JP6167789B2 - Topographic printing device - Google Patents

Topographic printing device Download PDF

Info

Publication number
JP6167789B2
JP6167789B2 JP2013192752A JP2013192752A JP6167789B2 JP 6167789 B2 JP6167789 B2 JP 6167789B2 JP 2013192752 A JP2013192752 A JP 2013192752A JP 2013192752 A JP2013192752 A JP 2013192752A JP 6167789 B2 JP6167789 B2 JP 6167789B2
Authority
JP
Japan
Prior art keywords
ink
viscosity
air
ink viscosity
viscosity control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013192752A
Other languages
Japanese (ja)
Other versions
JP2015058601A (en
Inventor
幸平 中村
幸平 中村
裕猛 伊藤
裕猛 伊藤
勝幸 狩野
勝幸 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2013192752A priority Critical patent/JP6167789B2/en
Publication of JP2015058601A publication Critical patent/JP2015058601A/en
Application granted granted Critical
Publication of JP6167789B2 publication Critical patent/JP6167789B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、機能性薄膜パターンを高品質に形成するための凸版印刷装置に関する。   The present invention relates to a relief printing apparatus for forming a functional thin film pattern with high quality.

近年、微細薄膜パターン形成において、量産性に優れ製造コストを低く抑えることが可能である公知の印刷方式を利用する試みが検討されている。特にディスプレイ分野では、画面の大型化、コストの低減化に対応するため、印刷方式によって有機半導体や、導電材料を代表とする機能性薄膜をパターン形成する検討が進められている。   In recent years, in the formation of fine thin film patterns, attempts have been made to use a known printing method that is excellent in mass productivity and can keep the manufacturing cost low. In particular, in the display field, in order to cope with an increase in screen size and cost, studies are being made on patterning functional thin films such as organic semiconductors and conductive materials by printing methods.

更に、各種印刷方式の中でも、ガラスを被転写基板とする有機半導体や導電材料などでは、グラビア印刷方式のように金属製の硬い印刷版を用いる方法は不向きであり、弾性を有するゴムブランケットを用いるオフセット印刷法や同じく弾性を有するゴム版や樹脂版を用いる凸版印刷法が適している。実際にこれらの印刷法による試みとして、オフセット印刷による方法(特許文献1)、凸版印刷による方法(特許文献2)などが提唱されている。   Furthermore, among various printing methods, organic semiconductors and conductive materials using glass as a substrate to be transferred are not suitable for methods using a hard metal printing plate as in the gravure printing method, and elastic rubber blankets are used. An offset printing method and a relief printing method using a rubber plate or a resin plate having elasticity are also suitable. Actually, as an attempt by these printing methods, a method by offset printing (Patent Document 1), a method by letterpress printing (Patent Document 2), and the like have been proposed.

これらの各種印刷手法の中で特に樹脂からなる凸版を用いる樹脂凸版印刷法は、前記凸版と、アニロックスロールと呼ばれる表面に細かい凹部(セル)が彫刻されたインキ供給ロールと、溶剤乾燥型のインキからなる印刷方式であり、従来から包装紙などの印刷物に広く使用されている。この樹脂凸版印刷法は、膜厚30nm〜200nm程度の薄膜の形成に特に適している。   Among these various printing methods, the resin relief printing method using a relief printing plate made of resin, in particular, includes the relief printing plate, an ink supply roll in which fine recesses (cells) are engraved on the surface called an anilox roll, and a solvent-drying type ink. It is a printing method consisting of the above, and has been widely used for printed materials such as wrapping paper. This resin relief printing method is particularly suitable for forming a thin film having a thickness of about 30 nm to 200 nm.

また、樹脂凸版印刷法はキスタッチと称されるごく低印圧での印刷が可能であることから、ガラス基板や高い圧力をかけることによって特性が破壊され易い透明電極等が成膜された基板に対する印刷にも適しており、ディスプレイ等の電子部品のパターン形成に特に適した印刷方法である。   In addition, since the resin relief printing method can be printed at a very low printing pressure called kiss touch, it can be applied to a glass substrate or a substrate on which a transparent electrode or the like whose characteristics are easily destroyed by applying high pressure is formed. It is also suitable for printing, and is a printing method particularly suitable for pattern formation of electronic parts such as displays.

図1は従来の印刷装置の一例を示す図である。図1に示すインキチャンバー703にはインキが貯留されている。アニロックスロール704にはこのインキチャンバー703中においてインキが供給された後に、その表面の余分なインキがドクターブレード705によって掻き落とされ、アニロックスロール704の孔内部にのみインキが蓄えられる。孔内部のインキは、アニロックスロール704と相対して回転する版シリンダ702に巻かれている凸版701(樹脂凸版)に転移される。更に、凸版701表面に形成された薄膜は矢印709の方向に回転する版シリンダ702と相対して矢印708の方向に移動する基板定盤707上に載置された被印刷基板706上に転写される。   FIG. 1 is a diagram illustrating an example of a conventional printing apparatus. Ink is stored in the ink chamber 703 shown in FIG. After ink is supplied to the anilox roll 704 in the ink chamber 703, excess ink on the surface of the anilox roll 704 is scraped off by the doctor blade 705, and the ink is stored only inside the hole of the anilox roll 704. The ink inside the hole is transferred to a relief plate 701 (resin relief plate) wound around a plate cylinder 702 that rotates relative to the anilox roll 704. Further, the thin film formed on the surface of the relief plate 701 is transferred onto a printing substrate 706 placed on a substrate surface plate 707 moving in the direction of arrow 708 relative to the plate cylinder 702 rotating in the direction of arrow 709. The

次に、凸版印刷装置を用いた際の印刷の流れについて図1を用いて説明する。まず基板定盤707上に被印刷基板706が載置された後、基板定盤707は版シリンダ702の直下まで移動する。基板定盤707が移動したならば、版シリンダ702が基板定盤の動作と同期回転し、版シリンダと等速で動作するアニロックスロール704より、凸版701へインキが供給される。凸版701へインキが供給された後、速やかに凸版701上のインキは被印刷基板706へ転写され印刷動作が終了する。   Next, the flow of printing when using a relief printing apparatus will be described with reference to FIG. First, after the substrate to be printed 706 is placed on the substrate surface plate 707, the substrate surface plate 707 moves to just below the plate cylinder 702. If the substrate surface plate 707 moves, the plate cylinder 702 rotates synchronously with the operation of the substrate surface plate, and ink is supplied to the relief plate 701 from the anilox roll 704 operating at the same speed as the plate cylinder. After the ink is supplied to the relief plate 701, the ink on the relief plate 701 is quickly transferred to the printing substrate 706, and the printing operation is completed.

また、図2に示すように上記ドクターブレード705にかえてドクターロール710を用いることもある。   In addition, as shown in FIG. 2, a doctor roll 710 may be used instead of the doctor blade 705.

次に高機能有機材料を印刷する際のインキと印刷物の膜厚について説明する。   Next, the film thickness of the ink and printed matter when printing the high-functional organic material will be described.

高機能材料として使用されるインキとして高分子有機材料などが挙げられ、有機溶剤、特に芳香族系の有機溶剤に対する溶解性が良好であり、従って芳香族系有機溶剤を用いたインキとして使用するのが一般的である。芳香族系溶剤の中でもトルエンやキシレン、アニソール、テトラリンといった比較的芳香環への付加基の単純な溶剤の方が有機発光材料の溶解性が高いことから、インキの固形分濃度を設定する自由度が高く、使用中や保管中の析出やゲル化の恐れも少ないため、高機能有機材料インキの溶剤としてより好ましい。   Examples of inks used as high-performance materials include high-molecular organic materials, etc., which have good solubility in organic solvents, particularly aromatic organic solvents, and are therefore used as inks using aromatic organic solvents. Is common. Among aromatic solvents, solvents with relatively simple addition groups to the aromatic ring, such as toluene, xylene, anisole, and tetralin, are more soluble in organic light-emitting materials, so the degree of freedom to set the solid content concentration of the ink Since it is high and there is little risk of precipitation or gelation during use or storage, it is more preferable as a solvent for highly functional organic material inks.

そして、芳香族系有機溶剤を用いた有機発光材料インキ、中でもトルエンやキシレン、アニソール、テトラリンを溶剤として用いた有機発光材料インキは粘度の低い液状性のインキとなるため、インキ供給方式としては上記のようにアニロックスロール704を用いた方式が適する。   An organic light emitting material ink using an aromatic organic solvent, especially an organic light emitting material ink using toluene, xylene, anisole or tetralin as a solvent becomes a liquid ink having a low viscosity. A system using the anilox roll 704 is suitable.

アニロックスロール704の表面に形成される微細なセルの一定面積当たりの数(セル密度)は、一般的に線数(長さ2.54cm(1インチ)当たりに存在するセルの数)で表されるが、線数が大きいほど細かいセルが高密度に存在するから、版へのインキ転移の均一性は高くなり好ましいが、セル1個あたりの容積は小さくなり、一定面積当たりのセル容積も小さくなるため、高線数にしすぎるとインキ転移の絶対量が足りなくなってしまう。したがってアニロックスロール704の線数を適切に選定し、それに合わせたインキの固形分比を設定することで、目標とする膜厚で均一な膜厚の有機膜層を形成することができる。   The number of fine cells per unit area (cell density) formed on the surface of the anilox roll 704 is generally expressed by the number of lines (the number of cells existing per 2.54 cm (1 inch) length). However, as the number of lines increases, fine cells exist at a high density, so the uniformity of ink transfer to the plate is preferably high, but the volume per cell is small, and the cell volume per fixed area is also small. Therefore, if the number of lines is too high, the absolute amount of ink transfer becomes insufficient. Therefore, by selecting the number of lines of the anilox roll 704 appropriately and setting the ink solid content ratio corresponding thereto, an organic film layer having a uniform film thickness can be formed.

高機能有機材料インキを高精度にパターニングする際、具体的なアニロックスロール704の線数や有機発光材料インキの固形分は、高機能有機材料の種類や目標膜厚によって異なるが、例えば一般的なの高分子有機発光材料をトルエンまたはキシレン溶剤に溶かしたインキを用いてインキ固形分は1%〜4%の範囲内で制御する目安となる。   When highly functional organic material ink is patterned with high accuracy, the specific number of lines of the anilox roll 704 and the solid content of the organic light emitting material ink vary depending on the type of the high functional organic material and the target film thickness. The ink solid content can be controlled within a range of 1% to 4% using an ink obtained by dissolving a polymer organic light emitting material in a toluene or xylene solvent.

上記印刷でのインキ固形分比の管理方法について説明する。インキ固形分比は、粘度を用いて管理する方法が一般的である。粘度とは、ある物体に力を加えた時にその物体がどれほど速く変形するかを表す目安となる量であり、高分子の固形分比が希薄な場合には、各高分子鎖は溶液中で孤立しているが、高分子の固形分比が高くなると、近くの高分子鎖同士が絡まり合って回転しにくくなり、粘度が高くなることが知られている。このように、高分子の固形分比と粘度値は密接な関わりを持っている。   A method for managing the ink solid content ratio in the printing will be described. The ink solid content ratio is generally managed by using viscosity. Viscosity is a measure of how quickly an object deforms when a force is applied to an object. When the solids ratio of the polymer is dilute, each polymer chain is in solution. Although it is isolated, it is known that when the solid content ratio of the polymer is increased, the nearby polymer chains are entangled with each other so that they are difficult to rotate and the viscosity is increased. Thus, the solid content ratio and the viscosity value of the polymer are closely related.

固形分比と粘度の関係は、主に図3のような2次曲線を示すことから、粘度値を用いて固形分比を算出し上記トルエンまたはキシレン溶剤が蒸発した後の膜厚の管理を行うことができる。また粘度値を用いることで、溶剤の蒸発による固形分比の変化や印刷後のインキの状態など、印刷時または印刷後のインキの固形分比の変化を常時、粘度値を用いて換算できる利点がある。   Since the relation between the solid content ratio and the viscosity mainly shows a quadratic curve as shown in FIG. 3, the solid content ratio is calculated using the viscosity value, and the film thickness is controlled after the toluene or xylene solvent is evaporated. It can be carried out. In addition, by using the viscosity value, it is possible to always convert the change in the solid content ratio of the ink during printing or after printing, such as the change in the solid content ratio due to evaporation of the solvent and the state of the ink after printing, using the viscosity value. There is.

しかし、粘度値は温度の変化によって変化するため温度の測定と管理が必要となる。例えば、有機EL(electroluminescence)材料Aを溶剤Bに溶かした有機発光材料を温度上昇させると粘度が降下する。このように温度が変化することでインキ溶剤の分子間力が変化し、インキ粘度へ大きく影響を与える。そのため粘度値で膜厚を制御する場合、温度を一定にするための管理も必要である。   However, since the viscosity value changes with changes in temperature, it is necessary to measure and manage the temperature. For example, when the temperature of an organic light emitting material in which an organic EL (electroluminescence) material A is dissolved in a solvent B is increased, the viscosity decreases. As the temperature changes in this way, the intermolecular force of the ink solvent changes, greatly affecting the ink viscosity. Therefore, when the film thickness is controlled by the viscosity value, management for keeping the temperature constant is also necessary.

上記凸版印刷法では、高機能材有機材料に主に使用されるトルエンやキシレンといった比較的揮発性の高い有機溶剤を用いたインキを用いるため、連続印刷運転中に溶剤が揮発し易く、インキチャンバー703内のインキの固形分が次第に高くなり、形成される有機膜層の膜厚も次第に厚くなってしまうといった問題点がある。   In the above-mentioned letterpress printing method, ink using a relatively volatile organic solvent such as toluene and xylene, which is mainly used for highly functional organic materials, is used. There is a problem that the solid content of the ink in 703 is gradually increased, and the film thickness of the formed organic film layer is also gradually increased.

更に高機能材に用いられたインキは有機高分子材料の分散液であり高価であるため、最低限のインキ量で印刷することが望ましい。そのため、印刷中の高機能材料インキの全体量が少ないため、蒸発による溶剤の減少に対する固形分比の変化が大きく、膜厚に大きな影響を与える。   Furthermore, since the ink used for the high-performance material is a dispersion of an organic polymer material and is expensive, it is desirable to print with a minimum amount of ink. For this reason, since the total amount of highly functional material ink during printing is small, the change in the solid content ratio with respect to the decrease in the solvent due to evaporation is large, which greatly affects the film thickness.

例えば、有機EL材料Aを溶剤Bに溶解させて印刷させた時、固形分比0.02重量%の変化で、1mPa・sの粘度上昇があり印刷物の膜厚では、約1〜3nmの膜厚上昇が観られる。   For example, when the organic EL material A is dissolved in the solvent B and printed, the viscosity increases by 1 mPa · s due to a change in the solid content ratio of 0.02% by weight. An increase in thickness is observed.

上記有機EL有機膜成形において印刷面内で膜厚差が10nm以上ある場合、発光不良の原因になる。固形分比に換算すると0.08重量%上昇すると10nm以上の膜厚差が生じ印刷不良が発生する。そのため機能性有機高分子材料において、インキ溶液中の固形分比は非常にシビアな管理が求められる。   In the organic EL organic film molding, if the film thickness difference is 10 nm or more in the printing surface, it causes a light emission failure. When converted to a solid content ratio, an increase of 0.08% by weight causes a film thickness difference of 10 nm or more, resulting in poor printing. Therefore, in the functional organic polymer material, the solid content ratio in the ink solution is required to be very severely controlled.

上記問題を解決するためにインキチャンバー703からの蒸発分を粘度値から算出して補充し混合する方法が提唱されている(特許文献3)。   In order to solve the above problem, there has been proposed a method in which the amount of evaporation from the ink chamber 703 is calculated from the viscosity value, replenished and mixed (Patent Document 3).

しかし、この方法では、粘度を一定に維持することで膜厚を維持すること、または薄膜化させることは可能であるが、狙いの粘度へ増加させ厚膜化の方法として、インキ原料を補充するか、インキの自然蒸発を待って固形分比を調節する方法が主要であった。   However, with this method, it is possible to maintain the film thickness by keeping the viscosity constant, or to reduce the film thickness, but as a method of increasing the film thickness to the target viscosity, the ink material is replenished. Alternatively, the method of adjusting the solid content ratio after waiting for the ink to spontaneously evaporate was the main method.

インキ原料を補充するとインキの量が増えコストが増加してしまい、またインキの自然蒸発を待つと時間がかかり、印刷効率が低下してしまうという問題がある。特に高機能材料は高価であり使用量は最小限に抑えたいため、液量増加は望ましくない。   If the ink material is replenished, the amount of ink increases and the cost increases, and there is a problem that it takes time to wait for the ink to spontaneously evaporate, resulting in a decrease in printing efficiency. In particular, highly functional materials are expensive and it is desirable to minimize the amount used, so an increase in the amount of liquid is not desirable.

特開2001−93668号公報JP 2001-93668 A 特開2001−155858号公報JP 2001-155858 A 特開2009−81107号公報JP 2009-81107 A

上記問題点を鑑みて、本発明では、揮発性溶剤を用いた高機能材料などの印刷において、印刷の段取り替えで膜厚を厚く変化させる際、インキ原料を補充することなく粘度上昇を設定した値まで迅速に行うことができる凸版印刷装置を提供することを課題とする。   In view of the above problems, in the present invention, when printing a highly functional material using a volatile solvent, the viscosity increase is set without replenishing the ink raw material when changing the film thickness by changing the printing setup. It is an object of the present invention to provide a relief printing apparatus that can quickly perform the process up to the value.

