JP6161020B2 - Method for accelerating zinc accumulation in foliage and grain part of plant body and crop produced by the method - Google Patents

Method for accelerating zinc accumulation in foliage and grain part of plant body and crop produced by the method Download PDF

Info

Publication number
JP6161020B2
JP6161020B2 JP2011156846A JP2011156846A JP6161020B2 JP 6161020 B2 JP6161020 B2 JP 6161020B2 JP 2011156846 A JP2011156846 A JP 2011156846A JP 2011156846 A JP2011156846 A JP 2011156846A JP 6161020 B2 JP6161020 B2 JP 6161020B2
Authority
JP
Japan
Prior art keywords
zinc
plant
glutathione
plants
leaves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011156846A
Other languages
Japanese (ja)
Other versions
JP2013021928A (en
Inventor
中村進一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefectural University
Kohjin Life Sciences Co Ltd
Original Assignee
Akita Prefectural University
Kohjin Life Sciences Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefectural University, Kohjin Life Sciences Co Ltd filed Critical Akita Prefectural University
Priority to JP2011156846A priority Critical patent/JP6161020B2/en
Publication of JP2013021928A publication Critical patent/JP2013021928A/en
Application granted granted Critical
Publication of JP6161020B2 publication Critical patent/JP6161020B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、植物において亜鉛を高濃度に蓄積させる栽培方法に関するものであり、更に詳細には、農作物の茎・葉部及び子実部(可食部)に亜鉛を高濃度に蓄積する栽培方法と当該方法を用いて生産される農作物に関する。       The present invention relates to a cultivation method for accumulating zinc at a high concentration in a plant, and more specifically, a cultivation method for accumulating zinc at a high concentration in a stem / leaf part and a grain part (edible part) of an agricultural product. And crops produced using the method.

亜鉛はわれわれ人間にとって欠くことのできない必須の重金属元素である。しかし、近年の日本人を始めとするヒトの食生活の変化は、食物からの亜鉛の摂取量の低下をもたらし、その結果として、味覚異常、生殖機能の低下などの様々な問題を引き起こしている。食糧需給のデータから推察すると、世界の人口の約50%に亜鉛欠乏症のリスクがあることが示されている。 Zinc is an essential heavy metal element indispensable for human beings. However, recent changes in the dietary habits of humans, including Japanese, have led to a decrease in zinc intake from food, resulting in various problems such as abnormal taste and decreased reproductive function. . Inferred from food supply and demand data, it is shown that approximately 50% of the world's population is at risk of zinc deficiency.

亜鉛の摂取不足を単純に補うには、牡蠣等の亜鉛を多く含む食物を摂取すればよいが、これでは栄養面での偏りが生じる。そこで、他の栄養面に配慮しつつ亜鉛不足を解消する方法としては、ミネラル分が豊富な野菜からの亜鉛の摂取が考えられる。しかし、野菜から得られる亜鉛でその必要量を満たすためには相当量の野菜を摂取する必要がある。ちなみにベジタリアンはヒトの中でも亜鉛欠乏のリスクが高いカテゴリーに分類される。 In order to simply compensate for the shortage of zinc intake, it is sufficient to ingest foods rich in zinc, such as oysters, but this causes a bias in nutrition. Therefore, as a method of eliminating zinc shortage while considering other nutritional aspects, intake of zinc from vegetables rich in minerals can be considered. However, in order to satisfy the required amount of zinc obtained from vegetables, it is necessary to consume a considerable amount of vegetables. By the way, vegetarians fall into a category with a high risk of zinc deficiency among humans.

そこでこのような問題を解決するための手段としては、農作物の可食部分に蓄積する亜鉛の量を増やすことによって、十分な亜鉛の摂取量を確保することが考えられる。この技術が実用化されれば、現実的な野菜の摂取量で亜鉛の必要量を確保することが可能になり、亜鉛摂取量不足の問題の解決に繋げることが期待できる。 Therefore, as a means for solving such a problem, it is conceivable to secure a sufficient zinc intake by increasing the amount of zinc accumulated in the edible portion of the crop. If this technology is put to practical use, it will be possible to secure the necessary amount of zinc with realistic vegetable intake, and it can be expected to lead to the solution of the problem of insufficient zinc intake.

現在、植物に蓄積する亜鉛の量を増やす方法としては、持続性亜鉛剤を土壌中に投入すること(特許文献1)や各種のミネラル剤を配合した土壌改良剤を使用すること(特許文献2)が挙げられる。しかし、これらの方法では、土壌中に新たな資材を投入することになる。そのため、農作物の品質を安定的にすることを考えた場合、栽培土壌に多量の資材を投入する方法では投入される物質が食糧生産に及ぼす影響(例えば資材コスト、生産物の品質など)を常に監視する必要が生じる。 Currently, as a method of increasing the amount of zinc accumulated in plants, a long-lasting zinc agent is introduced into the soil (Patent Document 1) and a soil improver containing various mineral agents is used (Patent Document 2). ). However, with these methods, new materials are thrown into the soil. Therefore, when considering the stabilization of the quality of crops, the method of adding a large amount of material to the cultivated soil always affects the effect of the input material on food production (eg material cost, product quality, etc.). There is a need to monitor.

また、植物の代謝を促進する物質や栄養元素を含む葉面散布剤を与えることによって、植物に付加価値を付与する試みもある(特許文献3)が、根における特定の物質の吸収を促進させるものではない。 In addition, there is an attempt to give added value to plants by giving a foliar spray containing substances and nutrient elements that promote plant metabolism (Patent Document 3), but it promotes absorption of specific substances in the roots It is not a thing.

これまでに行われてきた植物生理学的な研究においては、亜鉛集積性が高い植物を用いた実験によって、植物における亜鉛蓄積のメカニズムが明らかになってきている(非特許文献1)。 In plant physiology research conducted so far, the mechanism of zinc accumulation in plants has been clarified by experiments using plants with high zinc accumulation (Non-patent Document 1).

その中でもアブラナ科植物を用いた実験によって、根における亜鉛の動態が明らかになってきている。アラビドプシスを用いた実験では、根の亜鉛動態に関与する亜鉛輸送体タンパク質の遺伝子も同定されている(非特許文献2)。 Among them, experiments with cruciferous plants have revealed the dynamics of zinc in the roots. In an experiment using Arabidopsis, a gene of a zinc transporter protein involved in root zinc dynamics has also been identified (Non-patent Document 2).

それらの研究では主に高濃度に亜鉛が蓄積した土壌から、亜鉛を除去することへの応用が検討され、食用の野菜における亜鉛含量を高めることが検討されている例はほとんどない。仮にこのようなメカニズムを応用した技術を実用化して、亜鉛高蓄積作物を創成する場合には、当該遺伝子の発現を制御する必要がある。このような場合、遺伝子組換技術を用いられる。遺伝子組換えを用いた技術の場合、これらの技術が市場から受け入れられるためには、多くの超えなければならない障壁が存在することが予想される。 In these studies, application to removal of zinc from soil with a high concentration of zinc has been studied, and there are few examples of studying to increase the zinc content in edible vegetables. If a technology that applies such a mechanism is put into practical use to create a crop with high zinc accumulation, it is necessary to control the expression of the gene. In such cases, gene recombination techniques are used. In the case of technologies using genetic recombination, it is expected that there will be many barriers that must be exceeded for these technologies to be accepted from the market.

特開2000-327464 持続性亜鉛剤JP 2000-327464 long-lasting zinc agent 特開2006-306683 植物育成用ミネラル剤及びそれを配合した土壌改良剤JP 2006-306683 Mineral agent for plant growth and soil improver containing the same 特開2006-265199 葉面散布剤とその製造方法JP 2006-265199 Foliar spray and production method thereof

Papoyan et al.,(2007) New Phytologist 175: 51-58Papoyan et al., (2007) New Phytologist 175: 51-58 Kraemer (2010) Annu. Rev. Plant Biol. 61: 517-534Kraemer (2010) Annu. Rev. Plant Biol. 61: 517-534 Sanita´ di Toppiand Gabbrielli (1999) Environ. Exp. Bot. 41: 105-130Sanita´ di Toppiand Gabbrielli (1999) Environ. Exp. Bot. 41: 105-130 食品成分表2010(文部科学省)Food Composition Table 2010 (Ministry of Education, Culture, Sports, Science and Technology)

以上述べたように、土壌中に新たな資材を投入することによって植物の生育に影響が及ぶことや、これまでの研究知見を応用して遺伝子組み換え技術を用いるとしても、その技術が今日の社会に容易に受け入れられないことなど、従来の技術は様々な問題点を抱えている。また従来法では、植物に葉面散布剤を与えることによって、根における特定の物質の吸収を促進する試みはほとんど行われていない。
As mentioned above, the introduction of new materials into the soil affects the growth of plants, and even if genetic modification technology is used by applying previous research knowledge, that technology is still in today's society. However, the conventional technology has various problems such as being not easily accepted. Also, in the conventional method, few attempts have been made to promote the absorption of specific substances in the roots by applying a foliar spray to plants.

本発明の目的はかかる従来の技術が有している問題点を解決しようというものであって、植物、とりわけ農作物の葉、茎部及び子実部(可食部)への亜鉛の蓄積を容易に増加促進させる方法を提供することである。 The object of the present invention is to solve the problems of the prior art, and it is easy to accumulate zinc in the leaves, stems and grain parts (edible parts) of plants, especially crops. It is to provide a way to promote the increase.

チオール基(スルフヒドリル基)は化学式が−SHで表記される水素化された硫黄を持つ置換基である。反応性に富む置換基であり、酸化されてより化学的に安定なジスルフィド(−S−S−)になりやすい性質を持つ。チオール基を持つ低分子化合物としては、グルタチオン、システイン、補酵素Aなどがある。その中でもグルタチオンはこれまでの研究から、植物の細胞内における重金属元素の動態に影響を及ぼしていることが確認されている(非特許文献3)。従って、本発明では植物の葉に限定して、グルタチオンを与え、根圏の状況及び根の生理的な状態を変化させることにより、植物が根から吸収する亜鉛の量及び植物によって吸収された亜鉛の植物体の地上部への移行量を増加させる。 A thiol group (sulfhydryl group) is a substituent having hydrogenated sulfur represented by the chemical formula -SH. It is a highly reactive substituent and has the property of being easily oxidized to a more chemically stable disulfide (—S—S—). Examples of the low molecular weight compound having a thiol group include glutathione, cysteine, and coenzyme A. Among them, it has been confirmed that glutathione has an influence on the dynamics of heavy metal elements in plant cells from previous studies (Non-patent Document 3). Therefore, in the present invention, the amount of zinc absorbed by the plant from the root and the zinc absorbed by the plant by giving glutathione to the leaves of the plant and changing the rhizosphere situation and the physiological state of the root. Increase the amount of plant body transferred to the above-ground part.

具体的には、溶液のpHを植物のアポプラストのpHと同等に保つための、pH緩衝能を持つMES-NaOH(pH=6.1)、溶液中の成分を葉に浸透させるための界面活性剤であるTriton X-100及びグルタチオン(還元型)の組成から成るグルタチオン溶液を、葉表面に適量を適当回数、筆などの手段を用いて塗布、あるいは散布することによって葉に限定したグルタチオンの施用を実現する。なお、上記組成成分、適量、適当回数、手段は任意に選ぶことができるのは勿論である。 Specifically, MES-NaOH (pH = 6.1) with pH buffering capacity to maintain the pH of the solution at the same level as that of plant apoplasts , and a surfactant to penetrate the components of the solution into the leaves Applying glutathione solution consisting of a certain Triton X-100 and glutathione (reduced form) to the leaf surface in an appropriate amount, using appropriate means such as a brush, or applying it to the leaf surface enables application of glutathione limited to leaves. To do. Needless to say, the composition component, the appropriate amount, the appropriate number of times, and the means can be arbitrarily selected.

上記の課題解決手段による作用効果は次の通りである。すなわち、グルタチオンなどの分子内にチオール基を持つ物質を、葉面から塗布あるいは散布することにより、容易に、植物の茎・葉部及び子実部に蓄積する亜鉛の量を増加させることが可能となり、高濃度に亜鉛を含む高付加価値の農作物を市場に提供することが可能となる。 The operational effects of the above problem solving means are as follows. In other words, it is possible to easily increase the amount of zinc accumulated in the stems, leaves, and seeds of plants by applying or spraying a substance having a thiol group in the molecule such as glutathione from the leaf surface. Thus, it becomes possible to provide high value-added crops containing zinc at a high concentration to the market.

植物の葉に限定して、チオール基を持つ物質であるグルタチオンを投与することにより、その植物の茎・葉部分に蓄積する亜鉛の量を増加させる。
以下に詳細を説明する。
The amount of zinc accumulated in the stems and leaves of the plant is increased by administering glutathione, which is a substance having a thiol group, only to the leaves of the plant.
Details will be described below.

対象植物としてアブラナ(品種:農林16号)を使用する。アブラナ科植物は、重金属耐性・蓄積性が比較的強く、一般的に植物体内における重金属動態を解明するための実験の材料としてよく使用される。また、今回の実験では、植物の根における栄養元素の吸収における理想的な系として水耕栽培による栽培実験を行った。水耕栽培には改変ホグランド液を用いた。表1にその組成を示す。一般的にホグランド液は畑作物の水耕栽培実験に使用される。 Use rape (variety: Norin 16) as the target plant. Cruciferous plants have a relatively strong resistance to heavy metal accumulation and are generally used as experimental materials for elucidating the heavy metal dynamics in plants. Moreover, in this experiment, the cultivation experiment by hydroponics was conducted as an ideal system for absorption of nutrient elements in the roots of plants. A modified hogland solution was used for hydroponics. Table 1 shows the composition. In general, Hoglund liquid is used for hydroponics experiments of field crops.

水耕栽培に用いた装置及び生育条件は次のとおりである。すなわち、栽培には生育環境が完全に制御できる人工気象器を用いた。装置内は16時間の昼間時を模擬して明条件時には、室温24℃、光条件約270μmol・m-2・s-1(5方向から蛍光灯により照射)に、8時間の夜間時を模擬して暗条件時には、室温16℃、光条件0μmol・m-2・s-1に環境設定した。 The apparatus and growth conditions used for hydroponics are as follows. That is, for the cultivation, an artificial meteor that can completely control the growth environment was used. Simulates 16-hour daytime in the device, and simulates 8-hour nighttime under light conditions at room temperature of 24 ° C and light conditions of about 270μmol · m -2 · s -1 (irradiated with fluorescent lamps from 5 directions) Then, at dark conditions, the environment was set to room temperature 16 ° C. and light conditions 0 μmol · m −2 · s −1 .

アブラナは畑で栽培される農作物であることから、根に充分量の空気を供給するため、水耕栽培期間中はエアーポンプを用いて、水耕液中に空気を常時供給した。また、今回の水耕栽培では1.5Lの容器を用いて、各容器に4株の植物を栽培した。栽培時に水耕液の交換は週2度行った。処理実験には播種後、約2週間上記の方法で水耕栽培した植物を用い、2週間の処理を行った。今回行った処理実験では、植物体内における元素の動態に類似点が多いことから、その動態を観察する目的で水耕液中に10μMの濃度でCdCl2を添加した。グルタチオン溶液を使用した処理区(グルタチオン処理区という)では表2に組成を示すグルタチオン溶液を最も展開した3枚の葉の表面に1枚当たり250μLずつ、1日に朝、夕2回、筆を用いて塗布した。なお、グルタチオン溶液には亜鉛を含む化合物は添加していない。

Since oilseed rape is a crop grown in the field, air was always supplied to the hydroponic liquid using an air pump during the hydroponic cultivation period in order to supply a sufficient amount of air to the roots. In this hydroponics, four plants were grown in each container using 1.5L containers. The hydroponic solution was changed twice a week during cultivation. The treatment experiment was performed for 2 weeks using the plant hydroponically cultivated by the above method for about 2 weeks after sowing. In this treatment experiment, there were many similarities in the dynamics of elements in the plant body, so CdCl 2 was added to the hydroponic solution at a concentration of 10 μM for the purpose of observing the dynamics. In the treatment section using glutathione solution (referred to as glutathione treatment section), 250 μL per sheet is applied to the surface of the three leaves most developed with the glutathione solution shown in Table 2, twice a day in the morning and evening. Applied. Note that a compound containing zinc is not added to the glutathione solution.

グルタチオン処理を行った植物は収穫後、植物体を地上部(shoot)、すなわち茎葉部分及び子実を表す、と地下部(root)、すなわち根を表す、に分けてそれぞれの亜鉛含量の測定をした。 After harvesting plants with glutathione treatment, measure the zinc content by dividing the plant body into shoots, ie, stems and leaves, and roots, ie, roots. did.

地下部のサンプルは根に付着した水耕液の成分を洗い流すために、水道水、0.1M硝酸、蒸留水の順に根を浸して洗浄した。洗浄後の地下部のサンプルおよび地上部のサンプルは乾熱器(105℃)で十分な乾燥を行い、水分を完全に蒸発させた。乾燥後のそれぞれのサンプルの重量を測定後、乳棒、乳鉢を用いて、各サンプルの粉砕をした。その後、マイクロウェーブ分解装置(ETHOS-1600、マイルストーンゼネラル社)を使用して、重金属元素量測定時に妨害物質になりうる各サンプル中に含まれる有機物を分解した。この分解の操作は粉砕した各サンプルのそれぞれ0.3g程度(総重量が0.3g以下の場合は全量)に硝酸5ml、過酸化水素水1mlを添加することによって行った。回収した分解液をメスフラスコを用いて10mlに定容した。 The sample in the underground part was washed by immersing the roots in the order of tap water, 0.1M nitric acid and distilled water in order to wash away the components of the hydroponic solution adhering to the roots. The sample in the underground part and the sample in the above-ground part after the washing were sufficiently dried with a heat dryer (105 ° C.) to completely evaporate the water. After measuring the weight of each sample after drying, each sample was pulverized using a pestle and mortar. Thereafter, using a microwave decomposing apparatus (ETHOS-1600, Milestone General Co.), organic substances contained in each sample that could be an interfering substance when measuring the amount of heavy metal elements were decomposed. This decomposition operation was performed by adding 5 ml of nitric acid and 1 ml of hydrogen peroxide water to about 0.3 g of each crushed sample (the total amount when the total weight is 0.3 g or less). The recovered decomposition solution was made up to a volume of 10 ml using a measuring flask.

回収した液の亜鉛濃度はICP発光分析装置(IRIS Advantage ICAP、日本ジャーレルアッシュ)により測定した。サンプル液中の亜鉛濃度の測定値及び、測定に用いたサンプルの重量から各植物に含まれる亜鉛含量を算出した。 The zinc concentration of the collected liquid was measured with an ICP emission analyzer (IRIS Advantage ICAP, Nippon Jarrell Ash). The zinc content contained in each plant was calculated from the measured value of the zinc concentration in the sample liquid and the weight of the sample used for the measurement.

各処理区におけるアブラナの地上部の亜鉛濃度を図1に示す。グルタチオンを塗布しない対照区の植物に蓄積する亜鉛含量と比較して、葉に限定してグルタチオンを与えたグルタチオン処理区(GSH処理区)のアブラナではその亜鉛含量が約5倍になり、有意に増加していた。尚、この実験では植物に蓄積したカドミウム含量には亜鉛含量ほどの増加は見られなかった。なお図中のコマツナの亜鉛標準量は非特許文献3によるものである。この食品成分表2010に記載のコマツナの葉100gに含まれる亜鉛含量より、コマツナ葉中の水分含量を90%と推定して、コマツナ乾物重1g当たりの亜鉛含量を算出した。実施例の測定値との比較のためにこの値を示した。(非特許文献4) Fig. 1 shows the zinc concentration in the above-ground part of rape in each treatment area. Compared to the zinc content accumulated in the plants in the control group not coated with glutathione, the rapeseed in the glutathione-treated group (GSH-treated group) fed with glutathione only in the leaves increased its zinc content by about 5 times. It was increasing. In this experiment, the cadmium content accumulated in the plant did not increase as much as the zinc content. In addition, the standard amount of zinc of Komatsuna in the figure is based on Non-Patent Document 3. From the zinc content contained in 100 g of Komatsuna leaves listed in the food composition table 2010, the water content in Komatsuna leaves was estimated to be 90%, and the zinc content per 1 g of Komatsuna dry matter weight was calculated. This value is shown for comparison with the measured values of the examples. (Non-Patent Document 4)

以上はアブラナを対象植物として使用したが、同じ科に属する植物は類似の栄養特性を持つことが予想されるため、キャベツ、ハクサイ等をはじめとするアブラナ科植物に本発明の技術が応用が可能なことは勿論である。また、葉における亜鉛蓄積量が増加したことから、子実に蓄積する亜鉛量対しても同様の効果が期待できる。 As mentioned above, rape was used as the target plant. However, since plants belonging to the same family are expected to have similar nutritional characteristics, the technology of the present invention can be applied to cruciferous plants such as cabbage and Chinese cabbage. Of course. Further, since the amount of zinc accumulated in the leaves has increased, the same effect can be expected for the amount of zinc accumulated in the grain.

また、ここではグルタチオンを用いたがシステインなどのチオール基を持つ化合物を用いることも可能である。また、本実験では筆による葉への塗布を行ったが、散布機による塗布でも良いことは勿論である。なお、グルタチオン溶液はそのままでもまた葉面散布剤などに添加することも勿論可能である。 Further, although glutathione is used here, it is also possible to use a compound having a thiol group such as cysteine. Further, in this experiment, the application to the leaves was performed with a brush, but it is needless to say that the application may be performed with a spreader. Of course, it is possible to add the glutathione solution as it is or to a foliar spray.

グルタチオン処理したアブラナの葉における亜鉛含量Zinc content in rape leaves treated with glutathione

葉面散布剤などに請求項に記載の物質を添加することにより個々の農作物が茎・葉部分に蓄積する亜鉛の量を容易に増加させることができる。その結果として高濃度に亜鉛を含む、付加価値が高い農作物を市場に安定的に提供することが可能になる。本発明は、農業の振興に大きな貢献をすることができる。また、本発明は通常の土耕栽培のみならず、水耕栽培にも応用することが可能であることから植物工場などでも利用することができ、安全かつ高付加価値な農作物の生産を可能にする。 By adding the substances described in the claims to the foliar spraying agent, etc., the amount of zinc accumulated in the stems and leaves of individual crops can be easily increased. As a result, it is possible to stably provide high value-added crops containing zinc at a high concentration to the market. The present invention can greatly contribute to the promotion of agriculture. In addition, the present invention can be applied to not only ordinary soil cultivation but also hydroponics, so that it can be used in plant factories and the like, and enables safe and high-value-added crop production. To do.

Claims (3)

溶液のpHを植物のアポプラストのpHと同等に調整した還元型グルタチオンを含有するグルタチオン溶液を添加した葉面散布剤であって、植物の葉面に塗布或いは散布することにより植物体の茎、葉、子実部分への亜鉛の蓄積を増加促進させることを特徴とする葉面散布剤。 A foliar spray agent to which a glutathione solution containing reduced glutathione having a pH adjusted to be equivalent to that of a plant apoplast is added. A foliar spray characterized by promoting increased zinc accumulation in the grain part. 請求項1に記載の植物体が、アブラナ、キャベツ、ハクサイ等をはじめとするアブラナ科植物であることを特徴とする、請求項1に記載の葉面散布剤。 The foliar spray agent according to claim 1, wherein the plant body according to claim 1 is a cruciferous plant including rape, cabbage, Chinese cabbage and the like. 請求項1又は2に記載の葉面散布剤を使った、植物体の茎、葉、子実部分への亜鉛の蓄積を増加促進させる方法。 A method for increasing and promoting the accumulation of zinc in a stem, a leaf, or a grain part of a plant using the foliar spray agent according to claim 1 or 2.
JP2011156846A 2011-07-15 2011-07-15 Method for accelerating zinc accumulation in foliage and grain part of plant body and crop produced by the method Expired - Fee Related JP6161020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011156846A JP6161020B2 (en) 2011-07-15 2011-07-15 Method for accelerating zinc accumulation in foliage and grain part of plant body and crop produced by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011156846A JP6161020B2 (en) 2011-07-15 2011-07-15 Method for accelerating zinc accumulation in foliage and grain part of plant body and crop produced by the method

Publications (2)

Publication Number Publication Date
JP2013021928A JP2013021928A (en) 2013-02-04
JP6161020B2 true JP6161020B2 (en) 2017-07-12

Family

ID=47780979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011156846A Expired - Fee Related JP6161020B2 (en) 2011-07-15 2011-07-15 Method for accelerating zinc accumulation in foliage and grain part of plant body and crop produced by the method

Country Status (1)

Country Link
JP (1) JP6161020B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6422188B2 (en) * 2015-09-28 2018-11-14 公立大学法人秋田県立大学 Hydroponic cultivation method, leaf vegetable production method, culture solution, and culture solution production method.
JP6998256B2 (en) * 2018-03-29 2022-01-18 株式会社カネカ Quercetin bulking agent in onions and how to grow onions

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288011A (en) * 2000-04-10 2001-10-16 Kao Corp Agent for vitalizing plant
ES2513143T3 (en) * 2006-12-11 2014-10-24 Japan Science And Technology Agency Plant growth regulator and its uses

Also Published As

Publication number Publication date
JP2013021928A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
Kadayifci et al. Crop water use of onion (Allium cepa L.) in Turkey
JP2010030939A (en) Agricultural material for and method of suppressing cadmium accumulation to leave and stem part and fruit of plant
JP2006321721A (en) Blooming and fruit-bearing promoter
Cavalcante et al. Foliar spray of humic substances on seedling production of yellow passion fruit
JP6487304B2 (en) Hydroponic cultivation method, leaf vegetable production method, culture solution, and culture solution production method.
CN103819270A (en) Foliar fertilizer used for enhancing photosynthesis of plants, and its preparation method
KR100612641B1 (en) Cultivating method for growing vegetables using natural minerals
Al-Karaki et al. Effect of foliar application of amino acid biostimulants on growth, macronutrient, total phenol contents and antioxidant activity of soilless grown lettuce cultivars
Bahmani Jafarlou et al. Seaweed liquid extract as an alternative biostimulant for the amelioration of salt-stress effects in Calotropis procera (Aiton) WT
JP5153997B2 (en) Plant vitality agent
Belbase et al. Effects of different fertilizers on yield and vitamin C content of cauliflower (Brassica oleracea var. botrytis)–A review
JP6161020B2 (en) Method for accelerating zinc accumulation in foliage and grain part of plant body and crop produced by the method
Metwaly et al. Deteriorating harmful effects of drought in cucumber by spraying glycinebetaine
Idrees et al. Functional activities and essential oil production in coriander plants supported with application of irradiated sodium alginate
Kleiber et al. The response of hydroponically grown lettuce under Mn stress to differentiated application of silica sol
JP6422188B2 (en) Hydroponic cultivation method, leaf vegetable production method, culture solution, and culture solution production method.
Tikhomirova et al. Possibility of Salicornia europaea use for the human liquid wastes inclusion into BLSS intrasystem mass exchange
Reilly et al. A note on the effectiveness of selenium supplementation of Irish-grown Allium crops
Fageria et al. Response of legumes and cereals to phosphorus in solution culture
JP2011182672A (en) Method for producing folic acid-containing edible plant, and folic acid-containing sprout
Cheong et al. Effects of selenium supplement on germination, sprout growth and selenium uptake in four vegetables
Faissal et al. Partial replacement of inorganic nitrogen fertilizer by spraying some vitamins yeast and seaweed extract in Ewaise mango orchard under upper Egypt conditions
Lucero et al. Water deficit and plant competition effects on 14C assimilate partitioning in the plant-soil system of white clover (Trifolium repens L.) and rye-grass (Lolium perenne L.)
Sorooshzadeh et al. Effect of copper in hydroponic solution on leaves and roots of saffron (Crocus sativus L.)
Harjoko et al. Study of buffer substrate and Arenga wood fiber size on hydroponic Kailan (Brassica alboglabra)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160301

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160302

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160330

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170606

R150 Certificate of patent or registration of utility model

Ref document number: 6161020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees