JP2015078717A (en) 2015-04-23
JP6167836B2 true JP6167836B2 (en) 2017-07-26

Family

ID=53010284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013214702A Active JP6167836B2 (en) 2013-10-15 2013-10-15 Wheel support hub unit

Country Status (1)

Country Link
JP (1) JP6167836B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102626354B1 (en) * 2016-07-04 2024-01-18 주식회사 베어링아트 Double row angular ball bearing
JP2023013219A (en) * 2021-07-15 2023-01-26 Ntn株式会社 Wheel bearing device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153188A (en) * 2004-11-30 2006-06-15 Nsk Ltd Roller bearing system for supporting wheel
DE112007002699B4 (en) * 2006-11-14 2021-10-07 Ntn Corporation Wheel bearing device for a vehicle
JP5288821B2 (en) * 2008-02-13 2013-09-11 Ntn株式会社 Wheel bearing device
JP5256951B2 (en) * 2008-09-10 2013-08-07 株式会社ジェイテクト Hub unit outer ring and manufacturing method thereof
JP5890636B2 (en) * 2011-09-06 2016-03-22 Ntn株式会社 Wheel bearing device

Also Published As

Publication number Publication date
JP2015078717A (en) 2015-04-23

Similar Documents

Publication Publication Date Title
JP5250951B2 (en) Rolling bearing unit for wheel support
JP4484104B2 (en) Wheel bearing device
TWI833786B (en) Rollers and wheels for mobile vehicles equipped with the same
JP5045461B2 (en) Hub unit for vehicles
JP6167836B2 (en) Wheel support hub unit
JP5030082B2 (en) Wheel bearing device
JP2008275023A (en) Hub unit bearing
JP2013169853A (en) Rolling bearing device for wheel
JP4797896B2 (en) Rolling bearing unit for wheel support
JP2010089664A (en) Bearing device for wheel
JP2006036112A (en) Bearing device for wheel
WO2017013917A1 (en) Bearing unit
JP2008215567A (en) Rolling bearing unit for supporting wheel
JP2013133880A (en) Bearing unit for wheel support
JP2015113037A (en) Assembly of hub unit and dust cover
JP2009150490A (en) Bearing device for axle
JP2017089696A (en) Rolling bearing unit for wheel support
JP2008037385A (en) Roller bearing unit for supporting wheel
JP2018112225A (en) Rolling bearing unit
JP2019052739A (en) Hub unit bearing
JP2016200172A (en) Hub unit bearing
JP4032999B2 (en) Rolling bearing unit for wheel support
JP2015124847A (en) Rolling bearing unit for wheel support
JP2016089968A (en) Hub unit bearing
JP2023104692A (en) Wheel bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R150 Certificate of patent or registration of utility model

Ref document number: 6167836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150