JP6167342B2 - Method for saccharification of cellulose - Google Patents
Method for saccharification of cellulose Download PDFInfo
- Publication number
- JP6167342B2 JP6167342B2 JP2013069233A JP2013069233A JP6167342B2 JP 6167342 B2 JP6167342 B2 JP 6167342B2 JP 2013069233 A JP2013069233 A JP 2013069233A JP 2013069233 A JP2013069233 A JP 2013069233A JP 6167342 B2 JP6167342 B2 JP 6167342B2
- Authority
- JP
- Japan
- Prior art keywords
- cellulose
- lignin
- saccharification
- aqueous solution
- pulverization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
本発明は、バイオマス原料に含まれるセルロースを糖化する糖化方法に関する。 The present invention relates to a saccharification method for saccharifying cellulose contained in a biomass raw material.
近年、サトウキビやトウモロコシ等のバイオマスを原料としたバイオ燃料の生産は、原料が食料品であるため、その競業が問題とされている。このため、食料との競業のない木片や古着などのセルロース系のバイオマスを原料としてバイオ燃料を生産することが研究されている。 In recent years, the production of biofuels using biomass such as sugarcane and corn as raw materials has been a matter of competition because the raw materials are food products. For this reason, research has been conducted on the production of biofuels from cellulosic biomass such as wood chips and used clothes that do not compete with food.
例えば、アルカリ蒸解法でパルプ化し、さらに漂白によって脱リグニン化したセルロース系バイオマスを糖化酵素液や糖化酵素産生菌の培養液で糖化し、エタノール発酵菌でエタノール発酵させるものが提案されている(特許文献1参照)。このエタノールの製造方法では、アルカリ蒸解法としてソーダ法やクラフト法を用いている。ここで、ソーダ法とは、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等のアルカリ薬品を使用し、リグノセルロース系バイオマスからリグニンを除去する方法であり、クラフト法とは、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等のアルカリ薬品と硫化ナトリウム、硫酸ナトリウムなどのイオウを含む薬品を共用し、リグノセルロース系バイオマスからリグニンを除去する方法である。 For example, a cellulosic biomass that has been pulped by alkaline digestion and then delignified by bleaching is saccharified with a saccharifying enzyme solution or a culture solution of a saccharifying enzyme-producing bacterium, and then ethanol-fermented with ethanol fermentation. Reference 1). In this ethanol production method, a soda method or a kraft method is used as an alkali cooking method. Here, the soda method is a method of removing lignin from lignocellulosic biomass using alkaline chemicals such as sodium hydroxide, potassium hydroxide, sodium carbonate, and the craft method is sodium hydroxide, hydroxide. This is a method for removing lignin from lignocellulosic biomass by sharing alkaline chemicals such as potassium and sodium carbonate with chemicals containing sulfur such as sodium sulfide and sodium sulfate.
パルプ中のリグニンに紫外光を照射することによりリグニンを分解することも提案されている(特許文献2参照)。紫外光の照射によるリグニンの分解反応機構は、次式に示すように、(1)リグニンが酸素雰囲気で紫外光により励起されてリグニンラジカルになり、(2)このリグニンラジカルがリグニン骨格の他の部分を酸化分解することによりキノン系化合物を生じ、(3)キノン系化合物は、更に、ベンゾキノン誘導体に変化する、ものである。 It has also been proposed to decompose lignin by irradiating the lignin in the pulp with ultraviolet light (see Patent Document 2). The decomposition reaction mechanism of lignin by irradiation with ultraviolet light is as follows: (1) Lignin is excited by ultraviolet light in an oxygen atmosphere to become a lignin radical; (2) This lignin radical is converted to other lignin skeletons. A quinone compound is produced by oxidative decomposition of the portion, and (3) the quinone compound is further converted into a benzoquinone derivative.
上述したように、セルロース系バイオマス原料に含まれるリグニンは、セルロースの可溶化やその後の糖化を阻害する因子であるため、その分解・除去が必要となるが、リグニン除去にアルカリ薬品や酸薬品を用いる場合、リグニンの分解・除去後に中和等の溶媒管理が必要となる。また、紫外光の照射も有効と考えられるが、固体としてのバイオマス原料への紫外光の照射では表面のリグニンは分解できても、内部のリグニンは分解できず、バイオ燃料の生産性が著しく低下してしまう。 As described above, lignin contained in cellulosic biomass raw materials is a factor that inhibits solubilization and subsequent saccharification of cellulose, and therefore it is necessary to decompose and remove it. When used, solvent management such as neutralization is required after decomposition and removal of lignin. Irradiation with ultraviolet light is also considered effective, but irradiation with ultraviolet light to a biomass raw material as a solid can decompose lignin on the surface, but internal lignin cannot be decomposed, resulting in a significant decrease in biofuel productivity. Resulting in.
本発明のセルロースの糖化方法は、セルロースを含むバイオマス原料を効率よく糖化することを主目的とする。 The cellulose saccharification method of the present invention is mainly intended to efficiently saccharify biomass raw materials containing cellulose.
本発明のセルロースの糖化方法は、上述の主目的を達成するために以下の手段を採った。 The cellulose saccharification method of the present invention employs the following means in order to achieve the main object described above.
本発明のセルロースの糖化方法は、
バイオマス原料に含まれるセルロースを糖化する糖化方法であって、
前記バイオマス原料に対してセルロースを可溶化する結晶化度と分子量となるまで粉砕する粉砕工程と、
前記粉砕工程により得られた可溶物の水溶液に対して該水溶液に含まれるリグニンを分解するリグニン分解工程と、
を有することを特徴とする。
The cellulose saccharification method of the present invention comprises:
A saccharification method for saccharifying cellulose contained in a biomass raw material,
A pulverization step of pulverizing until the degree of crystallinity and molecular weight solubilizing cellulose with respect to the biomass raw material,
A lignin decomposition step for decomposing lignin contained in the aqueous solution with respect to the aqueous solution of the soluble matter obtained by the pulverization step;
It is characterized by having.
この本発明のセルロースの糖化方法では、粉砕工程によりセルロースを非結晶化および低分子量化して可溶物とし、リグニン分解工程により、この可溶物の水溶液に含まれるリグニンを分解する。可溶物の水溶液に対してリグニンの分解処理を行なうから、リグニンの分解を迅速に種々の手法を用いることができる。特に、リグニン分解工程として、粉砕工程により得られた可溶物の水溶液に対して紫外線を照射するものとすれば、アルカリや酸を用いる場合に比して、中和などの溶媒管理をする必要がなく、非接触で且つ均一にリグニンを分解することができる。 In the cellulose saccharification method of the present invention, cellulose is made non-crystallized and low molecular weight by a pulverization step to obtain a soluble product, and lignin contained in an aqueous solution of the soluble product is decomposed by a lignin decomposition step. Since the lignin decomposition treatment is performed on the aqueous solution of the soluble matter, various techniques can be used for the rapid decomposition of lignin. In particular, if the soluble solution obtained in the pulverization step is irradiated with ultraviolet rays as the lignin decomposition step, it is necessary to manage the solvent such as neutralization compared to the case of using an alkali or acid. Therefore, lignin can be decomposed uniformly in a non-contact manner.
粉砕工程としては、バイオマス原料を飽和蒸気圧未満の雰囲気で加熱して粉砕するものを用いることができる。例えば、粗粉砕したバイオマスを100℃〜300℃程度で飽和蒸気圧未満の雰囲気で常圧近傍で数時間に亘って粉砕する加熱粉砕処理を用いることができる。この手法は出願人が考案したものであり、その詳細については、特願2011−144953や特願2011−261362に記載されている。なお、粉砕工程としては、セルロースを可溶化する結晶化度と分子量となるまで粉砕するものであればよいから、加熱せずに粉砕するものとしてもよいし、添加物を添加して粉砕するものとしてもよい。 As the pulverization step, a biomass raw material that is heated and pulverized in an atmosphere less than a saturated vapor pressure can be used. For example, it is possible to use a heat pulverization process in which coarsely pulverized biomass is pulverized for about several hours in the vicinity of normal pressure in an atmosphere of about 100 ° C. to 300 ° C. and less than a saturated vapor pressure. This method was devised by the applicant, and details thereof are described in Japanese Patent Application Nos. 2011-144953 and 2011-261362. As the pulverization step, any pulverization may be performed as long as the crystallization degree and molecular weight solubilize the cellulose are obtained. Therefore, the pulverization may be performed without heating, or the additive may be added and pulverized. It is good.
次に、本発明を実施するための形態について説明する。図1は、本実施形態のセルロースの糖化方法の工程を示す工程図である。本実施形態のセルロースの糖化方法は、図1の工程図に示すように、セルロース((C6H10O5)n:nは10数〜)やでん粉,ヘミセルロース,ペクチンなどのセルロースを含むバイオマス原料を扱いやすくするために数mm〜数十mm程度に粗粉砕する(粗粉砕工程S1)。セルロース系のバイオマス原料としては、例えば、草類(稲わらや麦わら,バガスなど),間伐材(竹や笹など),木材加工木屑(おがくずやチップ,端材など),木質系(街路樹剪定材や木質建築廃材,樹皮,流木など),セルロース製品(綿や紙,衣類など)などを用いることができる。 Next, the form for implementing this invention is demonstrated. FIG. 1 is a process diagram showing the steps of the cellulose saccharification method of the present embodiment. As shown in the process diagram of FIG. 1, the saccharification method of cellulose of this embodiment is a biomass containing cellulose such as cellulose ((C 6 H 10 O 5 ) n : n is 10 or more), starch, hemicellulose, pectin and the like. In order to make the raw material easy to handle, it is roughly pulverized to several mm to several tens mm (coarse pulverization step S1). Cellulosic biomass raw materials include, for example, grasses (rice straw, wheat straw, bagasse, etc.), thinned wood (bamboo, firewood, etc.), wood-processed wood chips (sawdust, chips, mill ends, etc.), woody systems (pruning roadside trees) Wood, wood construction waste, bark, driftwood, etc.), cellulose products (cotton, paper, clothing, etc.) can be used.
次に、粗粉砕されたバイオマス原料に熱を加えてセルロースが可溶化する結晶化度と分子量となるまで機械的に粉砕する(加熱粉砕工程S2)。この加熱粉砕は、図2に示すように、100℃〜300℃程度で飽和蒸気圧未満の雰囲気で常圧近傍で数時間に亘って機械的に粉砕し、セルロースを非晶質化および低分子化させて、水溶性のオリゴ糖((C6H10O5)n:nは数〜10数)などまでに粉砕する。従来、セルロース糖化プロセスにおいて、100℃以上で臨界点以下の加圧熱水(飽和蒸気圧以上に加圧されて液体状態で存在するいわゆる亜臨界水)によってセルロースを水に可溶な低分子量多糖類とする水熱処理が考えられている(例えば、特開2010−166831号公報や特開2010−279255号公報参照)。しかしながら、こうした水熱処理では、セルロースの含水率が高いために、過分解が生じて、オリゴ糖以外の物質が生成されやすく、セルロースからグルコースへの転化率(グルコースの糖収率)の向上を図るのが困難であった。本実施形態の加熱粉砕では、飽和蒸気圧未満の雰囲気で加熱粉砕することにより、過分解が生じるのを抑制して、水溶性のオリゴ糖などをより十分に生成することができる。なお、加熱粉砕には、実験室ではボールミルを用いることができ、より大規模には粉砕エネルギが比較的小さいタンデムミル粉砕機を用いるのが好適である。 Next, heat is applied to the coarsely pulverized biomass raw material, and mechanically pulverized until the crystallinity and molecular weight solubilize the cellulose (heat pulverization step S2). As shown in FIG. 2, this heat pulverization is performed by mechanically pulverizing cellulose for several hours in the vicinity of normal pressure in an atmosphere of about 100 ° C. to 300 ° C. and less than the saturated vapor pressure, thereby making the cellulose amorphous and low molecular weight And then pulverized to a water-soluble oligosaccharide ((C 6 H 10 O 5 ) n : n is several to several tens). Conventionally, in a cellulose saccharification process, a low molecular weight, high-solubility cellulose is soluble in water by pressurized hot water (so-called subcritical water that exists in a liquid state by being pressurized to a saturation vapor pressure or higher) at a temperature of 100 ° C. or higher and below a critical point. Hydrothermal treatment using saccharides has been considered (see, for example, JP 2010-166831 A and JP 2010-279255 A). However, in such a hydrothermal treatment, since the moisture content of cellulose is high, excessive decomposition occurs, and substances other than oligosaccharides are easily generated, and the conversion rate from cellulose to glucose (glucose sugar yield) is improved. It was difficult. In the heat pulverization of the present embodiment, by performing heat pulverization in an atmosphere less than the saturated vapor pressure, it is possible to suppress the occurrence of overdegradation and to generate water-soluble oligosaccharides and the like more sufficiently. Note that a ball mill can be used in the laboratory for the heat pulverization, and it is preferable to use a tandem mill pulverizer having a relatively small pulverization energy on a larger scale.
加熱粉砕処理を終了すると、加熱粉砕により得られる可溶物を水に溶かして水溶液として取り出す(取出工程S3)。具体的には、加熱粉砕後に粉砕機に注水し、撹拌して取り出すことにより行なう。このとき、撹拌には粉砕機の粉砕動作を用いることができる。 When the heat pulverization process is completed, the soluble matter obtained by the heat pulverization is dissolved in water and taken out as an aqueous solution (extraction step S3). Specifically, the heat pulverization is performed by pouring water into the pulverizer, stirring and taking out. At this time, the pulverization operation of the pulverizer can be used for stirring.
続いて、粉砕機から取り出した可溶物の水溶液に紫外線を照射してリグニンを分解する(リグニン分解工程S4)。照射する紫外線としては、波長が180nm〜800nm、好ましくは200nm〜500nm程度であることが好ましい。これは、リグニンやパラキノン、オルソキノンの最大吸収波長がそれぞれ280nm、360nm、390nm〜410nmであることに基づく。紫外線照射の光源としては、低圧水銀灯や高圧水銀灯、キセノン灯などの光源や、各種エキシマランプや各種レーザー光源なども用いることができる。高速処理を考慮すれば、レーザー光源が好ましい。レーザー光源としては、特に制限はなくパルス光でも連続照射光でもよい。具体的には、エキシマレーザー(ArFエキシマレーザー、KrFエキシマレーザー、XeClエキシマレーザー、XeFエキシマレーザーなど)や、アルゴンイオンレーザー、クリプトンイオンレーザー、YAGレーザーの第2および第3高調波などが好適である。紫外線の照射強度としては、特に制限はないが、パルス光では0.1mJ/パルス・cm2〜1.0kJ/パルス・cm2が好適であり、連続照射光では0.1mW/cm2〜10kW/cm2が好適である。紫外線の照射時間としては、1分〜60分程度が好適であるが、可溶物の水溶液に含まれるリグニンの量に応じて調節するのが好ましい。なお、リグニンの紫外線照射による分解反応機構については背景技術の欄で説明した。 Subsequently, the lignin is decomposed by irradiating the aqueous solution of the soluble matter taken out from the pulverizer with ultraviolet rays (lignin decomposition step S4). The ultraviolet ray to be irradiated has a wavelength of about 180 nm to 800 nm, preferably about 200 nm to 500 nm. This is based on the fact that the maximum absorption wavelengths of lignin, paraquinone and orthoquinone are 280 nm, 360 nm and 390 nm to 410 nm, respectively. As a light source for ultraviolet irradiation, a light source such as a low-pressure mercury lamp, a high-pressure mercury lamp, or a xenon lamp, various excimer lamps, various laser light sources, or the like can be used. Considering high-speed processing, a laser light source is preferable. The laser light source is not particularly limited and may be pulsed light or continuous irradiation light. Specifically, excimer lasers (ArF excimer laser, KrF excimer laser, XeCl excimer laser, XeF excimer laser, etc.), second and third harmonics of argon ion laser, krypton ion laser, and YAG laser are suitable. . The irradiation intensity of ultraviolet light is not particularly limited, a pulse light is preferably 0.1 mJ / pulse · cm 2 ~1.0kJ / pulse · cm 2, the continuous irradiation light 0.1mW / cm 2 ~10kW / Cm 2 is preferred. The irradiation time of ultraviolet rays is preferably about 1 to 60 minutes, but is preferably adjusted according to the amount of lignin contained in the aqueous solution of soluble matter. The mechanism of decomposition reaction of lignin by ultraviolet irradiation was described in the background art section.
そして、水溶液をカーボン固体酸や有機酸(例えば酢酸や蟻酸など)などの酸触媒を用いて150℃程度で数時間処理することによってグルコースまで糖化させて(糖化工程S5)、セルロースの糖化プロセスを終了する。 Then, the aqueous solution is saccharified to glucose by treating it with an acid catalyst such as carbon solid acid or organic acid (for example, acetic acid or formic acid) at about 150 ° C. for several hours (saccharification step S5), and the saccharification process of cellulose is performed. finish.
以上説明した実施形態のセルロースの糖化方法によれば、セルロースを含むバイオマス原料に対してセルロースを非晶質化および低分子化させてオリゴ糖程度の分子量の可溶物となるまで粉砕し、この可溶物を水に溶かした水溶液に紫外線を照射して水溶液中のリグニンを分解することにより、アルカリや酸を用いてリグニンを分解する場合に比して、中和などの溶媒管理を行なう必要がなく、非接触で且つ短時間に効率よくリグニンを分解することができる。この結果、リグニンが混在することによって生じる糖化工程における糖化率の低下を抑制し、セルロースを効率よく糖化することができる。 According to the cellulose saccharification method of the embodiment described above, cellulose is amorphized and reduced in molecular weight to a biomass raw material containing cellulose, and pulverized until it becomes a soluble material having a molecular weight of about an oligosaccharide. Solvent management such as neutralization is required by irradiating an aqueous solution in which soluble materials are dissolved in water to decompose lignin in the aqueous solution by decomposing lignin using an alkali or acid. Therefore, lignin can be decomposed efficiently in a short time without contact. As a result, a decrease in the saccharification rate in the saccharification step caused by the presence of lignin can be suppressed, and cellulose can be efficiently saccharified.
実施形態のセルロースの糖化方法では、セルロースを非晶質化および低分子化させてオリゴ糖程度の分子量の可溶物となるまで粉砕するのに100℃〜300℃程度で飽和蒸気圧未満の雰囲気で常圧近傍で数時間に亘って機械的に粉砕する加熱粉砕を用いたが、加熱せずに機械的に粉砕するものとしたり、例えばカオリナイトなどの添加物を添加して機械的に粉砕するものとしたりするなど、セルロースを非晶質化および低分子化させてオリゴ糖程度の分子量の可溶物となるまで粉砕することができる手法であれば如何なる手法を用いてもよい。 In the cellulose saccharification method of the embodiment, an atmosphere of about 100 ° C. to 300 ° C. and less than a saturated vapor pressure is used to pulverize the cellulose until it becomes amorphous and has a low molecular weight and becomes a soluble product having a molecular weight of about an oligosaccharide. In this example, heat pulverization was used to mechanically pulverize for several hours in the vicinity of normal pressure, but mechanical pulverization without heating, or addition of additives such as kaolinite, etc. Any method may be used as long as it is a method capable of making the cellulose amorphous and low molecular weight and pulverizing the cellulose until it becomes a soluble matter having a molecular weight of about an oligosaccharide.
以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。 As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and it can implement with a various form in the range which does not deviate from the summary of this invention. Of course.
本発明は、セルロースから糖を製造する産業に利用可能である。 The present invention can be used in the industry for producing sugar from cellulose.
Claims (2)
前記バイオマス原料に対してセルロースを可溶化する結晶化度と分子量となるまで粉砕する粉砕工程と、
前記粉砕工程により得られた可溶物に水を混合して水溶液を作成し、前記水溶液に対して紫外線を照射して該水溶液に含まれるリグニンを分解するリグニン分解工程と、
を有するセルロースの糖化方法。 A saccharification method for saccharifying cellulose contained in a biomass raw material,
A pulverization step of pulverizing until the degree of crystallinity and molecular weight solubilizing cellulose with respect to the biomass raw material,
Water is mixed with the soluble matter obtained in the pulverization step to create an aqueous solution, and the aqueous solution is irradiated with ultraviolet rays to decompose lignin contained in the aqueous solution,
A process for saccharification of cellulose having
前記粉砕工程は、前記バイオマス原料を飽和蒸気圧未満の雰囲気で加熱して粉砕する工程である、
セルロースの糖化方法。
A method for saccharifying cellulose according to claim 1 ,
The pulverization step is a step of heating and pulverizing the biomass raw material in an atmosphere less than a saturated vapor pressure.
Cellulose saccharification method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013069233A JP6167342B2 (en) | 2013-03-28 | 2013-03-28 | Method for saccharification of cellulose |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013069233A JP6167342B2 (en) | 2013-03-28 | 2013-03-28 | Method for saccharification of cellulose |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014187991A JP2014187991A (en) | 2014-10-06 |
JP6167342B2 true JP6167342B2 (en) | 2017-07-26 |
Family
ID=51834973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013069233A Active JP6167342B2 (en) | 2013-03-28 | 2013-03-28 | Method for saccharification of cellulose |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6167342B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014195769A (en) * | 2013-03-29 | 2014-10-16 | 株式会社エクォス・リサーチ | Heating crusher |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2593392B2 (en) * | 1992-10-20 | 1997-03-26 | 本州製紙株式会社 | Pulp bleaching method |
WO2004042139A1 (en) * | 2002-11-07 | 2004-05-21 | Nippon Paper Industries Co., Ltd. | Method for improving the discoloration resistance of pulp and pulp improved in discoloration resistance |
JP2006149343A (en) * | 2004-11-26 | 2006-06-15 | Daitoo Fujitekku:Kk | Glucose product from wood-based biomass and method for producing glucose product |
JP4134250B1 (en) * | 2007-07-03 | 2008-08-20 | 崎 隆 川 | Method for producing monosaccharides and ethanol using cellulosic substances |
JP5714396B2 (en) * | 2011-04-18 | 2015-05-07 | 株式会社日本触媒 | Biomass saccharification method |
JP5849464B2 (en) * | 2011-04-28 | 2016-01-27 | 株式会社エクォス・リサーチ | Extraction method for extracting water-soluble components from cellulose |
-
2013
- 2013-03-28 JP JP2013069233A patent/JP6167342B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014187991A (en) | 2014-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Pretreatment of lignocellulosic biomass for efficient enzymatic saccharification of cellulose | |
Tan et al. | Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products–A review | |
Zhao et al. | Synergistic effect of hydrogen peroxide and ammonia on lignin | |
Sołowski et al. | Production of hydrogen and methane from lignocellulose waste by fermentation. A review of chemical pretreatment for enhancing the efficiency of the digestion process | |
Ong et al. | A combined pretreatment with ultrasound-assisted alkaline solution and aqueous deep eutectic solvent for enhancing delignification and enzymatic hydrolysis from oil palm fronds | |
de CM Miranda et al. | Pineapple crown delignification using low-cost ionic liquid based on ethanolamine and organic acids | |
Li et al. | Lignocellulose pretreatment by deep eutectic solvents and related technologies: a review | |
ES2741961T3 (en) | Novel method to process lignocellulose containing material | |
JP4958166B2 (en) | Treatment of plant biomass with alcohol in the presence of oxygen | |
Xu et al. | Recent advances in alkaline pretreatment of lignocellulosic biomass | |
Ahmed et al. | Pathways of lignocellulosic biomass deconstruction for biofuel and value-added products production | |
JP4619917B2 (en) | Pretreatment method of lignocellulose | |
CN104830928B (en) | A kind of lignocellulose pretreatment method of microwave radiation technology alkaline sodium sulfite | |
Trinh et al. | Optimization of ionic liquid pretreatment of mixed softwood by response surface methodology and reutilization of ionic liquid from hydrolysate | |
Bi et al. | Enhanced enzymatic saccharification of sugarcane bagasse pretreated by combining O2 and NaOH | |
Sindhu et al. | A novel sono-assisted acid pretreatment of chili post harvest residue for bioethanol production | |
JP2009125050A (en) | Pretreatment method for enzymatic hydrolysis of herbaceous biomass, ethanol production method using herbaceous biomass as raw material and ethanol production method using palm hollow bunch | |
Driscoll et al. | Ionizing radiation and a wood-based biorefinery | |
Xie et al. | 1-Butyl-3-methylimidazolium chloride pretreatment of cotton stalk and structure characterization | |
Gu et al. | Hydrothermal liquefaction conversion of lignocelluloses with enhanced fungal pretreatment | |
JP6167342B2 (en) | Method for saccharification of cellulose | |
ES2612009T3 (en) | Procedure to produce ethanol from biomass with lignocellulose content | |
CN107904271A (en) | A kind of method of microwave reinforced soda lime preprocessing lignocellulose | |
Gong et al. | Combined sodium percarbonate and glycerol pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis | |
JPS5971700A (en) | Pretreatment for enzymatic hydrolysis of cellulosic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160804 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170523 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170530 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6167342 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |