JP6165014B2 - Fluid composition analyzer, calorimeter, gas turbine plant equipped with the same, and operation method thereof - Google Patents

Fluid composition analyzer, calorimeter, gas turbine plant equipped with the same, and operation method thereof Download PDF

Info

Publication number
JP6165014B2
JP6165014B2 JP2013207706A JP2013207706A JP6165014B2 JP 6165014 B2 JP6165014 B2 JP 6165014B2 JP 2013207706 A JP2013207706 A JP 2013207706A JP 2013207706 A JP2013207706 A JP 2013207706A JP 6165014 B2 JP6165014 B2 JP 6165014B2
Authority
JP
Japan
Prior art keywords
light
optical system
measurement cell
light receiving
connecting rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013207706A
Other languages
Japanese (ja)
Other versions
JP2015072179A (en
Inventor
出口 祥啓
祥啓 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2013207706A priority Critical patent/JP6165014B2/en
Publication of JP2015072179A publication Critical patent/JP2015072179A/en
Application granted granted Critical
Publication of JP6165014B2 publication Critical patent/JP6165014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、試料流体の組成を分析する流体組成分析装置、この流体組成分析装置を備えている熱量計、この熱量計を備えているガスタービンプラント、及びその運転方法に関する。   The present invention relates to a fluid composition analyzer for analyzing the composition of a sample fluid, a calorimeter equipped with the fluid composition analyzer, a gas turbine plant equipped with the calorimeter, and an operating method thereof.

流体の組成を分析する方法として、流体に励起光を照射し、励起光が照射された流体からのラマン散乱光を分析する方法がある。この方法を実行する装置としては、例えば、以下の特許文献1に記載の分析装置がある。この分析装置は、流体が内部を流れる測定チャンバーと、励起光であるレーザ光を発振するレーザ照射装置と、レーザ照射装置からのレーザ光を測定チャンバー内の流体に照射する光照射光学系と、レーザ光が照射された流体からのラマン散乱光を集光する受光光学系と、受光光学系で集光されたラマン散乱光を受光する光ファイバーと、光ファイバーで受光された光を分析する測定部と、を備えている。   As a method of analyzing the composition of the fluid, there is a method of irradiating the fluid with excitation light and analyzing Raman scattered light from the fluid irradiated with the excitation light. As an apparatus for executing this method, for example, there is an analyzer described in Patent Document 1 below. The analyzer includes a measurement chamber in which a fluid flows, a laser irradiation device that oscillates laser light that is excitation light, a light irradiation optical system that irradiates the fluid in the measurement chamber with laser light from the laser irradiation device, A light receiving optical system for condensing the Raman scattered light from the fluid irradiated with the laser light, an optical fiber for receiving the Raman scattered light collected by the light receiving optical system, and a measuring unit for analyzing the light received by the optical fiber; It is equipped with.

光照射光学系は筐体内に設けられており、この筐体が測定チャンバーに固定されている。また、受光光学系も筐体内に設けられており、この筐体が測定チャンバーに固定されている。   The light irradiation optical system is provided in a housing, and this housing is fixed to the measurement chamber. A light receiving optical system is also provided in the housing, and this housing is fixed to the measurement chamber.

特開2011−80768号公報JP 2011-80768 A

上記特許文献1に記載の分析装置では、対象とする流体の温度や外部環境の変化等により測定チャンバーが熱変形すると、光照射光学系の光軸の向きに対して受光光学系の光軸の向きが相対的に変化して、光ファイバーによるラマン散乱光の受光量が少なくなることがある。このため、上記特許文献1に記載の分析装置では、対象とする流体の温度や外部環境の変化等により組成分析の精度が低下することがあるという問題点がある。   In the analysis apparatus described in Patent Document 1, when the measurement chamber is thermally deformed due to the temperature of the target fluid or a change in the external environment, the optical axis of the light receiving optical system is changed with respect to the direction of the optical axis of the light irradiation optical system. The direction may change relatively, and the amount of Raman scattered light received by the optical fiber may be reduced. For this reason, the analysis apparatus described in Patent Document 1 has a problem in that the accuracy of composition analysis may decrease due to the temperature of the target fluid, changes in the external environment, and the like.

そこで、本発明は、対象とする流体の温度や外部環境の変化等による組成分析の精度低下を抑えることができる技術を提供することを目的とする。   Therefore, an object of the present invention is to provide a technique capable of suppressing a decrease in accuracy of composition analysis due to a change in the temperature of a target fluid, an external environment, or the like.

上記問題点を解決するための発明に係る一態様としての流体組成分析装置は、
試料流体が内部を流れる計測セルと、前記計測セルに設けられ、前記計測セル内に励起光を通過させる入光窓と、前記計測セルに設けられ、前記励起光が照射させた前記試料流体からのラマン散乱光を前記計測セル外へ通過させる出光窓と、前記励起光を出射する光出射部を有し、前記入光窓を介して前記励起光を前記計測セル内の前記試料流体に照射する出射光学系と、前記出光窓を通過した前記ラマン散乱光を集光する集光光学系と、前記集光光学系で集光された前記ラマン散乱光を受光する受光部とを有する受光光学系と、前記受光部からの出力に基づいて前記試料流体の組成を分析する分析部と、前記出射光学系と前記受光光学系とを互いの位置関係が変位不能に直接連結する連結部材と、を備え、
前記出射光学系と前記受光光学系と前記連結部材で構成される光学ユニットは、前記計測セルの熱変形を許容しつつ、前記計測セルの所定箇所に対して相対移動不能に前記計測セルに取り付けられている。
The fluid composition analyzer as one aspect according to the invention for solving the above problems is
A measurement cell in which the sample fluid flows, a light entrance window that is provided in the measurement cell and allows excitation light to pass through the measurement cell, and a sample fluid that is provided in the measurement cell and irradiated with the excitation light. A light exit window that allows the Raman scattered light to pass out of the measurement cell, and a light exit portion that emits the excitation light, and the sample fluid in the measurement cell is irradiated through the light entrance window. Receiving optical system, a condensing optical system that condenses the Raman scattered light that has passed through the light exit window, and a light receiving optical unit that receives the Raman scattered light collected by the condensing optical system A system, an analysis unit that analyzes the composition of the sample fluid based on the output from the light receiving unit, and a connecting member that directly connects the emission optical system and the light receiving optical system so that their positional relationship is not displaceable, With
An optical unit composed of the emission optical system, the light receiving optical system, and the connecting member is attached to the measurement cell so as not to move relative to a predetermined location of the measurement cell while allowing thermal deformation of the measurement cell. It has been.

当該流体組成分析装置では、連結部材により、出射光学系と受光光学系との互いの位置関係が変位不能に直接連結されている。しかも、当該流体組成分析装置では、出射光学系と受光光学系と連結部材で構成される光学ユニットが、計測セルの熱変形を許容しつつ、計測セルの所定箇所に対して相対移動不能に計測セルに取り付けられている。このため、当該流体組成分析装置では、試料流体の温度や外部環境の変化等により計測セルが熱変形しても、光学ユニットが計測セルに取り付けられている状態を維持しつつ、出射光学系の光軸に対する受光光学系の光軸の向きの変化を抑えることができる。   In the fluid composition analyzer, the positional relationship between the emission optical system and the light receiving optical system is directly coupled by the coupling member so as not to be displaced. Moreover, in the fluid composition analyzer, the optical unit composed of the emission optical system, the light receiving optical system, and the connecting member allows the measurement cell to be thermally moved and allows relative measurement with respect to a predetermined position of the measurement cell. It is attached to the cell. For this reason, in the fluid composition analyzer, even if the measurement cell is thermally deformed due to a change in the temperature of the sample fluid, the external environment, or the like, the optical unit is attached to the measurement cell while maintaining the state of the emission optical system. A change in the direction of the optical axis of the light receiving optical system with respect to the optical axis can be suppressed.

よって、当該流体組成分析装置では、試料流体の温度や外部環境の変化等により計測セルが熱変形しても、受光光学系の受光部が受けるラマン散乱光の光量減少を抑えることができ、組成分析の精度低下を抑えることができる。   Therefore, the fluid composition analyzer can suppress a decrease in the amount of Raman scattered light received by the light receiving unit of the light receiving optical system even when the measurement cell is thermally deformed due to a change in the temperature of the sample fluid or the external environment. Decrease in analysis accuracy can be suppressed.

上記問題点を解決するための発明に係る他の態様としての流体組成分析装置は、
試料流体が内部を流れる計測セルと、前記計測セルに設けられ、前記計測セル内に励起光を通過させる入光窓と、前記計測セルに設けられ、前記励起光が照射させた前記試料流体からのラマン散乱光を前記計測セル外へ通過させる出光窓と、前記励起光を出射する光出射部を有し、前記入光窓を介して前記励起光を前記計測セル内の前記試料流体に照射する出射光学系と、前記出光窓を通過した前記ラマン散乱光を集光する集光光学系と、前記集光光学系で集光された前記ラマン散乱光を受光する受光部とを有する受光光学系と、前記受光部からの出力に基づいて前記試料流体の組成を分析する分析部と、前記出射光学系と前記受光光学系とを互いの位置関係が変位不能に直接連結する連結部材と、を備え、
前記出射光学系と前記受光光学系と前記連結部材で構成される光学ユニットは、前記計測セルの熱変形を許容しつつ、前記出射光学系の光軸の向きに対して前記受光光学系の光軸の向きが相対変位不能に前記計測セルに取り付けられ、前記入光窓と前記出光窓とは、前記試料流体が流れる前記計測セル内の空間を挟んで互いに対向する位置に設けられ、前記連結部材は、前記出射光学系と前記受光光学系とを間隔をあけて互いに対向させ、且つ前記出射光学系の光軸と前記受光光学系の光軸とを同一直線上に位置させて、前記出射光学系と前記受光光学系とを互いを連結する連結ロッドを有し、前記計測セルには、前記入光窓と前記出光窓とが対向する方向に貫通する係合部が形成され、前記連結ロッドは、前記係合部に挿通されることで係合されている。
Another embodiment of the fluid composition analyzer according to the invention for solving the above problems is as follows:
A measurement cell in which the sample fluid flows, a light entrance window that is provided in the measurement cell and allows excitation light to pass through the measurement cell, and a sample fluid that is provided in the measurement cell and irradiated with the excitation light. A light exit window that allows the Raman scattered light to pass out of the measurement cell, and a light exit portion that emits the excitation light, and the sample fluid in the measurement cell is irradiated through the light entrance window. Receiving optical system, a condensing optical system that condenses the Raman scattered light that has passed through the light exit window, and a light receiving optical unit that receives the Raman scattered light collected by the condensing optical system A system, an analysis unit that analyzes the composition of the sample fluid based on the output from the light receiving unit, and a connecting member that directly connects the emission optical system and the light receiving optical system so that their positional relationship is not displaceable, With
The optical unit composed of the emission optical system, the light receiving optical system, and the connecting member allows light of the light receiving optical system relative to the direction of the optical axis of the emission optical system while allowing thermal deformation of the measurement cell. The direction of the axis is attached to the measurement cell so that relative displacement is impossible, and the light entrance window and the light exit window are provided at positions facing each other across a space in the measurement cell through which the sample fluid flows. The member is configured such that the emission optical system and the light receiving optical system are opposed to each other with an interval therebetween, and the optical axis of the emission optical system and the optical axis of the light receiving optical system are positioned on the same straight line, The measuring cell has a connecting rod that connects the optical system and the light receiving optical system to each other, and the measuring cell is formed with an engaging portion that penetrates in a direction in which the light entrance window and the light exit window face each other. The rod is engaged by being inserted through the engaging portion. It is.

当該流体組成分析装置では、連結部材により、出射光学系と受光光学系との互いの位置関係が変位不能に直接連結されている。しかも、当該流体組成分析装置では、出射光学系と受光光学系と連結部材で構成される光学ユニットが、計測セルの熱変形を許容しつつ、出射光学系の光軸の向きに対して受光光学系の光軸の向きが相対変位不能に計測セルに取り付けられている。このため、当該流体組成分析装置では、試料流体の温度や外部環境の変化等により計測セルが熱変形しても、光学ユニットが計測セルに取り付けられている状態を維持しつつ、出射光学系の光軸に対する受光光学系の光軸の向きの変化を抑えることができる。   In the fluid composition analyzer, the positional relationship between the emission optical system and the light receiving optical system is directly coupled by the coupling member so as not to be displaced. In addition, in the fluid composition analyzer, the optical unit composed of the emission optical system, the light reception optical system, and the connecting member allows light reception optics with respect to the direction of the optical axis of the emission optical system while allowing thermal deformation of the measurement cell. The direction of the optical axis of the system is attached to the measurement cell so that the relative displacement is impossible. For this reason, in the fluid composition analyzer, even if the measurement cell is thermally deformed due to a change in the temperature of the sample fluid, the external environment, or the like, the optical unit is attached to the measurement cell while maintaining the state of the emission optical system. A change in the direction of the optical axis of the light receiving optical system with respect to the optical axis can be suppressed.

よって、当該流体組成分析装置でも、試料流体の温度や外部環境の変化等により計測セルが熱変形しても、受光光学系の受光部が受けるラマン散乱光の光量減少を抑えることができ、組成分析の精度低下を抑えることができる。   Therefore, even in the fluid composition analyzer, even if the measurement cell is thermally deformed due to changes in the temperature of the sample fluid or the external environment, the decrease in the amount of Raman scattered light received by the light receiving unit of the light receiving optical system can be suppressed. Decrease in analysis accuracy can be suppressed.

ここで、以上のいずれかの前記流体組成分析装置において、前記入光窓と前記出光窓とは、前記試料流体が流れる前記計測セル内の空間を挟んで互いに対向する位置に設けられ、前記連結部材は、前記出射光学系と前記受光光学系とを間隔をあけて互いに対向させ、且つ前記出射光学系の光軸と前記受光光学系の光軸とを同一直線上に位置させて、前記出射光学系と前記受光光学系とを互いを連結する連結ロッドを有し、前記計測セルには、前記入光窓と前記出光窓とが対向する方向に貫通する係合部が形成され、前記連結ロッドは、前記係合部に挿通されることで係合されていてもよい。   Here, in any one of the fluid composition analyzers described above, the light entrance window and the light exit window are provided at positions facing each other across a space in the measurement cell through which the sample fluid flows. The member is configured such that the emission optical system and the light receiving optical system are opposed to each other with an interval therebetween, and the optical axis of the emission optical system and the optical axis of the light receiving optical system are positioned on the same straight line, The measuring cell has a connecting rod that connects the optical system and the light receiving optical system to each other, and the measuring cell is formed with an engaging portion that penetrates in a direction in which the light entrance window and the light exit window face each other. The rod may be engaged by being inserted through the engaging portion.

この場合、前記流体組成分析装置において、前記連結ロッドは、前記係合部に対して隙間を有して挿通され、前記連結部材は、前記連結ロッドに接して、前記連結ロッドとの接触位置が前記計測セルに対して相対移動不能に前記連結ロッドを前記計測セルに取り付ける取付具を有していてもよい。   In this case, in the fluid composition analyzer, the connecting rod is inserted with a gap with respect to the engaging portion, the connecting member is in contact with the connecting rod, and a contact position with the connecting rod is You may have the fixture which attaches the said connection rod to the said measurement cell so that relative movement is impossible with respect to the said measurement cell.

上記問題点を解決するための発明に係るさらに他の態様としての流体組成分析装置は、
試料流体が内部を流れる計測セルと、前記計測セルに設けられ、前記計測セル内に励起光を通過させる入光窓と、前記計測セルで、前記試料流体が流れる前記計測セル内の空間を挟んで前記入光窓と対向する位置に設けられ、前記励起光が照射させた前記試料流体からのラマン散乱光を前記計測セル外へ通過させる出光窓と、前記励起光を出射する光出射部を有し、前記入光窓を介して前記励起光を前記計測セル内の前記試料流体に照射する出射光学系と、前記出光窓を通過した前記ラマン散乱光を集光する集光光学系と、前記集光光学系で集光された前記ラマン散乱光を受光する受光部とを有する受光光学系と、前記受光部からの出力に基づいて前記試料流体の組成を分析する分析部と、前記出射光学系と前記受光光学系とを互いの位置関係が変位不能に直接連結する連結部材と、を備え、
前記連結部材は、前記出射光学系と前記受光光学系とを間隔をあけて互いに対向させ、且つ前記出射光学系の光軸と前記受光光学系の光軸とを同一直線上に位置させて、前記出射光学系と前記受光光学系とを互いを連結する連結ロッドと、前記連結ロッドを前記計測セルに取り付ける取付具と、を有し、前記計測セルには、前記入光窓と前記出光窓とが対向する方向に貫通する係合部が形成され、前記取付具は、前記係合部に挿通された前記連結ロッドに接して、前記連結ロッドとの接触位置が前記計測セルに対して相対移動不能に前記連結ロッドを前記計測セルに取り付ける。
A fluid composition analyzer as still another aspect according to the invention for solving the above-described problems,
A measurement cell in which the sample fluid flows, a light entrance window that is provided in the measurement cell and allows excitation light to pass through the measurement cell, and a space in the measurement cell through which the sample fluid flows are sandwiched by the measurement cell A light exit window for passing Raman scattered light from the sample fluid irradiated with the excitation light to the outside of the measurement cell, and a light emitting section for emitting the excitation light. An exit optical system that irradiates the sample fluid in the measurement cell with the excitation light through the light entrance window; and a condensing optical system that collects the Raman scattered light that has passed through the light exit window; A light receiving optical system having a light receiving portion that receives the Raman scattered light collected by the light collecting optical system, an analysis portion that analyzes the composition of the sample fluid based on an output from the light receiving portion, and the emission Position the optical system and the light receiving optical system relative to each other. There comprising a connecting member for connecting non-displaceable directly, and
The connecting member is configured such that the emission optical system and the light receiving optical system are opposed to each other with an interval, and the optical axis of the emission optical system and the optical axis of the light receiving optical system are positioned on the same straight line, A connecting rod for connecting the emission optical system and the light receiving optical system to each other; and a fixture for attaching the connecting rod to the measurement cell. The measurement cell includes the light entrance window and the light exit window. And an engaging portion penetrating in a direction opposite to each other, and the fixture comes into contact with the connecting rod inserted through the engaging portion, and a contact position with the connecting rod is relative to the measuring cell. The connecting rod is attached to the measuring cell so as not to move.

当該流体組成分析装置では、連結部材により、出射光学系と受光光学系との互いの位置関係が変位不能に直接連結されている。しかも、当該流体組成分析装置では、取付具が、計測セルの係合部に挿通された連結ロッドに接して、連結ロッドとの接触位置が計測セルに対して相対移動不能に連結ロッドを計測セルに取り付けており、計測セルが熱変形しても、この変形による連結ロッドへの影響が小さい。このため、当該流体組成分析装置では、試料流体の温度や外部環境の変化等により計測セルが熱変形しても、出射光学系と受光光学系と連結部材で構成される光学ユニットが計測セルに取り付けられている状態を維持しつつ、出射光学系の光軸に対する受光光学系の光軸の向きの変化を抑えることができる。   In the fluid composition analyzer, the positional relationship between the emission optical system and the light receiving optical system is directly coupled by the coupling member so as not to be displaced. Moreover, in the fluid composition analyzer, the fixture contacts the connecting rod inserted through the engaging portion of the measurement cell, and the contact position with the connecting rod cannot move relative to the measurement cell. Even if the measurement cell is thermally deformed, the influence of the deformation on the connecting rod is small. For this reason, in the fluid composition analyzer, even if the measurement cell is thermally deformed due to a change in the temperature of the sample fluid or the external environment, the optical unit composed of the emission optical system, the light receiving optical system, and the connecting member becomes the measurement cell. A change in the direction of the optical axis of the light receiving optical system relative to the optical axis of the output optical system can be suppressed while maintaining the attached state.

よって、当該流体組成分析装置では、試料流体の温度や外部環境の変化等により計測セルが熱変形しても、受光光学系の受光部が受けるラマン散乱光の光量減少を抑えることができ、組成分析の精度低下を抑えることができる。   Therefore, the fluid composition analyzer can suppress a decrease in the amount of Raman scattered light received by the light receiving unit of the light receiving optical system even when the measurement cell is thermally deformed due to a change in the temperature of the sample fluid or the external environment. Decrease in analysis accuracy can be suppressed.

また、前記連結ロッドを有する、以上のいずれかの前記流体組成分析装置において、前記連結部材は、前記出射光学系を保持し、前記連結ロッドに取り付けられる出射光学系保持枠と、前記連結ロッドに対する前記出射光学系保持枠の向き及び固定位置を調節する取付調節具と、前記受光光学系を保持し、前記連結ロッドに取り付けられる受光光学系保持枠と、前記連結ロッドに対する前記受光光学系保持枠の向き及び固定位置を調節する取付調節具と、を備えていてもよい。   Further, in any one of the fluid composition analyzers having the connection rod, the connection member holds the emission optical system and is attached to the connection rod, and an output optical system holding frame is attached to the connection rod. A mounting adjuster that adjusts the orientation and fixing position of the output optical system holding frame, a light receiving optical system holding frame that holds the light receiving optical system and is attached to the connecting rod, and the light receiving optical system holding frame with respect to the connecting rod And an attachment adjuster that adjusts the orientation and the fixed position.

また、前記連結ロッドを有する、以上のいずれかの前記流体組成分析装置において、前記連結部材は、互いに平行な4本の前記連結ロッドを有してもよい。   In any one of the fluid composition analyzers having the connecting rod, the connecting member may include four connecting rods parallel to each other.

また、以上のいずれかの前記流体組成分析装置において、前記連結部材で、少なくとも前記計測セルに取り付けられる部分は、前記計測セルよりも熱膨張率の絶対値が小さい材料で形成されていてもよい。   In any of the above fluid composition analyzers, at least a portion of the connecting member that is attached to the measurement cell may be formed of a material having an absolute value of a thermal expansion coefficient smaller than that of the measurement cell. .

また、以上のいずれかの前記流体組成分析装置において、前記出光窓は、前記励起光を反射し、前記ラマン散乱光を前記計測セル外へ通過させるフィルターであってもよい。   In any of the above fluid composition analyzers, the light exit window may be a filter that reflects the excitation light and allows the Raman scattered light to pass outside the measurement cell.

上記問題点を解決するための発明に係る一態様としての熱量計は、
以上のいずれかの前記流体組成分析装置と、前記流体組成分析装置の前記分析部で分析された前記試料流体の組成に基づいて、前記試料流体の発熱量を求め、前記発熱量を出力する発熱量演算器と、を備えている。
The calorimeter as one aspect according to the invention for solving the above problems is
One of the fluid composition analyzers described above, and a heat generation unit that calculates a calorific value of the sample fluid based on the composition of the sample fluid analyzed by the analysis unit of the fluid composition analyzer and outputs the calorific value A quantity calculator.

当該熱量計は、前記流体組成分析装置を備えているので、試料流体の温度や外部環境の変化等による組成分析の精度低下に伴う計測発熱量の精度低下を抑えることができる。   Since the calorimeter includes the fluid composition analyzer, it is possible to suppress a decrease in the accuracy of the measured calorific value due to a decrease in the accuracy of the composition analysis due to a change in the temperature of the sample fluid or the external environment.

上記問題点を解決するための発明に係る一態様としてのガスタービンプラントは、
燃料ガスを燃焼させて駆動するガスタービンと、前記燃料ガスを前記試料流体として、前記燃料ガスの発熱量を求める前記熱量計と、前記熱量計から出力された前記燃料ガスの発熱量を用いて前記ガスタービンの動作を制御する制御装置と、を備えている。
A gas turbine plant as one aspect according to the invention for solving the above problems is as follows:
Using a gas turbine that is driven by burning fuel gas, using the fuel gas as the sample fluid, the calorimeter for obtaining the calorific value of the fuel gas, and the calorific value of the fuel gas output from the calorimeter And a control device for controlling the operation of the gas turbine.

上記問題点を解決するための発明に係る一態様としてのガスタービンプラントの運転方法は、
燃料ガスを燃焼させて駆動するガスタービンを備えているガスタービンプラントの運転方法において、前記熱量計を用いて、前記燃料ガスを前記試料流体として、前記燃料ガスの発熱量を求め、前記熱量計で求められた前記燃料ガスの発熱量を用いて前記ガスタービンの動作を制御する。
An operation method of a gas turbine plant as one aspect according to the invention for solving the above problems is as follows.
In a method for operating a gas turbine plant including a gas turbine that is driven by burning fuel gas, the calorimeter is used to obtain a calorific value of the fuel gas using the fuel gas as the sample fluid, and the calorimeter The operation of the gas turbine is controlled using the calorific value of the fuel gas obtained in step (1).

当該ガスタービンプラント及びその運転方法では、燃料ガスの単位発熱量が変化しても、短時間のうちにガスタービンプラントを目標の状態に近づけることができる。   In the gas turbine plant and its operation method, even if the unit calorific value of the fuel gas changes, the gas turbine plant can be brought close to the target state in a short time.

本発明では、試料流体の温度や外部環境の変化等により計測セルが熱変形しても、受光光学系の受光部が受けるラマン散乱光の光量減少を抑えることができ、組成分析の精度低下を抑えることができる。   In the present invention, even if the measurement cell is thermally deformed due to changes in the temperature of the sample fluid or the external environment, the decrease in the amount of Raman scattered light received by the light receiving unit of the light receiving optical system can be suppressed, and the accuracy of composition analysis can be reduced. Can be suppressed.

本発明に係る第一実施形態における流体組成分析装置の側面図である。It is a side view of the fluid composition analyzer in a first embodiment concerning the present invention. 本発明に係る第一実施形態における流体組成分析装置の斜視図である。1 is a perspective view of a fluid composition analyzer in a first embodiment according to the present invention. 本発明に係る第一実施形態における計測セルの要部切欠き側面図である。It is a principal part notched side view of the measurement cell in 1st embodiment which concerns on this invention. 図3におけるIV矢視図である。It is IV arrow line view in FIG. 図5におけるV−V線断面図である。It is the VV sectional view taken on the line in FIG. 本発明に係る第一実施形態における発振器保持枠の断面図である。It is sectional drawing of the oscillator holding frame in 1st embodiment which concerns on this invention. 本発明に係る第一実施形態における流体組成分析装置の光学系の構成を示す説明図である。It is explanatory drawing which shows the structure of the optical system of the fluid composition analyzer in 1st embodiment which concerns on this invention. 試料流体に照射する励起光の波長に対する各成分から発せられるラマン散乱光の波長のシフト量、及び励起光が所定の波長のときの各成分から発せられるラマン散乱光の波長を示す説明図である。It is explanatory drawing which shows the shift amount of the wavelength of the Raman scattered light emitted from each component with respect to the wavelength of the excitation light irradiated to the sample fluid, and the wavelength of the Raman scattered light emitted from each component when the excitation light has a predetermined wavelength. . 試料流体に励起光が照射されたときに各成分から発せられるラマン散乱光の波長と、各波長の強度との関係を示すグラフである。It is a graph which shows the relationship between the wavelength of the Raman scattered light emitted from each component when a sample fluid is irradiated with excitation light, and the intensity | strength of each wavelength. 本発明に係る第一実施形態における計測セルが熱変形したときの状態を示す説明図(その1)である。It is explanatory drawing (the 1) which shows a state when the measurement cell in 1st embodiment which concerns on this invention is thermally deformed. 本発明に係る第一実施形態における計測セルが熱変形したときの状態を示す説明図(その2)である。It is explanatory drawing (the 2) which shows a state when the measurement cell in 1st embodiment which concerns on this invention is thermally deformed. 本発明に係る第一実施形態の第一変形例における流体組成分析装置の入光窓側から見た図である。It is the figure seen from the light-incidence window side of the fluid composition analyzer in the 1st modification of 1st embodiment which concerns on this invention. 本発明に係る第一実施形態の第二変形例における流体組成分析装置の入光窓側から見た図である。It is the figure seen from the light-incidence window side of the fluid composition analyzer in the 2nd modification of 1st embodiment which concerns on this invention. 本発明に係る第二実施形態における流体組成分析装置の要部切欠き平面図である。It is a principal part notched top view of the fluid composition analyzer in 2nd embodiment which concerns on this invention. 本発明に係る一実施形態におけるガスタービンプラントの系統図である。It is a systematic diagram of the gas turbine plant in one embodiment concerning the present invention.

以下、本発明に係る流体組成分析装置の各実施形態及について、図面を参照して説明する。   Embodiments of a fluid composition analyzer according to the present invention will be described below with reference to the drawings.

「流体組成分析装置の第一実施形態」
図1〜図11を用いて、本発明に係る流体組成分析装置の第一実施形態について説明する。
"First embodiment of fluid composition analyzer"
1st Embodiment of the fluid composition analyzer which concerns on this invention is described using FIGS.

本実施形態の流体組成分析装置の分析する試料流体は、例えば、燃料ガスである。この流体組成分析装置Mは、図1及び図2に示すように、試料流体Gが内部を流れる計測セル10と、計測セル10に設けられ計測セル10内に励起光を通過させる入光窓21と、計測セル10に設けられ試料流体Gからのラマン散乱光を計測セル10外へ通過させる出光窓22と、入光窓21を介して励起光を計測セル10内の試料流体Gに照射する出射光学系30と、出光窓22を通過したラマン散乱光を受光する受光光学系40と、出射光学系30と受光光学系40とを連結する連結部材50と、受光光学系40が受光したラマン散乱光に基づいて試料流体Gの組成を分析する分析器90と、を備えている。   The sample fluid to be analyzed by the fluid composition analyzer of the present embodiment is, for example, fuel gas. As shown in FIGS. 1 and 2, the fluid composition analyzer M includes a measurement cell 10 in which a sample fluid G flows, and a light incident window 21 that is provided in the measurement cell 10 and allows excitation light to pass through the measurement cell 10. And a light exit window 22 that is provided in the measurement cell 10 and allows Raman scattered light from the sample fluid G to pass outside the measurement cell 10, and excitation light is applied to the sample fluid G in the measurement cell 10 through the light entrance window 21. The output optical system 30, the light receiving optical system 40 that receives the Raman scattered light that has passed through the light exit window 22, the connecting member 50 that connects the output optical system 30 and the light receiving optical system 40, and the Raman that the light receiving optical system 40 receives. And an analyzer 90 that analyzes the composition of the sample fluid G based on the scattered light.

計測セル10は、直方体形状の第一本体11と、第一本体11に接続されている流入管19iと、第一本体11の流入管19iと反対側に接続されている直方体形状の第二本体18と、第二本体18の流入管19iとは反対側に接続されている流出管19oと、を有している。第一本体11及び第二本体18は、いずれも、複数の壁板により形成され、内部に試料流体Gが流れる空間が形成されている。計測セル10は、試料流体Gに対する耐腐食性、耐熱性、耐圧性等を有する材料、例えば、ステンレス材で形成されている。この計測セル10には、内部を通過する試料流体Gが結露等するのを防ぐために、電熱線等のヒータ81が巻き付けられている。   The measurement cell 10 includes a rectangular parallelepiped first main body 11, an inflow pipe 19i connected to the first main body 11, and a rectangular parallelepiped second main body connected to the opposite side of the first main body 11 from the inflow pipe 19i. 18 and an outflow pipe 19o connected to the side opposite to the inflow pipe 19i of the second main body 18. Both the first main body 11 and the second main body 18 are formed by a plurality of wall plates, and a space through which the sample fluid G flows is formed. The measurement cell 10 is formed of a material having corrosion resistance, heat resistance, pressure resistance, etc. with respect to the sample fluid G, for example, a stainless material. A heater 81 such as a heating wire is wound around the measurement cell 10 in order to prevent the sample fluid G passing therethrough from condensing.

図2及び図3に示すように、直方体形状の第一本体11を形成する複数の壁板12〜17のうち、互いに対向する2枚の壁板の一方の壁板は、流入側壁板12を成し、他方の壁板が流出側壁板13を成す。第一本体11の流入側壁板12には流入管19iが接続されている。第一本体11の流出側壁板13には、第二本体18が接続されている。第一本体11を形成する複数の壁板12〜17のうち、流入側壁板12及び流出側壁板13につながり且つ互いに対向する2枚の壁板の一方の壁板は、入光側壁板14を成し、他方の壁板が出光側壁板15を成す。入光側壁板14には、開口14oが形成され、この開口14oが入光窓21により塞がれている。この入光窓21は、入光窓枠23により第一本体11に固定されている。この入光窓21は、レーザ光を透過する。また、出光側壁板15で、入光側壁板14の開口14oと対向する位置にも、開口が形成され、この開口が出光窓22により塞がれている。この出光窓22は、出光窓枠24により第一本体11に固定されている。出光窓22は、ラマン散乱光を透過する一方で、計測セル10内側からのレーザ光を反射するフィルターとして機能する。第一本体11を形成する複数の壁板12〜17のうちの残りの2枚の壁板の一方の壁板は、第一側壁板16を成し、他方の壁板が第二側壁板17を成す。   As shown in FIGS. 2 and 3, of the plurality of wall plates 12 to 17 forming the rectangular parallelepiped first main body 11, one wall plate of the two wall plates facing each other is the inflow side wall plate 12. The other wall plate forms the outflow side wall plate 13. An inflow pipe 19 i is connected to the inflow side wall plate 12 of the first main body 11. A second main body 18 is connected to the outflow side wall plate 13 of the first main body 11. Of the plurality of wall plates 12 to 17 forming the first main body 11, one wall plate of the two wall plates connected to the inflow side wall plate 12 and the outflow side wall plate 13 and facing each other is provided with the light incident side wall plate 14. The other wall plate forms the light emission side wall plate 15. An opening 14 o is formed in the light incident side wall plate 14, and the opening 14 o is closed by the light incident window 21. The light entrance window 21 is fixed to the first main body 11 by a light entrance window frame 23. The light entrance window 21 transmits laser light. Further, an opening is formed in the light exit side wall plate 15 at a position facing the opening 14 o of the light entrance side wall plate 14, and this opening is closed by the light exit window 22. The light exit window 22 is fixed to the first main body 11 by a light exit window frame 24. The light exit window 22 functions as a filter that transmits the Raman scattered light while reflecting the laser light from the inside of the measurement cell 10. One wall plate of the remaining two wall plates among the plurality of wall plates 12 to 17 forming the first main body 11 forms the first side wall plate 16, and the other wall plate is the second side wall plate 17. Is made.

ここで、以下の説明の都合上、入光側壁板14と出光側壁板15とが対向する方向をZ方向とし、入光側壁板14に対して出光側壁板15側を(+)Z側とする。また、Z方向に垂直な方向で、流入側壁板12と流出側壁板13とが対向する方向をY方向とし、流入側壁板12に対して流出側壁板13側を(+)Y側とする。また、Y方向及びZ方向に垂直な方向で、第一側壁板16と第二側壁板17とが対向する方向をX方向とし、第一側壁板16に対して第二側壁板17側を(+)X側とする。   Here, for convenience of the following description, the direction in which the light incident side wall plate 14 and the light outgoing side wall plate 15 face each other is defined as the Z direction, and the light exiting side wall plate 15 side with respect to the light incident side wall plate 14 is defined as the (+) Z side. To do. The direction in which the inflow side wall plate 12 and the outflow side wall plate 13 face each other in the direction perpendicular to the Z direction is defined as the Y direction, and the outflow side wall plate 13 side with respect to the inflow side wall plate 12 is defined as the (+) Y side. In addition, the direction in which the first side wall plate 16 and the second side wall plate 17 face each other in the direction perpendicular to the Y direction and the Z direction is defined as the X direction, and the second side wall plate 17 side with respect to the first side wall plate 16 is ( +) X side.

図5に示すように、計測セル10を構成する入光窓枠23、第一側壁板16、第二側壁板17、及び出光窓枠24には、これらをZ方向に貫通する貫通孔(係合部)25が形成されている。貫通孔25は、図4に示すように、XY平面内で、入光窓21又は出光窓22を中心として、4箇所に形成されている。具体的には、XY平面内で入光窓21又は出光窓22よりも(−)Y側に、2つの貫通孔25がX方向に並んで形成され、XY平面内で入光窓21又は出光窓22よりも(+)Y側に、2つの貫通孔25がX方向に並んで形成されている。また、XY平面内で入光窓21又は出光窓22よりも(−)Y側に形成されている2つの貫通孔25のうち、一方の貫通孔25が入光窓21又は出光窓22よりも(−)X側に形成され、他方の貫通孔25が入光窓21又は出光窓22よりも(+)X側に形成されている。また、XY平面内で入光窓21又は出光窓22よりも(+)Y側に形成されている2つの貫通孔25のうち、一方の貫通孔25が入光窓21又は出光窓22よりも(−)X側に形成され、他方の貫通孔25が入光窓21又は出光窓22よりも(+)X側に形成されている。   As shown in FIG. 5, the light entrance window frame 23, the first side wall plate 16, the second side wall plate 17, and the light exit window frame 24 constituting the measurement cell 10 have through-holes (engagement holes) penetrating them in the Z direction. 25) is formed. As shown in FIG. 4, the through holes 25 are formed at four locations in the XY plane with the light entrance window 21 or the light exit window 22 as the center. Specifically, two through holes 25 are formed side by side in the X direction on the (−) Y side of the light entrance window 21 or the light exit window 22 in the XY plane, and the light entrance window 21 or the light exit in the XY plane. Two through holes 25 are formed side by side in the X direction on the (+) Y side of the window 22. Of the two through holes 25 formed on the (−) Y side of the light entrance window 21 or the light exit window 22 in the XY plane, one through hole 25 is located more than the light entrance window 21 or the light exit window 22. The other through hole 25 is formed on the (+) X side with respect to the light incident window 21 or the light exit window 22. Of the two through holes 25 formed on the (+) Y side of the light entrance window 21 or the light exit window 22 in the XY plane, one through hole 25 is located more than the light entrance window 21 or the light exit window 22. The other through hole 25 is formed on the (+) X side with respect to the light incident window 21 or the light exit window 22.

出射光学系30は、図1及び図2に示すように、励起光であるレーザ光を出射するレーザ発振器31と、このレーザ発振器31の光出射部32からのレーザ光を絞る絞り33と、を有している。受光光学系40は、出光窓22を通過したラマン散乱光を集光する集光光学系41と、集光光学系41で集光されたラマン散乱光を受光する受光用光ファイバー48と、を有している。受光用光ファイバー48には、受光したラマン散乱光を分析器90へ導く送光用光ファイバー91が接続されている。   As shown in FIGS. 1 and 2, the emission optical system 30 includes a laser oscillator 31 that emits laser light that is excitation light, and a diaphragm 33 that restricts the laser light from the light emitting portion 32 of the laser oscillator 31. Have. The light receiving optical system 40 includes a condensing optical system 41 that condenses the Raman scattered light that has passed through the light exit window 22, and a light receiving optical fiber 48 that receives the Raman scattered light collected by the condensing optical system 41. doing. A light transmitting optical fiber 91 that guides the received Raman scattered light to the analyzer 90 is connected to the light receiving optical fiber 48.

連結部材50は、Z方向に延び互いに平行な4本の連結ロッド51と、連結ロッド51を計測セル10に取り付ける取付具52と、連結ロッド51に取り付けられ出射光学系30を保持する出射光学系保持枠53と、連結ロッド51に取り付けられ受光光学系40を保持する受光光学系保持枠63と、連結ロッド51に対する出射光学系保持枠53の向き及び固定位置を調節する取付調節具57と、連結ロッド51に対する受光光学系保持枠63の向き及び固定位置を調節する取付調節具57と、を有する。   The connecting member 50 includes four connecting rods 51 that extend in the Z direction and are parallel to each other, a fixture 52 that attaches the connecting rod 51 to the measurement cell 10, and an exit optical system that is attached to the connect rod 51 and holds the exit optical system 30. A holding frame 53, a light receiving optical system holding frame 63 that is attached to the connecting rod 51 and holds the light receiving optical system 40, an attachment adjuster 57 that adjusts the orientation and fixing position of the output optical system holding frame 53 with respect to the connecting rod 51, And an attachment adjuster 57 that adjusts the orientation and fixing position of the light receiving optical system holding frame 63 with respect to the connecting rod 51.

連結ロッド51の材料は特に限定されないが、熱膨張率の絶対値が小さい材料であることが好ましい。例えば、常温付近で熱膨張係数の絶対値が小さいインバー材や炭素繊維を含む複合材料等で連結ロッド51を形成してもよい。この連結ロッド51の外径は、図4に示すように、計測セル10に形成されている貫通孔25の内径よりも僅かに小さい。つまり、計測セル10の貫通孔25に連結ロッド51を挿通しても、貫通孔25の内周面と連結ロッド51の外周面との間には隙間がある。このため、計測セル10が変形し、貫通孔25が多少変形しても、連結ロッド51の直線性を維持することができる。   The material of the connecting rod 51 is not particularly limited, but is preferably a material having a small absolute value of thermal expansion coefficient. For example, the connecting rod 51 may be formed of an invar material having a small absolute value of the thermal expansion coefficient near room temperature, a composite material containing carbon fiber, or the like. As shown in FIG. 4, the outer diameter of the connecting rod 51 is slightly smaller than the inner diameter of the through hole 25 formed in the measurement cell 10. That is, even if the connecting rod 51 is inserted into the through hole 25 of the measurement cell 10, there is a gap between the inner peripheral surface of the through hole 25 and the outer peripheral surface of the connecting rod 51. For this reason, even if the measurement cell 10 is deformed and the through hole 25 is slightly deformed, the linearity of the connecting rod 51 can be maintained.

入光窓枠23及び出光窓枠24には、図4及び図5に示すように、Z方向に垂直な方向に延び、外側から貫通孔25に連通するネジ孔が形成されている。連結ロッド51を計測セル10に取り付ける取付具52は、このネジ孔に螺合するいもネジである。なお、いもネジとは、ネジ部の外径よりも大きな外径のネジ頭部が無く、端部に六角穴等の工具穴が形成されているネジである。計測セル10の貫通孔25に挿通された1本の連結ロッド51は、入光窓枠23のネジ孔に捻じ込まれた取付具52の先端部、及び、出光窓枠24に捻じ込まれた取付具52の先端部に接し、これら取付具52との摩擦力等で、計測セル10との間の相対位置が保持される。   As shown in FIGS. 4 and 5, the light entrance window frame 23 and the light exit window frame 24 are formed with screw holes that extend in a direction perpendicular to the Z direction and communicate with the through holes 25 from the outside. The fixture 52 for attaching the connecting rod 51 to the measurement cell 10 is a screw that is screwed into the screw hole. The term “screw” refers to a screw having no screw head having an outer diameter larger than the outer diameter of the screw portion and having a tool hole such as a hexagonal hole formed at the end. One connecting rod 51 inserted into the through-hole 25 of the measurement cell 10 was screwed into the distal end portion of the fixture 52 screwed into the screw hole of the light entrance window frame 23 and the light exit window frame 24. The relative position with respect to the measurement cell 10 is maintained by the frictional force with the fixture 52 in contact with the tip of the fixture 52.

出射光学系保持枠53は、図1及び図2に示すように、レーザ発振器31を保持する発振器保持枠55と、絞り33を保持する絞り保持枠54とを有する。受光光学系保持枠63は、集光光学系41を保持する集光光学系保持枠64と、受光用光ファイバー48を保持する受光部保持枠65と、を有する。各保持枠54,55,64,65には、いずれも、Z方向に貫通する貫通孔58が形成されている。各保持枠54,55,64,65の貫通孔58には、連結ロッド51が挿通される。各保持枠54,55,64,65は、連結ロッド51が挿通されている状態で、取付調節具57により、連結ロッド51に固定される。取付調節具57は、各保持枠54,55,64,65に捻じ込まれ且つ連結ロッド51に先端部が接するいもネジである。   As shown in FIGS. 1 and 2, the emission optical system holding frame 53 includes an oscillator holding frame 55 that holds the laser oscillator 31 and an aperture holding frame 54 that holds the aperture 33. The light receiving optical system holding frame 63 includes a light collecting optical system holding frame 64 that holds the light collecting optical system 41 and a light receiving unit holding frame 65 that holds the light receiving optical fiber 48. Each holding frame 54, 55, 64, 65 has a through hole 58 that penetrates in the Z direction. The connecting rod 51 is inserted into the through hole 58 of each holding frame 54, 55, 64, 65. Each holding frame 54, 55, 64, 65 is fixed to the connecting rod 51 by the mounting adjuster 57 in a state where the connecting rod 51 is inserted. The attachment adjuster 57 is a screw that is screwed into each of the holding frames 54, 55, 64, 65 and whose tip is in contact with the connecting rod 51.

発振器保持枠55には、発振器保持枠55に捻じ込まれ且つ発振器保持枠55に対するレーザ発振器31の位置や向きを調節する調節ネジ56が設けられている。この調節ネジ56は、図6に示すように、発振器保持枠55に捻じ込まれ且つレーザ発振器31に先端部が接するネジである。また、受光部保持枠65には、受光部保持枠65に捻じ込まれ且つ受光部保持枠65に対する受光用光ファイバー48の位置や向きを調節する調節ネジ66が設けられている。この調節ネジ66は、受光部保持枠65に捻じ込まれ且つ受光用光ファイバー48に先端部が接するネジである。   The oscillator holding frame 55 is provided with an adjusting screw 56 that is screwed into the oscillator holding frame 55 and adjusts the position and orientation of the laser oscillator 31 with respect to the oscillator holding frame 55. As shown in FIG. 6, the adjustment screw 56 is a screw that is screwed into the oscillator holding frame 55 and whose tip is in contact with the laser oscillator 31. The light receiving unit holding frame 65 is provided with an adjusting screw 66 that is screwed into the light receiving unit holding frame 65 and adjusts the position and orientation of the light receiving optical fiber 48 with respect to the light receiving unit holding frame 65. The adjustment screw 66 is a screw that is screwed into the light receiving portion holding frame 65 and that has a tip portion in contact with the light receiving optical fiber 48.

連結ロッド51には、以上で説明したように、取付調節具57により、レーザ発振器31を保持している発振器保持枠55、絞り33を保持している絞り保持枠54、集光光学系41を保持している集光光学系保持枠64、受光用光ファイバー48を保持している受光部保持枠65が取り付けられている。連結ロッド51に取り付けられている以上の部材は、連結ロッド51によりユニット化している。言い換えると、連結ロッド51を含む連結部材50と出射光学系30と受光光学系40とで光学ユニットUを構成している。   As described above, the connecting rod 51 is provided with the oscillator holding frame 55 that holds the laser oscillator 31, the aperture holding frame 54 that holds the aperture 33, and the condensing optical system 41 by the mounting adjuster 57. A condensing optical system holding frame 64 and a light receiving unit holding frame 65 holding the light receiving optical fiber 48 are attached. The above members attached to the connecting rod 51 are unitized by the connecting rod 51. In other words, the connecting unit 50 including the connecting rod 51, the emission optical system 30, and the light receiving optical system 40 constitute an optical unit U.

この光学ユニットUでは、出射光学系30の光軸Aiと受光光学系40の光軸Aoとが同一直線上に位置している。この光学ユニットUの構成要素である連結ロッド51が計測セル10の貫通孔25に挿通され、この連結ロッド51が取付具52により計測セル10に取り付けられることで、光学ユニットUは計測セル10に取り付けられる。なお、連結ロッド51には、この連結ロッド51が計測セル10の貫通孔25に挿通された後、計測セル10の(−)Z側に発振器保持枠55及び絞り保持枠54が取り付けられ、計測セル10の(+)Z側に集光光学系保持枠64及び受光部保持枠65が取り付けられる。   In this optical unit U, the optical axis Ai of the emission optical system 30 and the optical axis Ao of the light receiving optical system 40 are located on the same straight line. The connecting rod 51, which is a component of the optical unit U, is inserted into the through-hole 25 of the measurement cell 10, and the connecting rod 51 is attached to the measurement cell 10 by the fixture 52, so that the optical unit U is attached to the measurement cell 10. It is attached. The connecting rod 51 is inserted with the connecting rod 51 through the through hole 25 of the measurement cell 10, and then the oscillator holding frame 55 and the diaphragm holding frame 54 are attached to the (−) Z side of the measuring cell 10. The condensing optical system holding frame 64 and the light receiving unit holding frame 65 are attached to the (+) Z side of the cell 10.

この光学ユニットUが計測セル10に取り付けられている状態では、出射光学系30の光軸Aiと受光光学系40の光軸Aoとが共にZ方向に延び、且つ出射光学系30の光軸Ai及び受光光学系40の光軸AoのいずれもがXY平面内において入光窓21及び出光窓22のほぼ中央を位置している。また、この状態で、計測セル10の熱変形を許容しつつ、光学ユニットUの構成要素である複数の連結ロッド51と対応する取付具52との接触位置のうち、いずれかの接触位置が計測セル10と相対移動不能になっている。言い換えると、この状態で、光学ユニットUは、計測セル10の熱変形を許容しつつ、計測セル10でいずれかの取付具52が設けられている位置に対して相対移動不能に計測セル10に取り付けられている。   In a state where the optical unit U is attached to the measurement cell 10, the optical axis Ai of the emission optical system 30 and the optical axis Ao of the light reception optical system 40 both extend in the Z direction, and the optical axis Ai of the emission optical system 30. And the optical axis Ao of the light receiving optical system 40 are located substantially in the center of the light entrance window 21 and the light exit window 22 in the XY plane. Further, in this state, one of the contact positions of the plurality of connecting rods 51 that are constituent elements of the optical unit U and the corresponding attachment 52 is measured while allowing thermal deformation of the measurement cell 10. It is impossible to move relative to the cell 10. In other words, in this state, the optical unit U allows the thermal deformation of the measurement cell 10 and does not move relative to the position where any one of the fixtures 52 is provided in the measurement cell 10. It is attached.

集光光学系41は、図7に示すように、2枚の平凸レンズ43で構成される集光レンズ42と、集光レンズ42よりも計測セル10側に位置している第一遮光部材44と、2枚の平凸レンズ43で挟まれている第二遮光部材45及びフィルター46と、を有している。   As shown in FIG. 7, the condensing optical system 41 includes a condensing lens 42 composed of two plano-convex lenses 43, and a first light shielding member 44 positioned on the measurement cell 10 side with respect to the condensing lens 42. And a second light shielding member 45 and a filter 46 sandwiched between the two plano-convex lenses 43.

2枚の平凸レンズ43は、互いの平面が背合わせになる関係で互いに対向して、集光レンズ42を構成している。この集光レンズ42は、入光窓21と出光窓22との間であって、レーザ光が照射される計測領域R中の試料流体Gからのラマン散乱光を受光用光ファイバー48の受光面(受光部)49に集光させる。計測領域Rは、集光光学系41と受光面49によって幾何光学的に決定される領域であって、その領域内から発生した光のうち集光光学系41を通過した光の全てが幾何光学的に受光面49に到達する領域である。受光光学系40の光軸Aoの方向に沿って見た計測領域Rの大きさは、主に受光面49のサイズおよび受光光学系40の明るさ(開口数)により決定される。また、受光光学系40の光軸Aoの方向に垂直な方向についての計測領域Rの大きさは、主に受光面49のサイズおよび受光光学系40の焦点距離により決定される。一般に、計測領域Rは受光光学系40の光軸Aoの方向に長く伸びた形状となる。   The two plano-convex lenses 43 constitute the condensing lens 42 so as to face each other so that their planes are back to back. This condensing lens 42 is located between the light entrance window 21 and the light exit window 22, and receives the Raman scattered light from the sample fluid G in the measurement region R irradiated with the laser light. The light is received by a light receiving unit 49. The measurement region R is a region geometrically determined by the condensing optical system 41 and the light receiving surface 49, and all of the light that has passed through the condensing optical system 41 among the light generated from the region is geometric optical. In other words, the region reaches the light receiving surface 49. The size of the measurement region R viewed along the direction of the optical axis Ao of the light receiving optical system 40 is mainly determined by the size of the light receiving surface 49 and the brightness (numerical aperture) of the light receiving optical system 40. Further, the size of the measurement region R in the direction perpendicular to the direction of the optical axis Ao of the light receiving optical system 40 is mainly determined by the size of the light receiving surface 49 and the focal length of the light receiving optical system 40. In general, the measurement region R has a shape extending long in the direction of the optical axis Ao of the light receiving optical system 40.

第一遮光部材44及び第二遮光部材45は、円板形状であり、その中心が集光レンズ42の光軸、つまり受光光学系40の光軸Ao上に位置している。また、第一遮光部材44及び第二遮光部材45は、計測領域Rから見て、それぞれの輪郭が重なり合うよう、それぞれの大きさ及び位置が定められている。このため、第二遮光部材45よりも計測領域Rに近い位置に配置されている第一遮光部材44は、その外径が第二遮光部材45の外径よりも小さい。   The first light shielding member 44 and the second light shielding member 45 have a disk shape, and the center thereof is located on the optical axis of the condenser lens 42, that is, the optical axis Ao of the light receiving optical system 40. In addition, the first light shielding member 44 and the second light shielding member 45 are determined in size and position so that their outlines overlap when viewed from the measurement region R. For this reason, the outer diameter of the first light shielding member 44 arranged closer to the measurement region R than the second light shielding member 45 is smaller than the outer diameter of the second light shielding member 45.

フィルター46は、2枚の平凸レンズ43の間であって、第二遮光部材45の外周側に配置されている。このフィルター46は、ラマン散乱光を選択的に透過させる。   The filter 46 is disposed between the two plano-convex lenses 43 and on the outer peripheral side of the second light shielding member 45. This filter 46 selectively transmits Raman scattered light.

次に、以上で説明した流体組成分析装置Mによる分析動作について説明する。   Next, the analysis operation by the fluid composition analyzer M described above will be described.

ここで、計測セル10の流入管19iから試料流体Gが計測セル10内に流れ込み、計測セル10の流出管19oから試料流体Gが流出しているとする。出射光学系30のレーザ発振器31から発振されたレーザ光は、絞り33で絞られた後、入光窓21を介して、計測セル10内の試料流体Gに照射される。   Here, it is assumed that the sample fluid G flows into the measurement cell 10 from the inflow pipe 19i of the measurement cell 10 and flows out from the outflow pipe 19o of the measurement cell 10. The laser light oscillated from the laser oscillator 31 of the emission optical system 30 is irradiated by the sample fluid G in the measurement cell 10 through the light incident window 21 after being narrowed by the diaphragm 33.

試料流体Gに励起光であるレーザ光が照射されると、試料流体G中の成分毎に固有の波長のラマン散乱光が生じる。言い換えると、所定の波長のレーザ光を試料流体Gに照射した場合、図8に示すように、試料流体G中の成分毎に、レーザ光の波長から固有のシフト量分だけ波長がシフトしたラマン散乱光が生じる。ラマン散乱光の強度は、励起光の入射軸方向における前方側及び後方側で大きいことが知られている。なお、以下では、前方側のラマン散乱光を前方側ラマン散乱光といい、後方側のラマン散乱光を後方側ラマン散乱光という。   When the sample fluid G is irradiated with laser light that is excitation light, Raman scattered light having a specific wavelength is generated for each component in the sample fluid G. In other words, when the sample fluid G is irradiated with laser light having a predetermined wavelength, as shown in FIG. 8, the Raman whose wavelength is shifted from the wavelength of the laser light by a specific shift amount for each component in the sample fluid G. Scattered light is generated. It is known that the intensity of Raman scattered light is large on the front side and the rear side in the incident axis direction of the excitation light. Hereinafter, the front side Raman scattered light is referred to as a front side Raman scattered light, and the rear side Raman scattered light is referred to as a rear side Raman scattered light.

入光窓21側((−)Z側)からのレーザ光が試料流体Gに照射されると、ラマン散乱光が生じる。このラマン散乱光のうち、強度の大きい前方側ラマン散乱光は、出光窓22を透過する。また、入光窓21を透過したレーザ光のうち出光窓22に至ったレーザ光は、この出光窓22で反射される。この出光窓22側((+)Z側)からのレーザ光が試料流体Gに照射されても、ラマン散乱光が生じる。このラマン散乱光のうち、強度の大きい後方側ラマン散乱光は、出光窓22を透過する。   When the sample fluid G is irradiated with laser light from the light incident window 21 side ((−) Z side), Raman scattered light is generated. Among the Raman scattered light, the front-side Raman scattered light having a high intensity passes through the light exit window 22. Of the laser light transmitted through the light entrance window 21, the laser light reaching the light exit window 22 is reflected by the light exit window 22. Even if the sample fluid G is irradiated with laser light from the light exit window 22 side ((+) Z side), Raman scattered light is generated. Among the Raman scattered light, the rear-side Raman scattered light having a high intensity passes through the light exit window 22.

出光窓22を透過したラマン散乱光は、集光レンズ42により、受光用光ファイバー48の受光面(受光部)49に集光され、受光用光ファイバー48に入光する。このラマン散乱光は、受光用光ファイバー48及び送光用光ファイバー91を経て、分析器90に至り、この分析器90により分析される。   The Raman scattered light that has passed through the light exit window 22 is condensed on the light receiving surface (light receiving portion) 49 of the light receiving optical fiber 48 by the condenser lens 42 and enters the light receiving optical fiber 48. This Raman scattered light reaches the analyzer 90 through the light receiving optical fiber 48 and the light transmitting optical fiber 91 and is analyzed by the analyzer 90.

入光窓21や出光窓22が試料流体Gにより汚れており、この汚れている部分にレーザ光が照射されると、ノイズ光が発生する。ラマン散乱光は、極めて微弱な光であり、ノイズ光が存在すると、組成分析精度が低下する。そこで、本実施形態では、第一遮光部材44及び第二遮光部材45により、受光用光ファイバー48に入光するノイズ光の低減を図っている。   When the light entrance window 21 and the light exit window 22 are contaminated by the sample fluid G, and this contaminated portion is irradiated with laser light, noise light is generated. Raman scattered light is extremely weak light, and if noise light is present, the composition analysis accuracy decreases. Therefore, in the present embodiment, the first light shielding member 44 and the second light shielding member 45 reduce noise light entering the light receiving optical fiber 48.

図7に示すように、入光窓21は、集光レンズ42から計測領域Rよりも遠方に配置されている。また、出光窓22は、集光レンズ42から計測領域Rよりも近傍に配置されている。このため、集光レンズ42から見た場合、出光窓22のノイズ発生部の視野角は、入光窓21のノイズ発生部の視野角に比べて大きい。本実施形態では、視野角の大きい出光窓22からのノイズ光に関して、この出光窓22に近く且つ外径の小さい第一遮光部材44により効率的に遮光する。また、本実施形態では、視野角の小さい入光窓21からのノイズ光に関して、入光窓21及び出光窓22から遠く且つ外径の大きい第二遮光部材45により効率的に遮光する。   As shown in FIG. 7, the light entrance window 21 is disposed farther from the condensing lens 42 than the measurement region R. Further, the light exit window 22 is disposed closer to the measurement region R than the condenser lens 42. For this reason, when viewed from the condenser lens 42, the viewing angle of the noise generating portion of the light exit window 22 is larger than the viewing angle of the noise generating portion of the light entrance window 21. In the present embodiment, noise light from the light exit window 22 having a large viewing angle is efficiently shielded by the first light shield member 44 that is close to the light exit window 22 and has a small outer diameter. Further, in the present embodiment, noise light from the light incident window 21 having a small viewing angle is efficiently shielded by the second light shielding member 45 that is far from the light incident window 21 and the light exit window 22 and has a large outer diameter.

このため、本実施形態では、ラマン散乱光の多くを遮蔽することなく、ノイズ光を効率的に遮光することができる。よって、本実施形態では、受光用光ファイバー48に入光するラマン散乱光のSN比を高めることができる。なお、このノイズ光の低減のメカニズムについては、国際公開第2013/031896号に詳細に記載されている。   For this reason, in this embodiment, noise light can be efficiently shielded without shielding much of the Raman scattered light. Therefore, in this embodiment, the SN ratio of the Raman scattered light entering the light receiving optical fiber 48 can be increased. The mechanism for reducing the noise light is described in detail in International Publication No. 2013/031896.

分析器90は、受光用光ファイバー48が受光したラマン散乱光を送光用光ファイバー91を介して受け付け、これを分光して、例えば、図9に示すように、波長毎の強度を出力する。前述したように、所定の波長のレーザ光を試料流体Gに照射した場合、試料流体G中の成分毎に、レーザ光の波長から固有のシフト量分だけ波長がシフトしたラマン散乱光が生じる。よって、試料流体Gに照射するレーザ光の波長と、このレーザ光を照射したときの各成分からのラマン散乱光の波長のシフト量と、を予め認識しておくことで、試料流体G中の成分を分析することができる。また、各ラマン散乱光の強度は、そのラマン散乱光を発する成分の試料流体G中の濃度を示す。このため、各ラマン散乱光の強度から、そのラマン散乱光を発する成分の試料流体G中の濃度を把握することもできる。なお、この分析器90は、波長毎の強度を出力するが、波長毎に、対応する成分とその濃度を出力するようにしてもよい。   The analyzer 90 receives the Raman scattered light received by the light-receiving optical fiber 48 via the light-transmitting optical fiber 91, divides it, and outputs the intensity for each wavelength, for example, as shown in FIG. As described above, when the sample fluid G is irradiated with laser light having a predetermined wavelength, Raman scattered light whose wavelength is shifted by a specific shift amount from the wavelength of the laser light is generated for each component in the sample fluid G. Therefore, by recognizing in advance the wavelength of the laser light applied to the sample fluid G and the shift amount of the wavelength of the Raman scattered light from each component when this laser light is applied, Components can be analyzed. Moreover, the intensity | strength of each Raman scattered light shows the density | concentration in the sample fluid G of the component which emits the Raman scattered light. For this reason, the density | concentration in the sample fluid G of the component which emits the Raman scattered light can also be grasped | ascertained from the intensity | strength of each Raman scattered light. The analyzer 90 outputs the intensity for each wavelength, but may output the corresponding component and its concentration for each wavelength.

ところで、試料流体Gの温度や圧力、外部環境の変化等により計測セル10は変形する。この計測セル10の変形は主に試料流体Gの温度に起因するものと考えられるため、以下の説明では計測セルが特に熱変形したものとして説明する。仮に、計測セル10が熱変形して、出射光学系30の光軸Aiに対する受光光学系40の光軸Aoの向きが変わると、受光光学系40の光軸Aoを中心として細長く分布する計測領域Rにレーザ光が入射しなくなる。計測領域R以外で発生したラマン散乱光は受光用光ファイバー48に入射しないことから、入光窓21側からの試料流体Gに対するレーザ光の照射により生じた前方側ラマン散乱光が受光用光ファイバー48に入光する際の光量が減る。また、同様に出光窓22側からの試料流体Gに対するレーザ光の照射により生じた後方側ラマン散乱光も受光用光ファイバー48に入光する際の光量が減る。そのため、ラマン散乱光のSN比が低下する。   By the way, the measurement cell 10 is deformed by the temperature and pressure of the sample fluid G, changes in the external environment, and the like. Since the deformation of the measurement cell 10 is considered to be mainly caused by the temperature of the sample fluid G, the following description will be made assuming that the measurement cell is particularly thermally deformed. If the measurement cell 10 is thermally deformed and the orientation of the optical axis Ao of the light receiving optical system 40 with respect to the optical axis Ai of the emission optical system 30 changes, the measurement region is elongated and distributed around the optical axis Ao of the light receiving optical system 40. Laser light does not enter R. Since the Raman scattered light generated outside the measurement region R does not enter the light receiving optical fiber 48, the front side Raman scattered light generated by the irradiation of the laser light to the sample fluid G from the light incident window 21 side enters the light receiving optical fiber 48. The amount of light when entering is reduced. Similarly, the amount of light when the rear-side Raman scattered light generated by the laser light irradiation to the sample fluid G from the light exit window 22 side enters the light receiving optical fiber 48 is reduced. Therefore, the SN ratio of Raman scattered light is reduced.

本実施形態では、前述したように、出射光学系30と受光光学系40とを互いの位置関係が変位不能に連結部材50により直接連結されている上に、出射光学系30及び受光光学系40を有する光学ユニットUが、計測セル10の熱変形を許容しつつ、計測セル10の所定箇所に対して相対移動不能に計測セル10に取り付けられている。よって、本実施形態では、計測セル10が熱変形しても、出射光学系30の光軸Aiに対する受光光学系40の光軸Aoの向きの変化を抑えることができる。   In the present embodiment, as described above, the emission optical system 30 and the light receiving optical system 40 are directly connected by the connecting member 50 such that the positional relationship between them is not displaceable. Is attached to the measurement cell 10 so as not to move relative to a predetermined portion of the measurement cell 10 while allowing thermal deformation of the measurement cell 10. Therefore, in this embodiment, even if the measurement cell 10 is thermally deformed, a change in the direction of the optical axis Ao of the light receiving optical system 40 with respect to the optical axis Ai of the emission optical system 30 can be suppressed.

具体的に、例えば、図10に示すように、試料流体Gの温度や外部環境の変化等により、計測セル10を形成する複数の壁板のうち、X方向で互いに対向する第一側壁板16と第二側壁板17とがZ方向に伸びたとする。この場合、第一側壁板16のZ方向の伸び量に対して、第二側壁板17のZ方向の伸び量が大きいとする。   Specifically, for example, as shown in FIG. 10, among the plurality of wall plates forming the measurement cell 10 due to changes in the temperature of the sample fluid G, the external environment, etc., the first side wall plates 16 that face each other in the X direction. And the second side wall plate 17 extend in the Z direction. In this case, it is assumed that the extension amount of the second side wall plate 17 in the Z direction is larger than the extension amount of the first side wall plate 16 in the Z direction.

第一側壁板16の貫通孔25aに挿通されている連結ロッド51aは、入光窓枠23に捻じ込まれている取付具52aと出光窓枠24に捻じ込まれている取付具52aとにより、計測セル10との相対位置が保持されている。また、第二側壁板17の貫通孔25bに挿通されている連結ロッド51bも、入光窓枠23に捻じ込まれている取付具52bと出光窓枠24に捻じ込まれている取付具52bとにより、計測セル10との相対位置が保持されている。 The connecting rod 51 a inserted through the through hole 25 a of the first side wall plate 16 includes a fixture 52 a 1 screwed into the light entrance window frame 23 and a fixture 52 a 2 screwed into the light exit window frame 24. Thus, the relative position with respect to the measurement cell 10 is held. Further, the connecting rod 51 b inserted into the through hole 25 b of the second side wall plate 17 is also attached to the fixture 52 b 1 screwed into the light entrance window frame 23 and the fixture 52 b screwed into the light exit window frame 24. 2 holds the relative position with respect to the measurement cell 10.

仮に、第一側壁板16のZ方向の伸び量と、この第一側壁板16の貫通孔25aに挿通されている連結ロッド51aのZ方向の伸び量とに差があるとする。さらに、連結ロッド51aを計測セル10に取り付けている取付具52a,52aのうち、取付具52aの方が連結ロッド51aとの接触位置での摩擦力が小さいとする。この場合、接触位置での摩擦力が小さい取付具52aに対して、連結ロッド51aはZ方向に相対移動する。また、この場合、接触位置での摩擦力が大きい取付具52aに対して、連結ロッド51aはZ方向に相対移動しない。よって、摩擦力の大きい取付具52aと連結ロッド51aとの接触位置、及び計測セル10中で取付具52aが設けられている位置を基準にして、第一側壁板16がZ方向に伸縮する。 Suppose that there is a difference between the amount of elongation in the Z direction of the first side wall plate 16 and the amount of elongation in the Z direction of the connecting rod 51a inserted through the through hole 25a of the first side wall plate 16. Furthermore, it is assumed that, of the fixtures 52a 1 and 52a 2 that attach the connecting rod 51a to the measurement cell 10, the fixture 52a 1 has a smaller frictional force at the contact position with the connecting rod 51a. In this case, the fixture 52a 1 frictional force is small at the contact position, the connecting rod 51a is relatively moved in the Z direction. In this case, with respect to the fixture 52a 2 frictional force is large at the contact position, the connecting rod 51a does not move relative to the Z direction. Therefore, the first side wall plate 16 expands and contracts in the Z direction on the basis of the contact position between the attachment tool 52a 2 having a large frictional force and the connecting rod 51a and the position where the attachment tool 52a 2 is provided in the measurement cell 10. To do.

また、仮に、第二側壁板17のZ方向の伸び量と、この第二側壁板17の貫通孔25bに挿通されている連結ロッド51bのZ方向の伸び量とに差があるとする。さらに、連結ロッド51bを計測セル10に取り付けている取付具52b,52bのうち、取付具52bの方が連結ロッド51bとの接触位置での摩擦力が小さいとする。この場合、接触位置での摩擦力が小さい取付具52bに対して、連結ロッド51bはZ方向に相対移動する。また、この場合、接触位置での摩擦力が大きい取付具52bに対して、連結ロッド51bはZ方向に相対移動しない。よって、摩擦力の大きい取付具52bと連結ロッド51bとの接触位置、及び計測セル10中で取付具52bが設けられている位置を基準にして、第二側壁板17がZ方向に伸縮する。 Also, suppose that there is a difference between the amount of extension of the second side wall plate 17 in the Z direction and the amount of extension of the connecting rod 51b inserted through the through hole 25b of the second side wall plate 17 in the Z direction. Furthermore, it is assumed that, of the fixtures 52b 1 and 52b 2 that attach the connecting rod 51b to the measurement cell 10, the fixture 52b 1 has a smaller frictional force at the contact position with the connecting rod 51b. In this case, with respect to the fixture 52 b 1 frictional force is small at the contact position, the connecting rod 51b is relatively moved in the Z direction. In this case, with respect to the fixture 52 b 2 frictional force is large at the contact position, the connecting rod 51b does not move relative to the Z direction. Therefore, the second side wall plate 17 expands and contracts in the Z direction on the basis of the contact position between the attachment tool 52b 2 and the connecting rod 51b having a large frictional force and the position where the attachment tool 52b 2 is provided in the measurement cell 10. To do.

また、第一側壁板16のZ方向の伸び量に対して、第二側壁板17のZ方向の伸び量が大きいと、第一側壁板16及び第二側壁板17におけるZ方向のほぼ中央部は、(+)X側に多少膨らむ。このため、第一側壁板16及び第二側壁板17に形成されている貫通孔25は、多少湾曲する。しかしながら、本実施形態では、貫通孔25の内周面と連結ロッド51の外周面との間には隙間があるため、計測セル10が変形し、貫通孔25が多少変形しても、連結ロッド51の直線性を維持することができる。   Further, if the extension amount in the Z direction of the second side wall plate 17 is larger than the extension amount in the Z direction of the first side wall plate 16, the center portion in the Z direction of the first side wall plate 16 and the second side wall plate 17. Slightly bulges to the (+) X side. For this reason, the through holes 25 formed in the first side wall plate 16 and the second side wall plate 17 are slightly curved. However, in this embodiment, since there is a gap between the inner peripheral surface of the through hole 25 and the outer peripheral surface of the connecting rod 51, the connecting rod is deformed even if the measuring cell 10 is deformed and the through hole 25 is slightly deformed. The linearity of 51 can be maintained.

本実施形態では、計測セル10が以上のように熱変形した場合でも、光学ユニットUの構成要素である連結ロッド51は計測セル10の所定位置に対して相対移動しない状態で、連結ロッド51の直線性が維持される。よって、本実施形態では、計測セル10が以上のように熱変形した場合でも、計測セル10に光学ユニットUが取り付けられている状態を維持しつつ、出射光学系30の光軸Aiに対する受光光学系40の光軸Aoの向きの変化を抑えることができる。   In the present embodiment, even when the measurement cell 10 is thermally deformed as described above, the connecting rod 51 that is a component of the optical unit U does not move relative to a predetermined position of the measurement cell 10 and Linearity is maintained. Therefore, in this embodiment, even when the measurement cell 10 is thermally deformed as described above, the light receiving optical system with respect to the optical axis Ai of the emission optical system 30 is maintained while maintaining the state in which the optical unit U is attached to the measurement cell 10. A change in the direction of the optical axis Ao of the system 40 can be suppressed.

また、例えば、図11に示すように、試料流体Gの温度や外部環境の変化等により、計測セル10を形成する複数の壁板のうち、Y方向で互いに対向する流入側壁板12と流出側壁板13とがZ方向に伸びたとする。この場合、流出側壁板13のZ方向の伸び量に対して、流入側壁板12のZ方向の伸び量が大きいとする。   Moreover, for example, as shown in FIG. 11, the inflow side wall plate 12 and the outflow side wall that face each other in the Y direction among a plurality of wall plates forming the measurement cell 10 due to changes in the temperature of the sample fluid G, the external environment, or the like. It is assumed that the plate 13 extends in the Z direction. In this case, it is assumed that the extension amount of the inflow side wall plate 12 in the Z direction is larger than the extension amount of the outflow side wall plate 13 in the Z direction.

計測セル10中で入光窓21及び出光窓22より(−)Y側に形成されている貫通孔25cに挿通されている連結ロッド51cは、入光窓枠23に捻じ込まれている取付具52cと出光窓枠24に捻じ込まれている取付具52cとにより、計測セル10との相対位置が保持されている。また、計測セル10中で入光窓21及び出光窓22より(+)Y側に形成されている貫通孔25dに挿通されている連結ロッド51dも、入光窓枠23に捻じ込まれている取付具52dと出光窓枠24に捻じ込まれている取付具52dとにより、計測セル10との相対位置が保持されている。 A connecting rod 51c inserted through a through hole 25c formed on the (−) Y side from the light entrance window 21 and the light exit window 22 in the measurement cell 10 is screwed into the light entrance window frame 23. The relative position with respect to the measurement cell 10 is held by 52c 1 and the fixture 52c 2 screwed into the light exit window frame 24. Further, the connecting rod 51 d inserted through the through hole 25 d formed on the (+) Y side from the light entrance window 21 and the light exit window 22 in the measurement cell 10 is also screwed into the light entrance window frame 23. by the fixture 52 d 2, which is incorporated threaded into the fixture 52 d 1 and Idemitsu window frame 24, the relative position between the measurement cell 10 is held.

仮に、計測セル10中で入光窓21及び出光窓22より(−)Y側に形成されている貫通孔25cに挿通されている連結ロッド51cのZ方向の伸び量と、この貫通孔25c周りにおける計測セル10のZ方向の伸び量とに差があるとする。さらに、連結ロッド51cを計測セル10に取り付けている取付具52c,52cのうち、取付具52cの方が連結ロッド51cとの接触位置での摩擦力が小さいとする。この場合、連結ロッド51cとの接触位置での摩擦力が小さい取付具52cに対して、連結ロッド51cはZ方向に相対移動する。また、この場合、連結ロッド51cとの接触位置での摩擦力が大きい取付具52cに対して、連結ロッド51cはZ方向に相対移動しない。よって、摩擦力の大きい取付具52cと連結ロッド51cとの接触位置、及び計測セル10中で取付具52cが設けられている位置を基準にして、この連結ロッド51cが挿通されている貫通孔25c周りにおける計測セル10の部分がZ方向に伸縮する。 Temporarily, in the measurement cell 10, the extension amount in the Z direction of the connecting rod 51c inserted through the through hole 25c formed on the (−) Y side from the light entrance window 21 and the light exit window 22, and the periphery of the through hole 25c. It is assumed that there is a difference in the amount of elongation in the Z direction of the measurement cell 10 at Furthermore, it is assumed that, of the fixtures 52c 1 and 52c 2 that attach the connecting rod 51c to the measurement cell 10, the fixture 52c 1 has a smaller frictional force at the contact position with the connecting rod 51c. In this case, the fixture 52c 1 frictional force is small at the contact position between the connecting rod 51c, the connecting rod 51c is relatively moved in the Z direction. In this case, with respect to the fixture 52c 2 frictional force is large at the contact position between the connecting rod 51c, the connecting rod 51c does not move relative to the Z direction. Therefore, the contact position between the large fixture 52c 2 and the connecting rod 51c of the frictional force, and the position relative to the mounting member 52c 2 is provided in the measuring cell 10, through which the connecting rod 51c is inserted The portion of the measurement cell 10 around the hole 25c expands and contracts in the Z direction.

また、仮に、計測セル10中で入光窓21及び出光窓22より(+)Y側に形成されている貫通孔25dに挿通されている連結ロッド51dのZ方向の伸び量と、貫通孔25d周りにおける計測セル10の部分のZ方向の伸び量とに差があるとする。さらに、連結ロッド51dを計測セル10に取り付けている取付具52d,52dのうち、取付具52dの方が連結ロッド51dとの接触位置での摩擦力が小さいとする。この場合、連結ロッド51dとの接触位置での摩擦力が小さい取付具52dに対して、連結ロッド51dはZ方向に相対移動する。また、この場合、連結ロッド51dとの接触位置での摩擦力が大きい取付具52dに対して、連結ロッド51dはZ方向に相対移動しない。よって、摩擦力の大きい取付具52dと連結ロッド51dとの接触位置、及び計測セル10中で取付具52dが設けられている位置を基準にして、この連結ロッド51dが挿通されている貫通孔25d周りにおける計測セル10の部分がZ方向に伸縮する。 Further, suppose that the extension amount in the Z direction of the connecting rod 51d inserted into the through hole 25d formed on the (+) Y side from the light entrance window 21 and the light exit window 22 in the measurement cell 10, and the through hole 25d. It is assumed that there is a difference in the amount of elongation in the Z direction of the portion of the measurement cell 10 around. Furthermore, it is assumed that, of the fixtures 52d 1 and 52d 2 that attach the connecting rod 51d to the measurement cell 10, the fixture 52d 1 has a smaller frictional force at the contact position with the connecting rod 51d. In this case, with respect to the fixture 52 d 1 frictional force is small at the contact position between the connecting rod 51d, the connecting rod 51d is relatively moved in the Z direction. In this case, with respect to the fixture 52 d 2 frictional force is large at the contact position between the connecting rod 51d, the connecting rod 51d is not relative movement in the Z direction. Therefore, the contact position between the large fixture 52 d 2 and the connecting rod 51d of the frictional force, and the position relative to the mounting member 52 d 2 is provided in the measuring cell 10, through which the connecting rod 51d is inserted The portion of the measurement cell 10 around the hole 25d expands and contracts in the Z direction.

また、流出側壁板13のZ方向の伸び量に対して、流入側壁板12のZ方向の伸び量が大きいと、流出側壁板13及び流入側壁板12におけるZ方向のほぼ中央部は、(−)Y側に多少膨らむ。このため、計測セル10中で入光窓21及び出光窓22より(−)Y側に形成されている貫通孔25cと、計測セル10中で入光窓21及び出光窓22より(+)Y側に形成されている貫通孔25dとは、多少湾曲する。しかしながら、本実施形態では、貫通孔25の内周面と連結ロッド51の外周面との間には隙間があるため、計測セル10が変形し、貫通孔25が多少変形しても、連結ロッド51の直線性を維持することができる。   Further, if the extension amount of the inflow side wall plate 12 in the Z direction is larger than the extension amount of the outflow side wall plate 13 in the Z direction, the substantially central portion in the Z direction of the outflow side wall plate 13 and the inflow side wall plate 12 is (− ) Swells slightly to the Y side. For this reason, in the measurement cell 10, the through hole 25 c formed on the (−) Y side from the light entrance window 21 and the light exit window 22, and (+) Y from the light entrance window 21 and the light exit window 22 in the measurement cell 10. The through hole 25d formed on the side is slightly curved. However, in this embodiment, since there is a gap between the inner peripheral surface of the through hole 25 and the outer peripheral surface of the connecting rod 51, the connecting rod is deformed even if the measuring cell 10 is deformed and the through hole 25 is slightly deformed. The linearity of 51 can be maintained.

本実施形態では、計測セル10が以上のように熱変形した場合でも、先に説明した場合と同様、光学ユニットUの構成要素である連結ロッド51は計測セル10の所定位置に対して相対移動しない状態で、連結ロッド51の直線性が維持される。よって、本実施形態では、計測セル10が以上のように熱変形した場合でも、計測セル10に光学ユニットUが取り付けられている状態を維持しつつ、出射光学系30の光軸Aiに対する受光光学系40の光軸Aoの向きの変化を抑えることができる。   In the present embodiment, even when the measurement cell 10 is thermally deformed as described above, the connecting rod 51 that is a component of the optical unit U moves relative to a predetermined position of the measurement cell 10 as described above. In such a state, the linearity of the connecting rod 51 is maintained. Therefore, in this embodiment, even when the measurement cell 10 is thermally deformed as described above, the light receiving optical system with respect to the optical axis Ai of the emission optical system 30 is maintained while maintaining the state in which the optical unit U is attached to the measurement cell 10. A change in the direction of the optical axis Ao of the system 40 can be suppressed.

従って、本実施形態では、試料流体Gの温度や外部環境の変化等により計測セル10が熱変形しても、受光用光ファイバー48に入光するラマン散乱光の光量減少を抑えることができると共に、受光用光ファイバー48に入光するノイズ光の増加を抑えることができる。このため、本実施形態では、試料流体Gの温度や外部環境の変化等による組成分析の精度低下を抑えることができる。   Therefore, in this embodiment, even if the measurement cell 10 is thermally deformed due to a change in the temperature of the sample fluid G, the external environment, or the like, it is possible to suppress a decrease in the amount of Raman scattered light entering the light receiving optical fiber 48, and An increase in noise light entering the light receiving optical fiber 48 can be suppressed. For this reason, in this embodiment, it is possible to suppress a decrease in the accuracy of the composition analysis due to a change in the temperature of the sample fluid G, the external environment, or the like.

また、本実施形態の流体組成分析装置Mは、連結ロッド51に対する出射光学系保持枠53の向き及び固定位置を調節する取付調節具57、連結ロッド51に対する受光光学系保持枠63の向き及び固定位置を調節する取付調節具57、発振器保持枠55に対するレーザ発振器31の位置や向きを調節する調節ネジ56、受光部保持枠65に対する受光用光ファイバー48の位置や向きを調節する調節ネジ66を有している。このため、出射光学系30、及び出射光学系30を構成するレーザ発振器31及び絞り33、受光光学系40、及び受光光学系40を構成する集光レンズ42や受光用光ファイバー48のぞれぞれの位置や、それぞれの光軸Ai,Aoの向きを調節することができる。   The fluid composition analyzer M of the present embodiment also includes an attachment adjuster 57 that adjusts the orientation and fixing position of the emission optical system holding frame 53 with respect to the connecting rod 51, and the orientation and fixing of the light receiving optical system holding frame 63 with respect to the connecting rod 51. A mounting adjustment tool 57 for adjusting the position, an adjusting screw 56 for adjusting the position and orientation of the laser oscillator 31 with respect to the oscillator holding frame 55, and an adjusting screw 66 for adjusting the position and orientation of the light receiving optical fiber 48 with respect to the light receiving portion holding frame 65 are provided. doing. Therefore, each of the emission optical system 30, the laser oscillator 31 and the diaphragm 33 constituting the emission optical system 30, the light receiving optical system 40, and the condensing lens 42 and the light receiving optical fiber 48 constituting the light receiving optical system 40, respectively. And the directions of the optical axes Ai and Ao can be adjusted.

なお、本実施形態では、入光窓枠23、第一側壁板16、第二側壁板17、及び出光窓枠24に、これらをZ方向に貫通する貫通孔25(係合部)を形成し、この貫通孔25に連結ロッド51が挿通されている。しかしながら、図12に示すように、入光窓枠23、第一側壁板16、第二側壁板17、及び出光窓枠24のそれぞれに又はこれらの一部に計測セル10の外側に向かって張り出すフランジ部28を形成すると共に、Z方向に貫通する貫通孔29をフランジ部28に形成し、この貫通孔29に連結ロッド51を挿通させてもよい。また、図13に示すように、フランジ部には、Z方向に貫通する貫通孔29aを形成すると共に、貫通孔29aに内周の沿った箇所の一部を切り欠いて、このフランジ部をフック部28bとしてもよい。   In the present embodiment, the light entrance window frame 23, the first side wall plate 16, the second side wall plate 17, and the light exit window frame 24 are formed with through holes 25 (engagement portions) penetrating them in the Z direction. The connecting rod 51 is inserted through the through hole 25. However, as shown in FIG. 12, the light entrance window frame 23, the first side wall plate 16, the second side wall plate 17, and the light exit window frame 24 are stretched toward or outside the measurement cell 10. While forming the flange part 28 to take out, the through-hole 29 penetrated to a Z direction may be formed in the flange part 28, and the connecting rod 51 may be penetrated by this through-hole 29. FIG. Further, as shown in FIG. 13, the flange portion is formed with a through hole 29a penetrating in the Z direction, and a part of the through hole 29a along the inner periphery is notched, and the flange portion is hooked. It is good also as part 28b.

また、本実施形態では、計測セル10に4本の連結ロッド51を取り付けている。しかしながら、連結ロッド51の数量は、これに限定されるものではなく、例えば、連結ロッド51の本数は2本でも、1本であってもよい。これらの場合、4本の場合よりも連結ロッド51の剛性を大きくするため、連結ロッド51の外径を大きくすることが好ましい。   In the present embodiment, four connecting rods 51 are attached to the measurement cell 10. However, the number of connecting rods 51 is not limited to this. For example, the number of connecting rods 51 may be two or one. In these cases, it is preferable to increase the outer diameter of the connecting rod 51 in order to increase the rigidity of the connecting rod 51 compared to the case of four.

また、本実施形態では、Z方向に伸びる1本の連結ロッド51に対して、Z方向における異なる2つの位置に取付具52を配置している。しかしながら、1本の連結ロッド51に対して、Z方向における異なる3以上の位置に取付具52を配置してもよいし、1つの位置のみに取付具52を配置してもよい。   Moreover, in this embodiment, the attachment tool 52 is arrange | positioned in two different positions in a Z direction with respect to the one connecting rod 51 extended in a Z direction. However, with respect to one connecting rod 51, the fixtures 52 may be arranged at three or more different positions in the Z direction, or the fixtures 52 may be arranged only at one position.

また、本実施形態の流体組成分析装置Mは、第一遮光部材44及び第二遮光部材45を有しているが、いずれか一方の遮光部材のみを有してもよいし、両方の遮光部材を有していなくてもよい。但し、ノイズ光の低減の観点から、本実施形態のように、両方の遮光部材を有している方が好ましい。   Moreover, although the fluid composition analyzer M of this embodiment has the 1st light shielding member 44 and the 2nd light shielding member 45, it may have only any one light shielding member, or both light shielding members. May not be included. However, from the viewpoint of reducing noise light, it is preferable to have both light shielding members as in this embodiment.

「流体組成分析装置の第二実施形態」
図14を用いて、本発明に係る流体組成分析装置の第二実施形態について説明する。
“Second Embodiment of Fluid Composition Analyzer”
A second embodiment of the fluid composition analyzer according to the present invention will be described with reference to FIG.

本実施形態の流体組成分析装置Maも、第一実施形態の流体組成分析装置Mと同様、試料流体Gが内部を流れる計測セル10aと、計測セル10aに設けられ計測セル10a内に励起光を通過させる入光窓21と、計測セル10aに設けられ試料流体Gからのラマン散乱光を計測セル10a外へ通過させる出光窓22と、入光窓21を介して励起光を計測セル10a内の試料流体Gに照射する出射光学系30と、出光窓22を通過したラマン散乱光を受光する受光光学系40と、受光光学系40が受光したラマン散乱光に基づいて試料流体Gの組成を分析する分析器90と、出射光学系30と受光光学系40とを連結する連結部材50aと、を備えている。   Similarly to the fluid composition analyzer M of the first embodiment, the fluid composition analyzer Ma of the present embodiment also includes a measurement cell 10a in which the sample fluid G flows, and excitation light in the measurement cell 10a provided in the measurement cell 10a. A light entrance window 21 that passes through, a light exit window 22 that is provided in the measurement cell 10 a and allows Raman scattered light from the sample fluid G to pass outside the measurement cell 10 a, and excitation light in the measurement cell 10 a through the light entrance window 21. The composition of the sample fluid G is analyzed based on the emission optical system 30 that irradiates the sample fluid G, the light receiving optical system 40 that receives the Raman scattered light that has passed through the light exit window 22, and the Raman scattered light that is received by the light receiving optical system 40. Analyzer 90, and a connecting member 50a for connecting the output optical system 30 and the light receiving optical system 40.

計測セル10aは、直方体形状の本体11aと、本体11aに接続されている流入管19iと、本体11aの流入管19iと反対側に接続されている流出管19oと、を有している。本体11aは、複数の壁板により形成され、内部に試料流体Gが流れる空間が形成されている。本体11aを形成する複数の壁板のうち、互いに対向する2枚の壁板の一方の壁板は、流入側壁板12aを成し、他方の壁板は流出側壁板13aを成す。流入側壁板12aには流入管19iが接続され、流出側壁板13aには流出管19oが接続されている。本体11aを形成する複数の壁板のうち、流入側壁板12及び流出側壁板13につながり且つ互いに対向する2枚の壁板の一方の壁板は、入光側壁板14aを成し、他方の壁板は入光対向壁板15aを成す。入光側壁板14aには開口14oが形成され、この開口14oが入光窓21により塞がれている。また、本体11aを形成する複数の壁板のうちの残りの2枚の壁板の一方の壁板は、出光側壁板17aを成し、他方の壁板は出光対向壁板16aを成す。出光側壁板17aには開口17oが形成され、この開口17oが出光窓22により塞がれている。   The measurement cell 10a has a rectangular parallelepiped main body 11a, an inflow pipe 19i connected to the main body 11a, and an outflow pipe 19o connected to the opposite side of the inflow pipe 19i of the main body 11a. The main body 11a is formed by a plurality of wall plates, and a space through which the sample fluid G flows is formed. Of the plurality of wall plates forming the main body 11a, one of the two wall plates facing each other forms an inflow side wall plate 12a, and the other wall plate forms an outflow side wall plate 13a. An inflow pipe 19i is connected to the inflow side wall plate 12a, and an outflow pipe 19o is connected to the outflow side wall plate 13a. Of the plurality of wall plates forming the main body 11a, one wall plate of the two wall plates connected to the inflow side wall plate 12 and the outflow side wall plate 13 and facing each other forms a light incident side wall plate 14a, and the other wall plate The wall plate forms a light incident facing wall plate 15a. An opening 14 o is formed in the light incident side wall plate 14 a, and the opening 14 o is closed by the light incident window 21. In addition, one of the remaining two wall plates of the plurality of wall plates forming the main body 11a forms a light exit side wall plate 17a, and the other wall plate forms a light output facing wall plate 16a. An opening 17 o is formed in the light exit side wall plate 17 a, and the opening 17 o is closed by the light exit window 22.

ここで、以下の説明の都合上、入光側壁板14aと入光対向壁板15aとが対向する方向をZ方向とし、入光側壁板14aに対して入光対向壁板15a側を(+)Z側とする。また、Z方向に垂直な方向で、流入側壁板12と流出側壁板13とが対向する方向をY方向とし、流入側壁板12に対して流出側壁板13側を(+)Y側とする。また、Y方向及びZ方向に垂直な方向で、出光側壁板17aと出光対向壁板16aとが対向する方向をX方向とし、出光対向壁板16aに対して出光側壁板17a側を(+)X側とする。   Here, for convenience of the following description, the direction in which the light incident side wall plate 14a and the light incident facing wall plate 15a face each other is defined as the Z direction, and the light incident facing wall plate 15a side is (+ ) Z side. The direction in which the inflow side wall plate 12 and the outflow side wall plate 13 face each other in the direction perpendicular to the Z direction is defined as the Y direction, and the outflow side wall plate 13 side with respect to the inflow side wall plate 12 is defined as the (+) Y side. In addition, the direction in which the light exit side wall plate 17a and the light output facing wall plate 16a face each other in the direction perpendicular to the Y direction and the Z direction is the X direction, and the light output side wall plate 17a side is (+) with respect to the light output facing wall plate 16a. X side.

本実施形態では、入光側壁板14aがZ方向を向き、出光側壁板17aがX方向を向いている。このため、入光側壁板14aに設けられている入光窓21と出光側壁板17aに設けられている出光窓22とは、第一実施形態と異なり、互いに対向していない。   In the present embodiment, the light incident side wall plate 14a faces the Z direction, and the light outgoing side wall plate 17a faces the X direction. For this reason, unlike the first embodiment, the light entrance window 21 provided on the light entrance side wall plate 14a and the light exit window 22 provided on the light exit side wall plate 17a are not opposed to each other.

出射光学系30の光軸Aiは、Z方向に延び、且つXY平面内において入光窓21のほぼ中央に位置している。この出射光学系30は、第一実施形態と同様、レーザ発振器31と絞り33とを有している。受光光学系40の光軸Aoは、X方向に延び、且つYZ平面内において出光窓22のほぼ中央に位置している。よって、本実施形態では、出射光学系30の光軸Aiに対して受光光学系40の光軸Aoは、直交している。受光光学系40は、集光光学系41と受光用光ファイバー48とを有している。受光用光ファイバー48には、受光したラマン散乱光を分析器90へ導く送光用光ファイバー91が接続されている。   The optical axis Ai of the exit optical system 30 extends in the Z direction and is located at the approximate center of the light entrance window 21 in the XY plane. The output optical system 30 includes a laser oscillator 31 and a diaphragm 33 as in the first embodiment. The optical axis Ao of the light receiving optical system 40 extends in the X direction, and is positioned substantially at the center of the light exit window 22 in the YZ plane. Therefore, in the present embodiment, the optical axis Ao of the light receiving optical system 40 is orthogonal to the optical axis Ai of the emission optical system 30. The light receiving optical system 40 includes a condensing optical system 41 and a light receiving optical fiber 48. A light transmitting optical fiber 91 that guides the received Raman scattered light to the analyzer 90 is connected to the light receiving optical fiber 48.

連結部材50aは、レーザ発振器31を保持する発振器保持枠55と、絞り33を保持する絞り保持枠54と、発振器保持枠55と絞り保持枠54とを相互に連結する出光側連結ロッド53aと、集光光学系41を保持する集光光学系保持枠64と、受光用光ファイバー48を保持する受光部保持枠65と、集光光学系保持枠64と受光部保持枠65とを相互に連結する受光側連結ロッド63aと、出光側連結ロッド53aと受光側連結ロッド63aとを相互に連結する出光側‐受光側連結ロッド59aと、出光側‐受光側連結ロッド59aを計測セル10aに取り付ける取付部材52aと、有している。   The connecting member 50a includes an oscillator holding frame 55 that holds the laser oscillator 31, a diaphragm holding frame 54 that holds the diaphragm 33, a light-emitting side connecting rod 53a that connects the oscillator holding frame 55 and the diaphragm holding frame 54 to each other, The condensing optical system holding frame 64 for holding the condensing optical system 41, the light receiving unit holding frame 65 for holding the light receiving optical fiber 48, and the condensing optical system holding frame 64 and the light receiving unit holding frame 65 are connected to each other. The light receiving side connecting rod 63a, the light emitting side connecting rod 53a and the light receiving side connecting rod 63a are connected to each other, and the light emitting side-light receiving side connecting rod 59a and the mounting member for attaching the light emitting side-light receiving side connecting rod 59a to the measuring cell 10a. 52a.

本実施形態でも、第一実施形態と同様に、連結部材50aと出射光学系30と受光光学系40とで光学ユニットUaを構成している。   Also in this embodiment, the optical unit Ua is comprised with the connection member 50a, the output optical system 30, and the light reception optical system 40 similarly to 1st embodiment.

光学ユニットUaの構成要素である出光側‐受光側連結ロッド59aは、計測セル10aを形成する複数の壁板のうちの入光側壁板14aと出光側壁板17aとの角部に、取付部材52aにより固定されている。つまり、光学ユニットUaは、計測セル10aの1箇所に固定されている。このため、試料流体Gの温度や外部環境の変化等で計測セル10aが熱変形しても、この熱変形に対する光学ユニットUaの変形を最小限に抑えることができる。   The light emitting side-light receiving side connecting rod 59a, which is a component of the optical unit Ua, is attached to the corner of the light incident side wall plate 14a and the light outgoing side wall plate 17a among the plurality of wall plates forming the measurement cell 10a. It is fixed by. That is, the optical unit Ua is fixed to one place of the measurement cell 10a. For this reason, even if the measurement cell 10a is thermally deformed due to a change in the temperature of the sample fluid G or the external environment, the deformation of the optical unit Ua with respect to the heat deformation can be minimized.

以上、本実施形態でも、出射光学系30と受光光学系40とを互いの位置関係が変位不能に連結部材50aにより直接連結されている上に、出射光学系30及び受光光学系40を有する光学ユニットUが、計測セル10aの熱変形を許容しつつ、計測セル10aの所定箇所に対して相対移動不能に計測セル10aに取り付けられている。よって、本実施形態でも、計測セル10aが熱変形しても、出射光学系30の光軸Aiに対する受光光学系40の光軸Aoの向きの変化を抑えることができる。このため、本実施形態でも、試料流体Gの温度や外部環境の変化等による組成分析の精度低下を抑えることができる。   As described above, also in the present embodiment, the output optical system 30 and the light receiving optical system 40 are directly connected by the connecting member 50a so that the mutual positional relationship is not displaceable, and the optical having the output optical system 30 and the light receiving optical system 40. The unit U is attached to the measurement cell 10a so as not to move relative to a predetermined portion of the measurement cell 10a while allowing thermal deformation of the measurement cell 10a. Therefore, also in this embodiment, even if the measurement cell 10a is thermally deformed, a change in the direction of the optical axis Ao of the light receiving optical system 40 relative to the optical axis Ai of the emission optical system 30 can be suppressed. For this reason, also in this embodiment, it is possible to suppress a decrease in the accuracy of composition analysis due to a change in the temperature of the sample fluid G, the external environment, or the like.

なお、以上で説明した各実施形態の光学ユニットU,Uaはレーザ発振器31を含んでいる。しかしながら、光学ユニットU,Uaは、励起光を出射する光出射部32を含んでいれば、レーザ発振器31を含まなくてもよい。この場合、光学ユニットU,Uaの構成要素である連結部材50aにレーザ発振器31を取り付けず、このレーザ発振器31に光ファイバーを接続し、この光ファイバーの端部を光出射部として連結部材50,50aに取り付ける。また、以上の各実施形態の光学ユニットU,Uaは、分析器90を含んでいない。しかしながら、小型の分析器90を採用できる場合には、この分析器90を連結部材50,50aに取り付け、この分析器90を光学ユニットU,Uaの一部としてもよい。   Note that the optical units U and Ua of the embodiments described above include a laser oscillator 31. However, the optical units U and Ua may not include the laser oscillator 31 as long as the optical units U and Ua include the light emitting unit 32 that emits the excitation light. In this case, the laser oscillator 31 is not attached to the connecting member 50a which is a constituent element of the optical units U and Ua, an optical fiber is connected to the laser oscillator 31, and the end of the optical fiber is used as a light emitting portion to the connecting members 50 and 50a. Install. Further, the optical units U and Ua of the above embodiments do not include the analyzer 90. However, when a small analyzer 90 can be adopted, the analyzer 90 may be attached to the connecting members 50 and 50a, and the analyzer 90 may be a part of the optical units U and Ua.

「ガスタービンプラントの実施形態」
図15を用いて、本発明に係るガスタービンプラントの一実施形態について説明する。
“Embodiment of gas turbine plant”
An embodiment of a gas turbine plant according to the present invention will be described with reference to FIG.

本実施形態のガスタービンプラントは、ガスタービン110と、ガスタービン110の駆動で発電する発電機120と、ガスタービン110の駆動で燃料ガスを圧縮するガス圧縮機121と、ガスタービン110に供給される燃料ガスの発熱量を出力する熱量計140と、ガスタービン110の状態等を制御する制御装置145と、を備えている。   The gas turbine plant of this embodiment is supplied to the gas turbine 110, the generator 120 that generates power by driving the gas turbine 110, the gas compressor 121 that compresses fuel gas by driving the gas turbine 110, and the gas turbine 110. A calorimeter 140 for outputting the calorific value of the fuel gas, and a controller 145 for controlling the state of the gas turbine 110 and the like.

ガスタービン110は、空気Aを圧縮して圧縮空気を生成する空気圧縮機111と、圧縮空気中で燃料ガスを燃焼させ高温の燃焼ガスを生成する燃焼器115と、燃焼ガスにより駆動するタービン116と、を備えている。   The gas turbine 110 includes an air compressor 111 that compresses air A to generate compressed air, a combustor 115 that generates a high-temperature combustion gas by burning fuel gas in the compressed air, and a turbine 116 that is driven by the combustion gas. And.

空気圧縮機111は、圧縮機ロータと、これを回転可能に覆う圧縮機ケーシングと、空気Aの吸気量を調節する吸気量調節器112と、を有している。吸気量調節器112は、圧縮機ケーシングの吸込口側に設けられている入口案内翼113と、この入口案内翼113の開度を変える案内翼駆動機114と、を有している。   The air compressor 111 includes a compressor rotor, a compressor casing that rotatably covers the compressor rotor, and an intake air amount adjuster 112 that adjusts the intake air amount of the air A. The intake air amount adjuster 112 includes an inlet guide vane 113 provided on the suction port side of the compressor casing, and a guide vane driver 114 that changes the opening degree of the inlet guide vane 113.

タービン116は、燃焼ガスにより回転するタービンロータと、このタービンロータを回転可能に覆うタービンケーシングとを有している。圧縮機ロータとタービンロータとは互いに連結され、一体となってガスタービンロータ117を成している。   The turbine 116 has a turbine rotor that is rotated by combustion gas, and a turbine casing that rotatably covers the turbine rotor. The compressor rotor and the turbine rotor are connected to each other and integrally form a gas turbine rotor 117.

発電機120は、発電機ロータと、この発電機ロータを回転可能に覆う発電機ケーシングと、を有している。発電機ロータは、ガスタービンロータ117に連結されている。このため、ガスタービンロータ117が回転すると、発電機ロータも、一体的に回転する。   The generator 120 has a generator rotor and a generator casing that rotatably covers the generator rotor. The generator rotor is connected to the gas turbine rotor 117. For this reason, when the gas turbine rotor 117 rotates, the generator rotor also rotates integrally.

ガス圧縮機121は、圧縮機ロータと、これを回転可能に覆う圧縮機ケーシングと、を有している。ガス圧縮機121の圧縮機ロータは、減速機122を介して、発電機ロータ又はガスタービンロータ117と機械的に接続されている。このガス圧縮機121の吐出口と燃焼器115とは、高圧燃料ガスライン134で接続されている。この高圧燃料ガスライン134には、ここを通る燃料ガスの流量を調節する燃料流量調節弁137が設けられている。   The gas compressor 121 includes a compressor rotor and a compressor casing that rotatably covers the compressor rotor. The compressor rotor of the gas compressor 121 is mechanically connected to the generator rotor or the gas turbine rotor 117 via the speed reducer 122. The discharge port of the gas compressor 121 and the combustor 115 are connected by a high-pressure fuel gas line 134. The high-pressure fuel gas line 134 is provided with a fuel flow rate adjusting valve 137 for adjusting the flow rate of the fuel gas passing therethrough.

このガスタービンプラントは、製鉄所151及びコークスプラント152から燃料ガスが供給される。製鉄所151は、製鉄所151の高炉から低カロリー燃料ガスとしてのBFG(Blast Furnace Gas)を発生する。この高炉には、BFGが流れるBFGライン131が接続されている。BFGライン131には、このBFGの流量を調節するBFG流量調節弁135が設けられている。コークスプラント152は、コークスプラント152のコークス炉から高カロリー燃料ガスとしてのCOG(Coke Oven Gas)を発生する。このコークス炉には、COGが流れるCOGライン132が接続されている。COGライン132には、COGの流量を調節するCOG流量調節弁136が設けられている。BFGライン131とCOGライン132とは、合流して低圧燃料ガスライン133となる。この低圧燃料ガスライン133は、ガス圧縮機121の吸込口に接続されている。低圧燃料ガスライン133には、この低圧燃料ガスライン133を通るガス中のダスト等を集塵する電気集塵器(EP(electrostatic Precipitator))123が設けられている。前述の高圧燃料ガスライン134は、途中で再循環ライン138として分岐している。この再循環ライン138には、この再循環ライン138を通るガスの流量を調節する循環流量制御弁138aが設けられている。低圧燃料ガスライン133中で、電気集塵器123よりも下流側の位置に接続されている。また、この低圧燃料ガスライン133で、再循環ライン138が低圧燃料ガスライン133に合流する位置よりも下流側には、低圧燃料ガスライン133から分岐して再び低圧燃料ガスライン133に合流するサンプリングライン139が設けられている。   This gas turbine plant is supplied with fuel gas from an iron mill 151 and a coke plant 152. The steelworks 151 generates BFG (Blast Furnace Gas) as a low calorie fuel gas from the blast furnace of the steelworks 151. A BFG line 131 through which BFG flows is connected to the blast furnace. The BFG line 131 is provided with a BFG flow rate adjustment valve 135 for adjusting the flow rate of the BFG. The coke plant 152 generates COG (Coke Oven Gas) as a high calorie fuel gas from the coke oven of the coke plant 152. A COG line 132 through which COG flows is connected to the coke oven. The COG line 132 is provided with a COG flow rate adjustment valve 136 for adjusting the flow rate of COG. The BFG line 131 and the COG line 132 merge to form a low pressure fuel gas line 133. The low pressure fuel gas line 133 is connected to the suction port of the gas compressor 121. The low pressure fuel gas line 133 is provided with an electrostatic precipitator (EP) 123 that collects dust and the like in the gas passing through the low pressure fuel gas line 133. The aforementioned high-pressure fuel gas line 134 branches off as a recirculation line 138 on the way. The recirculation line 138 is provided with a circulation flow rate control valve 138a for adjusting the flow rate of the gas passing through the recirculation line 138. In the low-pressure fuel gas line 133, it is connected to a position downstream of the electric dust collector 123. Further, in this low-pressure fuel gas line 133, sampling is performed such that the recirculation line 138 is further downstream than the position where the recirculation line 138 joins the low-pressure fuel gas line 133 and branches from the low-pressure fuel gas line 133 to join the low-pressure fuel gas line 133 again. A line 139 is provided.

サンプリングライン139には、前述の熱量計140が設けられている。この熱量計140は、先に説明したいずれかの実施形態の流体組成分析装置M(Ma)と、この流体組成分析装置M(Ma)による燃料ガスの分析結果に基づいて燃料ガスの単位体積当たりの発熱量である単位発熱量を求める発熱量演算器141と、を有している。流体組成分析装置M(Ma)の流入管19i及び流出管19oは、サンプリングライン139に接続されている。   The sampling line 139 is provided with the calorimeter 140 described above. The calorimeter 140 is based on the fluid composition analyzer M (Ma) according to any of the embodiments described above and the unit gas fuel volume based on the analysis result of the fuel gas by the fluid composition analyzer M (Ma). A calorific value calculator 141 for obtaining a unit calorific value, which is a calorific value of. The inflow pipe 19i and the outflow pipe 19o of the fluid composition analyzer M (Ma) are connected to the sampling line 139.

発熱量演算器141は、流体組成分析装置M(Ma)から出力された燃料ガス中の成分毎のラマン散乱光の強度、つまり各成分に対応する波長の光の強度を用いて、燃焼ガスの単位発熱量を求める。   The calorific value calculator 141 uses the intensity of Raman scattered light for each component in the fuel gas output from the fluid composition analyzer M (Ma), that is, the intensity of light having a wavelength corresponding to each component, to generate combustion gas. Find the unit calorific value.

以下の式(1)は、燃料ガスが、図9に示すように、二酸化炭素(CO)、一酸化炭素(CO)、窒素(N)、メタン(CH)、水蒸気(HO)、水素(H)を含む場合における燃料ガスの単位体積当たりの高位発熱量(HHV)を求める式である。また、以下の式(2)は、同じ場合における燃料ガスの単位体積当たり低位発熱量(LHV)を求める式である。 As shown in FIG. 9, the following formula (1) indicates that the fuel gas is carbon dioxide (CO 2 ), carbon monoxide (CO), nitrogen (N 2 ), methane (CH 4 ), water vapor (H 2 O ) And hydrogen (H 2 ), the high calorific value (HHV) per unit volume of the fuel gas is obtained. Further, the following formula (2) is a formula for obtaining the lower heating value (LHV) per unit volume of the fuel gas in the same case.

Figure 0006165014
Figure 0006165014

Figure 0006165014
Figure 0006165014

なお、HHVは、燃料ガスの燃焼によって生成された水分の凝縮熱を発熱量として含む発熱量(kcal/mN)である。LHVは、燃料ガスの燃焼によって生成された水分の凝縮熱を発熱量として含まない発熱量(kcal/mN)である。また、式(1)〜式(8)において、CNはNのモル分率で、CCOはCOのモル分率で、CCOはCOのモル分率で、CHOはHOのモル分率で、CHはHのモル分率で、CCHはCHのモル分率である。各成分のモル分率は、以下の式(3)〜式(8)で求めることができる。 HHV is a calorific value (kcal / m 3 N) including heat of condensation of moisture generated by combustion of fuel gas as a calorific value. LHV is a calorific value (kcal / m 3 N) that does not include the heat of condensation of moisture generated by the combustion of fuel gas as a calorific value. In the formulas (1) to (8), CN 2 is a mole fraction of N 2 , CCO is a mole fraction of CO, CCO 2 is a mole fraction of CO 2 , and CH 2 O is H 2. The mole fraction of O, CH 2 is the mole fraction of H 2 , and CCH 4 is the mole fraction of CH 4 . The mole fraction of each component can be obtained by the following formulas (3) to (8).

Figure 0006165014
Figure 0006165014

Figure 0006165014
Figure 0006165014

Figure 0006165014
Figure 0006165014

Figure 0006165014
Figure 0006165014

Figure 0006165014
Figure 0006165014

Figure 0006165014
Figure 0006165014

発熱量演算器141は、流体組成分析装置M(Ma)から出力された燃料ガス中の成分毎のラマン散乱光の強度から、窒素成分の光強度INに対する一酸化炭素成分の相対強度ICO/IN、窒素成分の光強度に対する二酸化炭素成分の相対強度ICO/IN、窒素成分の光強度に対する水蒸気成分の相対強度IHO/IN、窒素成分の光強度に対する水素成分の相対強度IH/IN、窒素成分の光強度に対するメタン成分の相対強度ICH/INを求める。次に、発熱量演算器141は、各成分の相対強度と、式(1)又は式(2)、及び式(3)〜式(8)を用いて、燃料ガスの高位発熱量(HHV)又は低位発熱量(LHV)を求める。 The calorific value calculator 141 calculates the relative intensity ICO / of the carbon monoxide component with respect to the light intensity IN 2 of the nitrogen component from the intensity of the Raman scattered light for each component in the fuel gas output from the fluid composition analyzer M (Ma). IN 2 , relative intensity of carbon dioxide component relative to light intensity of nitrogen component ICO 2 / IN 2 , relative intensity of water vapor component relative to light intensity of nitrogen component IH 2 O / IN 2 , relative intensity of hydrogen component relative to light intensity of nitrogen component The relative intensity ICH 4 / IN 2 of the methane component with respect to the light intensity of the nitrogen component is determined as IH 2 / IN 2 . Next, the calorific value calculator 141 uses the relative intensity of each component, the formula (1) or the formula (2), and the formulas (3) to (8) to calculate the higher heating value (HHV) of the fuel gas. Alternatively, the lower heating value (LHV) is obtained.

制御装置145は、熱量計140から出力された燃料ガスの単位発熱量(HHV又はLHV)に基づいて、BFG流量調節弁135、COG流量調節弁136、燃料流量調節弁137、吸気量調節器112のうちの少なくとも一つを制御する。低圧燃料ガスライン133を流れる燃料ガスの単位発熱量が変化した場合、制御装置145は、例えば、以下の(1)〜(3)のいずれかの制御を実行する。   Based on the unit calorific value (HHV or LHV) of the fuel gas output from the calorimeter 140, the control device 145 controls the BFG flow rate adjustment valve 135, the COG flow rate adjustment valve 136, the fuel flow rate adjustment valve 137, and the intake air amount adjuster 112. Control at least one of the When the unit calorific value of the fuel gas flowing through the low-pressure fuel gas line 133 changes, for example, the control device 145 executes one of the following controls (1) to (3).

(1)制御装置145は、熱量計140で計測された単位発熱量が元の値又は設定値になるよう、BFGとCOGとの流量比を調節するため、BFG流量調節弁135とCOG流量調節弁136とのうち、少なくとも一方の弁開度を制御する。
(2)制御装置145は、燃焼器115に供給される燃料ガスの単位時間当たりの燃料熱量が一定になるよう、又は、ガスタービン出力が目標出力になるよう、燃料流量調節弁137の弁開度を制御する。又は、制御装置145は、タービン116の燃焼ガス入口の温度が目標温度になるよう、燃料流量調節弁137の弁開度を制御する。
(3)制御装置145は、燃焼器115に供給される燃料ガスと圧縮空気と流量比である燃空比が一定になるよう、又は、ガスタービン出力が目標出力になるよう、吸気量調節器112の入口案内翼113の開度を制御する。
(1) The control device 145 adjusts the flow rate ratio between the BFG and the COG so that the unit calorific value measured by the calorimeter 140 becomes the original value or the set value. The valve opening degree of at least one of the valves 136 is controlled.
(2) The control device 145 opens the fuel flow rate adjustment valve 137 so that the amount of fuel heat per unit time of the fuel gas supplied to the combustor 115 is constant or the gas turbine output becomes the target output. Control the degree. Alternatively, the control device 145 controls the valve opening degree of the fuel flow rate adjustment valve 137 so that the temperature of the combustion gas inlet of the turbine 116 becomes the target temperature.
(3) The control device 145 controls the intake air amount so that the fuel / air ratio, which is the flow ratio between the fuel gas and the compressed air supplied to the combustor 115, is constant, or the gas turbine output becomes the target output. The opening degree of the 112 inlet guide vanes 113 is controlled.

本実施形態の熱量計140は、前述したように、いずれかの実施形態の流体組成分析装置M(Ma)と、この流体組成分析装置M(Ma)による燃料ガスの分析結果に基づいて燃料ガスの単位発熱量を求める発熱量演算器141と、を有している。このため、本実施形態の熱量計140は、燃料ガスの温度や外部環境の変化等による組成分析の精度低下に伴う計測発熱量の精度低下を抑えることができる。また、本実施形態の熱量計140は、ラマン散乱光の分析に基づいて燃料ガスの単位発熱量を求めているため、例えば、クロマトグラフィー法を用いて燃料ガスの単位発熱量を求めるよりも、極めて短時間に燃料ガスの単位発熱量を求めることができる。   As described above, the calorimeter 140 of the present embodiment is a fuel gas based on the fluid composition analyzer M (Ma) of any embodiment and the analysis result of the fuel gas by the fluid composition analyzer M (Ma). A calorific value calculator 141 for obtaining a unit calorific value of For this reason, the calorimeter 140 of the present embodiment can suppress a decrease in the accuracy of the measured calorific value due to a decrease in the accuracy of the composition analysis due to a change in the temperature of the fuel gas or the external environment. Further, since the calorimeter 140 of the present embodiment obtains the unit calorific value of the fuel gas based on the analysis of the Raman scattered light, for example, rather than obtaining the unit calorific value of the fuel gas using a chromatography method, The unit calorific value of the fuel gas can be obtained in an extremely short time.

よって、本実施形態では、燃料ガスの単位発熱量が変化しても、極めて短時間のうちにガスタービンプラントを目標とする状態に近づけることができる。   Therefore, in this embodiment, even if the unit calorific value of the fuel gas changes, the gas turbine plant can be brought close to the target state in a very short time.

また、発熱量演算器141は、事前に登録した各成分の比熱比と、燃料ガスの各成分の濃度に基づき、燃料ガスの比熱比を求めることもできる。その場合、制御装置145は、熱量計140から出力された燃料ガスの比熱比に基づいて、ガス圧縮機121のサージンの防止制御を行うことができる。すなわち、ガス圧縮機121は、その圧力比(ガス圧縮機121の吸込口と吐出口における燃料ガスの圧力の比)が一定の値を超えるとサージングを起こしてしまう可能性がある。ここで、サージング限界となる圧力比は、燃料ガスの比熱比とガス圧縮機121の修正回転数により決定される。そのため、制御装置145は、熱量計140から出力された燃料ガスの比熱比に基づき正確なサージング限界圧力比を算出し、実際のガス圧縮機の圧力比がこれに近づいた場合はサージングを回避する動作を行う。具体的には、制御装置145は、例えば、ガス圧縮機121の再循環ライン138に設けられた循環流量制御弁138aを開いてガス圧縮機121の圧力比を下げるといった動作を行う。これにより燃料ガスの組成が変動してもサージングの発生を防止することができる。   The calorific value calculator 141 can also determine the specific heat ratio of the fuel gas based on the specific heat ratio of each component registered in advance and the concentration of each component of the fuel gas. In that case, the control device 145 can perform sardine prevention control of the gas compressor 121 based on the specific heat ratio of the fuel gas output from the calorimeter 140. That is, if the pressure ratio of the gas compressor 121 (ratio of the pressure of the fuel gas at the suction port and the discharge port of the gas compressor 121) exceeds a certain value, surging may occur. Here, the pressure ratio that becomes the surging limit is determined by the specific heat ratio of the fuel gas and the corrected rotational speed of the gas compressor 121. Therefore, the control device 145 calculates an accurate surging limit pressure ratio based on the specific heat ratio of the fuel gas output from the calorimeter 140, and avoids surging when the actual pressure ratio of the gas compressor approaches this. Perform the action. Specifically, the control device 145 performs an operation of, for example, opening the circulation flow rate control valve 138 a provided in the recirculation line 138 of the gas compressor 121 to lower the pressure ratio of the gas compressor 121. Thus, surging can be prevented even if the composition of the fuel gas varies.

なお、本実施形態におけるガスタービンの燃料は、BFG単味、COG単味、BFGとCOGの混合物とのいずれかである。しかしながら、ガスタービンの燃料は、BFGのみでも、COGのみでもよい。さらに、ガスタービン110の燃料は、他の燃料ガス、例えば、天然ガスや、バイオガス等であってもよい。   In addition, the fuel of the gas turbine in this embodiment is either BFG simple, COG simple, or the mixture of BFG and COG. However, the fuel for the gas turbine may be BFG alone or COG alone. Further, the fuel of the gas turbine 110 may be other fuel gas, such as natural gas or biogas.

10,10a…計測セル、11:第一本体、11a:本体、19i:流入管、19o:流出管、21:入光窓、22:出光窓、30:出射光学系、31:レーザ発振器、32:光出射部、33:絞り、40:受光光学系、41:集光光学系、42:集光レンズ、48:受光用光ファイバー(受光部)、50,50a:連結部材、51:連結ロッド、52:取付具、53:出射光学系保持枠、57:取付調節具、63:受光光学系保持枠、90:分析器(分析部)、110:ガスタービン、111:空気圧縮機、112:吸気量調節器、115:燃焼器、116:タービン、120:発電機、121:ガス圧縮機、131:BFGライン、132:COGライン、133:低圧燃料ガスライン、134:高圧燃料ガスライン、135:BFG流量調節弁、136:COG流量調節弁、137:燃料流量調節弁、138:再循環ライン、138a:循環流量制御弁、140:熱量計、141:発熱量演算器、145:制御装置   10, 10a ... measurement cell, 11: first body, 11a: body, 19i: inflow pipe, 19o: outflow pipe, 21: light entrance window, 22: light exit window, 30: exit optical system, 31: laser oscillator, 32 : Light emitting part, 33: Aperture, 40: Light receiving optical system, 41: Condensing optical system, 42: Condensing lens, 48: Optical fiber for light receiving (light receiving part), 50, 50a: Connecting member, 51: Connecting rod, 52: Mounting tool, 53: Emitting optical system holding frame, 57: Mounting adjusting tool, 63: Receiving optical system holding frame, 90: Analyzer (analysis unit), 110: Gas turbine, 111: Air compressor, 112: Intake Volume regulator, 115: combustor, 116: turbine, 120: generator, 121: gas compressor, 131: BFG line, 132: COG line, 133: low pressure fuel gas line, 134: high pressure fuel gas line, 135: BFG flow rate Control valve, 136: COG flow control valve, 137: Fuel flow control valve, 138: Recirculation line, 138a: Circulation flow control valve, 140: Calorimeter, 141: Calorific value calculator, 145: Control device

Claims (11)

試料流体が内部を流れる計測セルと、
前記計測セルに設けられ、前記計測セル内に励起光を通過させる入光窓と、
前記計測セルに設けられ、前記励起光が照射させた前記試料流体からのラマン散乱光を前記計測セル外へ通過させる出光窓と、
前記励起光を出射する光出射部を有し、前記入光窓を介して前記励起光を前記計測セル内の前記試料流体に照射する出射光学系と、
前記出光窓を通過した前記ラマン散乱光を集光する集光光学系と、前記集光光学系で集光された前記ラマン散乱光を受光する受光部とを有する受光光学系と、
前記受光部からの出力に基づいて前記試料流体の組成を分析する分析部と、
前記出射光学系と前記受光光学系とを互いの位置関係が変位不能に直接連結する連結部材と、
を備え、
前記出射光学系と前記受光光学系と前記連結部材で構成される光学ユニットは、前記計測セルの熱変形を許容しつつ、前記計測セルの所定箇所に対して相対移動不能に前記計測セルに取り付けられている、
流体組成分析装置。
A measurement cell through which the sample fluid flows;
A light entrance window provided in the measurement cell and allowing excitation light to pass through the measurement cell;
A light exit window that is provided in the measurement cell and allows Raman scattered light from the sample fluid irradiated with the excitation light to pass outside the measurement cell;
An emission optical system that has a light emitting part that emits the excitation light, and irradiates the sample fluid in the measurement cell with the excitation light through the light entrance window;
A light receiving optical system having a condensing optical system that collects the Raman scattered light that has passed through the light exit window, and a light receiving unit that receives the Raman scattered light collected by the condensing optical system;
An analysis unit for analyzing the composition of the sample fluid based on the output from the light receiving unit;
A connecting member that directly connects the emission optical system and the light receiving optical system so that the mutual positional relationship is not displaceable;
With
An optical unit composed of the emission optical system, the light receiving optical system, and the connecting member is attached to the measurement cell so as not to move relative to a predetermined location of the measurement cell while allowing thermal deformation of the measurement cell. Being
Fluid composition analyzer.
試料流体が内部を流れる計測セルと、
前記計測セルに設けられ、前記計測セル内に励起光を通過させる入光窓と、
前記計測セルに設けられ、前記励起光が照射させた前記試料流体からのラマン散乱光を前記計測セル外へ通過させる出光窓と、
前記励起光を出射する光出射部を有し、前記入光窓を介して前記励起光を前記計測セル内の前記試料流体に照射する出射光学系と、
前記出光窓を通過した前記ラマン散乱光を集光する集光光学系と、前記集光光学系で集光された前記ラマン散乱光を受光する受光部とを有する受光光学系と、
前記受光部からの出力に基づいて前記試料流体の組成を分析する分析部と、
前記出射光学系と前記受光光学系とを互いの位置関係が変位不能に直接連結する連結部材と、
を備え、
前記出射光学系と前記受光光学系と前記連結部材で構成される光学ユニットは、前記計測セルの熱変形を許容しつつ、前記出射光学系の光軸の向きに対して前記受光光学系の光軸の向きが相対変位不能に前記計測セルに取り付けられ、
前記入光窓と前記出光窓とは、前記試料流体が流れる前記計測セル内の空間を挟んで互いに対向する位置に設けられ、
前記連結部材は、前記出射光学系と前記受光光学系とを間隔をあけて互いに対向させ、且つ前記出射光学系の光軸と前記受光光学系の光軸とを同一直線上に位置させて、前記出射光学系と前記受光光学系とを互いを連結する連結ロッドを有し、
前記計測セルには、前記入光窓と前記出光窓とが対向する方向に貫通する係合部が形成され、
前記連結ロッドは、前記係合部に挿通されることで係合されている、
流体組成分析装置。
A measurement cell through which the sample fluid flows;
A light entrance window provided in the measurement cell and allowing excitation light to pass through the measurement cell;
A light exit window that is provided in the measurement cell and allows Raman scattered light from the sample fluid irradiated with the excitation light to pass outside the measurement cell;
An emission optical system that has a light emitting part that emits the excitation light, and irradiates the sample fluid in the measurement cell with the excitation light through the light entrance window;
A light receiving optical system having a condensing optical system that collects the Raman scattered light that has passed through the light exit window, and a light receiving unit that receives the Raman scattered light collected by the condensing optical system;
An analysis unit for analyzing the composition of the sample fluid based on the output from the light receiving unit;
A connecting member that directly connects the emission optical system and the light receiving optical system so that the mutual positional relationship is not displaceable;
With
The optical unit composed of the emission optical system, the light receiving optical system, and the connecting member allows light of the light receiving optical system relative to the direction of the optical axis of the emission optical system while allowing thermal deformation of the measurement cell. axis direction is mounted et al is the relative displacement incapable of said measurement cell,
The light entrance window and the light exit window are provided at positions facing each other across a space in the measurement cell through which the sample fluid flows,
The connecting member is configured such that the emission optical system and the light receiving optical system are opposed to each other with an interval, and the optical axis of the emission optical system and the optical axis of the light receiving optical system are positioned on the same straight line, A connecting rod for connecting the emission optical system and the light receiving optical system to each other;
The measurement cell is formed with an engaging portion that penetrates in the direction in which the light entrance window and the light exit window face each other,
The connecting rod is engaged by being inserted through the engaging portion,
Fluid composition analyzer.
前記入光窓と前記出光窓とは、前記試料流体が流れる前記計測セル内の空間を挟んで互いに対向する位置に設けられ、
前記連結部材は、前記出射光学系と前記受光光学系とを間隔をあけて互いに対向させ、且つ前記出射光学系の光軸と前記受光光学系の光軸とを同一直線上に位置させて、前記出射光学系と前記受光光学系とを互いを連結する連結ロッドを有し、
前記計測セルには、前記入光窓と前記出光窓とが対向する方向に貫通する係合部が形成され、
前記連結ロッドは、前記係合部に挿通されることで係合されている、
請求項1に記載の流体組成分析装置。
The light entrance window and the light exit window are provided at positions facing each other across a space in the measurement cell through which the sample fluid flows,
The connecting member is configured such that the emission optical system and the light receiving optical system are opposed to each other with an interval, and the optical axis of the emission optical system and the optical axis of the light receiving optical system are positioned on the same straight line, A connecting rod for connecting the emission optical system and the light receiving optical system to each other;
The measurement cell is formed with an engaging portion that penetrates in the direction in which the light entrance window and the light exit window face each other,
The connecting rod is engaged by being inserted through the engaging portion,
The fluid composition analyzer according to claim 1 .
前記連結ロッドは、前記係合部に対して隙間を有して挿通され、
前記連結部材は、前記連結ロッドに接して、前記連結ロッドとの接触位置が前記計測セルに対して相対移動不能に前記連結ロッドを前記計測セルに取り付ける取付具を有している、
請求項3に記載の流体組成分析装置。
The connecting rod is inserted into the engagement portion with a gap,
The connection member has a fixture that contacts the connection rod and attaches the connection rod to the measurement cell so that the contact position with the connection rod cannot move relative to the measurement cell.
The fluid composition analyzer according to claim 3.
試料流体が内部を流れる計測セルと、
前記計測セルに設けられ、前記計測セル内に励起光を通過させる入光窓と、
前記計測セルで、前記試料流体が流れる前記計測セル内の空間を挟んで前記入光窓と対向する位置に設けられ、前記励起光が照射させた前記試料流体からのラマン散乱光を前記計測セル外へ通過させる出光窓と、
前記励起光を出射する光出射部を有し、前記入光窓を介して前記励起光を前記計測セル内の前記試料流体に照射する出射光学系と、
前記出光窓を通過した前記ラマン散乱光を集光する集光光学系と、前記集光光学系で集光された前記ラマン散乱光を受光する受光部とを有する受光光学系と、
前記受光部からの出力に基づいて前記試料流体の組成を分析する分析部と、
前記出射光学系と前記受光光学系とを互いの位置関係が変位不能に直接連結する連結部材と、
を備え、
前記連結部材は、前記出射光学系と前記受光光学系とを間隔をあけて互いに対向させ、且つ前記出射光学系の光軸と前記受光光学系の光軸とを同一直線上に位置させて、前記出射光学系と前記受光光学系とを互いを連結する連結ロッドと、前記連結ロッドを前記計測セルに取り付ける取付具と、を有し、
前記計測セルには、前記入光窓と前記出光窓とが対向する方向に貫通する係合部が形成され、
前記取付具は、前記係合部に挿通された前記連結ロッドに接して、前記連結ロッドとの接触位置が前記計測セルに対して相対移動不能に前記連結ロッドを前記計測セルに取り付ける、
流体組成分析装置。
A measurement cell through which the sample fluid flows;
A light entrance window provided in the measurement cell and allowing excitation light to pass through the measurement cell;
In the measurement cell, Raman scattering light from the sample fluid irradiated with the excitation light is provided at a position facing the light entrance window across a space in the measurement cell through which the sample fluid flows. A light exit window that passes outside,
An emission optical system that has a light emitting part that emits the excitation light, and irradiates the sample fluid in the measurement cell with the excitation light through the light entrance window;
A light receiving optical system having a condensing optical system that collects the Raman scattered light that has passed through the light exit window, and a light receiving unit that receives the Raman scattered light collected by the condensing optical system;
An analysis unit for analyzing the composition of the sample fluid based on the output from the light receiving unit;
A connecting member that directly connects the emission optical system and the light receiving optical system so that the mutual positional relationship is not displaceable;
With
The connecting member is configured such that the emission optical system and the light receiving optical system are opposed to each other with an interval, and the optical axis of the emission optical system and the optical axis of the light receiving optical system are positioned on the same straight line, A connecting rod for connecting the emission optical system and the light receiving optical system to each other, and a fixture for attaching the connecting rod to the measurement cell,
The measurement cell is formed with an engaging portion that penetrates in the direction in which the light entrance window and the light exit window face each other,
The attachment is in contact with the connecting rod inserted through the engaging portion, and the connecting rod is attached to the measurement cell so that the contact position with the connection rod is not relatively movable with respect to the measurement cell.
Fluid composition analyzer.
前記連結部材は、前記出射光学系を保持し、前記連結ロッドに取り付けられる出射光学系保持枠と、前記連結ロッドに対する前記出射光学系保持枠の向き及び固定位置を調節する取付調節具と、前記受光光学系を保持し、前記連結ロッドに取り付けられる受光光学系保持枠と、前記連結ロッドに対する前記受光光学系保持枠の向き及び固定位置を調節する取付調節具と、
を備えている請求項3から5のいずれか一項に記載の流体組成分析装置。
The connecting member holds the exit optical system and is attached to the connecting rod, an exit optical system holding frame, an attachment adjuster for adjusting the orientation and fixing position of the exit optical system holding frame with respect to the connecting rod, A light receiving optical system holding frame that holds the light receiving optical system and is attached to the connecting rod; and an attachment adjuster that adjusts the orientation and fixing position of the light receiving optical system holding frame with respect to the connecting rod;
The fluid composition analyzer according to any one of claims 3 to 5, further comprising:
前記連結部材は、互いに平行な4本の前記連結ロッドを有する、
請求項3から6のいずれか一項に記載の流体組成分析装置。
The connecting member has four connecting rods parallel to each other.
The fluid composition analyzer according to any one of claims 3 to 6.
前記出光窓は、前記励起光を反射し、前記ラマン散乱光を前記計測セル外へ通過させるフィルターである、
請求項1から7のいずれか一項に記載の流体組成分析装置。
The light exit window is a filter that reflects the excitation light and passes the Raman scattered light out of the measurement cell.
The fluid composition analyzer according to any one of claims 1 to 7.
請求項1から8のいずれか一項に記載の流体組成分析装置と、
前記流体組成分析装置の前記分析部で分析された前記試料流体の組成に基づいて、前記試料流体の発熱量を求め、前記発熱量を出力する発熱量演算器と、
を備えている熱量計。
The fluid composition analyzer according to any one of claims 1 to 8,
A calorific value calculator for obtaining a calorific value of the sample fluid based on the composition of the sample fluid analyzed by the analysis unit of the fluid composition analyzer, and outputting the calorific value;
Calorimeter equipped with.
燃料ガスを燃焼させて駆動するガスタービンと、
前記燃料ガスを前記試料流体として、前記燃料ガスの発熱量を求める請求項9に記載の熱量計と、
前記熱量計から出力された前記燃料ガスの発熱量を用いて前記ガスタービンの動作を制御する制御装置と、
を備えているガスタービンプラント。
A gas turbine that burns and drives fuel gas; and
The calorimeter according to claim 9, wherein the calorific value of the fuel gas is obtained using the fuel gas as the sample fluid,
A control device for controlling the operation of the gas turbine using the calorific value of the fuel gas output from the calorimeter;
Gas turbine plant equipped with.
燃料ガスを燃焼させて駆動するガスタービンを備えているガスタービンプラントの運転方法において、
請求項9に記載の熱量計を用いて、前記燃料ガスを前記試料流体として、前記燃料ガスの発熱量を求め、
前記熱量計で求められた前記燃料ガスの発熱量を用いて前記ガスタービンの動作を制御する、
ガスタービンプラントの運転方法。
In a method for operating a gas turbine plant including a gas turbine that is driven by burning fuel gas,
Using the calorimeter according to claim 9, the calorific value of the fuel gas is determined using the fuel gas as the sample fluid,
Controlling the operation of the gas turbine using the calorific value of the fuel gas determined by the calorimeter,
A method for operating a gas turbine plant.
JP2013207706A 2013-10-02 2013-10-02 Fluid composition analyzer, calorimeter, gas turbine plant equipped with the same, and operation method thereof Active JP6165014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013207706A JP6165014B2 (en) 2013-10-02 2013-10-02 Fluid composition analyzer, calorimeter, gas turbine plant equipped with the same, and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013207706A JP6165014B2 (en) 2013-10-02 2013-10-02 Fluid composition analyzer, calorimeter, gas turbine plant equipped with the same, and operation method thereof

Publications (2)

Publication Number Publication Date
JP2015072179A JP2015072179A (en) 2015-04-16
JP6165014B2 true JP6165014B2 (en) 2017-07-19

Family

ID=53014647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013207706A Active JP6165014B2 (en) 2013-10-02 2013-10-02 Fluid composition analyzer, calorimeter, gas turbine plant equipped with the same, and operation method thereof

Country Status (1)

Country Link
JP (1) JP6165014B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6908511B2 (en) * 2017-12-07 2021-07-28 三菱パワー株式会社 Raman scattered light acquisition device, composition analyzer equipped with it, and gas turbine plant
WO2023189628A1 (en) * 2022-03-30 2023-10-05 富士フイルム株式会社 Flow cell, and measuring method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587735A (en) * 1991-03-11 1993-04-06 Matsushita Electric Ind Co Ltd Visual range measuring instrument
DE4340072C2 (en) * 1993-11-24 1996-05-15 Siemens Ag Device for examining tissue with light
US5510621A (en) * 1994-10-03 1996-04-23 Optical Solutions, Inc. Apparatus and method for measuring components in a bag
JP5667809B2 (en) * 2010-08-06 2015-02-12 株式会社四国総合研究所 Optical gas sensor
WO2012071326A2 (en) * 2010-11-24 2012-05-31 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Gas sensing system employing raman scattering
WO2013031316A1 (en) * 2011-09-01 2013-03-07 三菱重工業株式会社 Fluid composition analysis mechanism, heat generation amount measurement device and power plant

Also Published As

Publication number Publication date
JP2015072179A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
KR101789364B1 (en) Fluid composition analysis mechanism, heat generation amount measurement device and power plant, and liquid composition analysis method
EP2508801B1 (en) System for observing combustion conditions in a gas turbine
CN102809427B (en) Automatically alignment spectroscopic system and the automatic method being directed at spectroscopic system
US9000374B2 (en) EGR distribution and fluctuation probe based on CO2 measurements
Liu et al. Quantitative measurement of OH* and CH* chemiluminescence in jet diffusion flames
JP6165014B2 (en) Fluid composition analyzer, calorimeter, gas turbine plant equipped with the same, and operation method thereof
JP2021152555A (en) Raman scattered light acquisition device, composition analysis device including the same, gas turbine
JP2010536042A (en) Long-path atmospheric monitoring and measuring device
JP2007514160A (en) Gas sensor
CN113167739A (en) Probe for measuring combustion-supporting gas composition
Brown et al. TDLAS-based measurements of temperature, pressure, and velocity in the isolator of an axisymmetric scramjet
JP5609580B2 (en) Laser gas analyzer
TW202032104A (en) In-fluid floating substance measurement flow cell and particle counter
JPWO2010126118A1 (en) Spectrometer
CN113295620B (en) Optical fiber coupled all-solid-state enhanced photoacoustic spectroscopy gas photoacoustic detection module and method
TWI829855B (en) Particle counter
JP2015072180A (en) Fluid component analyzer, calorimeter, gas turbine plant with calorimeter, and gas turbine plant operation method
JP2002228582A (en) Gas detection device
US20130057856A1 (en) Fluid composition analysis mechanism, calorific value measurement device, power plant and fluid composition analysis method
CN107064008B (en) Anti-vibration long-optical-path gas pool
CN211477989U (en) Smoke and dust normal position formula preprocessing device
CN113281300B (en) Measuring device for high-sensitivity measurement of weak absorption gas parameters in narrow and small environment
Lakusta Laser-induced fluorescence and performance analysis of the ultra-compact combustor
CN113155769A (en) Tunable spectrum-based variable optical path gas chamber component detection system and method
JP2012167652A (en) Exhaust gas recirculation apparatus and internal combustion engine system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150202

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20160606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170620

R150 Certificate of patent or registration of utility model

Ref document number: 6165014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350