JP6164512B2 - Fe-based soft magnetic metal powder - Google Patents

Fe-based soft magnetic metal powder Download PDF

Info

Publication number
JP6164512B2
JP6164512B2 JP2012226063A JP2012226063A JP6164512B2 JP 6164512 B2 JP6164512 B2 JP 6164512B2 JP 2012226063 A JP2012226063 A JP 2012226063A JP 2012226063 A JP2012226063 A JP 2012226063A JP 6164512 B2 JP6164512 B2 JP 6164512B2
Authority
JP
Japan
Prior art keywords
metal powder
magnetic
soft magnetic
core
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012226063A
Other languages
Japanese (ja)
Other versions
JP2014078629A (en
Inventor
美紀子 筒井
美紀子 筒井
藤田 雄一郎
雄一郎 藤田
哲男 秋吉
哲男 秋吉
晃宏 岡野
晃宏 岡野
西村 寛之
寛之 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2012226063A priority Critical patent/JP6164512B2/en
Publication of JP2014078629A publication Critical patent/JP2014078629A/en
Application granted granted Critical
Publication of JP6164512B2 publication Critical patent/JP6164512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、Fe基の軟磁性金属粉体に関し、特に、高周波用の磁性部品に使用される磁心等の磁性部材のためのFe基軟磁性金属粉体に関する。   The present invention relates to an Fe-based soft magnetic metal powder, and more particularly to an Fe-based soft magnetic metal powder for a magnetic member such as a magnetic core used in a magnetic component for high frequency.

チョークコイルやインダクタ等の磁性部品の磁心には、酸化物フェライトなどの透磁率の高い材料が使用されている。近年、携帯通信機器などの電子機器では、周波数域が高周波側に移行しており、かかる周波数域での動作に適した磁性部品が求められている。ここで、磁心に巻かれたコイルを流れる電流の周波数が高くなると、磁心に与えられる磁界によって生じる渦電流を原因とした渦電流損が大きくなる傾向にある。特に、酸化物フェライトからなる磁心では、数kHz以上の周波数域で渦電流損が急激に大きくなってしまう。渦電流損分のエネルギーは、磁性部品の動作効率を押し下げるとともに、磁心から熱となって放出され、電子機器を小型化する上での阻害要因ともなっている。   High magnetic permeability materials such as oxide ferrite are used for magnetic cores of magnetic components such as choke coils and inductors. In recent years, in electronic devices such as mobile communication devices, the frequency range has shifted to the high frequency side, and magnetic components suitable for operation in such a frequency range are required. Here, when the frequency of the current flowing through the coil wound around the magnetic core increases, the eddy current loss due to the eddy current generated by the magnetic field applied to the magnetic core tends to increase. In particular, in a magnetic core made of oxide ferrite, eddy current loss rapidly increases in a frequency range of several kHz or more. The energy corresponding to the eddy current loss lowers the operating efficiency of the magnetic component and is released as heat from the magnetic core, which is an obstacle to downsizing the electronic device.

渦電流損を小さくし得る磁心としては、軟磁性金属からなる金属粉体を絶縁性樹脂とともに成形して得られる磁心が広く知られている。軟磁性金属粉体の粒子同士を絶縁性樹脂で絶縁して磁心の比抵抗を大きくすることで、磁心に生じる渦電流を抑制でき、渦電流損を小さくし得るのである。また、加圧成形可能であれば軟磁性金属の成分組成を広く選択できるので、渦電流損を含むコアロス(鉄損)を効果的に抑制できて、特に、コアロスに対する要求の厳しい小型電子機器の高周波用の磁性部品に使用される磁心として好ましい。   As a magnetic core capable of reducing eddy current loss, a magnetic core obtained by molding a metal powder made of a soft magnetic metal together with an insulating resin is widely known. By insulating the soft magnetic metal powder particles with an insulating resin to increase the specific resistance of the magnetic core, eddy currents generated in the magnetic core can be suppressed and eddy current loss can be reduced. In addition, the component composition of soft magnetic metal can be selected widely if it can be pressure-molded, so core loss (iron loss) including eddy current loss can be effectively suppressed. It is preferable as a magnetic core used for a magnetic component for high frequency.

例えば、特許文献1では、Fe中に、質量%で、Si:7〜9%、Cr:〜5%を含むガスアトマイズ金属粉体と絶縁性樹脂としての有機高分子とを混合し射出成形して得られる磁心が開示されている。有機高分子を金属粉体のバインダに用いた射出成形後の成形体を型崩れしないように熱処理することが困難であることを述べた上で、ガスアトマイズにより得た所定の成分組成の金属粉体によれば、熱処理をしなくとも金属粉体の歪みを比較的小さくでき、酸化も少なく抑え得るから、鉄損を抑制出来ると述べている。また、ガスアトマイズ法により得られた金属粉体は、球状になりやすく、有機高分子中での混合分散性に優れ、射出成形においても好ましいことを述べている。ここで、Siについて、Fe中に所定の範囲の含有量を外れて与えると、混練や射出成形による金属粉体への歪みの蓄積などによって鉄損を大きくしてしまうとしている。また、Crについても鉄損を低減するために任意に添加されるとしている。   For example, in Patent Document 1, gas atomized metal powder containing Fe: mass%, Si: 7-9%, Cr: -5% and organic polymer as an insulating resin are mixed and injection molded in Fe. The resulting magnetic core is disclosed. A metal powder with a prescribed component composition obtained by gas atomization after mentioning that it is difficult to heat-treat the molded product after injection molding using an organic polymer as a binder for the metal powder so as not to lose its shape. Describes that the distortion of the metal powder can be made relatively small without performing heat treatment, and the oxidation can be suppressed to a small extent, so that iron loss can be suppressed. Further, it is stated that the metal powder obtained by the gas atomization method tends to be spherical, has excellent mixing and dispersibility in an organic polymer, and is preferable for injection molding. Here, regarding Si, if the content in a predetermined range is deviated in Fe, the iron loss is increased due to accumulation of strain in the metal powder by kneading or injection molding. Also, Cr is arbitrarily added to reduce iron loss.

また、例えば、特許文献2では、Fe中に、質量%で、Si:3〜10%、Cr:3〜10%を含む水アトマイズ金属粉体に絶縁性樹脂(バインダ)を混合し加圧成形して得られる圧粉磁心を開示している。Fe中にSiを比較的多く含むゼロ磁歪近傍の水アトマイズ金属粉体では、その硬さが高く、高密度に圧粉磁心を加圧成形することが困難であり、透磁率が低いことをまず述べ、金属粉体にあらかじめ水素を含む還元雰囲気中で熱処理を施しておくことを開示している。かかる熱処理により、金属粉体表面の酸化層が還元され、硬さを低下させて成形性を確保し、透磁率を高めるとともに、鉄損を向上させ得るとしている。ここで、Siについて、Fe中に所定の範囲の含有量を外れて与えると、磁歪が大きくなって鉄損が大きくなることを述べている。また、Crについて、錆びや変色、経時変化を抑えるために添加されること、及び、Feの含有量を相対的に減少せしめるほどに加えると、鉄損が大きくなってしまうことを述べている。   For example, in Patent Document 2, an insulating resin (binder) is mixed with water atomized metal powder containing Fe: Si: 3 to 10% and Cr: 3 to 10% by mass in Fe and press-molded. A powder magnetic core obtained as described above is disclosed. The water atomized metal powder in the vicinity of zero magnetostriction containing a relatively large amount of Si in Fe has high hardness, it is difficult to press-mold a dust core at high density, and low permeability It is disclosed that the metal powder is previously heat-treated in a reducing atmosphere containing hydrogen. By this heat treatment, the oxide layer on the surface of the metal powder is reduced, the hardness is reduced to ensure formability, the magnetic permeability can be increased, and the iron loss can be improved. Here, it is stated that when Si is given out of a predetermined range in Fe, magnetostriction increases and iron loss increases. Further, it is described that Cr is added to suppress rust, discoloration, and change with time, and that iron loss increases when Fe is added so as to relatively reduce the content of Fe.

特開2009−176974号公報JP 2009-176974 A 特開2010−272604号公報JP 2010-272604 A

上記したように、Fe−Si−Cr系の金属粉体を用いた磁心等の磁性部材は、高い透磁率を得られるとともに、鉄損が小さく、更に、耐食性にも優れ、特に、高周波用の磁性部品に使用される磁心の磁性部材として好ましい。   As described above, a magnetic member such as a magnetic core using a Fe-Si-Cr-based metal powder can obtain a high magnetic permeability, has a small iron loss, and is excellent in corrosion resistance. It is preferable as a magnetic member of a magnetic core used for magnetic parts.

本発明はかかる状況に鑑みてなされたものであって、その目的とするところは、Fe−Si−Cr系の金属粉体を用いた磁心等の磁性部材において、より高い透磁率を得られ、且つ、鉄損を小さく抑え得る、Fe基軟磁性金属粉体を提供することにある。   The present invention has been made in view of such a situation, and the object is to obtain a higher magnetic permeability in a magnetic member such as a magnetic core using an Fe-Si-Cr-based metal powder, And it is providing the Fe group soft magnetic metal powder which can suppress an iron loss small.

本発明によるFe基軟磁性金属粉体は、Fe中に、質量%で、Si:7〜9%、Cr:2〜8%を不可避的不純物とともに含み、平均粒径D50を1〜40μmとして、酸素量を0.60質量%以下に抑制したことを特徴とする。   The Fe-based soft magnetic metal powder according to the present invention contains, in Fe, mass%, Si: 7 to 9%, Cr: 2 to 8% together with inevitable impurities, and an average particle diameter D50 of 1 to 40 μm. The oxygen content is suppressed to 0.60% by mass or less.

かかる発明によれば、結合材料とともに成形して得られる磁心等の磁性部材において、より高い透磁率を得られるとともに、鉄損を小さく抑え得て、耐食性にも優れるのである。   According to this invention, in a magnetic member such as a magnetic core obtained by molding together with a binding material, higher magnetic permeability can be obtained, iron loss can be suppressed, and corrosion resistance is excellent.

軟磁性金属粉体及び磁心の製造方法を示す図である。It is a figure which shows the manufacturing method of a soft magnetic metal powder and a magnetic core. 圧粉磁心の評価試験結果を示す図である。It is a figure which shows the evaluation test result of a dust core. 評価試験に用いた磁心の斜視図である。It is a perspective view of the magnetic core used for the evaluation test.

本発明による軟磁性金属粉体は、所定の成分組成のFe−Si−Cr系合金からなる。所定の平均粒径において酸素量を一定以下に抑制したことで、絶縁性の結合材料とともに公知の成形法により磁心等の磁性部材を得たときであっても、従来の同一成分組成の粉体を用いた同一の成形法による磁性部材よりも、高い透磁率と、低い鉄損とを達成出来るのである。また、耐食性においても非常に優れる。この公知の成形法としては、例えば、プレス機などにより加圧成形する方法、射出成形機により射出成形する方法、トランスファ成形する方法、ポッティング等の注型成形方法などが挙げられる。また、軟磁性金属粉体を結合材料と混合してペースト状の塗料とし、印刷によって磁性部材を得る方法にも適用できる。このような複合磁性体からなる磁性部材は、特に、高周波用の磁性部品への使用に適している。かかる本発明の1つの実施例である軟磁性金属粉体の製造方法と、これを用いた磁心等の磁性部材の製造方法について、以下に図1を用いて説明する。   The soft magnetic metal powder according to the present invention is made of an Fe—Si—Cr alloy having a predetermined component composition. Even when a magnetic member such as a magnetic core is obtained by a known molding method together with an insulating bonding material by suppressing the oxygen amount to a certain value or less at a predetermined average particle size, a conventional powder having the same component composition High magnetic permeability and low iron loss can be achieved as compared with a magnetic member produced by the same molding method using the. Moreover, it is very excellent also in corrosion resistance. Examples of the known molding method include a method of pressure molding with a press machine, a method of injection molding with an injection molding machine, a method of transfer molding, and a casting molding method such as potting. Also, the present invention can be applied to a method in which a soft magnetic metal powder is mixed with a binding material to form a paste-like paint and a magnetic member is obtained by printing. A magnetic member made of such a composite magnetic material is particularly suitable for use in high-frequency magnetic parts. A method for producing a soft magnetic metal powder according to one embodiment of the present invention and a method for producing a magnetic member such as a magnetic core using the same will be described below with reference to FIG.

図1(a)に示すように、所定の成分組成のFe−Si−Cr系合金からなる母合金を用意し、水アトマイズ法により軟磁性金属粉体1を製造する。すなわち、真空脱気装置により溶存酸素を減じた真空脱気水をノズルから高速で噴出させ、母合金を溶融させた溶融金属3をノズル先端に向けて重力落下させる。溶融金属3は飛散しながら冷却されて凝固し、ノズル下部の真空脱気水のプール中に微細な軟磁性金属粉体1となって得られる。ノズルからの真空脱気水の噴出量などを調整することで、軟磁性金属粉体1の粒径が調整可能である。ここで、Fe−Si−Cr系合金として、Fe中に、質量%で、Si:7〜9%、Cr:2〜9%を含む本発明の実施例としての軟磁性金属粉体1を用いた場合、平均粒径D50を1〜40μmとすることで、後述するように、軟磁性金属粉体1の酸素量を0.60質量%以下に抑制できる。   As shown in FIG. 1A, a mother alloy made of an Fe—Si—Cr alloy having a predetermined component composition is prepared, and a soft magnetic metal powder 1 is produced by a water atomization method. That is, vacuum deaerated water in which dissolved oxygen is reduced by a vacuum deaerator is ejected from the nozzle at a high speed, and the molten metal 3 in which the mother alloy is melted is dropped by gravity toward the nozzle tip. The molten metal 3 is cooled and solidified while being scattered, and is obtained as a fine soft magnetic metal powder 1 in a vacuum deaerated water pool below the nozzle. The particle diameter of the soft magnetic metal powder 1 can be adjusted by adjusting the amount of vacuum degassed water ejected from the nozzle. Here, as the Fe—Si—Cr-based alloy, the soft magnetic metal powder 1 as an example of the present invention containing Si: 7 to 9% and Cr: 2 to 9% by mass in Fe is used. If the average particle size D50 is 1 to 40 μm, the oxygen content of the soft magnetic metal powder 1 can be suppressed to 0.60 mass% or less as described later.

なお、軟磁性金属粉体1から磁心10を得る方法は、これに限定されるものではないが、例えば、図1(b)に示すように、軟磁性金属粉体1に絶縁樹脂2をバインダとして混合し、所定の形状の金型に充填しプレスにて加圧成形する。金型から取り出して、熱処理をして樹脂2を硬化させると磁心10を得ることができる。   The method of obtaining the magnetic core 10 from the soft magnetic metal powder 1 is not limited to this. For example, as shown in FIG. 1B, an insulating resin 2 is bonded to the soft magnetic metal powder 1 as a binder. Are mixed, filled into a mold having a predetermined shape, and press-molded with a press. When the resin 2 is cured by taking out from the mold and heat-treated, the magnetic core 10 can be obtained.

次に、図2に示す成分組成のFe−Si−Cr系合金からなる軟磁性金属粉体からなる磁心10について、各種の評価試験の結果について説明する。   Next, the results of various evaluation tests will be described for the magnetic core 10 made of the soft magnetic metal powder made of the Fe—Si—Cr alloy having the component composition shown in FIG.

まず、図2に示す成分組成の軟磁性金属粉体を水アトマイズ法により作成した。ここで、水アトマイズ法に用いた水は、比較例1を除いて、市販の真空脱気装置を用いて水中の溶存酸素を減じた真空脱気水である。典型的には、真空脱気水中の溶存酸素量は、0.5ppm以下である。一方、比較例1では、一般的な工業用水を使用した。得られた粉体は分級し、実施例7及び実施例8を除いて、平均粒径D50を11〜12μm程度となるようにした。なお、図2には、レーザー回折式粒度分布測定装置により計測した軟磁性金属粉体の平均粒径D50の結果を併せて示した。   First, soft magnetic metal powder having the component composition shown in FIG. 2 was prepared by the water atomization method. Here, the water used for the water atomization method is vacuum deaerated water obtained by reducing the dissolved oxygen in water using a commercially available vacuum deaerator except for Comparative Example 1. Typically, the amount of dissolved oxygen in the vacuum degassed water is 0.5 ppm or less. On the other hand, in Comparative Example 1, general industrial water was used. The obtained powder was classified so that, except for Examples 7 and 8, the average particle diameter D50 was about 11 to 12 μm. In addition, in FIG. 2, the result of the average particle diameter D50 of the soft-magnetic metal powder measured with the laser diffraction type particle size distribution measuring apparatus was shown collectively.

更に、軟磁性金属粉体の酸素量は、LECO社製の酸素・窒素分析装置を用い、JIS Z2613に準拠する不活性ガス融解法−赤外線吸収法により測定し、図2に併せて示した。   Furthermore, the oxygen content of the soft magnetic metal powder was measured by an inert gas melting method-infrared absorption method according to JIS Z2613 using an oxygen / nitrogen analyzer manufactured by LECO, and is shown in FIG.

実数透磁率、鉄損、及び、耐食性については、上記した軟磁性金属粉体を図3に示すような外径φ19mm、内径φ13mm、厚さ4.8mmのリング状のトロイダルコア10に加工した上で測定を行った。すなわち、軟磁性金属粉体に、質量分率で2.5%のエポキシ樹脂をバインダーとして添加するとともに、エポキシ樹脂中に軟磁性金属粉体を混合分散させ、金型に充填した。これを面圧6ton/cmで圧縮成形し、大気中にて170℃で1時間保持しエポキシ樹脂を硬化させてコア10を作成した。 For real magnetic permeability, iron loss, and corrosion resistance, the above soft magnetic metal powder was processed into a ring-shaped toroidal core 10 having an outer diameter of φ19 mm, an inner diameter of φ13 mm, and a thickness of 4.8 mm as shown in FIG. The measurement was performed. That is, an epoxy resin having a mass fraction of 2.5% was added to the soft magnetic metal powder as a binder, and the soft magnetic metal powder was mixed and dispersed in the epoxy resin and filled in a mold. This was compression-molded at a surface pressure of 6 ton / cm 2 and held at 170 ° C. in the air for 1 hour to cure the epoxy resin, thereby producing the core 10.

実数透磁率は、コア10に40ターンの巻線を与えて、アジレントテクノロジー社製のLCRメータ(E4980A)を用いて、周波数1MHz、0.5mAの条件で測定した。得られる磁心に要求される透磁率を考慮して、本評価試験におけるコア10の実数透磁率の目標値は25以上とした。また、鉄損は、1次側に40ターンの巻線を与え、2次側に8ターンの巻線を与えた同じコア10にて、岩通計測株式会社製のB−Hアナライザ(SY−8258)を用いて、磁束密度0.05T、周波数500kHzの条件で測定した。ここで本評価試験におけるコア10の鉄損の目標値は6000kw/m以下とした。それぞれの測定結果は図2に併せて示した。 The real magnetic permeability was measured under conditions of a frequency of 1 MHz and 0.5 mA using an LCR meter (E4980A) manufactured by Agilent Technologies, with a 40-turn winding provided to the core 10. In consideration of the permeability required for the obtained magnetic core, the target value of the real permeability of the core 10 in this evaluation test was set to 25 or more. In addition, the iron loss was measured by using a BH analyzer (SY-) manufactured by Iwatsu Measurement Co., Ltd. using the same core 10 provided with 40 turns of winding on the primary side and 8 turns of winding on the secondary side. 8258) was measured under the conditions of a magnetic flux density of 0.05 T and a frequency of 500 kHz. Here, the target value of the core loss of the core 10 in this evaluation test was set to 6000 kw / m 3 or less. The respective measurement results are also shown in FIG.

耐食性は、JIS C60068−2−11に準拠した塩水噴霧試験により、96時間後のコア10の表面を目視で観察し評価した。図2に評価結果を併せて示したが、ここで、コア10に変色を確認できた場合には、磁心として必要とされる耐食性より耐食性の低いものと判定して「無し」と、それ以外の場合、必要とされる耐食性を満たすものと判定して「有り」と表記した。   Corrosion resistance was evaluated by visually observing the surface of the core 10 after 96 hours by a salt spray test according to JIS C60068-2-11. Although the evaluation results are also shown in FIG. 2, when discoloration can be confirmed in the core 10, it is determined that the corrosion resistance is lower than the corrosion resistance required for the magnetic core, “None”, otherwise In the case of, it was determined that the required corrosion resistance was satisfied, and indicated as “present”.

以上において、まず、水アトマイズ法において、工業用水を用いた比較例1と真空脱気水を用いた実施例1とを比較すると、軟磁性金属粉体の成分組成は同等(Si:8質量%、Cr:5質量%)であるものの、その酸素量は、比較例1では0.67質量%、実施例1では0.27質量%であった。実数透磁率は、比較例1では21であったのに対し、実施例1では29と高くなり目標値を満足した。また、鉄損は、比較例1では8358kw/mであったのに対し、実施例1では4713kw/mと小さくなり、目標値を満足した。つまり、軟磁性金属粉体に含まれる酸素量を抑制することで透磁率を高くし得るとともに、鉄損を小さくし得るのである。 In the above, first, in Comparative Example 1 using industrial water and Example 1 using vacuum deaerated water in the water atomization method, the component composition of the soft magnetic metal powder is equivalent (Si: 8% by mass) , Cr: 5% by mass), the oxygen content was 0.67% by mass in Comparative Example 1 and 0.27% by mass in Example 1. The real magnetic permeability was 21 in Comparative Example 1, whereas it increased to 29 in Example 1 to satisfy the target value. Also, the iron loss, while was 8358kw / m 3 in Comparative Example 1, as small as 4713kw / m 3 in Example 1, was satisfied the target value. That is, by suppressing the amount of oxygen contained in the soft magnetic metal powder, the magnetic permeability can be increased and the iron loss can be reduced.

なお、一般的に、水アトマイズ法で製造された粉体は、その表面に凹凸を有しいびつで表面積比の大きな粉体となり易いとされる。つまり、表面が酸化され易いのである。一方で、軟磁性金属粉体1は、分級前の平均粒径D50を1〜40μmとし、水アトマイズ法においても比較的球状の粉体を得られ、その結果、酸化を低減でき、軟磁性金属粉体1に含まれる酸素量を抑制できたと考えられる。   In general, the powder produced by the water atomization method is likely to be a powder having irregularities on the surface and a large surface area ratio. That is, the surface is easily oxidized. On the other hand, the soft magnetic metal powder 1 has an average particle diameter D50 before classification of 1 to 40 μm, and can obtain a relatively spherical powder even in the water atomization method. It is considered that the amount of oxygen contained in the powder 1 could be suppressed.

次に、Fe−Si−Cr系合金におけるCr量を変化させた実施例1乃至実施例4、比較例2及び比較例3を比較すると、Crの含有量を1質量%とした比較例2では、塩水噴霧試験において点状に錆による変色が観察された。つまり、耐食性は、「無し」の判定となっている。また、Crの含有量を9質量%とした比較例3では、実数透磁率が24と目標値より低かった。これに対して、Crの含有量を2質量%とした実施例2、Crの含有量を4質量%とした実施例3、Crの含有量を8質量%とした実施例4では、塩水噴霧試験における変色は観察されず、いずれも耐食性は、「有り」の判定となっているとともに、実数透磁率及び鉄損は目標値を満足した。   Next, when Example 1 thru | or Example 4, and Comparative Example 2 and Comparative Example 3 which changed Cr amount in a Fe-Si-Cr type-alloy are compared, in Comparative Example 2 which made Cr content 1 mass%, In the salt spray test, discoloration due to rust was observed in the form of dots. That is, the corrosion resistance is judged as “none”. Moreover, in the comparative example 3 which made content of Cr 9 mass%, the real number magnetic permeability was 24 and was lower than the target value. In contrast, in Example 2 in which the Cr content was 2% by mass, Example 3 in which the Cr content was 4% by mass, and Example 4 in which the Cr content was 8% by mass, salt spray Discoloration in the test was not observed, and in all cases, the corrosion resistance was judged as “present”, and the real permeability and iron loss satisfied the target values.

次に、Fe−Si−Cr系合金におけるSi量を変化させた実施例1、実施例5、実施例6、比較例4及び比較例5を比較すると、Siの含有量を6.5質量%とした比較例4、Siの含有量を10質量%とした比較例5のいずれにおいても、実数透磁率はそれぞれ30、及び、27と高く目標値を満足したものの、鉄損がそれぞれ6635kw/m、及び、6247kw/mと目標値を外れて大きくなった。これに対して、Siの含有量をそれぞれ7、8、9質量%とした実施例5、1、6では、実数透磁率は30、29、28と高く目標値を満足し、鉄損は5554kw/m、4713kw/m、5290kw/mと小さく目標値を満足した。すなわち、Si量の最適値が存在し、これを外れると、鉄損を大きくしてしまう。 Next, when Example 1, Example 5, Example 6, Comparative Example 4 and Comparative Example 5 in which the amount of Si in the Fe—Si—Cr alloy was changed were compared, the Si content was 6.5 mass%. In both Comparative Example 4 and Comparative Example 5 in which the Si content was 10% by mass, the real magnetic permeability was 30 and 27, respectively, and the target value was satisfied, but the iron loss was 6635 kw / m. 3 and 6247 kw / m 3 , which were larger than the target values. On the other hand, in Examples 5, 1, and 6 in which the Si content was 7, 8, and 9% by mass, the real permeability was as high as 30, 29, and 28, satisfying the target value, and the iron loss was 5554 kW. / M 3 , 4713 kw / m 3 and 5290 kw / m 3 were small and satisfied the target value. In other words, there is an optimum value of the Si amount, and if it deviates from this, the iron loss is increased.

次に、平均粒径D50を変化させた実施例1、実施例7及び実施例8を比較すると、平均粒径D50を、それぞれ11.2μm、23.9μm、34.2μmとした実施例1、実施例7、実施例8において、実数透磁率はそれぞれ29、32、35といずれも目標値を満足し、平均粒径D50を大きくするに伴って大となる傾向を有している。また、実施例1、実施例7、実施例8において、鉄損はそれぞれ、4713kw/m、5283kw/m、5749kw/mと、いずれも目標値を満足したが、平均粒径D50とともに大となる傾向を有している。 Next, when Example 1, Example 7 and Example 8 in which the average particle diameter D50 was changed were compared, Example 1, in which the average particle diameter D50 was 11.2 μm, 23.9 μm, and 34.2 μm, respectively. In Example 7 and Example 8, the real magnetic permeability, 29, 32, and 35, satisfy the target values, respectively, and tend to increase as the average particle diameter D50 increases. In Example 1, Example 7, and Example 8, the iron loss was 4713 kw / m 3 , 5283 kw / m 3 , and 5749 kw / m 3 , all of which met the target values, but with the average particle diameter D50 It has a tendency to become large.

ところで、上記したように、本発明による軟磁性金属粉体1の成分組成の範囲は、これから得られる磁心10に必要とされる磁気特性及び耐食性を考慮して以下のように定められる。   By the way, as described above, the range of the component composition of the soft magnetic metal powder 1 according to the present invention is determined as follows in consideration of the magnetic characteristics and corrosion resistance required for the magnetic core 10 obtained therefrom.

Siは、その含有量を多くし過ぎても少なくし過ぎても、得られる磁心10の鉄損を増大させてしまう。つまり、質量%で、Siは7〜9%の範囲内である。   Si increases the iron loss of the obtained magnetic core 10 even if the content is too much or too little. That is, Si is in the range of 7 to 9% by mass%.

Crは、磁心10に耐食性を付与する。一方で、過剰となると、得られる磁心10の透磁率を低下させ、鉄損を増大させてしまう。そこで、質量%で、Crは2〜8%の範囲内である。   Cr imparts corrosion resistance to the magnetic core 10. On the other hand, when it becomes excessive, the magnetic permeability of the magnetic core 10 obtained will be reduced and the iron loss will be increased. Therefore, Cr is in the range of 2 to 8% by mass%.

なお、不可避的不純物については、上記した磁心10の磁気特性及び耐食性を損なわない範囲として、質量%で、C:0.04%以下、Mn:0.3%以下、P:0.06%以下、S:0.06%以下、N:0.06%以下、Cu:0.05%以下、Mo:0.05%以下、Ni:0.1%以下に抑制される。   In addition, about inevitable impurities, as a range which does not impair the magnetic characteristic and corrosion resistance of the above-mentioned magnetic core 10, in mass%, C: 0.04% or less, Mn: 0.3% or less, P: 0.06% or less S: 0.06% or less, N: 0.06% or less, Cu: 0.05% or less, Mo: 0.05% or less, Ni: 0.1% or less.

また、上記したように、本発明による軟磁性金属粉体1に含まれる酸素は、これから得られる磁心10に必要とされる磁気特性を考慮して以下のように定められる。すなわち、酸素は、主として酸化物を形成し、得られる磁心10の透磁率を低下させ、鉄損を増大させる。そこで、酸素量は、質量%で、0.60%以下であり、好ましくは0.50%以下である。   Further, as described above, oxygen contained in the soft magnetic metal powder 1 according to the present invention is determined as follows in consideration of magnetic characteristics required for the magnetic core 10 obtained from the oxygen. That is, oxygen mainly forms an oxide, lowers the magnetic permeability of the magnetic core 10 obtained, and increases iron loss. Therefore, the oxygen content is 0.60% or less, preferably 0.50% or less, in mass%.

更に、上記したように、本発明による軟磁性金属粉体1の平均粒径D50は、これから得られる磁心10に必要とされる磁気特性を考慮して以下のように定められる。すなわち、平均粒径D50が小さいと、得られる磁心10にコイルを与えたときに磁心10内の渦電流を抑制でき、特に、コイルに流れる電流を高周波側にシフトさせても磁心10に発生する渦電流を抑制して、渦電流損を低減し得る。しかし、小さすぎると、得られる磁心10の透磁率を低下させてしまう。そこで、平均粒径D50は、1〜40μmの範囲である。   Furthermore, as described above, the average particle diameter D50 of the soft magnetic metal powder 1 according to the present invention is determined as follows in consideration of the magnetic characteristics required for the magnetic core 10 obtained therefrom. That is, when the average particle diameter D50 is small, the eddy current in the magnetic core 10 can be suppressed when the coil is applied to the obtained magnetic core 10, and in particular, even if the current flowing through the coil is shifted to the high frequency side, it is generated in the magnetic core 10. The eddy current can be suppressed and eddy current loss can be reduced. However, if it is too small, the magnetic permeability of the obtained magnetic core 10 will be reduced. Therefore, the average particle diameter D50 is in the range of 1 to 40 μm.

ここまで本発明による代表的実施例について説明したが、本発明は必ずしもこれらに限定されるものではない。当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるだろう。   The exemplary embodiments according to the present invention have been described so far, but the present invention is not necessarily limited thereto. Those skilled in the art will recognize a variety of alternative embodiments and modifications without departing from the scope of the appended claims.

1 軟磁性金属粉体
10 コア(磁心)
1 Soft magnetic metal powder 10 Core (magnetic core)

Claims (1)

表面に凹凸を有する水アトマイズ金属粉体であり、Fe中に、質量%で、Si:8〜9%、Cr:〜8%を不可避的不純物とともに含む成分組成の合金からなり磁性部材のためのFe基軟磁性金属粉体であって、
平均粒径D50を1〜40μmとして、酸素量を0.19〜0.60質量%の範囲に抑制したことを特徴とするFe基軟磁性金属粉体。

A water-atomized metal powder having an uneven surface, while Fe, in mass%, Si: 8~9%, Cr : 4 ~8% together with unavoidable impurities of the magnetic member made of an alloy of including chemical composition Fe-based soft magnetic metal powder for
An Fe-based soft magnetic metal powder characterized in that the average particle diameter D50 is 1 to 40 μm and the amount of oxygen is suppressed to a range of 0.19 to 0.60 mass%.

JP2012226063A 2012-10-11 2012-10-11 Fe-based soft magnetic metal powder Active JP6164512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012226063A JP6164512B2 (en) 2012-10-11 2012-10-11 Fe-based soft magnetic metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012226063A JP6164512B2 (en) 2012-10-11 2012-10-11 Fe-based soft magnetic metal powder

Publications (2)

Publication Number Publication Date
JP2014078629A JP2014078629A (en) 2014-05-01
JP6164512B2 true JP6164512B2 (en) 2017-07-19

Family

ID=50783710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012226063A Active JP6164512B2 (en) 2012-10-11 2012-10-11 Fe-based soft magnetic metal powder

Country Status (1)

Country Link
JP (1) JP6164512B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7381969B2 (en) 2020-05-26 2023-11-16 日本電信電話株式会社 Optical wireless communication device and optical wireless communication method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018186212A (en) * 2017-04-27 2018-11-22 Dowaエレクトロニクス株式会社 Soft magnetic powder, method for manufacturing the same, soft magnetic material, and method for manufacturing powder-compact magnetic core
KR102025709B1 (en) * 2018-11-26 2019-09-26 삼성전기주식회사 Coil component
KR102198532B1 (en) * 2019-06-25 2021-01-06 삼성전기주식회사 Coil component
JP7148734B2 (en) 2020-07-10 2022-10-05 Jfeミネラル株式会社 Metal powder, compact thereof, and method for producing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251203A (en) * 1984-05-25 1985-12-11 Hitachi Metals Ltd Production of powder for powder metallurgy
JPH0750648B2 (en) * 1986-04-23 1995-05-31 日立金属株式会社 Method for manufacturing Fe-Si-A1 alloy powder magnetic core
JP2799893B2 (en) * 1989-12-28 1998-09-21 株式会社トーキン Shape anisotropic soft magnetic alloy powder
JP2523388B2 (en) * 1990-04-12 1996-08-07 ティーディーケイ株式会社 Method for producing soft magnetic powder for magnetic shield and magnetic shield material
JP2003027113A (en) * 2001-07-16 2003-01-29 Sanyo Special Steel Co Ltd Metal powder with regulated oxygen concentration
JP4166460B2 (en) * 2001-11-26 2008-10-15 松下電器産業株式会社 Composite magnetic material, magnetic element using the same, and method of manufacturing the same
JP2003309007A (en) * 2002-02-14 2003-10-31 Mitsubishi Materials Corp Sintered soft magnetic material for sensor of high permeability and small strain sensitivity
JP2008248306A (en) * 2007-03-30 2008-10-16 Daido Steel Co Ltd Powder for powder compaction, powder-compacted magnetic core, and method for producing the same
JP2011018663A (en) * 2009-07-07 2011-01-27 Daido Steel Co Ltd Flat soft magnetic powder and magnetic body
JP2011192729A (en) * 2010-03-12 2011-09-29 Sumida Corporation Metallic magnetic material powder, composite magnetic material containing the metallic magnetic material powder, and electronic component using composite magnetic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7381969B2 (en) 2020-05-26 2023-11-16 日本電信電話株式会社 Optical wireless communication device and optical wireless communication method

Also Published As

Publication number Publication date
JP2014078629A (en) 2014-05-01

Similar Documents

Publication Publication Date Title
TWI577809B (en) Soft magnetic powder, dust core, and magnetic device
JP5354101B2 (en) Iron group based soft magnetic powder material
JP4775293B2 (en) Soft magnetic powder, dust core and magnetic element
EP2482291B1 (en) Magnetic powder material and low-loss composite magnetic material containing same
WO2014136148A1 (en) Powder made of iron-based metallic glass
KR20160110372A (en) Magnetic core and coil component using same
JP5974803B2 (en) Soft magnetic alloy powder, green compact, dust core and magnetic element
JP6164512B2 (en) Fe-based soft magnetic metal powder
CN112566741B (en) Powder for magnetic core, magnetic core and coil component using the same, and method for producing powder for magnetic core
KR20160132840A (en) Magnetic core, coil component and magnetic core manufacturing method
JP2020095988A (en) Dust core
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
TWI596624B (en) Soft magnetic metal powder and dust core
JP5283165B2 (en) Manufacturing method of iron-nickel alloy powder, and manufacturing method of dust core for inductor using the alloy powder
JP2010222670A (en) Composite magnetic material
JP5158163B2 (en) Powder magnetic core and magnetic element
JP6790531B2 (en) Soft magnetic metal powder and powder magnetic core
JP4826523B2 (en) Soft magnetic powder, method for producing soft magnetic powder, dust core and magnetic element
JP7326410B2 (en) SOFT MAGNETIC ALLOY POWDER AND METHOD FOR MANUFACTURING SAME
JP6911294B2 (en) Soft magnetic metal powder and powder magnetic core
JP2021061408A (en) Soft magnetic metal powder and powder-compact magnetic core
KR101340012B1 (en) Surface mount device power inductor
JP2012054569A (en) Soft magnetic powder, method for producing soft magnetic powder, dust core, and magnetic element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170608

R150 Certificate of patent or registration of utility model

Ref document number: 6164512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150