また、粘度上昇を行うために揮発性溶剤の蒸発を促進させる場合に、インキ温度を上げずに蒸発を促進するため、温度上昇による高機能有機材料の劣化を防ぐことが出来る凸版印刷装置を提供することを課題とする。   In addition, when promoting the evaporation of volatile solvents to increase the viscosity, we provide a relief printing device that can prevent the deterioration of high-performance organic materials due to the temperature increase in order to accelerate the evaporation without increasing the ink temperature. The task is to do.

本発明の請求項1に記載の発明は、
凸版を印刷版として被印刷基板にパターンを印刷する凸版印刷装置であって、
版シリンダと、基板定盤と、インキ供給装置と、インキ粘度制御部と、を備え、
版シリンダは、表面に転写パターンが形成されている前記凸版を周面に有するシリンダであって、
基板定盤は被印刷基板を載置する定盤であって、
インキ供給装置は、前記凸版にインキを供給する手段であって、インキを貯留するインキチャンバーを備えて構成され、
インキ粘度制御部は、インキ粘度を制御するインキ粘度制御タンクと、インキ粘度測定手段と、インキ温度制御手段と、エアー供給手段と、エアー排気手段と、を備え、
インキ粘度測定手段及びインキ温度測定手段は、それぞれ、インキ粘度制御タンク内のインキの粘度及び温度を測定する手段であり、
エアー供給手段及びエアー排気手段は、それぞれ、前記測定粘度及び測定温度から算出した基準温度における粘度値が設定値に満たない場合、インキ粘度制御タンク内にクリーンドライエアーを供給し、またはインキ粘度制御タンク内のインキ溶媒を含むエアーを排気して、インキ溶媒の蒸発を促進することにより、インキ粘度を上昇させる手段であり、
前記インキ供給装置とインキ粘度制御タンク間でインキを循環させてインキ供給装置内のインキ粘度を制御することを特徴とする凸版印刷装置である。
The invention described in claim 1 of the present invention
A letterpress printing apparatus for printing a pattern on a substrate to be printed using a letterpress as a printing plate,
A plate cylinder, a substrate surface plate, an ink supply device, and an ink viscosity control unit;
A plate cylinder is a cylinder having on its surface a relief plate having a transfer pattern formed on its surface,
The substrate surface plate is a surface plate on which the substrate to be printed is placed,
The ink supply device is means for supplying ink to the relief printing plate, and includes an ink chamber for storing ink,
The ink viscosity control unit includes an ink viscosity control tank that controls the ink viscosity, an ink viscosity measuring unit, an ink temperature control unit, an air supply unit, and an air exhaust unit.
The ink viscosity measuring means and the ink temperature measuring means are means for measuring the viscosity and temperature of the ink in the ink viscosity control tank, respectively.
The air supply means and the air exhaust means supply clean dry air into the ink viscosity control tank or control the ink viscosity when the viscosity value at the reference temperature calculated from the measured viscosity and the measured temperature is less than the set value, respectively. By exhausting the air containing the ink solvent in the tank and promoting the evaporation of the ink solvent, it is a means to increase the ink viscosity,
The relief printing apparatus is characterized in that the ink viscosity in the ink supply device is controlled by circulating ink between the ink supply device and the ink viscosity control tank.

請求項2に記載の発明は、
前記インキ粘度制御タンクに備えられた前記エアー供給手段は、インキ粘度制御部にクリーンドライエアーを供給し、そのエアー供給風量はレギュレータと流量制御バルブによって制御されることを特徴とする請求項1に記載の凸版印刷装置である。
The invention described in claim 2
The air supply means provided in the ink viscosity control tank supplies clean dry air to the ink viscosity control unit, and the air supply air volume is controlled by a regulator and a flow control valve. It is a relief printing apparatus of description.

請求項3に記載の発明は、
前記インキ粘度制御タンクに備えられた前記エアー排気手段は、インキ粘度制御部のインキ溶媒を含むエアーを排気し、更に排気エアーを冷却する手段を有することを特徴とする請求項1または2に記載の凸版印刷装置である。
The invention according to claim 3
The said air exhaust means provided in the said ink viscosity control tank has a means to exhaust the air containing the ink solvent of an ink viscosity control part, and also to cool exhaust air. This is a relief printing apparatus.

請求項4に記載の発明は、
前記インキ供給装置のインキチャンバーにインキを供給する供給口はインキチャンバーの幅方向の中心部に設けられ、インキを回収する回収口は幅方向の両端部に設けられたことを特徴とする請求項1から3のいずれかに記載の凸版印刷装置である。
The invention according to claim 4
The supply port for supplying ink to the ink chamber of the ink supply device is provided at the center in the width direction of the ink chamber, and the recovery ports for collecting ink are provided at both ends in the width direction. It is a relief printing apparatus in any one of 1-3.

請求項5に記載の発明は、
前記インキ粘度制御タンクに備えられたエアー供給手段はインキ粘度制御タンク上部の中央部に設置され、排気手段はインキ粘度制御タンク上部の両端部に設置されたことを特徴とする請求項1から4のいずれかに記載の凸版印刷装置である。
The invention described in claim 5
5. The air supply means provided in the ink viscosity control tank is installed at the center of the upper part of the ink viscosity control tank, and the exhaust means is installed at both ends of the upper part of the ink viscosity control tank. A relief printing apparatus according to any one of the above.

請求項6に記載の発明は、
前記インキ粘度制御タンクは、幅方向の中央部にインキ供給口を、幅方向の両端部にインキ回収口を有することを特徴とする請求項1から5のいずれかに記載の凸版印刷装置である。
The invention described in claim 6
The relief printing apparatus according to any one of claims 1 to 5, wherein the ink viscosity control tank has an ink supply port at a central portion in a width direction and an ink recovery port at both ends in the width direction. .

本発明の凸版印刷装置によれば、膜厚をより厚くさせる段取り替えの際、粘度増加を行う場合、従来のようにインキ原料を追加することなく、またインキ温度を上昇させることなく、更に揮発性溶剤の蒸発が自然蒸発ではなく蒸発を促進させることが出来る。その結果、インキ原料が少量で済むため低コストで、インキの熱上昇による劣化を防ぎ、更に段取り替えが短時間で出来、安定した膜厚での印刷が可能となる。   According to the relief printing apparatus of the present invention, when the viscosity is increased at the time of changeover to increase the film thickness, it is possible to further volatilize without adding an ink raw material and increasing the ink temperature as in the prior art. The evaporation of the organic solvent can promote evaporation rather than spontaneous evaporation. As a result, since a small amount of ink raw material is required, the cost is low, the deterioration due to the heat rise of the ink is prevented, the setup change can be performed in a short time, and printing with a stable film thickness becomes possible.

従来の印刷装置の一例を示す図。FIG. 6 is a diagram illustrating an example of a conventional printing apparatus. ドクターブレード705にかえてドクターロール710を用いた印刷装置を示す図。The figure which shows the printing apparatus using the doctor roll 710 instead of the doctor blade 705. FIG. インキの一般的な性質の関係を示す図で、固形分比と粘度の関係を示す図。The figure which shows the relationship of the general property of ink, and is a figure which shows the relationship between solid content ratio and a viscosity. 本発明の凸版印刷装置の概略構成を示す図。The figure which shows schematic structure of the relief printing apparatus of this invention. 本発明に係るインキ粘度制御部200を詳細に示す図。The figure which shows the ink viscosity control part 200 which concerns on this invention in detail. インキチャンバー108内のインキの流れについて示す図。FIG. 4 is a diagram illustrating the flow of ink in the ink chamber. 本発明に係るインキチャンバー108の深溝211の位置と幅を断面で示す図。The figure which shows the position and width | variety of the deep groove 211 of the ink chamber 108 which concerns on this invention in a cross section. ドクターロール102で掻き取られたアニロックス上のインキの流れを示す図。The figure which shows the flow of the ink on the anilox scraped off by the doctor roll. インキ溶剤分の蒸発量と粘度との関係を示す図。The figure which shows the relationship between the amount of evaporation of an ink solvent, and a viscosity. エアー供給手段300と排気手段400の接続場所を示す上面図、A top view showing a connection place between the air supply means 300 and the exhaust means 400; キシレン、アニソール、テトラリンを例とした、排気風量に対する蒸発速度を示す図。The figure which shows the evaporation rate with respect to the amount of exhaust air which used xylene, anisole, and tetralin as an example.

以下に、本発明の実施の形態に係る凸版印刷装置の詳細を図面に基づいて説明する。但し、図面は模式的なものであり、各部材の寸法や寸法の比率は異なることに留意すべきである。   Details of the relief printing apparatus according to the embodiment of the present invention will be described below with reference to the drawings. However, it should be noted that the drawings are schematic and the dimensions and ratios of the members are different.

図4は本発明の凸版印刷装置の概略構成を示す図である。図4に示される本発明の凸版印刷装置は版シリンダ105と、基板定盤106と、インキ供給装置100と、インキ粘度制御部200と、を備えている。   FIG. 4 is a diagram showing a schematic configuration of the relief printing apparatus of the present invention. The relief printing apparatus of the present invention shown in FIG. 4 includes a plate cylinder 105, a substrate surface plate 106, an ink supply device 100, and an ink viscosity control unit 200.

版シリンダ105は、表面に転写パターンが形成されている凸版103を周面に有するシリンダである。
基板定盤106は被印刷基板107を載置する定盤である。
インキ供給装置100は、前記凸版103にインキを供給する手段であり、インキを貯留するインキチャンバー108とアニロックスロール101とドクターロール102で構成されている。
アニロックスロール101はインキチャンバー108からインキを掻き揚げ、余分なインキはドクターロール102で掻き落とされる。アニロックスロール101表面に残されたインキは凸版103に供給される。符号104は凸版103に転移されたインキを示す。
The plate cylinder 105 is a cylinder having a relief plate 103 having a transfer pattern formed on the surface thereof on the peripheral surface.
The substrate surface plate 106 is a surface plate on which the substrate to be printed 107 is placed.
The ink supply device 100 is means for supplying ink to the relief plate 103, and includes an ink chamber 108 for storing ink, an anilox roll 101, and a doctor roll 102.
The anilox roll 101 scoops up ink from the ink chamber 108, and excess ink is scraped off by the doctor roll 102. The ink remaining on the surface of the anilox roll 101 is supplied to the relief plate 103. Reference numeral 104 denotes ink transferred to the relief plate 103.

図5は本発明に係るインキ粘度制御部200を詳細に示す図である。インキ粘度制御部200は、インキ粘度制御タンク201を有し、粘度が制御されたインキをインキ供給装置100とインキ粘度制御タンク201間で循環させ、その結果インキ供給装置内のインキ粘度は制御される。   FIG. 5 is a diagram showing in detail the ink viscosity control unit 200 according to the present invention. The ink viscosity control unit 200 has an ink viscosity control tank 201, and circulates the ink whose viscosity is controlled between the ink supply apparatus 100 and the ink viscosity control tank 201. As a result, the ink viscosity in the ink supply apparatus is controlled. The

インキ粘度制御タンク201には、インキ粘度測定手段205と、インキ温度測定手段202と、インキ温度制御手段206と、エアー供給手段300と、エアー排気手段400と、を備えており、これらの手段によってインキ粘度は制御される。   The ink viscosity control tank 201 is provided with an ink viscosity measuring means 205, an ink temperature measuring means 202, an ink temperature control means 206, an air supply means 300, and an air exhaust means 400. By these means, The ink viscosity is controlled.

インキ粘度制御タンク201で粘度制御されたインキは、循環ポンプ203によってインキチャンバー108に異物処理フィルタ204を介して送られる。尚、インキチャンバー108内のインキはオーバーフローさせてインキ粘度制御タンク201に戻す。または図示しないポンプをインキチャンバー108とインキ粘度制御タンク201間に設けて戻しても良い。   The ink whose viscosity is controlled by the ink viscosity control tank 201 is sent to the ink chamber 108 by the circulation pump 203 through the foreign matter processing filter 204. The ink in the ink chamber 108 overflows and returns to the ink viscosity control tank 201. Alternatively, a pump (not shown) may be provided between the ink chamber 108 and the ink viscosity control tank 201 and returned.

エアー供給手段300はクリーンドライエアー(Clean Dry Air:CDA)を供給する手段であって、CDA供給源301とレギュレータ302と供給切り替えバルブ303と流量制御バルブ304で構成され、インキ粘度制御タンク201にCDAを供給している。   The air supply means 300 is a means for supplying clean dry air (CDA), and includes a CDA supply source 301, a regulator 302, a supply switching valve 303, and a flow rate control valve 304, and is supplied to the ink viscosity control tank 201. CDA is supplied.

エアー排気手段400は排気切り替えバルブ403と冷却装置402とケミカルフィルタ401とで構成され、排気エアー404は最終的に施設の外に排気される(外気に放出される)。尚、冷却装置402によってインキ溶媒を含むエアーは冷却されて溶媒を液化
して希釈液207とすることによって、インキ粘度を制御する場合に送液ポンプ208によって再びインキ粘度制御タンク201に送られる。
The air exhaust means 400 includes an exhaust switching valve 403, a cooling device 402, and a chemical filter 401. The exhaust air 404 is finally exhausted outside the facility (released to the outside air). The air containing the ink solvent is cooled by the cooling device 402 to liquefy the solvent to form the diluent 207, and when the ink viscosity is controlled, the air is again sent to the ink viscosity control tank 201 by the liquid feeding pump 208.

インキ粘度測定手段205は、液の状態を変化させないで粘度測定が出来るものが好ましく、その一例として、回転式粘度計、振動式粘度計、球落下式粘度計などが用いられる。中でもインキは、ニュートン流体に近いので、外部からの影響が少ないもの、若しくは、非ニュートン流体であっても、測定値が安定している粘度測定装置であることが望ましい。   The ink viscosity measuring means 205 is preferably capable of measuring the viscosity without changing the liquid state, and examples thereof include a rotary viscometer, a vibration viscometer, a ball drop viscometer, and the like. In particular, since ink is close to Newtonian fluid, it is desirable that the ink has little influence from the outside, or a viscosity measuring device with stable measurement values even with non-Newtonian fluid.

また、粘度値は一般的に温度の変化によって変化するため、温度の測定と管理が必要となる。例えば、有機EL材料Aをアニソール溶剤に溶かした有機発光材料を温度1℃上昇させると粘度が0.8mPa・s降下する。このように温度が変化することでインキ溶剤の分子間力が変化し、インキ粘度へ大きく影響を与える。そのため粘度値で膜厚を制御する場合、温度を一定にするための管理が行われる。   Moreover, since the viscosity value generally changes with changes in temperature, it is necessary to measure and manage the temperature. For example, when the temperature of an organic light emitting material obtained by dissolving the organic EL material A in an anisole solvent is increased by 1 ° C., the viscosity is decreased by 0.8 mPa · s. As the temperature changes in this way, the intermolecular force of the ink solvent changes, greatly affecting the ink viscosity. Therefore, when the film thickness is controlled by the viscosity value, management for keeping the temperature constant is performed.

インキ温度測定手段206は、インキ粘度測定手段205の位置に近接した位置に設けられることが望ましい。また、温度を一定に保つインキ温度制御手段202としては、ヒートシンクと冷却ファン用いた放熱によるものや空冷、水冷、もしくはペルチェ素子を用いた温度制御手段であっても良い。   The ink temperature measuring unit 206 is desirably provided at a position close to the position of the ink viscosity measuring unit 205. Further, the ink temperature control means 202 that keeps the temperature constant may be heat radiation using a heat sink and a cooling fan, air cooling, water cooling, or temperature control means using a Peltier element.

本発明の凸版印刷装置に用いることが出来るアニロックスロール101としては、ステンレス鋼(以下SUSと称する)材などで作成された芯ロール上に、酸化クロムをプラズマ溶射して形成した酸化クロム皮膜を、レーザー彫刻によってパターニングしたセラミックスロール、又は、芯ロール上に銅メッキを施した後樹脂を塗布し、レーザーパターニングした後に腐食処理をし、得られたパターン上にクロムメッキを施したクロムロールのいずれも用いることが出来る。前記のアニロックルロール上に形成されるパターンとしては、ヘリカルパターン、FMパターン、ハニカムパターン、ダイヤパターン、ドットパターンなどいずれのパターンも用いることが出来る。   As an anilox roll 101 that can be used in the relief printing apparatus of the present invention, a chromium oxide film formed by plasma spraying chromium oxide on a core roll made of a stainless steel (hereinafter referred to as SUS) material, Either a ceramic roll patterned by laser engraving or a chromium roll with copper plating on the core roll and then applying a resin, laser patterning and then corrosion treatment, and the resulting pattern with chrome plating Can be used. Any pattern such as a helical pattern, FM pattern, honeycomb pattern, diamond pattern, or dot pattern can be used as the pattern formed on the anilocle roll.

次に、ドクターロール102としてはSUS材などで作成された芯ロールに、ニトリルゴム、シリコーンゴム、イソプレンゴム、スチレンブタジエンゴム、ブタジエンゴム、クロロプレンゴム、ブチルゴム、アクリロニトリルゴム、エチレンプロピレンゴム、ウレタンゴムなどを巻きつけて作成してもよいし、これらのゴムローラ上に、PFA熱収縮チューブを巻きつけたものなどを用いることが出来る。これらゴム材は、インキとして使用する溶剤に対する耐性から選定される。   Next, as the doctor roll 102, a core roll made of SUS material, etc., nitrile rubber, silicone rubber, isoprene rubber, styrene butadiene rubber, butadiene rubber, chloroprene rubber, butyl rubber, acrylonitrile rubber, ethylene propylene rubber, urethane rubber, etc. May be prepared by winding a PFA heat shrinkable tube on these rubber rollers. These rubber materials are selected from the resistance to the solvent used as the ink.

機能性有機材料を溶解させる溶媒としては、特にトルエン、キシレン、アセトン、アニソール、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、テトラリン等の単独またはこれらの混合溶媒が挙げられる。中でもトルエン、キシレン、アニソール、テトラリンといった芳香族有機溶媒が機能性有機材料の溶解性の面から好適である。   Examples of the solvent for dissolving the functional organic material include toluene, xylene, acetone, anisole, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, tetralin and the like alone or a mixed solvent thereof. Of these, aromatic organic solvents such as toluene, xylene, anisole and tetralin are preferred from the viewpoint of solubility of the functional organic material.

この溶媒揮発を防止する対策としてクローズドチャンバーと呼ばれる密閉構造のインキ壷にインキを供給して、その中にアニロックスロール101の下部周面を浸漬しつつ回転させ、かつクローズドチャンバーから露出したアニロックスロール101の上部周面において、余分なインキをドクターロール102にて掻き取って凸版103上にインキを塗布する方式を用いることが出来る。   In order to prevent the solvent volatilization, the ink is supplied to an ink fountain having a closed structure called a closed chamber, and the anilox roll 101 exposed from the closed chamber is rotated while being immersed in the lower peripheral surface of the anilox roll 101. A method of scraping excess ink with a doctor roll 102 and applying ink onto the relief plate 103 can be used.

上記ドクターロール102の代わりにドクターブレードを用いてアニロックスロール101上の余分なインキをかきとることも出来るが、ドクターブレードは一般的に、金属酸化物、若しくは樹脂からなり、有機半導体薄膜や、有機EL薄膜などを代表とする機能性
薄膜の微細パターニングなどを目的としたエレクトロニクス部材向け印刷では、削れた異物が原因で製品不良となる。特に異物が金属の場合、導電することによりショートを起こすなどの不具合が発生する。そのため、機能性有機材料の微細パターニングでは磨耗による金属異物が出ないドクターロール102が一般的には採用されている。
Excess ink on the anilox roll 101 can be removed using a doctor blade instead of the doctor roll 102, but the doctor blade is generally made of a metal oxide or resin, and is made of an organic semiconductor thin film or organic In the printing for electronic members for the purpose of fine patterning of a functional thin film represented by an EL thin film or the like, a defective product is caused by a scraped foreign matter. In particular, when the foreign material is a metal, problems such as short-circuiting occur due to electrical conduction. For this reason, a doctor roll 102 that does not generate metal foreign matters due to wear in fine patterning of a functional organic material is generally employed.

インキ粘度制御部200について説明する。   The ink viscosity control unit 200 will be described.

インキチャンバー108からインキ粘度制御部200へのインキの流れについて説明する。インキチャンバー108内のインキは、循環ポンプ203が作動することによって粘度制御されたインキがインキチャンバー108に送られると、インキチャンバー108内でオーバーフローしたインキがインキ粘度制御タンク201へ回収される。インキ粘度制御タンク201内にある粘度測定手段205とインキ温度測定手段202により粘度測定と温度測定を行い、その結果から基準温度での粘度値を求める。求められた粘度値はフィードバックされる。   The flow of ink from the ink chamber 108 to the ink viscosity control unit 200 will be described. The ink in the ink chamber 108 is recovered by the ink viscosity control tank 201 when the ink whose viscosity is controlled by the operation of the circulation pump 203 is sent to the ink chamber 108. The viscosity measurement unit 205 and the ink temperature measurement unit 202 in the ink viscosity control tank 201 perform viscosity measurement and temperature measurement, and the viscosity value at the reference temperature is obtained from the result. The determined viscosity value is fed back.

(粘度を上げる場合)
上記求められた粘度値が設定値に満たない場合にはインキ粘度測定手段205から信号が発せられ、エアー供給手段300とエアー排気手段400が動作し、エアー供給手段300によってCDAがインキ粘度制御タンク201に供給され、一方エアー排気手段400によってインキ粘度制御タンク201内部のエアーを排出する。このようにしてインキ溶剤分の蒸発を促進し、粘度を設定値まで上昇させる。
(When increasing viscosity)
When the obtained viscosity value is less than the set value, a signal is issued from the ink viscosity measuring means 205, the air supply means 300 and the air exhaust means 400 are operated, and the air supply means 300 causes the CDA to be stored in the ink viscosity control tank. On the other hand, air inside the ink viscosity control tank 201 is discharged by the air exhaust means 400. In this way, the evaporation of the ink solvent is promoted and the viscosity is increased to a set value.

このようにインキ溶剤分の蒸発を促進させてインキ粘度制御タンク201内のインキ粘度を強制的に上げる上昇させることによって、速やかな設定粘度への制御が可能となる。また前記インキ粘度制御タンク201内でインキ粘度を制御する際、攪拌動作を併用することによって循環経路内全体で均一なコントロールが可能となる。   In this way, by quickly increasing the ink viscosity in the ink viscosity control tank 201 by promoting the evaporation of the ink solvent component, it is possible to quickly control the set viscosity. Further, when the ink viscosity is controlled in the ink viscosity control tank 201, uniform control can be performed in the entire circulation path by using a stirring operation together.

(粘度を下げる場合)
逆に、粘度が設定値を越えた場合には、送液ポンプ208が動作し少量の希釈液207を連続して投入することで、インキ粘度を下げる。
(When reducing viscosity)
On the contrary, when the viscosity exceeds the set value, the liquid feeding pump 208 is operated and a small amount of the diluent 207 is continuously added to lower the ink viscosity.

以上の粘度を上げる場合の動作は、段取り替えなどにおいてインキ粘度を上げて形成する膜厚をより厚く変更する際に行うものであり、インキ粘度制御タンク201内のインキ溶剤分の蒸発を促進し、インキ粘度を急速に上昇させるものである。更に循環ポンプ203によってインキチャンバー108へのインキを供給する動作と、インキチャンバー108のインキをインキ粘度制御タンク201へ回収する動作と、を行ってインキチャンバー108内のインキの粘度を急速に上昇させるものである。この場合予め設定した粘度値を僅かに上回った所で微少量の希釈液207を設定された時間間隔で、あるいは連続で補充することで、インキ循環系内のインキの固形分比及び粘度を短時間で制御することが可能となる。   The above operation for increasing the viscosity is performed when changing the film thickness to be formed by increasing the ink viscosity at the time of setup change or the like, and promotes the evaporation of the ink solvent in the ink viscosity control tank 201. The ink viscosity is rapidly increased. Furthermore, the operation of supplying ink to the ink chamber 108 by the circulation pump 203 and the operation of collecting the ink in the ink chamber 108 to the ink viscosity control tank 201 are performed to rapidly increase the viscosity of the ink in the ink chamber 108. Is. In this case, the solid content ratio and viscosity of the ink in the ink circulation system can be shortened by replenishing a small amount of the diluent 207 at a set time interval or continuously at a position slightly exceeding the preset viscosity value. It becomes possible to control by time.

インキ粘度制御タンク内部のエアー排気動作を行う場合にはエアー供給手段300とエアー排気手段400はインキの種類に応じてエアーの供給と排気の制御が行われる。またインキ量の違いにより蒸発速度が異なるが、インキ粘度制御タンク201内のインキ量に応じたインキ表面積を確保することが求められる。また、設定値に粘度が上昇した場合にはエアー供給手段300の停止によりタンク内部での蒸発を抑制することが行われる。エアー供給手段300における風量制御のための流量制御バルブ304としてニードルバルブやエアオペレートバルブなどを用いることが出来る。   When performing an air exhaust operation inside the ink viscosity control tank, the air supply means 300 and the air exhaust means 400 perform air supply and exhaust control according to the type of ink. Further, although the evaporation rate varies depending on the amount of ink, it is required to secure an ink surface area corresponding to the amount of ink in the ink viscosity control tank 201. Further, when the viscosity rises to the set value, the evaporation inside the tank is suppressed by stopping the air supply means 300. A needle valve, an air operated valve, or the like can be used as the flow control valve 304 for air volume control in the air supply means 300.

上記エアー排気手段400によって排出された揮発溶剤は、冷却装置402によって冷
却され液体に戻され希釈液207として回収される。前記冷却装置402はペルチェ素子を用いたものや、水冷を併用したものでも良い。
The volatile solvent discharged by the air exhaust means 400 is cooled by the cooling device 402 and returned to the liquid, and is recovered as the diluent 207. The cooling device 402 may be a device using a Peltier element or a device using water cooling.

エアー供給手段300の動作と停止を制御するエアー供給切り替えバルブ303と、エアー排気手段400の排気切り替えバルブ403は、エアオペレートバルブや電磁弁などのバルブを使用することが出来る。   As the air supply switching valve 303 for controlling the operation and stop of the air supply means 300 and the exhaust switching valve 403 of the air exhaust means 400, valves such as an air operated valve and an electromagnetic valve can be used.

インキを循環させる循環ポンプ203の循環量は、少なくとも循環流量が1分当たりに必要とするインキ量に相当することが好ましい。必要インキ量が明確でない場合には、インキチャンバー108の容積と同じ量のインキを1分当たりに循環させることが好ましい。しかし、循環液量が大きいポンプを使用するとモーターの発熱や液圧の上昇に伴う温度変化が大きくなり、粘度に大きな影響を及ぼす。そのため循環ポンプ203としては、熱への影響が少ないエアー駆動式ダイアフラムポンプや小型モーター式のダイアフラムポンプが適している。また高機能材料において異物の混入より送液動作時の動作部分の擦れや接触がない点からもダイアフラムポンプが好ましい。   The circulation amount of the circulation pump 203 that circulates ink preferably corresponds to at least the amount of ink required for the circulation flow rate per minute. If the required ink amount is not clear, it is preferable to circulate the same amount of ink as the volume of the ink chamber 108 per minute. However, if a pump with a large amount of circulating fluid is used, the temperature change accompanying the heat generation of the motor and the increase of the fluid pressure becomes large, which greatly affects the viscosity. Therefore, as the circulation pump 203, an air-driven diaphragm pump or a small motor-type diaphragm pump that has little influence on heat is suitable. In addition, a diaphragm pump is preferable from the viewpoint that there is no rubbing or contact of the operation part during the liquid feeding operation due to mixing of foreign substances in the high-functional material.

インキチャンバー108内のインキの流れについて図6に示す。インキチャンバー108のインキ供給口209からインキ回収口210にわたって深溝211が掘られている。この深溝211によってインキチャンバー108の中央インキ供給口209から注入されたインキは、深溝211を伝いインキ回収口210へ向かって流れる。インキ供給と回収を常時行うことによって、インキチャンバー108内の固形分濃度均一化を可能とする。   FIG. 6 shows the flow of ink in the ink chamber 108. A deep groove 211 is dug from the ink supply port 209 of the ink chamber 108 to the ink recovery port 210. The ink injected from the central ink supply port 209 of the ink chamber 108 by the deep groove 211 flows along the deep groove 211 toward the ink recovery port 210. By constantly supplying and collecting ink, the solid content concentration in the ink chamber 108 can be made uniform.

図7はインキチャンバー108の深溝211の位置と幅を断面で示す図である。深溝211の形状は、供給されたインクが溝とアニロックスロール101を伝って毛細管現象により拡がることが求められる。従ってインキチャンバー108の供給口、回収口と深溝は、アニロックスロール101に最も接近する位置にあることが望ましい。インキチャンバー108の溝の幅としては、アニロックスロール101とチャンバーの最も接近する部分とアニロックロールの軸心を結ぶ線直線上から左右に1°以上20°未満の位置から垂線を落とした位置を幅とする。深溝の深さとしては、供給口から出るインクがアニロックロールに接触する前に横に流れることが求められ、なおかつ溝に溜まる量が少量であることが求められるため、チャンバー内の容積に対して2%から10%以下の容積であることが望ましい。   FIG. 7 is a cross-sectional view showing the position and width of the deep groove 211 of the ink chamber 108. The shape of the deep groove 211 is required to cause the supplied ink to spread through the groove and the anilox roll 101 by capillary action. Therefore, it is desirable that the supply port, the recovery port, and the deep groove of the ink chamber 108 are located closest to the anilox roll 101. The width of the groove of the ink chamber 108 is a position where a vertical line is dropped from a position of 1 ° or more and less than 20 ° to the left and right from a line straight line connecting the anilox roll 101 and the closest portion of the chamber to the axis of the anilox roll. Width. The depth of the deep groove is required to flow laterally before the ink coming out from the supply port contacts the aniloc roll, and since the amount of ink accumulated in the groove is required to be small, The volume is desirably 2% to 10%.

ドクターロール102で掻き取られたアニロックス上のインキの流れを図8に示す。
ドクターロール102で掻かれたアニロックスロール101上のインキはアニロックスロール101とドクターロール102の接点に溜まり、次第に矢印212で示すようにアニロックスロール101の端部方向に向かって流れ出す。最終的にインキチャンバー108内の端部にインキが溜まるためインキ回収口210はインキチャンバー108端部に設置されている。また、インキ供給口209へのインキ供給は常時行われルため、上記の構造を有したインキチャンバー108により、インキチャンバー108内のインキの流動性が増しインクチャンバー内の固形分濃度を均一に保つことが可能である。
The flow of ink on the anilox scraped off by the doctor roll 102 is shown in FIG.
The ink on the anilox roll 101 scraped by the doctor roll 102 is collected at the contact point between the anilox roll 101 and the doctor roll 102 and gradually flows toward the end of the anilox roll 101 as indicated by an arrow 212. The ink collecting port 210 is installed at the end of the ink chamber 108 because the ink finally collects at the end of the ink chamber 108. Further, since the ink supply to the ink supply port 209 is always performed, the ink chamber 108 having the above structure increases the fluidity of the ink in the ink chamber 108 and keeps the solid content concentration in the ink chamber uniform. It is possible.

CDAの供給とインキ溶剤を含むエアーの排気の制御は、インキ粘度制御タンク201内に設置されているインキ粘度測定手段206によって測定した粘度値を外部に信号出力し、循環系内のインキ溶剤分の蒸発を促進させるエアー供給手段300とエアー排気手段400は、予め入力された設定粘度値に対して前記測定した粘度値をフィードバックすることによってあらかじめ用意されたプログラムに基づいてCDAの供給とインキ溶剤を含むエアーの排気制御がコンピュータにより行われる。   The control of the supply of CDA and the exhaust of the air containing the ink solvent is performed by outputting the viscosity value measured by the ink viscosity measuring means 206 installed in the ink viscosity control tank 201 to the outside, and the content of the ink solvent in the circulation system. The air supply means 300 and the air exhaust means 400 for promoting evaporation of the CDA supply and ink solvent based on a program prepared in advance by feeding back the measured viscosity value to a preset viscosity value inputted in advance. The exhaust control of the air containing is performed by a computer.

以下に、本発明の実施例について述べる。なお、本発明は実施例に限定されるものではなく、本発明を達成できる範囲での改良・変形等は、本発明の趣旨を逸脱するものではない。   Examples of the present invention will be described below. In addition, this invention is not limited to an Example, The improvement, deformation | transformation, etc. in the range which can achieve this invention do not deviate from the meaning of this invention.

<実施例1>
以下、本発明の実施例について具体的に説明する。
実施例1においては、溶剤Aに有機発光材料を溶解させた100mlの有機ELインキを用いて粘度増加の粘度調節を行った。インキ溶剤分の蒸発量と粘度との関係は図9に示す。また、使用した凸版印刷装置は、前記実施の形態に示した構成及び機能を持つインキ供給手段を有し、ガラス基板などの平板の基材に枚葉で印刷する凸版印刷装置を用いた。評価方法は、インキの固形分比を変化させインキ粘度を約60mPa・sから設定値として約64mPa・sへ変化させる時間を粘度制御時間と定義し100mlの有機ELインキの循環完了に合わせて増粘が可能かについて評価を行った。
<Example 1>
Examples of the present invention will be specifically described below.
In Example 1, viscosity adjustment for viscosity increase was performed using 100 ml of organic EL ink in which an organic light emitting material was dissolved in solvent A. The relationship between the evaporation amount of the ink solvent and the viscosity is shown in FIG. Moreover, the relief printing apparatus used has the ink supply means having the configuration and function described in the above embodiment, and a relief printing apparatus that prints on a flat substrate such as a glass substrate with a sheet of paper. In the evaluation method, the time for changing the ink viscosity from about 60 mPa · s to about 64 mPa · s as a set value by changing the solid content ratio of the ink is defined as the viscosity control time, and increases with the completion of circulation of 100 ml of organic EL ink. An evaluation was made as to whether viscosity was possible.

インキ粘度制御タンク201の内部の排気のためのエアー供給手段300にはインキ粘度制御タンク内部への供給風量を30〜50L/minに制御可能な流量制御バルブ304を使用した。図10は前記エアー供給手段300と排気手段400の接続場所を示す上面図である。エアー供給手段300の接続場所は、インキ粘度制御タンク201上部の幅方向の中央部214であり、同様に排気手段400の接続場所はインキ粘度制御タンク201上部の幅方向の両端部のそれぞれ2箇所215a〜dであり、インキ粘度制御タンク201のインキ表面全体にCDAが行き渡るようにした。   As the air supply means 300 for exhausting the inside of the ink viscosity control tank 201, a flow rate control valve 304 capable of controlling the amount of air supplied into the ink viscosity control tank to 30 to 50 L / min was used. FIG. 10 is a top view showing a place where the air supply means 300 and the exhaust means 400 are connected. The connection place of the air supply means 300 is the central part 214 in the width direction of the upper part of the ink viscosity control tank 201. Similarly, the connection part of the exhaust means 400 is two places at both ends in the width direction of the upper part of the ink viscosity control tank 201. 215a-d, and the CDA was distributed over the entire ink surface of the ink viscosity control tank 201.

インキ粘度制御部200について、インキチャンバー108は長手方向(幅方向)の両端にインキ回収口210があり中央部にインキ供給口209があり、インキ供給口209とインキ回収口210を深溝で繋げた構造であるものを使用し、1minで100mlの割合で有機ELインキの循環を完了させることを条件と定め、循環ポンプ203として0.1〜0.2L/minの流量を備えたダイアフラム式ポンプを使用した。
<インキ粘度測定手段>
インキ粘度測定手段205としては、自己発熱がなく、高精度応答性に優れたインライン用ねじれ振動式粘度計を使用した。インキ温度制御手段202としては、銅板とヒートシンクと冷却ファンを用いた治具による放熱での冷却方法を用いた。
Regarding the ink viscosity control unit 200, the ink chamber 108 has ink recovery ports 210 at both ends in the longitudinal direction (width direction), an ink supply port 209 at the center, and the ink supply port 209 and the ink recovery port 210 are connected by a deep groove. A diaphragm type pump having a flow rate of 0.1 to 0.2 L / min is defined as a circulation pump 203 with a condition that the circulation of the organic EL ink is completed at a rate of 100 ml in 1 min. used.
<Ink viscosity measuring means>
As the ink viscosity measuring means 205, an in-line torsional vibration type viscometer having no self-heating and excellent in high-accuracy responsiveness was used. As the ink temperature control means 202, a cooling method by heat radiation by a jig using a copper plate, a heat sink and a cooling fan was used.

粘度を上げる場合のエアー排気手段400の排気の風量は、図11の排気風量に対する蒸発速度のグラフより設定を行った。風量の設定値は、インキ液面に影響を与えないことが望ましいため、波打たせない値として、0.4m/minに設定した。約60mPa・sから約64mPa・sへ粘度を上昇させるのに必要な蒸発量は、図9の蒸発量と粘度関係のグラフより約7.1mlである。 The air flow rate of the air exhaust means 400 when increasing the viscosity is set from the graph of the evaporation rate with respect to the exhaust air flow rate in FIG. Since it is desirable that the set value of the air volume does not affect the ink liquid level, it is set to 0.4 m 3 / min as a value that does not cause undulation. The amount of evaporation required to increase the viscosity from about 60 mPa · s to about 64 mPa · s is about 7.1 ml from the graph of the amount of evaporation and viscosity in FIG.

前記蒸発量7.1mlを、100mlの有機ELインキが循環経路内で循環を終える時間である1minでインキ溶剤分の蒸発を行うための、インキ粘度制御タンク表面積の設定値として風量と蒸発量速度の関係を示す図11のアニソールに関する曲線を元に、インキ粘度制御タンクの空間にインキが空気に触れる表面積として30cmを設け、排気を行うことで蒸発を促進し急速な粘度上昇を行い、インキ粘度制御タンク201内部のインキ粘度が設定値を超えた段階でエアー供給手段300のエアー供給切り替えバルブ303と、同時にエアー排気手段400の排気切り替えバルブ403を閉じ、希釈液補充手段207を作動開始するように設定にしてインキの自動粘度制御を行った。 Air volume and evaporation rate as a set value of ink viscosity control tank surface area for evaporating 7.1 ml of the ink solvent in 1 min, which is the time for 100 ml of organic EL ink to circulate in the circulation path. Based on the curve relating to anisole in FIG. 11 showing the relationship of FIG. 11, the surface of the ink viscosity control tank is provided with a surface area of 30 cm 2 for the ink to come into contact with air. When the ink viscosity in the viscosity control tank 201 exceeds the set value, the air supply switching valve 303 of the air supply unit 300 and the exhaust switching valve 403 of the air exhaust unit 400 are closed at the same time, and the diluent replenishing unit 207 is activated. Thus, the automatic viscosity control of the ink was performed.

上記のようなインキ粘度制御条件に設定したことで、急速に設定粘度へ粘度上昇し、約1minで設定粘度である64mPa・sに達し、エアー供給手段300とエアー排気手段400を停止し、希釈液の補充を開始することによってインキ粘度制御タンク内部の粘
度は約64mPa・sに制御出来た。
By setting the ink viscosity control conditions as described above, the viscosity rapidly increases to the set viscosity, reaches the set viscosity of 64 mPa · s in about 1 min, stops the air supply means 300 and the air exhaust means 400, and dilutes. By starting the replenishment of the liquid, the viscosity inside the ink viscosity control tank could be controlled to about 64 mPa · s.

<比較例>
比較例においては、実施例1と同条件でインキ粘度制御タンク201を使用せずインキの循環動作のみで目標粘度まで上昇する時間を計測した。粘度制御中のインキ粘度制御タンク内部のインキ粘度は、自然蒸発により粘度上昇は見られたが、約1時間を要した。
<Comparative example>
In the comparative example, the time to increase to the target viscosity was measured only by the ink circulation operation without using the ink viscosity control tank 201 under the same conditions as in Example 1. While the viscosity of the ink inside the ink viscosity control tank during viscosity control was increased due to natural evaporation, it took about 1 hour.

以上の結果から、本発明に係るインキ粘度制御部200によれば、目標粘度まで上昇する時間を大幅に短縮することが可能となった。   From the above results, according to the ink viscosity control unit 200 according to the present invention, it is possible to significantly reduce the time to increase to the target viscosity.

本実施の形態に係る凸版印刷装置は、例えば、液晶ディスプレイ(LCD)用カラーフィルタにおけるパターン、有機エレクトロルミネセンス(EL)素子の発光層や電荷輸送層、有機薄膜トランジスタ(TFT)基板における電極パターン、電磁波シールドにおけるシールドパターン等の高精細パターンの形成に用いることができる。   The relief printing apparatus according to the present embodiment includes, for example, a pattern in a color filter for a liquid crystal display (LCD), a light emitting layer and a charge transport layer of an organic electroluminescence (EL) element, an electrode pattern in an organic thin film transistor (TFT) substrate, It can be used to form a high-definition pattern such as a shield pattern in an electromagnetic wave shield.

このように本発明の凸版印刷装置によれば、特に膜厚を増加させる際の粘度増加を必要とする段取り替えの際、従来のようにインキ原料を追加することなく、設定した粘度値まで速やかに調節することが可能となる。その結果、低コストで迅速な段取り替えが可能となり、また、安定した膜厚で印刷が可能となる。   As described above, according to the relief printing apparatus of the present invention, particularly at the time of setup change requiring an increase in viscosity when the film thickness is increased, it is possible to quickly reach the set viscosity value without adding an ink raw material as in the prior art. It becomes possible to adjust to. As a result, it is possible to quickly change the setup at low cost, and it is possible to print with a stable film thickness.

100・・・インキ供給装置
101・・・アニロックスロール
102・・・ドクターロール
103・・・凸版
104・・・凸版103に転移されたインキ
105・・・版シリンダ
106・・・基板定盤
107・・・被印刷基板
108・・・インキチャンバー
100・・・インキ供給装置
200・・・インキ粘度制御部
201・・・インキ粘度制御タンク
202・・・インキ温度測定手段
203・・・循環ポンプ
204・・・異物処理フィルタ
205・・・インキ粘度測定手段
206・・・インキ温度制御手段
207・・・希釈液
208・・・送液ポンプ
300・・・エアー(CDA)供給手段
301・・・CAD供給源
302・・・レギュレータ
303・・・供給切り替えバルブ
304・・・流量制御バルブ
400・・・エアー排気手段
401・・・ケミカルフィルタ
402・・・冷却装置
403・・・排気切り替えバルブ
404・・・排気エアー
701・・・凸版(樹脂凸版)
702・・・版シリンダ
703・・・インキチャンバー
704・・・アニロックスロール
705・・・ドクターブレード
706・・・被印刷基板
707・・・基板定盤
708・・・基板定盤の移動方向
709・・・版シリンダの回転方向
710・・・ドクターロール
DESCRIPTION OF SYMBOLS 100 ... Ink supply apparatus 101 ... Anilox roll 102 ... Doctor roll 103 ... Letterpress 104 ... Ink transferred to letterpress 103 105 ... Plate cylinder 106 ... Substrate surface plate 107- ..Printed substrate 108 ... Ink chamber 100 ... Ink supply device 200 ... Ink viscosity controller 201 ... Ink viscosity control tank 202 ... Ink temperature measuring means 203 ... Circulating pump 204- .... Foreign matter processing filter 205 ... Ink viscosity measuring means 206 ... Ink temperature control means 207 ... Diluent 208 ... Liquid feed pump 300 ... Air (CDA) supply means 301 ... CAD supply Source 302 ... Regulator 303 ... Supply switching valve 304 ... Flow control valve 400 ... Air exhaust means 40 ... chemical filter 402 ... cooling device 403 ... exhaust switching valve 404 ... exhaust air 701 ... Toppan (resin relief plate)
702 ... Plate cylinder 703 ... Ink chamber 704 ... Anilox roll 705 ... Doctor blade 706 ... Substrate 707 ... Substrate surface plate 708 ... Movement direction of substrate surface plate 709 ..Rotating direction of plate cylinder 710 ... Doctor roll

Claims (6)

凸版を印刷版として被印刷基板にパターンを印刷する凸版印刷装置であって、
版シリンダと、基板定盤と、インキ供給装置と、インキ粘度制御部と、を備え、
版シリンダは、表面に転写パターンが形成されている前記凸版を周面に有するシリンダであって、
基板定盤は被印刷基板を載置する定盤であって、
インキ供給装置は、前記凸版にインキを供給する手段であって、インキを貯留するインキチャンバーを備えて構成され、
インキ粘度制御部は、インキ粘度を制御するインキ粘度制御タンクと、インキ粘度測定手段と、インキ温度制御手段と、エアー供給手段と、エアー排気手段と、を備え、
インキ粘度測定手段及びインキ温度測定手段は、それぞれ、インキ粘度制御タンク内のインキの粘度及び温度を測定する手段であり、
エアー供給手段及びエアー排気手段は、それぞれ、前記測定粘度及び測定温度から算出した基準温度における粘度値が設定値に満たない場合、インキ粘度制御タンク内にクリーンドライエアーを供給し、またはインキ粘度制御タンク内のインキ溶媒を含むエアーを排気して、インキ溶媒の蒸発を促進することにより、インキ粘度を上昇させる手段であり、
前記インキ供給装置とインキ粘度制御タンク間でインキを循環させてインキ供給装置内のインキ粘度を制御することを特徴とする凸版印刷装置。
A letterpress printing apparatus for printing a pattern on a substrate to be printed using a letterpress as a printing plate,
A plate cylinder, a substrate surface plate, an ink supply device, and an ink viscosity control unit;
A plate cylinder is a cylinder having on its surface a relief plate having a transfer pattern formed on its surface,
The substrate surface plate is a surface plate on which the substrate to be printed is placed,
The ink supply device is means for supplying ink to the relief printing plate, and includes an ink chamber for storing ink,
The ink viscosity control unit includes an ink viscosity control tank that controls the ink viscosity, an ink viscosity measuring unit, an ink temperature control unit, an air supply unit, and an air exhaust unit.
The ink viscosity measuring means and the ink temperature measuring means are means for measuring the viscosity and temperature of the ink in the ink viscosity control tank, respectively.
The air supply means and the air exhaust means supply clean dry air into the ink viscosity control tank or control the ink viscosity when the viscosity value at the reference temperature calculated from the measured viscosity and the measured temperature is less than the set value, respectively. By exhausting the air containing the ink solvent in the tank and promoting the evaporation of the ink solvent, it is a means to increase the ink viscosity,
A letterpress printing apparatus characterized by controlling ink viscosity in an ink supply device by circulating ink between the ink supply device and an ink viscosity control tank.
前記インキ粘度制御タンクに備えられた前記エアー供給手段は、インキ粘度制御部にクリーンドライエアーを供給し、そのエアー供給風量はレギュレータと流量制御バルブによって制御されることを特徴とする請求項1に記載の凸版印刷装置。   The air supply means provided in the ink viscosity control tank supplies clean dry air to the ink viscosity control unit, and the air supply air volume is controlled by a regulator and a flow control valve. The letterpress printing apparatus described. 前記インキ粘度制御タンクに備えられた前記エアー排気手段は、インキ粘度制御部のインキ溶媒を含むエアーを排気し、更に排気エアーを冷却する手段を有することを特徴とする請求項1または2に記載の凸版印刷装置。   The said air exhaust means provided in the said ink viscosity control tank has a means to exhaust the air containing the ink solvent of an ink viscosity control part, and also to cool exhaust air. Letterpress printing equipment. 前記インキ供給装置のインキチャンバーにインキを供給する供給口はインキチャンバーの幅方向の中心部に設けられ、インキを回収する回収口は幅方向の両端部に設けられたことを特徴とする請求項1から3のいずれかに記載の凸版印刷装置。   The supply port for supplying ink to the ink chamber of the ink supply device is provided at the center in the width direction of the ink chamber, and the recovery ports for collecting ink are provided at both ends in the width direction. The relief printing apparatus according to any one of 1 to 3. 前記インキ粘度制御タンクに備えられたエアー供給手段はインキ粘度制御タンク上部の中央部に設置され、排気手段はインキ粘度制御タンク上部の両端部に設置されたことを特徴とする請求項1から4のいずれかに記載の凸版印刷装置。   5. The air supply means provided in the ink viscosity control tank is installed at the center of the upper part of the ink viscosity control tank, and the exhaust means is installed at both ends of the upper part of the ink viscosity control tank. The relief printing apparatus according to any one of the above. 前記インキ粘度制御タンクは、幅方向の中央部にインキ供給口を、幅方向の両端部にインキ回収口を有することを特徴とする請求項1から5のいずれかに記載の凸版印刷装置。   The relief printing apparatus according to any one of claims 1 to 5, wherein the ink viscosity control tank has an ink supply port at a central portion in a width direction and an ink recovery port at both ends in the width direction.
JP2013192752A 2013-09-18 2013-09-18 Topographic printing device Expired - Fee Related JP6167789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013192752A JP6167789B2 (en) 2013-09-18 2013-09-18 Topographic printing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013192752A JP6167789B2 (en) 2013-09-18 2013-09-18 Topographic printing device

Publications (2)

Publication Number Publication Date
JP2015058601A JP2015058601A (en) 2015-03-30
JP6167789B2 true JP6167789B2 (en) 2017-07-26

Family

ID=52816536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013192752A Expired - Fee Related JP6167789B2 (en) 2013-09-18 2013-09-18 Topographic printing device

Country Status (1)

Country Link
JP (1) JP6167789B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3006275B2 (en) * 1991-03-28 2000-02-07 凸版印刷株式会社 Ink defoaming supply method and apparatus
JP3213705B2 (en) * 1999-10-27 2001-10-02 レンゴー株式会社 Ink viscosity controller
JP2006035587A (en) * 2004-07-26 2006-02-09 National Printing Bureau Liquid viscosity adjusting and controlling system
JP2006120382A (en) * 2004-10-20 2006-05-11 Seiko Epson Corp Manufacturing device and manufacturing method of organic el device, electrooptic device, and electronic equipment
JP2009081107A (en) * 2007-09-27 2009-04-16 Toppan Printing Co Ltd Method for manufacturing organic electroluminescent element
JP2011040479A (en) * 2009-08-07 2011-02-24 Panasonic Corp Organic electroluminescent element and method of manufacturing the same
JP2011173266A (en) * 2010-02-23 2011-09-08 Toppan Printing Co Ltd Letterpress printing device and manufacturing method of the same
WO2011122204A1 (en) * 2010-03-31 2011-10-06 凸版印刷株式会社 Letterpress printing device and printed matter produced using same, and process for production of organic electroluminescent element
JP2013123836A (en) * 2011-12-14 2013-06-24 Toppan Printing Co Ltd Letterpress printing apparatus

Also Published As

Publication number Publication date
JP2015058601A (en) 2015-03-30

Similar Documents

Publication Publication Date Title
JP6241029B2 (en) Printing apparatus and printing method
US9327494B1 (en) Flexographic printing system with pivoting ink pan
JP2008296547A (en) Letterpress printing equipment
CN110171198B (en) Pattern-free anilox roller inking system and method
JP6167789B2 (en) Topographic printing device
JP2013123836A (en) Letterpress printing apparatus
JP5499822B2 (en) Method for producing functional thin film
JP6115018B2 (en) Thin film printing method and thin film printing apparatus
JP2008230177A (en) Letterpress printer
JP5168029B2 (en) Printing apparatus and printed matter manufacturing method
KR101753803B1 (en) Method and Apparatus for Printing of Wiping Gravure
JP2011173266A (en) Letterpress printing device and manufacturing method of the same
KR101265147B1 (en) Device and Method of Forming Printing Patterns on Printing Roll
JP2009137057A (en) Printing equipment
JP2010284829A (en) Offset printing method and apparatus
JP2013086296A (en) Printing apparatus
JP2015223813A (en) Printing plate, printer, printing method and electronic device
JP5391559B2 (en) Printing machine and method for producing printed matter using the same
JP6671335B2 (en) Functional film patterning method and electronic device manufacturing method
JP2008135326A (en) Manufacturing method of high definition display
JP2011194808A (en) Method for manufacturing precision printing product, precision printing product and letterpress printing device
JP2012206308A (en) Printer, and method for manufacturing functional thin film using the same
JP2014188724A (en) Printing method and printing device
JP2009081107A (en) Method for manufacturing organic electroluminescent element
JP2015090829A (en) Printer for manufacturing organic el panel and organic el panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R150 Certificate of patent or registration of utility model

Ref document number: 6167789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees