JP6162432B2 - X-ray tube device - Google Patents

X-ray tube device Download PDF

Info

Publication number
JP6162432B2
JP6162432B2 JP2013041047A JP2013041047A JP6162432B2 JP 6162432 B2 JP6162432 B2 JP 6162432B2 JP 2013041047 A JP2013041047 A JP 2013041047A JP 2013041047 A JP2013041047 A JP 2013041047A JP 6162432 B2 JP6162432 B2 JP 6162432B2
Authority
JP
Japan
Prior art keywords
ray tube
vibration
space portion
tube
tube container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013041047A
Other languages
Japanese (ja)
Other versions
JP2014170643A (en
Inventor
雅敬 植木
雅敬 植木
光央 岩瀬
光央 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electron Tubes and Devices Co Ltd
Original Assignee
Toshiba Electron Tubes and Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Electron Tubes and Devices Co Ltd filed Critical Toshiba Electron Tubes and Devices Co Ltd
Priority to JP2013041047A priority Critical patent/JP6162432B2/en
Publication of JP2014170643A publication Critical patent/JP2014170643A/en
Application granted granted Critical
Publication of JP6162432B2 publication Critical patent/JP6162432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • X-Ray Techniques (AREA)

Description

本発明の実施形態は、回転陽極型X線管を弾性的に支持する防振部材を備えたX線管装置に関する。   Embodiments described herein relate generally to an X-ray tube apparatus including a vibration isolation member that elastically supports a rotating anode X-ray tube.

従来、例えばX線CT装置などでは、陰極の電子発生源から発生する電子を回転する陽極ターゲットに衝突させ、この陽極ターゲットの電子が衝突して形成されるX線焦点からX線を発生させる回転陽極型X線管装置が用いられている。そして、このような回転陽極型X線管を管容器の内部に振動を絶縁、減衰しながら固定する方法として、防振ゴムをX線管と管容器内壁との間、あるいはこれらを繋ぐ構造体とX線管、管容器との間に挟んで固定する方法がある。   Conventionally, for example, in an X-ray CT apparatus, electrons generated from a cathode electron source collide with a rotating anode target, and rotation that generates X-rays from an X-ray focal point formed by the collision of electrons on the anode target. An anode type X-ray tube apparatus is used. And as a method of fixing such a rotating anode type X-ray tube inside the tube container while isolating and attenuating vibration, a structure for connecting the anti-vibration rubber between the X-ray tube and the inner wall of the tube container or connecting them And an X-ray tube and a tube container.

特開2002−252099号公報JP 2002-252099 A

しかしながら、例えば防振ゴムを挟む構造の場合、管容器内に充填された絶縁媒体である絶縁油によって劣化しない材質を選定する必要があるため、使用可能な素材が限定され、適度な弾性率(弾性係数)や減衰率を出すことが容易でない。特に、X線管と管容器内壁との間の空間は一般に狭く、防振ゴムを押し込むだけでは充分な防振ゴムの厚みを取ることが容易でなく、圧縮代が小さくなり、充分な弾性率や減衰率を得ることが容易でない。また、防振ゴム自身の振動減衰係数は小さいので、弾性率を調整するためには、X線管と管容器内を繋ぐ別途の構造体を介して防振ゴムと併用する必要があるなど、装置全体のコスト上昇を招くおそれがある。   However, for example, in the case of a structure that sandwiches vibration-proof rubber, it is necessary to select a material that does not deteriorate due to the insulating oil that is an insulating medium filled in the tube container, so that usable materials are limited, and an appropriate elastic modulus ( It is not easy to obtain an elastic modulus) and a damping rate. In particular, the space between the X-ray tube and the inner wall of the tube container is generally narrow, and it is not easy to obtain sufficient thickness of the anti-vibration rubber simply by pushing in the anti-vibration rubber, and the compression allowance becomes small, and the sufficient elastic modulus It is not easy to obtain an attenuation factor. In addition, since the vibration damping coefficient of the vibration isolating rubber itself is small, in order to adjust the elastic modulus, it is necessary to use it together with the vibration isolating rubber through a separate structure connecting the X-ray tube and the inside of the tube container. There is a risk of increasing the cost of the entire apparatus.

本発明は、このような点に鑑みなされたもので、必要以上のコスト増を招くことなく回転陽極型X線管の回転により生じる振動を効果的に抑制できるX線管装置を提供することを目的とする。   The present invention has been made in view of the above points, and provides an X-ray tube apparatus that can effectively suppress vibrations caused by rotation of a rotary anode X-ray tube without incurring an unnecessary cost increase. Objective.

実施形態のX線管装置は、回転陽極型X線管を有する。また、このX線管装置は、回転陽極型X線管を収容する管容器を有する。さらに、このX線管装置は、管容器内に充填された流体状の絶縁媒体を有する。また、このX線管装置は、管容器と回転陽極型X線管との間に介在され、管容器に対して回転陽極型X線管を弾性的に支持する防振部材を有する。防振部材は、貫通孔を有する防振部材本体を備える。また、この防振部材は、貫通孔の両端部が回転陽極型X線管側と管容器側とによりそれぞれ閉塞されることで防振部材本体の内部に区画され、流体が収容された空間部を備える。そして、この防振部材は、空間部とこの空間部の外部である管容器の内部とを連通し、防振部材本体の弾性変形に伴う空間部の体積変化によりこの空間部とこの空間部の外部との間での流体の出入りを許容する連通部を備える。 The X-ray tube apparatus of the embodiment has a rotary anode type X-ray tube. Further, this X-ray tube apparatus has a tube container that houses a rotating anode X-ray tube. Further, the X-ray tube apparatus has a fluid-like insulating medium filled in the tube container. The X-ray tube apparatus includes a vibration isolating member that is interposed between the tube container and the rotary anode X-ray tube and elastically supports the rotary anode X-ray tube with respect to the tube container. The vibration isolation member includes a vibration isolation member main body having a through hole . In addition, the vibration isolating member is divided into the interior of the vibration isolating member main body by closing both end portions of the through-holes on the rotating anode X-ray tube side and the tube container side, and a space portion in which the fluid is accommodated. Is provided. The vibration isolating member communicates the space portion with the inside of the tube container that is outside the space portion, and the volume portion of the space portion due to elastic deformation of the vibration isolating member body causes the space portion and the space portion to A communication unit that allows fluid to enter and exit from the outside is provided.

また、実施形態のX線管装置は、回転陽極型X線管を有する。また、このX線管装置は、回転陽極型X線管を収容する管容器を有する。さらに、このX線管装置は、管容器内に充填された流体状の絶縁媒体を有する。また、このX線管装置は、管容器と回転陽極型X線管との間に介在され、管容器に対して回転陽極型X線管を弾性的に支持する防振部材を有する。防振部材は、防振部材本体を備える。また、この防振部材は、防振部材本体の内部を刳り貫いてこの防振部材本体の内部に区画され、流体が収容された空間部を備える。そして、この防振部材は、空間部とこの空間部の外部である管容器の内部とを連通し、防振部材本体の弾性変形に伴う空間部の体積変化によりこの空間部とこの空間部の外部との間での流体の出入りを許容する連通部を備える。The X-ray tube apparatus of the embodiment has a rotating anode type X-ray tube. Further, this X-ray tube apparatus has a tube container that houses a rotating anode X-ray tube. Further, the X-ray tube apparatus has a fluid-like insulating medium filled in the tube container. The X-ray tube apparatus includes a vibration isolating member that is interposed between the tube container and the rotary anode X-ray tube and elastically supports the rotary anode X-ray tube with respect to the tube container. The vibration isolating member includes a vibration isolating member main body. In addition, the vibration isolating member is provided with a space portion that penetrates the inside of the vibration isolating member main body and is partitioned inside the vibration isolating member main body and contains a fluid. The vibration isolating member communicates the space portion with the inside of the tube container that is outside the space portion, and the volume portion of the space portion due to elastic deformation of the vibration isolating member body causes the space portion and the space portion to A communication unit that allows fluid to enter and exit from the outside is provided.

第1の実施形態のX線管装置の一部を示す断面図であり、(a)は防振部材の平常状態を示し、(b)は防振部材の圧縮変形状態を示し、(c)は防振部材の引っ張り変形状態を示す。It is sectional drawing which shows a part of X-ray tube apparatus of 1st Embodiment, (a) shows the normal state of a vibration proof member, (b) shows the compression deformation state of a vibration proof member, (c) Indicates a tensile deformation state of the vibration-proof member. (a)は同上防振部材の平面図、(b)は同上防振部材の断面図である。(a) is a plan view of the vibration isolating member, and (b) is a cross-sectional view of the vibration isolating member. 同上X線管装置の一部を模式的に示す説明図である。It is explanatory drawing which shows a part of X-ray tube apparatus same as the above. 参考技術のX線管装置の一部を示す断面図であり、(a)は防振部材の平常状態を示し、(b)は防振部材の圧縮変形状態を示し、(c)は防振部材の引っ張り変形状態を示す。It is sectional drawing which shows a part of X-ray tube apparatus of 1st reference technology , (a) shows the normal state of a vibration isolator, (b) shows the compression deformation state of a vibration isolator, (c) Indicates a tensile deformation state of the vibration-proof member. (a)は同上防振部材の平面図、(b)は同上防振部材の断面図である。(a) is a plan view of the vibration isolating member, and (b) is a cross-sectional view of the vibration isolating member. の実施形態のX線管装置の一部を示す断面図であり、(a)は防振部材の平常状態を示し、(b)は防振部材の圧縮変形状態を示し、(c)は防振部材の引っ張り変形状態を示す。It is sectional drawing which shows a part of X-ray tube apparatus of 2nd Embodiment, (a) shows the normal state of a vibration proof member, (b) shows the compression deformation state of a vibration proof member, (c) Indicates a tensile deformation state of the vibration-proof member. (a)は同上防振部材の平面図、(b)は同上防振部材の断面図である。(a) is a plan view of the vibration isolating member, and (b) is a cross-sectional view of the vibration isolating member. 参考技術のX線管装置の一部を示す断面図であり、(a)は防振部材の平常状態を示し、(b)は防振部材の圧縮変形状態を示し、(c)は防振部材の引っ張り変形状態を示す。It is sectional drawing which shows a part of X-ray tube apparatus of 2nd reference technology , (a) shows the normal state of a vibration isolator, (b) shows the compression deformation state of a vibration isolator, (c) Indicates a tensile deformation state of the vibration-proof member. (a)は同上防振部材の平面図、(b)は同上防振部材の断面図である。(a) is a plan view of the vibration isolating member, and (b) is a cross-sectional view of the vibration isolating member. の実施形態のX線管装置の一部を模式的に示す側面図である。It is a side view which shows typically a part of X-ray tube apparatus of 3rd Embodiment.

以下、第1の実施形態の構成を図1ないし図3を参照して説明する。   The configuration of the first embodiment will be described below with reference to FIGS.

図3において、11はX線管装置(回転陽極型X線管装置)で、このX線管装置11は、例えば医療用などに用いられるものである。そして、このX線管装置11は、管容器12を有し、この管容器12の内部に、電子を放出する陰極およびこの陰極から放出された電子が衝突してX線を放出する陽極などを真空状態で収容する真空外囲器13で構成される回転陽極型X線管14(以下、単にX線管14という)と、X線管14の陽極を回転駆動するステータコイル15などが収容されるとともに、例えば流体(液体)としての絶縁媒体である絶縁油としても兼用される冷却媒体16が充填されている。さらに、X線管14と管容器12との間には、例えば複数の防振部材17が介在されている。   In FIG. 3, 11 is an X-ray tube device (rotary anode type X-ray tube device), and this X-ray tube device 11 is used for medical purposes, for example. The X-ray tube apparatus 11 has a tube container 12, and inside the tube container 12, a cathode that emits electrons and an anode that emits X-rays when the electrons emitted from the cathode collide. A rotating anode type X-ray tube 14 (hereinafter simply referred to as an X-ray tube 14) composed of a vacuum envelope 13 accommodated in a vacuum state, a stator coil 15 for rotating the anode of the X-ray tube 14 and the like are accommodated. In addition, for example, a cooling medium 16 that is also used as an insulating oil that is an insulating medium as a fluid (liquid) is filled. Further, for example, a plurality of vibration isolating members 17 are interposed between the X-ray tube 14 and the tube container 12.

管容器12は、例えば中空な円柱状に形成されている。また、管容器12には、図示しないが、X線管14の陽極から放出されるX線を外部に放出する放出口、X線管14の陰極に接続される高電圧プラグ、およびX線管14の陽極に接続される高電圧プラグなどが設けられている。   The tube container 12 is formed in a hollow cylindrical shape, for example. Although not shown, the tube container 12 has an emission port for emitting X-rays emitted from the anode of the X-ray tube 14 to the outside, a high voltage plug connected to the cathode of the X-ray tube 14, and an X-ray tube A high voltage plug connected to the 14 anodes is provided.

また、X線管14は、高真空中の真空外囲器13に熱電子を放出する図示しないフィラメントと熱電子を加速または集束する図示しない加速/集束電極とが配置されて構成されているとともに、これに対向して陽極が配置されている。そして、このX線管14は、熱電子を高電圧で加速/集束して陽極に衝突させ、制動輻射によりX線を発生させるX線管で、電子衝撃面の温度上昇を緩和し、許容入力を増加させるための陽極回転機構を有している。   The X-ray tube 14 includes a filament (not shown) for emitting thermoelectrons and an acceleration / focusing electrode (not shown) for accelerating or focusing the thermoelectrons to the vacuum envelope 13 in a high vacuum. The anode is arranged opposite to this. The X-ray tube 14 is an X-ray tube that accelerates / focuses thermionic electrons at a high voltage and collides with the anode, and generates X-rays by bremsstrahlung. Has an anode rotation mechanism for increasing.

さらに、各防振部材17は、図1(a)、図2(a)、図2(b)および図3に示すように、管容器12に対してX線管14を弾性的に支持し、このX線管14の陽極の回転に伴って生じる振動を弾性変形によって吸収することで管容器12に対してこの振動を絶縁する(減衰する)もので、扁平な円柱状に形成された防振部材本体21と、この防振部材本体21の中央部を軸方向に沿って貫通して設けられた貫通孔22と、この貫通孔22の側部に開口する導通孔である連通部23とを備えている。そして、これら防振部材17は、X線管14の真空外囲器13の外周に沿って、互いに周方向に略等間隔(略等角度)に離間されて配置されている。   Further, each vibration isolation member 17 elastically supports the X-ray tube 14 with respect to the tube container 12, as shown in FIGS. 1 (a), 2 (a), 2 (b) and 3. The vibration generated by the rotation of the anode of the X-ray tube 14 is absorbed by elastic deformation to insulate (attenuate) the vibration from the tube container 12, and is formed in a flat cylindrical shape. A vibration member main body 21, a through hole 22 provided through the central portion of the vibration isolation member main body 21 along the axial direction, and a communication portion 23 that is a conduction hole opened to a side portion of the through hole 22. It has. These vibration isolation members 17 are arranged along the outer periphery of the vacuum envelope 13 of the X-ray tube 14 so as to be spaced apart from each other at substantially equal intervals (substantially equal angles) in the circumferential direction.

防振部材本体21は、冷却媒体16(絶縁油)との接触により劣化しない、例えば耐油性ゴムあるいは合成樹脂などの所定の弾性率および振動減衰率(振動減衰係数)を備えた耐油性の弾性体によって形成されており、貫通孔22によって円筒状(ドーナツ状)となっている。   The anti-vibration member body 21 does not deteriorate due to contact with the cooling medium 16 (insulating oil), for example, an oil-resistant elastic material having a predetermined elastic modulus and vibration damping factor (vibration damping coefficient) such as oil-resistant rubber or synthetic resin. It is formed by a body, and has a cylindrical shape (doughnut shape) by the through hole 22.

また、貫通孔22は、防振部材本体21を軸方向に沿って貫通して形成されている。この貫通孔22は、例えば平面視で円形状に形成されている。さらに、この貫通孔22は、X線管14と管容器12との間に介在させた状態で、両端部がX線管14(真空外囲器13)の外壁と管容器12の内壁とによりそれぞれ閉塞(密閉)され、防振部材本体21の内部に、空間部25が区画される。   The through-hole 22 is formed so as to penetrate the vibration-proof member main body 21 along the axial direction. The through hole 22 is formed in a circular shape in a plan view, for example. Further, the through-hole 22 is interposed between the X-ray tube 14 and the tube container 12, and both ends are formed by the outer wall of the X-ray tube 14 (vacuum envelope 13) and the inner wall of the tube container 12. Each is closed (sealed), and a space 25 is defined inside the vibration-proof member body 21.

ここで、防振部材本体21の外径寸法および内径寸法(貫通孔22の大きさ)は、防振部材17の弾性率(弾性係数)が所定値に低下されるように適宜設定されている。   Here, the outer diameter size and inner diameter size (size of the through hole 22) of the vibration isolation member body 21 are appropriately set so that the elastic modulus (elastic coefficient) of the vibration isolation member 17 is reduced to a predetermined value. .

また、連通部23は、貫通孔22内(空間部25)とこの貫通孔22(空間部25)の外部である防振部材17の外部、本実施形態では管容器12の内部とを連通するものであり、防振部材本体21の軸方向の略中間位置にて防振部材本体21の貫通孔22(空間部25)と防振部材本体21の外周とに亘って、径方向に沿って直線状に形成されている。換言すれば、この連通部23は、貫通孔22(空間部25)を防振部材本体21(防振部材17)の外部と連通させている。さらに、この連通部23は、断面積(開口面積)が貫通孔22の断面積(開口面積)よりも小さく設定されている。そして、この連通部23により、空間部25と管容器12の内部との間で冷却媒体16が出入り可能となっている。すなわち、この連通部23は、通過する冷却媒体16の流れやすさ(コンダクタンス)を所定値に設定するように、その断面積(開口面積)が設定されている。このため、空間部25は、冷却媒体16が充填されている。   Further, the communication portion 23 communicates the inside of the through hole 22 (space portion 25) with the outside of the vibration isolation member 17 that is outside the through hole 22 (space portion 25), in this embodiment, the inside of the tube container 12. Along the radial direction across the through hole 22 (space portion 25) of the vibration isolation member main body 21 and the outer periphery of the vibration isolation member main body 21 at a substantially intermediate position in the axial direction of the vibration isolation member main body 21. It is formed in a straight line. In other words, the communication portion 23 communicates the through hole 22 (space portion 25) with the outside of the vibration isolation member main body 21 (vibration isolation member 17). Further, the communication portion 23 has a cross-sectional area (opening area) set smaller than a cross-sectional area (opening area) of the through hole 22. The communication part 23 allows the cooling medium 16 to enter and exit between the space part 25 and the inside of the tube container 12. In other words, the cross-sectional area (opening area) of the communication portion 23 is set so that the easiness of flow of the cooling medium 16 passing therethrough (conductance) is set to a predetermined value. For this reason, the space 25 is filled with the cooling medium 16.

次に、第1の実施形態のX線管装置11の作用を説明する。   Next, the operation of the X-ray tube apparatus 11 of the first embodiment will be described.

X線管装置11は、回転陽極の回転によりX線管14に振動(芯ぶれ)が生じると、X線管14(真空外囲器13)と管容器12との間の距離が変化することで、防振部材17のそれぞれが弾性的に変形して軸方向に伸縮する。   In the X-ray tube device 11, the distance between the X-ray tube 14 (vacuum envelope 13) and the tube container 12 changes when vibration (core runout) occurs in the X-ray tube 14 due to rotation of the rotating anode. Thus, each of the vibration isolation members 17 is elastically deformed and expands and contracts in the axial direction.

このとき、図1(b)に示すように、防振部材17が圧縮されると、空間部25の体積が相対的に小さくなり、この空間部25の内部に充填された冷却媒体16が連通部23から外部、すなわち管容器12内へと押し出されて流出する。また、図1(c)に示すように、防振部材17が引っ張られると、空間部25の体積が相対的に大きくなり、この空間部25の内部へと、管容器12内に充填された冷却媒体16が引き込まれて流入する。なお、図1(b)および図1(c)においては、説明をより明確にするために、防振部材17の変形を誇張して示している。   At this time, as shown in FIG. 1B, when the vibration isolator 17 is compressed, the volume of the space 25 becomes relatively small, and the cooling medium 16 filled in the space 25 communicates. It is pushed out from the part 23 to the outside, that is, into the tube container 12 and flows out. Further, as shown in FIG. 1 (c), when the vibration isolation member 17 is pulled, the volume of the space 25 becomes relatively large, and the tube container 12 is filled into the space 25. The cooling medium 16 is drawn in and flows in. In FIG. 1B and FIG. 1C, the deformation of the vibration isolation member 17 is exaggerated for the sake of clarity.

したがって、防振部材本体21の伸縮(弾性変形)に加えて、これら冷却媒体16の出入りの際の流体抵抗が振動の減衰作用を発生させ、X線管14の振動を管容器12に対して効果的に絶縁(減衰)させる。   Therefore, in addition to the expansion and contraction (elastic deformation) of the vibration isolator main body 21, the fluid resistance when the cooling medium 16 enters and exits generates a vibration damping action, and the vibration of the X-ray tube 14 is caused to the tube container 12. Insulate (attenuate) effectively.

このように、上記第1の実施形態によれば、防振部材本体21に設けた貫通孔22の両端部がX線管14側と管容器12側とによりそれぞれ閉塞されることで防振部材本体21の内部に空間部25が区画されて、連通部23により、この空間部25と管容器12内とが連通して、管容器12内に充填された冷却媒体16の一部が空間部25に自由に出入りできるため、簡単な構成で必要以上のコスト増を招くことなく、一般的に硬質の耐油性の弾性体により形成された防振部材17の弾性率を効果的に下げて、X線管14の回転により生じる振動を効果的に抑制できる。   As described above, according to the first embodiment, the both ends of the through hole 22 provided in the vibration isolation member main body 21 are closed by the X-ray tube 14 side and the tube container 12 side, respectively. A space portion 25 is partitioned inside the main body 21, and the space portion 25 communicates with the inside of the tube container 12 through the communication portion 23, so that a part of the cooling medium 16 filled in the tube container 12 is a space portion. Since it can freely enter and exit from 25, the elastic modulus of the vibration isolating member 17 that is generally formed of a hard oil-resistant elastic body is effectively lowered without incurring an unnecessary cost increase with a simple configuration, Vibrations caused by the rotation of the X-ray tube 14 can be effectively suppressed.

また、防振部材17は、貫通孔22および連通部23を穿設するだけで容易に形成できるとともに、貫通孔22の径寸法によって防振部材本体21の弾性率を構造的に容易に下げることができる。   Further, the vibration isolator 17 can be easily formed simply by drilling the through hole 22 and the communication portion 23, and the elastic modulus of the vibration isolator main body 21 can be structurally easily reduced by the diameter of the through hole 22. Can do.

次に、第参考技術を図4および図5を参照して説明する。なお、上記第1の実施形態と同様の構成および作用については、同一符号を付してその説明を省略する。 Next, the first reference technique will be described with reference to FIGS. In addition, about the structure and effect | action similar to the said 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

この第参考技術は、上記第1の実施形態の防振部材17の防振部材本体21の軸方向の一端側に凹部31が凹設され(図4(a)、図5(a)および図5(b))、この凹部31がX線管14(真空外囲器13)側と管容器12側とのいずれか一方、本参考技術では例えばX線管14(真空外囲器13)により閉塞されることで防振部材本体21の内部に空間部25が区画されているものである。 In the first reference technique , a concave portion 31 is formed on one end side in the axial direction of the vibration isolating member body 21 of the vibration isolating member 17 of the first embodiment (FIGS. 4A and 5A). 5 (b)), the concave portion 31 is either the X-ray tube 14 (vacuum envelope 13) side or the tube container 12 side. In this reference technique , for example, the X-ray tube 14 (vacuum envelope 13) is used. ), The space portion 25 is partitioned inside the vibration-proof member main body 21.

すなわち、凹部31は、防振部材17の防振部材本体21の一端部と連通するとともに他端部から離間されてこの他端部と連通しておらず、防振部材本体21が断面視で凹字状となっている。   That is, the recess 31 communicates with one end of the vibration isolation member main body 21 of the vibration isolation member 17 and is separated from the other end and not communicated with the other end. It has a concave shape.

そして、X線管装置11は、回転陽極の回転によりX線管14に振動が生じると、X線管14(真空外囲器13)と管容器12との間の距離が変化することで、防振部材17のそれぞれが弾性的に変形して軸方向に伸縮する。   And, when the X-ray tube device 11 vibrates due to the rotation of the rotating anode, the distance between the X-ray tube 14 (vacuum envelope 13) and the tube container 12 changes. Each of the vibration isolating members 17 is elastically deformed and expands and contracts in the axial direction.

このとき、図4(b)に示すように、防振部材17が圧縮されると、空間部25の体積が相対的に小さくなり、この空間部25の内部に充填された冷却媒体16が連通部23から外部、すなわち管容器12内へと押し出されて流出する。また、図4(c)に示すように、防振部材17が引っ張られると、空間部25の体積が相対的に大きくなり、この空間部25の内部へと、管容器12内に充填された冷却媒体16が引き込まれて流入する。なお、図4(b)および図4(c)においては、説明をより明確にするために、防振部材17の変形を誇張して示している。   At this time, as shown in FIG. 4B, when the vibration isolating member 17 is compressed, the volume of the space portion 25 becomes relatively small, and the cooling medium 16 filled in the space portion 25 communicates. It is pushed out from the part 23 to the outside, that is, into the tube container 12 and flows out. Further, as shown in FIG. 4 (c), when the vibration isolation member 17 is pulled, the volume of the space portion 25 becomes relatively large, and the tube container 12 is filled into the space portion 25. The cooling medium 16 is drawn in and flows in. 4 (b) and 4 (c), the deformation of the vibration isolating member 17 is exaggerated for the sake of clarity.

したがって、防振部材本体21の伸縮(弾性変形)に加えて、これら冷却媒体16の出入りの際の流体抵抗が振動の減衰作用を発生させ、X線管14の振動を管容器12に対して効果的に絶縁(減衰)させる。   Therefore, in addition to the expansion and contraction (elastic deformation) of the vibration isolator main body 21, the fluid resistance when the cooling medium 16 enters and exits generates a vibration damping action, and the vibration of the X-ray tube 14 is caused to the tube container 12. Insulate (attenuate) effectively.

このように、上記第参考技術によれば、防振部材本体21に設けた凹部31が回転陽極型X線管14側により閉塞されることで防振部材本体21の内部に空間部25が区画されて、連通部23により、この空間部25と管容器12内とが連通して、管容器12内に充填された冷却媒体16の一部が空間部25に自由に出入りできるため、簡単な構成で必要以上のコスト増を招くことなく、一般的に硬質の耐油性の弾性体により形成された防振部材17の弾性率を効果的に下げて、X線管14の回転により生じる振動を効果的に抑制できる。 As described above, according to the first reference technique , the concave portion 31 provided in the vibration isolating member main body 21 is closed by the rotary anode type X-ray tube 14 side, so that the space portion 25 is provided inside the vibration isolating member main body 21. Since the space portion 25 and the inside of the tube container 12 communicate with each other by the communication portion 23, a part of the cooling medium 16 filled in the tube container 12 can freely enter and leave the space portion 25. The simple structure does not increase the cost more than necessary, and the elastic modulus of the vibration isolating member 17 that is generally formed of a hard oil-resistant elastic body is effectively lowered to cause the rotation of the X-ray tube 14. Vibration can be effectively suppressed.

また、防振部材17は、凹部31を設けるだけで容易に形成できるとともに、凹部31の各寸法によって防振部材本体21の弾性率を構造的に容易に下げることができる。   Further, the vibration isolator 17 can be easily formed simply by providing the recess 31, and the elastic modulus of the vibration isolator main body 21 can be easily reduced structurally by the dimensions of the recess 31.

なお、上記第参考技術において、凹部31は、防振部材17の防振部材本体21の軸方向他端側に凹設し、管容器12によって閉塞するように構成してもよい。 In the first reference technique , the concave portion 31 may be recessed on the other end side in the axial direction of the vibration isolation member body 21 of the vibration isolation member 17 and closed by the tube container 12.

次に、第の実施形態を図6および図7を参照して説明する。なお、上記第1の実施形態および第1の参考技術と同様の構成および作用については、同一符号を付してその説明を省略する。 Next, a second embodiment will be described with reference to FIGS. The above for the first embodiment and configuration and functions similar to those of the first reference technology, description thereof is omitted are denoted by the same reference numerals.

この第の実施形態は、上記第1の実施形態の防振部材17の防振部材本体21の内部に、空間部25が刳り貫かれて袋状に形成されているものである(図6(a)、図7(a)および図7(b))。 In the second embodiment, a space portion 25 is formed in a bag shape inside the vibration isolation member main body 21 of the vibration isolation member 17 of the first embodiment (FIG. 6). (a), FIG. 7 (a) and FIG. 7 (b)).

すなわち、この空間部25は、防振部材17の防振部材本体21の一端部および他端部に対してそれぞれ離間され、これら一端部および他端部に対して連通しておらず、断面視でロ字状となっている。   That is, the space 25 is separated from one end and the other end of the vibration isolation member main body 21 of the vibration isolation member 17, and is not communicated with the one end and the other end. It has a square shape.

そして、X線管装置11は、回転陽極の回転によりX線管14に振動(芯ぶれ)が生じると、X線管14(真空外囲器13)と管容器12との間の距離が変化することで、防振部材17のそれぞれが弾性的に変形して軸方向に伸縮する。   The X-ray tube device 11 changes the distance between the X-ray tube 14 (vacuum envelope 13) and the tube container 12 when vibration (core runout) occurs in the X-ray tube 14 due to rotation of the rotating anode. As a result, each of the vibration isolating members 17 is elastically deformed and expands and contracts in the axial direction.

このとき、図6(b)に示すように、防振部材17が圧縮されると、空間部25の体積が相対的に小さくなり、この空間部25の内部に充填された冷却媒体16が連通部23から外部、すなわち管容器12内へと押し出されて流出する。また、図6(c)に示すように、防振部材17が引っ張られると、空間部25の体積が相対的に大きくなり、この空間部25の内部へと、管容器12内に充填された冷却媒体16が引き込まれて流入する。なお、図6(b)および図6(c)においては、説明をより明確にするために、防振部材17の変形を誇張して示している。   At this time, as shown in FIG. 6B, when the vibration isolating member 17 is compressed, the volume of the space portion 25 becomes relatively small, and the cooling medium 16 filled in the space portion 25 communicates. It is pushed out from the part 23 to the outside, that is, into the tube container 12 and flows out. Further, as shown in FIG. 6 (c), when the vibration isolator 17 is pulled, the volume of the space 25 becomes relatively large, and the tube container 12 is filled into the space 25. The cooling medium 16 is drawn in and flows in. 6 (b) and 6 (c), the deformation of the vibration isolating member 17 is exaggerated for the sake of clarity.

したがって、防振部材本体21の伸縮(弾性変形)に加えて、これら冷却媒体16の出入りの際の流体抵抗が振動の減衰作用を発生させ、X線管14の振動を管容器12に対して効果的に絶縁(減衰)させる。   Therefore, in addition to the expansion and contraction (elastic deformation) of the vibration isolator main body 21, the fluid resistance when the cooling medium 16 enters and exits generates a vibration damping action, and the vibration of the X-ray tube 14 is caused to the tube container 12. Insulate (attenuate) effectively.

このように、第の実施形態によれば、防振部材本体21の内部を刳り貫いて設けた空間部25と管容器12内とが連通部23により連通して、管容器12内に充填された冷却媒体16の一部が空間部25に自由に出入りできるため、簡単な構成で必要以上のコスト増を招くことなく、一般的に硬質の耐油性の弾性体により形成された防振部材17の弾性率を効果的に下げて、X線管14の回転により生じる振動を効果的に抑制できる。 As described above, according to the second embodiment, the space 25 provided through the inside of the vibration-proof member main body 21 and the inside of the tube container 12 communicate with each other by the communicating portion 23 so that the tube container 12 is filled. Since a part of the cooled cooling medium 16 can freely enter and exit the space 25, the vibration isolating member is generally formed of a hard oil-resistant elastic body with a simple configuration without causing an unnecessary increase in cost. By effectively lowering the elastic modulus of 17, the vibration caused by the rotation of the X-ray tube 14 can be effectively suppressed.

また、防振部材17は、空間部25の各寸法によって防振部材本体21の弾性率を構造的に容易に下げることができる。   Further, the vibration isolator 17 can structurally easily reduce the elastic modulus of the vibration isolator main body 21 depending on the dimensions of the space portion 25.

次に、第参考技術を図8および図9を参照して説明する。なお、上記各実施形態および第1の参考技術と同様の構成および作用については、同一符号を付してその説明を省略する。 Next, a second reference technique will be described with reference to FIGS. In addition, about the structure and effect | action similar to said each embodiment and 1st reference technique , the same code | symbol is attached | subjected and the description is abbreviate | omitted.

この第参考技術は、上記第1の実施形態の防振部材17の防振部材本体21の外部に、空間形成部材35を備えるものである(図8(a)、図9(a)および図9(b))。 In the second reference technique , a space forming member 35 is provided outside the vibration isolation member main body 21 of the vibration isolation member 17 of the first embodiment (FIGS. 8A and 9A). And FIG. 9 (b)).

この空間形成部材35は、防振部材17(防振部材本体21)と同一、あるいは異なる材質の対油性の弾性体(ゴム、あるいは合成樹脂)によって、内部に刳り貫かれた連通空間部36を区画する袋状に形成されており、防振部材本体21の側部に一体的に密着している。また、この空間形成部材35は、例えばX線管14および管容器12に対して離間されてこの管容器12内に位置している。さらに、この空間形成部材35は、連通部23を介して連通空間部36が空間部25と連通している。また、これら空間部25および連通空間部36には、流体として冷却媒体16が充填されている。   The space forming member 35 is formed of a communication space portion 36 that is penetrated inside by an oil-resistant elastic body (rubber or synthetic resin) that is the same as or different from the vibration-proof member 17 (vibration-proof member main body 21). It is formed in the shape of a dividing bag and is in close contact with the side portion of the vibration isolator main body 21 integrally. Further, the space forming member 35 is located in the tube container 12 so as to be separated from the X-ray tube 14 and the tube container 12, for example. Further, in the space forming member 35, the communication space portion 36 communicates with the space portion 25 through the communication portion 23. The space 25 and the communication space 36 are filled with a cooling medium 16 as a fluid.

そして、X線管装置11は、回転陽極の回転によりX線管14に振動(芯ぶれ)が生じると、X線管14(真空外囲器13)と管容器12との間の距離が変化することで、防振部材17のそれぞれが弾性的に変形して軸方向に伸縮する。   The X-ray tube device 11 changes the distance between the X-ray tube 14 (vacuum envelope 13) and the tube container 12 when vibration (core runout) occurs in the X-ray tube 14 due to rotation of the rotating anode. As a result, each of the vibration isolating members 17 is elastically deformed and expands and contracts in the axial direction.

このとき、図8(b)に示すように、防振部材17が圧縮されると、空間部25の体積が相対的に小さくなり、この空間部25の内部に充填された冷却媒体16が連通部23から外部、すなわち空間形成部材35の連通空間部36内へと押し出されて流出し、この押し出された冷却媒体16の体積に対応して空間形成部材35が膨張する。また、図8(c)に示すように、防振部材17が引っ張られると、空間部25の体積が相対的に大きくなり、この空間部25の内部へと、空間形成部材35の連通空間部36内に充填された冷却媒体16が引き込まれて流入し、この引き込まれた冷却媒体16の体積に対応して空間形成部材35が収縮する。なお、図8(b)および図8(c)においては、説明をより明確にするために、防振部材17および空間形成部材35の変形をそれぞれ誇張して示している。   At this time, as shown in FIG. 8 (b), when the vibration isolating member 17 is compressed, the volume of the space portion 25 becomes relatively small, and the cooling medium 16 filled in the space portion 25 communicates. The space forming member 35 is pushed out from the portion 23 to the outside, that is, into the communication space 36 of the space forming member 35 and flows out, and the space forming member 35 expands corresponding to the volume of the extruded cooling medium 16. Further, as shown in FIG. 8C, when the vibration isolating member 17 is pulled, the volume of the space portion 25 becomes relatively large, and the communication space portion of the space forming member 35 enters the space portion 25. The cooling medium 16 filled in 36 is drawn in and flows in, and the space forming member 35 contracts corresponding to the volume of the drawn cooling medium 16. In FIGS. 8B and 8C, the deformation of the vibration isolating member 17 and the space forming member 35 are exaggerated for the sake of clarity.

したがって、防振部材本体21の伸縮(弾性変形)に加えて、これら冷却媒体16の出入りの際の流体抵抗、および、空間形成部材35の伸縮がそれぞれ振動の減衰作用を発生させ、X線管14の振動を管容器12に対して効果的に絶縁(減衰)させる。   Therefore, in addition to the expansion and contraction (elastic deformation) of the vibration isolator main body 21, the fluid resistance when the cooling medium 16 enters and exits and the expansion and contraction of the space forming member 35 generate vibration damping actions, respectively. The vibration of 14 is effectively insulated (damped) from the tube container 12.

このように、上記第参考技術によれば、防振部材17の空間部25の外部に、この空間部25と連通部23を介して連通する密閉された連通空間部36を内部に備えた空間形成部材35を、防振部材17に密着して設けるとともに、冷却媒体16を、空間部25と連通空間部36とに充填することにより、簡単な構成で必要以上のコスト増を招くことなく、一般的に硬質の耐油性の弾性体により形成された防振部材17および空間形成部材35の弾性率を効果的に下げて、X線管14の回転により生じる振動を効果的に抑制できる。 As described above, according to the second reference technique , the sealed communication space portion 36 that communicates with the space portion 25 via the communication portion 23 is provided inside the space portion 25 of the vibration isolation member 17. The space forming member 35 is provided in close contact with the vibration isolating member 17, and the cooling medium 16 is filled in the space portion 25 and the communication space portion 36, thereby causing an unnecessary increase in cost with a simple configuration. In general, the elastic modulus of the vibration isolating member 17 and the space forming member 35, which are generally formed of a hard oil-resistant elastic body, can be effectively reduced, and vibration caused by the rotation of the X-ray tube 14 can be effectively suppressed. .

また、防振部材17(防振部材本体21)および空間形成部材35のそれぞれの弾性率を個別に設定することで、防振部材17による振動の伝播率(減衰特性)をよりきめ細かく設定できる。   Further, by individually setting the respective elastic moduli of the vibration isolating member 17 (vibration isolating member main body 21) and the space forming member 35, the vibration propagation rate (attenuation characteristic) by the vibration isolating member 17 can be set more finely.

なお、上記第参考技術において、空間部25と空間形成部材35の内部の連通空間部36とには、連通部23の通過時の流体抵抗を考慮して、冷却媒体16と異なる任意の粘性を有する流体を充填することが可能である。 In the second reference technique , the space portion 25 and the communication space portion 36 inside the space forming member 35 are provided with an arbitrary difference from the cooling medium 16 in consideration of fluid resistance when passing through the communication portion 23. It is possible to fill the fluid with viscosity.

また、空間形成部材35は、例えば上記第参考技術、あるいは第の実施形態と組み合わせてもよい The space forming member 35 may be combined with, for example, the first reference technique or the second embodiment .

また、上記各実施形態および各参考技術において、図10に示す第の実施形態のように、X線管14(真空外囲器13)の周囲と管容器12との間に円環状の構造体(介在部材)である枠体37を配置し、この枠体37の内周側と外周側とに防振部材17(防振部材17および空間形成部材35)を取り付けてもよい。すなわち、防振部材17は、管容器12とX線管14との間に直接的に介在されている構成だけでなく、別途の構造体を介して間接的に介在されている構成としてもよい。 In each of the above embodiments and each reference technique , an annular structure is provided between the periphery of the X-ray tube 14 (vacuum envelope 13) and the tube container 12 as in the third embodiment shown in FIG. A frame 37 that is a body (intervening member) may be disposed, and the vibration isolation member 17 (the vibration isolation member 17 and the space forming member 35) may be attached to the inner peripheral side and the outer peripheral side of the frame 37. That is, the vibration isolating member 17 is not limited to a configuration directly interposed between the tube container 12 and the X-ray tube 14, but may be configured to be indirectly interposed through a separate structure. .

そして、以上説明した少なくとも一つの実施形態および参考技術では、管容器12とX線管14との間に、管容器12に対してX線管14を弾性的に支持する防振部材17を介在させ、これら防振部材17の防振部材本体21の内部に空間部25を区画し、この空間部25に収容された冷却媒体16を、空間部25と外部とを連通する連通部23によって、防振部材本体21の弾性変形に伴う空間部25の体積変化によりこの空間部25と外部との間で出入りさせる構成とした。 In the above-described at least one embodiment and reference technique , the vibration isolating member 17 that elastically supports the X-ray tube 14 with respect to the tube container 12 is interposed between the tube container 12 and the X-ray tube 14. The vibration isolation member body 21 of these vibration isolation members 17 is partitioned into a space portion 25, and the cooling medium 16 accommodated in the space portion 25 is communicated with the communication portion 23 that communicates the space portion 25 with the outside. A configuration is adopted in which the space portion 25 is brought into and out of the outside by a volume change of the space portion 25 accompanying elastic deformation of the vibration-proof member main body 21.

このため、一般的に硬質の耐油性の弾性体である防振部材17の弾性率(ばね係数)を、内部に空間部25を設けることで構造的に低下させて調整でき、X線管14の振動加速度の周波数伝播特性を改善して、特に大きい周波数帯の伝達率を低下させることができる。   For this reason, the elastic modulus (spring coefficient) of the vibration isolating member 17, which is generally a hard oil-resistant elastic body, can be adjusted structurally by providing the space portion 25 therein, and the X-ray tube 14 can be adjusted. The frequency propagation characteristic of the vibration acceleration of can be improved, and the transmissibility of a particularly large frequency band can be reduced.

また、X線管14が振動することで防振部材17に圧縮力および引っ張り力が加わり、内分空間部25の体積変化に伴う冷却媒体16の出入りの際に発生する冷却媒体16の慣性力と流体抵抗によって振動エネルギーが打ち消され、振動減衰要素として簡単な構造で機能させることが可能である。   Further, the X-ray tube 14 vibrates, so that a compressive force and a tensile force are applied to the vibration isolation member 17, and the inertial force of the cooling medium 16 generated when the cooling medium 16 enters and exits due to the volume change of the internal space 25. The vibration energy is canceled out by the fluid resistance, and it can function as a vibration damping element with a simple structure.

この結果、必要以上のコスト増を招くことなくX線管14の回転により生じる振動を効果的に抑制できる。   As a result, vibrations caused by the rotation of the X-ray tube 14 can be effectively suppressed without causing an unnecessary increase in cost.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11 X線管装置
12 管容器
14 回転陽極型X線管
16 流体としての絶縁媒体である冷却媒体
17 防振部材
21 防振部材本体
22 貫通孔
23 連通部
25 空間
11 X-ray tube equipment
12 tube container
14 Rotating anode X-ray tube
16 Cooling medium, which is an insulating medium as a fluid
17 Anti-vibration material
21 Anti-vibration material
22 Through hole
23 Communication part
25 space

Claims (2)

回転陽極型X線管と、
この回転陽極型X線管を収容する管容器と、
この管容器内に充填された流体状の絶縁媒体と、
前記管容器と前記回転陽極型X線管との間に介在され、前記管容器に対して前記回転陽極型X線管を弾性的に支持する防振部材とを具備し、
前記防振部材は、
貫通孔を有する防振部材本体と、
前記貫通孔の両端部が前記回転陽極型X線管側と前記管容器側とによりそれぞれ閉塞されることで前記防振部材本体の内部に区画され、流体が収容された空間部と、
この空間部とこの空間部の外部である前記管容器の内部とを連通し、前記防振部材本体の弾性変形に伴う前記空間部の体積変化によりこの空間部とこの空間部の外部との間での前記流体の出入りを許容する連通部とを備えている
ことを特徴とするX線管装置
A rotating anode X-ray tube;
A tube container for housing the rotating anode type X-ray tube;
A fluid insulating medium filled in the tube container;
A vibration isolating member interposed between the tube container and the rotary anode X-ray tube and elastically supporting the rotary anode X-ray tube with respect to the tube container;
The vibration isolator is
A vibration isolator body having a through hole ;
A space part in which both ends of the through hole are partitioned by the rotary anode X-ray tube side and the tube container side so as to be partitioned inside the vibration-proof member main body,
The space portion communicates with the inside of the tube container, which is the outside of the space portion, and the space portion is changed between the space portion and the outside of the space portion due to a volume change of the space portion due to elastic deformation of the vibration isolator body. An X-ray tube device, comprising: a communication portion that allows the fluid to enter and exit the tube .
回転陽極型X線管と、A rotating anode X-ray tube;
この回転陽極型X線管を収容する管容器と、A tube container for housing the rotating anode type X-ray tube;
この管容器内に充填された流体状の絶縁媒体と、A fluid insulating medium filled in the tube container;
前記管容器と前記回転陽極型X線管との間に介在され、前記管容器に対して前記回転陽極型X線管を弾性的に支持する防振部材とを具備し、A vibration isolating member interposed between the tube container and the rotary anode X-ray tube and elastically supporting the rotary anode X-ray tube with respect to the tube container;
前記防振部材は、The vibration isolator is
防振部材本体と、A vibration isolator body;
この防振部材本体の内部を刳り貫いてこの防振部材本体の内部に区画され、流体が収容された空間部と、A space part that pierces through the inside of the vibration isolator member body and is partitioned inside the vibration isolator member body, and contains a fluid;
この空間部とこの空間部の外部である前記管容器の内部とを連通し、前記防振部材本体の弾性変形に伴う前記空間部の体積変化によりこの空間部とこの空間部の外部との間での前記流体の出入りを許容する連通部とを備えているThe space portion communicates with the inside of the tube container, which is the outside of the space portion, and the space portion is changed between the space portion and the outside of the space portion due to a volume change of the space portion due to elastic deformation of the vibration isolator body. And a communication portion that allows the fluid to enter and exit at
ことを特徴とするX線管装置。An X-ray tube device characterized by that.
JP2013041047A 2013-03-01 2013-03-01 X-ray tube device Active JP6162432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013041047A JP6162432B2 (en) 2013-03-01 2013-03-01 X-ray tube device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013041047A JP6162432B2 (en) 2013-03-01 2013-03-01 X-ray tube device

Publications (2)

Publication Number Publication Date
JP2014170643A JP2014170643A (en) 2014-09-18
JP6162432B2 true JP6162432B2 (en) 2017-07-12

Family

ID=51692896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013041047A Active JP6162432B2 (en) 2013-03-01 2013-03-01 X-ray tube device

Country Status (1)

Country Link
JP (1) JP6162432B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10660601B2 (en) * 2018-01-02 2020-05-26 Shanghai United Imaging Healtcare Co., Ltd. Systems and methods for monitoring a medical device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778756A (en) * 1980-11-04 1982-05-17 Hitachi Ltd Rotary anode x-ray tube device
JPS6196638A (en) * 1984-10-17 1986-05-15 Hitachi Medical Corp Rotary anode x-ray tube apparatus
JPS61198537A (en) * 1985-02-27 1986-09-02 Hitachi Medical Corp X-ray tube with rotary anode
JP4469349B2 (en) * 2006-03-31 2010-05-26 東海ゴム工業株式会社 Outer cylinder side bracket with stopper for cylindrical rubber mount

Also Published As

Publication number Publication date
JP2014170643A (en) 2014-09-18

Similar Documents

Publication Publication Date Title
EP2889482A1 (en) Reciprocating compressor
US10361057B2 (en) X-ray generating apparatus and radiography system
JP6253500B2 (en) Vibration isolator
JP6608594B2 (en) Vibration isolator using sealed bellows and external shaft pressurized from outside
JP6162432B2 (en) X-ray tube device
KR20200044067A (en) Eddy current damper
JP6355242B2 (en) Vibration isolator
JP6677420B2 (en) X-ray tube device
JP2005291284A (en) Damper
JP6529867B2 (en) X-ray tube device
JP6431437B2 (en) Vibration isolator
JP2015230754A (en) X-ray tube device
JP2010255831A (en) Vibration control device
JP2018053945A (en) Vibration prevention device
WO2019198338A1 (en) X-ray generator
CN109478828B (en) Motor with a stator having a stator core
JP2009216170A (en) Adaptive hydraulic vibration isolation device
JP2008138773A (en) Vibration control device
JP6560962B2 (en) Rotation resistance device
JP2018200746A (en) X-ray tube apparatus
JP7049281B2 (en) Electromagnetic shock absorber
JP2016105385A (en) Resonance sound reduction device and x-ray equipment
JP2016105383A (en) X-ray apparatus
KR20150057310A (en) X-ray tube having a getter
JP2016114104A (en) Vibration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160125

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170615

R150 Certificate of patent or registration of utility model

Ref document number: 6162432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350