JP6160948B2 - Quenching depth measuring probe and quenching depth measuring method using the quenching depth measuring probe - Google Patents

Quenching depth measuring probe and quenching depth measuring method using the quenching depth measuring probe Download PDF

Info

Publication number
JP6160948B2
JP6160948B2 JP2013052692A JP2013052692A JP6160948B2 JP 6160948 B2 JP6160948 B2 JP 6160948B2 JP 2013052692 A JP2013052692 A JP 2013052692A JP 2013052692 A JP2013052692 A JP 2013052692A JP 6160948 B2 JP6160948 B2 JP 6160948B2
Authority
JP
Japan
Prior art keywords
quenching depth
cylindrical workpiece
flat plate
depth measurement
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013052692A
Other languages
Japanese (ja)
Other versions
JP2014178225A (en
Inventor
雄治 後藤
雄治 後藤
健太 櫻井
健太 櫻井
徳義 高岡
徳義 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY
Neturen Co Ltd
Original Assignee
NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY, Neturen Co Ltd filed Critical NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY
Priority to JP2013052692A priority Critical patent/JP6160948B2/en
Publication of JP2014178225A publication Critical patent/JP2014178225A/en
Application granted granted Critical
Publication of JP6160948B2 publication Critical patent/JP6160948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本件出願に係る発明は、焼入加工を施したワークにおける焼入深さを非破壊で検査する際に用いる焼入深さ測定用プローブと、焼入硬化層を備えた筒状ワークの製造ラインにおいて当該焼入深さ測定用プローブを用いて行う焼入深さ測定方法に関するものである。   The invention according to the present application relates to a quenching depth measurement probe used when non-destructively inspecting the quenching depth in a workpiece subjected to quenching processing, and a production line for a cylindrical workpiece having a quench hardened layer. The quenching depth measurement method performed using the quenching depth measurement probe in FIG.

金属の強度を高める方法として、鋼材等のワークに対して高周波誘導加熱法を用いて加熱し、焼入れを行って硬化させる方法がある。ワークの機械特性は、焼入硬化層の深さに応じて変化する。従って、ワークの品質保証を目的として、製造後に焼入硬化層の深さの測定を必要とする場合がある。   As a method for increasing the strength of a metal, there is a method in which a workpiece such as a steel material is heated using a high-frequency induction heating method and is hardened by quenching. The mechanical properties of the workpiece vary depending on the depth of the hardened hardened layer. Therefore, for the purpose of quality assurance of the workpiece, it may be necessary to measure the depth of the hardened and hardened layer after production.

従来、ワークに施された焼入硬化層の深さ測定は、無作為にサンプリングしたワークを実際に切断し、表面硬度計等を用いて、切断面において深さ方向の硬度を測定することで行っていた。この切断を伴う検査方法は、検査結果を得るまでに時間を要する上、サンプルとしてのワークは、製品として使用できなくなる。そのため、全製品を検査することができないという問題がある。   Conventionally, the depth of a hardened hardened layer applied to a workpiece is measured by actually cutting a randomly sampled workpiece and measuring the hardness in the depth direction on the cut surface using a surface hardness tester. I was going. In this inspection method involving cutting, it takes time to obtain the inspection result, and the sample work cannot be used as a product. Therefore, there is a problem that not all products can be inspected.

そこで、超音波や渦電流を用いた非破壊によるワークの焼入硬化層深さの測定方法が、種々検討されている。例えば、特許文献1は、鋼材の焼入硬化層の深さを非破壊で測定する焼入深度測定方法に関し、励磁コイルで発生させた低周波交流磁場によって鋼材を表面に沿った方向に磁化して渦電流を発生させ、当該渦電流で誘起される誘導磁場を検出コイルで検出し、検出コイルの出力電圧を既知の焼入硬化層の深さと出力電圧の相関データとを比較することによって、対象鋼材の焼入硬化層の深さを算出する方法を採用している。   Therefore, various methods for measuring the depth of the hardened hardened layer of the workpiece by nondestructive methods using ultrasonic waves and eddy currents have been studied. For example, Patent Document 1 relates to a quenching depth measurement method that measures the depth of a hardened hardened layer of a steel material in a nondestructive manner. The steel material is magnetized in a direction along the surface by a low-frequency alternating magnetic field generated by an exciting coil. Eddy current is generated, the induction magnetic field induced by the eddy current is detected by the detection coil, and the output voltage of the detection coil is compared with the correlation data of the known quench hardening layer depth and the output voltage, A method of calculating the depth of the hardened and hardened layer of the target steel material is adopted.

この特許文献1には、鋼材の表面に沿わせるだけで焼入深さを測定できる実用的なプローブとして、鋼材表面に接触させる一対の平行な接触芯を有する側面視コ字形のヨークの一方の接触芯に励磁コイルを巻回すると共に、他方の接触芯に検出コイルを巻回し、各接触芯の先端部間に外部磁場検出手段を配設した構成が開示されている。   In this Patent Document 1, as a practical probe capable of measuring the quenching depth only along the surface of a steel material, one of U-shaped yokes having a pair of parallel contact cores in contact with the steel material surface is provided. A configuration is disclosed in which an excitation coil is wound around a contact core, a detection coil is wound around the other contact core, and an external magnetic field detection means is disposed between the tips of the contact cores.

この特許文献1に開示されるような渦電流法による焼入硬化層の深さ測定は、励磁コイルで発生させた低周波交流磁場によって、ワークを磁化し、当該磁化されたワークに渦電流を生じさせ、当該渦電流により誘起される誘導磁場を検出コイルにより検出する。当該測定において、励磁コイルで発生させた低周波交流磁場は、ワークのみならず、励磁コイルが巻回されたヨーク自体も磁化し、ヨーク自体にも渦電流が発生する。このときのヨークは、加熱を受けることになるが、特許文献1に開示のように、ワークの外面の焼入硬化層深さを測定対象とする場合には、測定用プローブが大気に曝されているため、発生した熱が大気中に放散し、発熱による問題を生じない。   The depth measurement of the hardened hardened layer by the eddy current method as disclosed in Patent Document 1 is performed by magnetizing a workpiece by a low-frequency AC magnetic field generated by an exciting coil and applying an eddy current to the magnetized workpiece. The induced magnetic field generated by the eddy current is detected by the detection coil. In this measurement, the low-frequency AC magnetic field generated by the exciting coil magnetizes not only the workpiece but also the yoke around which the exciting coil is wound, and an eddy current is also generated in the yoke itself. The yoke at this time is subjected to heating. However, as disclosed in Patent Document 1, when measuring the depth of the hardened layer on the outer surface of the workpiece, the measuring probe is exposed to the atmosphere. Therefore, the generated heat is dissipated into the atmosphere, and there is no problem due to heat generation.

特許2002−14081号公報Japanese Patent No. 2002-14081

しかしながら、特許文献1に開示の焼入硬化層深さの測定方法を、単に筒状ワークの内周面の焼入硬化層の深さ測定に用いた場合には、測定用のプローブを、閉塞環境に近い筒状ワークの内部に配置して測定を行う必要がある。即ち、特許文献1の技術思想を単に適用した測定用プローブを筒状ワーク内部に配置して測定を行うと、ヨークに発生したジュール熱が、筒状ワーク内にこもりやすくなる。このジュール熱によってヨークが異常に発熱すると、当該ヨークに巻回された励磁コイルや検出コイルが過熱され、これらコイルの絶縁樹脂被膜が溶け、ショート等の不具合が生じる問題がある。   However, when the method for measuring the depth of the hardened hardened layer disclosed in Patent Document 1 is simply used for measuring the depth of the hardened hardened layer on the inner peripheral surface of the cylindrical workpiece, the measurement probe is blocked. It is necessary to perform measurement by placing it inside a cylindrical workpiece close to the environment. That is, when the measurement probe simply applying the technical idea of Patent Document 1 is placed inside the cylindrical workpiece and the measurement is performed, Joule heat generated in the yoke is likely to be trapped in the cylindrical workpiece. When the yoke heats abnormally due to the Joule heat, the exciting coil and the detection coil wound around the yoke are overheated, and the insulating resin film of these coils melts, causing a problem such as a short circuit.

また、特許文献1に開示の渦電流法による焼入硬化層の深さ測定は、ワークに生じた渦電流により誘起される誘導磁場の検出コイルの出力電圧を測定して行われる。しかし、上述のように、ヨークがジュール熱によって異常に加熱すると、当該ヨークのみならず、検出コイル及びワークが温度上昇する。これらヨーク、検出コイル及びワークは、温度上昇に伴い、電磁抵抗が上昇し、電気的、磁気的な特性が変化する。そのため、ワークの外面の焼入硬化層深さを測定する場合と比べて、筒状ワークの内壁面の焼入硬化層深さを測定する場合には、実際のワークの焼入硬化層の深さに応じた出力電圧を高い精度で測定することが困難となり、測定精度の信頼性が顕著に低下する問題がある。   Moreover, the depth measurement of the hardening hardening layer by the eddy current method disclosed in Patent Document 1 is performed by measuring the output voltage of the detection coil of the induction magnetic field induced by the eddy current generated in the workpiece. However, as described above, when the yoke is abnormally heated by Joule heat, not only the yoke but also the detection coil and the workpiece rise in temperature. These yokes, detection coils, and workpieces increase in electromagnetic resistance as the temperature rises, and their electrical and magnetic characteristics change. For this reason, when measuring the depth of the hardened layer on the inner wall of the cylindrical workpiece, compared to the case of measuring the depth of the hardened layer on the outer surface of the workpiece, the depth of the actual hardened layer of the workpiece Accordingly, it is difficult to measure the output voltage according to the accuracy with high accuracy, and there is a problem that the reliability of the measurement accuracy is remarkably lowered.

そこで、筒状ワークの内壁面の焼入硬化層の深さを測定する場合であっても、ヨークやコイル、ワークなどの温度上昇を抑制し、非破壊による方法で、安全、且つ、高い精度で焼入硬化層の深さを測定することができる装置及び方法の開発が望まれていた。   Therefore, even when measuring the depth of the hardened hardened layer on the inner wall surface of a cylindrical workpiece, the temperature rise of the yoke, coil, workpiece, etc. is suppressed, and a non-destructive method is used for safety and high accuracy. Development of an apparatus and method that can measure the depth of a hardened hardened layer is desired.

本件発明者等は、鋭意研究の結果、以下の焼入深さ測定用プローブを採用することで、安全且つ高い精度で筒状ワークの内壁面の焼入硬化層の深さが測定可能となることに想到した。   As a result of diligent research, the inventors of the present invention can measure the depth of the hardened hardened layer on the inner wall surface of the cylindrical workpiece safely and with high accuracy by adopting the following quenching depth measurement probe. I thought of that.

本件発明に係る焼入深さ測定用プローブは、筒状ワークの内部に配置して当該筒状ワークの内壁面の焼入深さを測定するためのものであって、2以上に分割された各ピースの分割面同士の間に絶縁層構成材を介設してなる第一の平板部を柱状芯部の一端に配し、2以上に分割された各ピースの分割面同士の間に絶縁層構成材を介設してなる第二の平板部を当該柱状芯部の他端に当該第一の平板部と平行に配したコアと、当該コアの柱状芯部の外周に巻回され、当該筒状ワークを磁化する励磁コイルと、当該コアの柱状芯部の外周に巻回され、当該磁化により発生した誘導磁場を検出する検出コイルと、当該検出コイルの誘導磁場の検出により測定された出力電圧と、当該筒状ワークと同等材料に関する既知の電磁気特性情報とから筒状ワークの焼入深さを特定する焼入深さ特定手段とを備え、当該焼入深さ特定手段は、焼入加工を施さない非焼入材と焼入加工を施した完全焼入材に固有の標準物性値である初期磁化曲線及び導電率を用いて得られる検出コイルの推定電圧値を含む既知の電磁気特性情報と、検出コイルの出力電圧とから当該筒状ワークの焼入深さを特定することを特徴とする。 The quenching depth measurement probe according to the present invention is arranged inside a cylindrical workpiece to measure the quenching depth of the inner wall surface of the cylindrical workpiece, and is divided into two or more. A first flat plate portion having an insulating layer constituting material interposed between the divided surfaces of each piece is arranged at one end of the columnar core portion, and insulation is performed between the divided surfaces of each piece divided into two or more pieces. a core of the second flat plate portion formed by interposed a layer components which arranged in parallel with the other end to the first flat plate portion of the columnar core, is wound around the outer periphery of the columnar core portion of the core, Measured by detecting an induction magnetic field of the excitation coil that magnetizes the cylindrical workpiece, a detection coil that is wound around the outer periphery of the columnar core portion of the core, and that detects an induction magnetic field generated by the magnetization. Cylindrical workpiece from output voltage and known electromagnetic property information on equivalent materials of the cylindrical workpiece A quenching depth specifying means for specifying the quenching depth of the steel, and the quenching depth specifying means is specific to a non-quenched material not subjected to quenching and a completely quenched material subjected to quenching. Determines the quenching depth of the cylindrical workpiece from known electromagnetic characteristics information including the estimated voltage value of the detection coil obtained using the initial magnetization curve and conductivity, which are standard physical property values, and the output voltage of the detection coil characterized in that it.

本件発明における焼入深さ測定用プローブにおいて、前記第一及び第二の平板部の各ピースは、各平板部の平面中心を中心点とした中心角が360°/n(nは2以上の整数)で分割したものであることが好ましい。   In the quenching depth measurement probe according to the present invention, each piece of the first and second flat plate portions has a central angle of 360 ° / n (n is 2 or more) with the plane center of each flat plate portion as a center point. It is preferable to divide by (integer).

本件発明における焼入深さ測定用プローブにおいて、前記各平板部は、当該各平板部の平面中心を前記柱状芯部の中心軸の延長線上に配したものであることが好ましい。   In the quenching depth measurement probe according to the present invention, it is preferable that each flat plate portion has a plane center of each flat plate portion arranged on an extension line of a central axis of the columnar core portion.

本件発明における焼入深さ測定用プローブは、前記柱状芯部が、前記第一及び第二の平板部の分割面と対応する位置において、当該筒状ワークの径方向の断面における中心を中心点とした中心角が360°/n(nは2以上の整数)のn個のピースに分割し、当該各ピースの分割面同士の間に絶縁層構成材を介して構成したものであることがより好ましい。   In the quenching depth measurement probe according to the present invention, the columnar core portion is centered on the center in the radial cross section of the cylindrical workpiece at a position corresponding to the dividing surface of the first and second flat plate portions. The central angle is divided into n pieces having a central angle of 360 ° / n (n is an integer of 2 or more), and an insulating layer constituting material is interposed between the divided surfaces of the pieces. More preferred.

本件発明における焼入深さ測定用プローブにおいて、前記検出コイルは、前記励磁コイルの内側に位置して、前記柱状芯部の外周面に巻回されることが好ましい。   In the quenching depth measurement probe according to the present invention, it is preferable that the detection coil is positioned inside the excitation coil and is wound around an outer peripheral surface of the columnar core portion.

本件発明における焼入深さ測定用プローブにおいて、前記絶縁層構成材は、厚さが3.0mm以下であることが好ましい。   In the quenching depth measurement probe according to the present invention, the insulating layer constituent material preferably has a thickness of 3.0 mm or less.

本件発明における焼入深さ測定用プローブにおいて、前記絶縁層構成材は、エポキシ樹脂、ポリイミド樹脂、アラミド樹脂、ベンゾトリアゾール樹脂、ポリフェニレンオキサイド樹脂、又は、これらの樹脂に骨格材を含ませた骨格剤含有樹脂のいずれかにより構成されることがより好ましい。   In the quenching depth measurement probe according to the present invention, the insulating layer constituting material is an epoxy resin, a polyimide resin, an aramid resin, a benzotriazole resin, a polyphenylene oxide resin, or a skeletal agent in which a skeletal material is included in these resins. More preferably, it is composed of any one of the contained resins.

本件発明における焼入深さ測定用プローブは、内壁面にテーパー形状を有する前記筒状ワークの焼入深さを測定する焼入深さ測定用プローブであって、前記コアを構成する柱状芯部の中心軸と各平板部の中心を含む断面において、前記第一の平板部の外縁と、前記第二の平板部の外縁とを結ぶ仮想線が、前記コアを前記筒状ワーク内部に配置した状態で、前記筒状ワークの内壁面のテーパー形状に対して略平行となるように形成されることがより好ましい。   The quenching depth measurement probe according to the present invention is a quenching depth measurement probe for measuring a quenching depth of the cylindrical workpiece having a tapered shape on an inner wall surface, and a columnar core portion constituting the core. In a cross section including the center axis of each flat plate portion and the center of each flat plate portion, an imaginary line connecting the outer edge of the first flat plate portion and the outer edge of the second flat plate portion arranges the core inside the cylindrical workpiece. In the state, it is more preferable that the cylindrical workpiece is formed so as to be substantially parallel to the tapered shape of the inner wall surface of the cylindrical workpiece.

本件発明における焼入深さ測定方法は、焼入硬化層を備えた筒状ワークの製造ラインにおいて行う方法であって、内壁面に対して高周波誘導加熱法を用いて加熱し、焼入を行った筒状ワークの内部に上述の焼入深さ測定用プローブを進入させて配置し、当該焼入深さ測定用プローブの励磁コイルによって当該筒状ワークを磁化し、磁化により発生させた誘導磁場を検出コイルで検出し、当該検出コイルで検出された出力電圧に基づいて筒状ワークの焼入硬化層の深さを特定した後、当該焼入深さ測定用プローブを当該筒状ワークの内部から退避させることを特徴とする。   The quenching depth measurement method in the present invention is a method performed in a production line of a cylindrical workpiece having a quench hardened layer, and the inner wall surface is heated using a high-frequency induction heating method to perform quenching. The above-mentioned quenching depth measurement probe is placed in the inside of the cylindrical workpiece, and the cylindrical workpiece is magnetized by the excitation coil of the quenching depth measurement probe, and the induced magnetic field generated by the magnetization is generated. Is detected by the detection coil, and the depth of the hardened and hardened layer of the cylindrical workpiece is specified based on the output voltage detected by the detection coil, and then the quenching depth measurement probe is connected to the inside of the cylindrical workpiece. It is characterized by evacuating from.

本件出願に係る焼入深さ測定用プローブによれば、コアを構成する第一及び第二の平板部は、2以上のピースに分割し、各ピースの分割面同士の間に絶縁層構成材を介して構成したことにより、コア自体に発生する渦電流が著しく抑制され、コア自体の発熱を緩和することができる。このように、コア自体に発生する渦電流を小さくすることで、励磁コイルによる磁界方向とは逆方向に発生する反抗磁界を小さくすることができ、検出コイルにより検出される電圧波形の乱れを抑制できる。これにより、検出コイルにより検出される出力電圧の精度を高めることができ、焼入硬化層の深さ測定を精度良く行うことが可能となる。   According to the quenching depth measurement probe according to the present application, the first and second flat plate portions constituting the core are divided into two or more pieces, and the insulating layer constituting material between the divided surfaces of each piece. With this configuration, the eddy current generated in the core itself is remarkably suppressed, and the heat generation of the core itself can be mitigated. Thus, by reducing the eddy current generated in the core itself, the repulsive magnetic field generated in the direction opposite to the magnetic field direction by the exciting coil can be reduced, and the disturbance of the voltage waveform detected by the detection coil is suppressed. it can. As a result, the accuracy of the output voltage detected by the detection coil can be increased, and the depth of the hardened and hardened layer can be accurately measured.

さらに、本件発明によれば、コア自体の発熱を緩和することができることから、当該測定用プローブを筒状ワークの内部に配置して測定を行っても、当該コア、検出コイル、ワークの温度上昇を効果的に抑制でき、電気的、磁気的な特性変動を最小限とすることができるため、高い精度で検出コイルの出力電圧に基づいた焼入硬化層の深さ測定を行うことが可能となる。   Furthermore, according to the present invention, since the heat generation of the core itself can be mitigated, even if the measurement probe is placed inside the cylindrical workpiece and the measurement is performed, the temperature rise of the core, the detection coil, and the workpiece It is possible to effectively suppress the fluctuation of electrical and magnetic characteristics, and to measure the depth of the hardened hardened layer based on the output voltage of the detection coil with high accuracy. Become.

また、本件発明の焼入深さ測定方法によれば、内壁面に対して高周波誘導加熱法を用いて加熱し、焼入を行った筒状ワークの内部に上述の焼入深さ測定用プローブを進入させて配置し、焼入深さ測定用プローブの励磁コイルによって筒状ワークを磁化し、磁化により発生させた誘導磁場を検出コイルで検出し、検出コイルで検出された出力電圧に基づいて筒状ワークの焼入硬化層の深さを特定した後、焼入深さ測定用プローブを筒状ワークの内部から退避させることにより、焼入硬化層を備えた筒状ワークの製造ラインにおいて、迅速且つ容易に、当該筒状ワークの全量検査を行うことが可能となる。従って、製品としての筒状ワークの品質の信頼性向上を図ることができる。   Further, according to the quenching depth measuring method of the present invention, the above-described quenching depth measuring probe is placed inside the cylindrical workpiece which is heated and hardened by using the high frequency induction heating method. , The cylindrical workpiece is magnetized by the excitation coil of the quenching depth measurement probe, the induction magnetic field generated by the magnetization is detected by the detection coil, and based on the output voltage detected by the detection coil After specifying the depth of the hardened hardening layer of the cylindrical workpiece, by retracting the quenching depth measurement probe from the inside of the cylindrical workpiece, in the production line of the cylindrical workpiece with the hardened hardening layer, It becomes possible to inspect the entire amount of the cylindrical workpiece quickly and easily. Therefore, it is possible to improve the reliability of the quality of the cylindrical workpiece as a product.

本件発明に係る実施形態としての焼入深さ測定用プローブの模式図である。It is a schematic diagram of a quenching depth measurement probe as an embodiment according to the present invention. 測定対象となる筒状ワークの内部に図1の焼入深さ測定用プローブを配置した状態を示す概略断面図である。It is a schematic sectional drawing which shows the state which has arrange | positioned the quenching depth measurement probe of FIG. 1 inside the cylindrical workpiece | work used as a measuring object. 焼入深さ測定に用いる解析値と、検証のために試験材料を実測した実験値とを対比するグラフである。It is a graph which contrasts the analytical value used for quenching depth measurement, and the experimental value which measured the test material for verification. 実施例の焼入深さ測定用プローブを用いて測定対象となるテーパーハブベアリングの内壁面を磁化したときのシミュレーションによる比透磁率分布である。It is a relative magnetic permeability distribution by simulation when the inner wall surface of the taper hub bearing to be measured is magnetized using the quenching depth measurement probe of the example. 実施例の焼入深さ測定用プローブを用いて測定対象となるテーパーハブベアリングの内壁面を磁化したときのシミュレーションによる磁束密度分布である。It is magnetic flux density distribution by simulation when the inner wall surface of the taper hub bearing used as a measuring object is magnetized using the probe for quenching depth measurement of an Example. 励磁コイルに通電を行った際のシミュレーションによるコア表面の電流密度分布である。It is the current density distribution on the core surface by simulation when energizing the exciting coil. 励磁コイルに通電を行った際のシミュレーションによるコア表面周辺のジュール損失密度分布である。It is a Joule loss density distribution around the core surface by simulation when energizing the exciting coil.

まずはじめに、本件発明に係る焼入深さ測定用プローブについて詳述し、次に、当該焼入深さ測定用プローブを用いた製造ラインにおける焼入深さ測定方法について詳述する。本件出願に係る焼入深さ測定用プローブは、筒状ワークの内部に配置して当該筒状ワークの内壁面の焼入深さを非破壊で測定するためのものである。本件出願に係る焼入深さ測定用プローブは、柱状芯部の一端に第一の平板部を配し、柱状芯部の他端に第二の平板部を配し、第一及び第二の平板部が互いに平行に配置されるコアと、当該コアの柱状芯部の外周に巻回した、誘導磁場を検出する検出コイルと筒状ワークを磁化する励磁コイルと、から成る。そして、本件出願に係る焼入深さ測定用プローブは、第一及び第二の平板部が、2以上のピースに分割し、当該各ピースの分割面同士の間に絶縁層構成材を介して構成されていることを特徴とする。   First, a quenching depth measurement probe according to the present invention will be described in detail, and then a quenching depth measurement method in a production line using the quenching depth measurement probe will be described in detail. The quenching depth measuring probe according to the present application is arranged inside a cylindrical workpiece to measure the quenching depth of the inner wall surface of the cylindrical workpiece in a nondestructive manner. The quenching depth measurement probe according to the present application includes a first flat plate portion at one end of the columnar core portion, a second flat plate portion at the other end of the columnar core portion, and the first and second It comprises a core in which flat plate portions are arranged in parallel to each other, a detection coil for detecting an induced magnetic field, and an excitation coil for magnetizing a cylindrical workpiece, wound around the outer periphery of the columnar core portion of the core. And as for the probe for quenching depth measurement which concerns on this application, the 1st and 2nd flat plate part divides | segments into two or more pieces, and through the insulating layer constituent material between the division surfaces of the said each piece It is configured.

以下に、本件発明に係る焼入深さ測定用プローブの好適な実施形態について図1及び図2を参照して説明する。図1の本件発明に係る実施形態としての焼入深さ測定用プローブ1の模式図、図2は測定対象となる筒状ワーク2の内部に図1の焼入深さ測定用プローブ1を配置した状態を示す概略断面図を示している。   A preferred embodiment of a quenching depth measurement probe according to the present invention will be described below with reference to FIGS. 1 is a schematic diagram of a quenching depth measurement probe 1 as an embodiment according to the present invention. FIG. 2 is a diagram illustrating the placement of the quenching depth measurement probe 1 of FIG. 1 inside a cylindrical workpiece 2 to be measured. The schematic sectional drawing which shows the state which carried out is shown.

本件発明に係る焼入深さ測定用プローブ1は、高周波誘導加熱法を用いて加熱し、焼入処理することにより、少なくとも内壁面21に焼入硬化層が形成された筒状ワーク2を測定対象として、当該筒状ワーク2の内壁面21の焼入硬化層の深さを測定し、当該焼入硬化層の深さが所望とする深さであるかを検査するためのものである。   The quenching depth measurement probe 1 according to the present invention is heated using a high-frequency induction heating method and subjected to a quenching process, thereby measuring a cylindrical workpiece 2 having a hardened hardened layer formed on at least the inner wall surface 21. As an object, the depth of the hardened and hardened layer on the inner wall surface 21 of the cylindrical workpiece 2 is measured to inspect whether the depth of the hardened and hardened layer is a desired depth.

本実施の形態では、図2に示すように、筒状ワーク2の一例として、内壁面21にテーパー形状を有するテーパーハブベアリングを用いる。具体的には、本実施の形態におけるテーパーハブベアリングは、断面が略円形の筒形状であり、内壁面21が一端側から他端側に向けて所定比率で先細くなっていくテーパー形状が施されている。図2に示すテーパーハブベアリングは、一端側の開口寸法(内径)S1が他端側の開口寸法(内径)S2よりも大きくなるように形成されている。   In this embodiment, as shown in FIG. 2, a tapered hub bearing having a tapered shape on the inner wall surface 21 is used as an example of the cylindrical workpiece 2. Specifically, the tapered hub bearing in the present embodiment has a cylindrical shape with a substantially circular cross section, and has a tapered shape in which the inner wall surface 21 tapers at a predetermined ratio from one end side to the other end side. Has been. The tapered hub bearing shown in FIG. 2 is formed such that the opening dimension (inner diameter) S1 on one end side is larger than the opening dimension (inner diameter) S2 on the other end side.

なお、本件発明における筒状ワーク2は、上述のテーパーハブベアリングに限定されるものではなく、一端側と他端側とにおける開口寸法(内径)がほぼ同一の寸胴な筒状であっても良い。また、上述のテーパーハブベアリングは、断面が略円形であるが、これに限定されるものではなく、断面が楕円形や多角形などいずれの形状であっても良い。即ち、本件発明に係る焼入深さ測定用プローブを用いた測定対象となるワークは、筒状を呈するものであれば、いずれの形状であっても良い。   In addition, the cylindrical workpiece 2 in the present invention is not limited to the above-described tapered hub bearing, and may be a cylindrical cylinder having substantially the same opening dimension (inner diameter) at one end side and the other end side. . The tapered hub bearing described above has a substantially circular cross section, but is not limited to this, and the cross section may be any shape such as an ellipse or a polygon. That is, the workpiece to be measured using the quenching depth measurement probe according to the present invention may have any shape as long as it has a cylindrical shape.

ここで、本実施の形態にかかる焼入深さ測定用プローブ1の構成について説明する。当該焼入深さ測定用プローブ1は、柱状芯部11と、第一及び第二の平板部12、13とからなるコア10と、当該柱状芯部11に巻回される検出コイル3と励磁コイル4とを備えている。   Here, the configuration of the quenching depth measurement probe 1 according to the present embodiment will be described. The quenching depth measurement probe 1 includes a columnar core portion 11, a core 10 including first and second flat plate portions 12 and 13, a detection coil 3 wound around the columnar core portion 11, and excitation. The coil 4 is provided.

コア10は、柱状芯部11と、当該柱状芯部11の一端11Aに配置される第一の平板部12と、柱状芯部11の他端11Bに配置される第二の平板部13とから構成される。当該第一の平板部12と第二の平板部13とは、互いに平行となるように柱状芯部11に設けられていることが好ましい。これら第一の平板部12及び第二の平板部13は、当該各平板部12、13の平面中心12C、13Cを柱状芯部11の中心軸11Cの延長線上に配することが好ましい。   The core 10 includes a columnar core portion 11, a first flat plate portion 12 disposed at one end 11 </ b> A of the columnar core portion 11, and a second flat plate portion 13 disposed at the other end 11 </ b> B of the columnar core portion 11. Composed. It is preferable that the said 1st flat plate part 12 and the 2nd flat plate part 13 are provided in the columnar core part 11 so that it may become mutually parallel. In the first flat plate portion 12 and the second flat plate portion 13, it is preferable that the plane centers 12 </ b> C and 13 </ b> C of the flat plate portions 12 and 13 are arranged on an extension line of the central axis 11 </ b> C of the columnar core portion 11.

これら柱状芯部11及び各平板部12、13は、一体に形成されたものであっても、別個に形成して各部を固着して一体に構成したものであっても良い。柱状芯部11と各平板部12、13からなるコア10は、パーマロイ、電磁鋼板、ソフトフェライト、パーメンダー、純鉄、炭素鋼等の軟磁性材などのいずれかの材料により構成されることが好ましい。これらパーマロイ、電磁鋼板、ソフトフェライト、パーメンダー、純鉄、炭素鋼等の軟磁性材などの材料は、低磁界で飽和磁束密度を得ることが可能となる点で、検出コイル3及び励磁コイル4を巻回する材料として適している。   The columnar core portion 11 and the flat plate portions 12 and 13 may be integrally formed, or may be separately formed and integrally formed by fixing the respective portions. The core 10 composed of the columnar core portion 11 and the flat plate portions 12 and 13 is preferably composed of any material such as permalloy, electromagnetic steel plate, soft ferrite, permender, pure iron, carbon steel, or other soft magnetic material. . These materials such as permalloy, magnetic steel sheet, soft ferrite, permender, pure iron, carbon steel and other soft magnetic materials can provide the detection coil 3 and the excitation coil 4 in that a saturation magnetic flux density can be obtained in a low magnetic field. Suitable as a material to wind.

上述のコア10を構成する柱状芯部11の外周部には、励磁コイル4と、検出コイル3が巻回されている。当該励磁コイル4は、交流電流が印加されることにより磁界を発生させ、当該焼入深さ測定用プローブ1が内部に配置される筒状ワーク2の内壁面21を磁化するものである。当該検出コイル3は、励磁コイル4により磁化された筒状ワーク2の内壁面21において生じる渦電流で誘起される誘導磁場を検出するものである。   An excitation coil 4 and a detection coil 3 are wound around the outer periphery of the columnar core 11 constituting the core 10 described above. The exciting coil 4 generates a magnetic field when an alternating current is applied, and magnetizes the inner wall surface 21 of the cylindrical workpiece 2 in which the quenching depth measurement probe 1 is disposed. The detection coil 3 detects an induced magnetic field induced by an eddy current generated on the inner wall surface 21 of the cylindrical workpiece 2 magnetized by the excitation coil 4.

これら検出コイル3と励磁コイル4とは、同心状、又は、同軸状に配置される。具体的には、検出コイル3は、巻線方向が柱状芯部11の中心軸11Cの軸方向と略直交する方向となるように当該柱状芯部11の外周面に巻回されている。そして、当該巻回された検出コイル3の外周面に、巻線方向が、検出コイル3と同様に柱状芯部11の中心軸11Cの軸方向と略直交する方向となるように、励磁コイル4が巻回されている。本実施の形態のように、検出コイル3は、励磁コイル4の内側に位置して、柱状芯部11の外周面に配置されることが好ましい。   The detection coil 3 and the excitation coil 4 are arranged concentrically or coaxially. Specifically, the detection coil 3 is wound around the outer peripheral surface of the columnar core portion 11 such that the winding direction is substantially perpendicular to the axial direction of the central axis 11C of the columnar core portion 11. Then, on the outer peripheral surface of the wound detection coil 3, the exciting coil 4 is arranged such that the winding direction is substantially perpendicular to the axial direction of the central axis 11 </ b> C of the columnar core portion 11, similarly to the detection coil 3. Is wound. As in the present embodiment, the detection coil 3 is preferably located on the inner side of the excitation coil 4 and disposed on the outer peripheral surface of the columnar core portion 11.

本件発明は、上述の第一及び第二の平板部12、13が、2以上の複数のピース12A・・、13A・・に分割し、各ピース12A、13Aの分割面同士の間に絶縁層構成材14を介して平板状に形成されていることを特徴とする。   In the present invention, the first and second flat plate portions 12 and 13 are divided into two or more pieces 12A,... 13A, and an insulating layer is formed between the divided surfaces of the pieces 12A and 13A. It is characterized by being formed in a flat plate shape via the constituent material 14.

上述の絶縁層構成材14は、エポキシ樹脂、ポリイミド樹脂、アラミド樹脂、ベンゾトリアゾール樹脂、ポリフェニレンオキサイド樹脂、又は、これらの樹脂に骨格材を含ませた骨格剤含有樹脂のいずれかにより構成されることが好ましい。ここで、骨格剤は、ガラス繊維、ガラス不織布、樹脂系繊維、樹脂系不織布などを採用することができる。これらの樹脂を採用することで、各ピース12A、13Aは、隣り合ったピースとの間で、確実に絶縁を図ることができる。また、絶縁層構成材14を構成するこれらの樹脂は、熱溶着によって、隣り合ったピースの分割面同士の接着を可能とすることができる。特に、ガラスなどの骨格剤を含ませた骨格剤含有樹脂を採用した場合には、接合部分における強度の向上を図ることができる。   The above-mentioned insulating layer constituting material 14 is composed of any of an epoxy resin, a polyimide resin, an aramid resin, a benzotriazole resin, a polyphenylene oxide resin, or a skeleton agent-containing resin obtained by adding a skeleton material to these resins. Is preferred. Here, a glass fiber, a glass nonwoven fabric, a resin fiber, a resin nonwoven fabric, etc. are employable as a frame | skeleton agent. By adopting these resins, each piece 12A, 13A can be reliably insulated from adjacent pieces. Moreover, these resin which comprises the insulating layer structural material 14 can enable adhesion | attachment of the division surfaces of an adjacent piece by heat welding. In particular, when a skeleton agent-containing resin containing a skeleton agent such as glass is employed, the strength at the joint portion can be improved.

但し、前記絶縁層構成材14は、厚さが3.0mm以下であることが好ましい。絶縁層構成材14の厚さが3.0mmを上回る場合、第一及び第二の平板部12、13の全体に対するパーマロイ、電磁鋼板、ソフトフェライト、パーメンダー、純鉄、炭素鋼等の軟磁性材の占める面積の割合が小さくなり、励磁コイル4による筒状ワーク2の磁化効率の低下を招くからである。   However, the insulating layer constituting material 14 preferably has a thickness of 3.0 mm or less. When the thickness of the insulating layer constituting material 14 exceeds 3.0 mm, soft magnetic materials such as permalloy, electromagnetic steel plate, soft ferrite, permender, pure iron, carbon steel for the entire first and second flat plate portions 12 and 13 This is because the ratio of the area occupied by the magnet is reduced and the magnetization efficiency of the cylindrical workpiece 2 by the exciting coil 4 is lowered.

上述した各平板部12、13を構成するピースの数は、2以上であれば、本件発明の目的とするコアに発生する渦電流の抑制を実現できる。構成するピースの数が多くなるほど、各ピースに発生する渦電流が小さくなり、コア10全体に発生する渦電流を抑制することができる。   If the number of pieces constituting each of the flat plate portions 12 and 13 is two or more, it is possible to suppress eddy currents generated in the core targeted by the present invention. As the number of pieces to be configured increases, the eddy current generated in each piece decreases, and the eddy current generated in the entire core 10 can be suppressed.

また、各ピース12A、13Aは、各平板部を柱状芯部11の中心軸11Cの軸方向に切断して分割したものであることが好ましい。なお、当該ピース12A、13Aの切断(分割)面は平面であっても曲面であっても良い。このように、各ピース12A、13Aは柱状芯部11の中心軸11Cの軸方向に切断して構成されるので、励磁コイル4により発生する磁束の向きに沿った分割が可能となり、渦電流の抑制効果をより向上させることができる。   Moreover, it is preferable that each piece 12A, 13A cut | disconnects and cuts each flat plate part in the axial direction of the central axis 11C of the columnar core part 11. FIG. Note that the cut (divided) surfaces of the pieces 12A and 13A may be flat or curved. In this way, each piece 12A, 13A is configured by cutting in the axial direction of the central axis 11C of the columnar core 11, so that it can be divided along the direction of the magnetic flux generated by the exciting coil 4, and eddy currents can be divided. The suppression effect can be further improved.

さらに、第一の平板部12の各ピース12Aの配置と、第二の平板部13の各ピース13Aの配置は、柱状芯部11を挟んで鏡面対称であることが好ましい。第一の平板部12の各絶縁層構成材14部分と、第二の平板部13の各絶縁層構成材14部分とが、柱状芯部11を挟んで鏡面対称となる位置にあらわれることで、励磁コイル4による筒状ワーク2の磁化効率の低下を回避しつつ、コア10に発生する渦電流を抑制することが可能となる。   Furthermore, the arrangement of the pieces 12 </ b> A of the first flat plate portion 12 and the arrangement of the pieces 13 </ b> A of the second flat plate portion 13 are preferably mirror-symmetric with respect to the columnar core portion 11. Each insulating layer constituting material 14 portion of the first flat plate portion 12 and each insulating layer constituting material 14 portion of the second flat plate portion 13 appear in positions that are mirror-symmetric with respect to the columnar core portion 11. It is possible to suppress the eddy current generated in the core 10 while avoiding a decrease in the magnetization efficiency of the cylindrical workpiece 2 due to the exciting coil 4.

そして、当該第一及び第二の平板部12、13の外形は、各ピース12A又は13Aと、絶縁層構成材14とが組み合わされた状態で、測定対象となる筒状ワーク2の断面形状と略相似形に形成されていることが好ましい。   And the external shape of the said 1st and 2nd flat plate parts 12 and 13 is the state with which each piece 12A or 13A and the insulating layer structural material 14 were combined, and the cross-sectional shape of the cylindrical workpiece 2 used as a measuring object. It is preferable that it is formed in a substantially similar shape.

本実施の形態では、測定対象となる筒状ワーク2は、断面略円形である。そのため、各平板部12及び13は、いずれも円板形状の各平板部を、当該平板部の平面中心を中心点として、中心角が360°/n(nは2以上の整数)となるように複数の扇状のピース12A・・、13A・・に分割し、当該各ピース12A、13Aの分割面同士の間に絶縁層構成材14を介して断面略円形に構成することが好ましい。図1には、各平板部を、当該平板部の平面中心を中心点として中心角が90°(n=4)となるように、4つの扇状のピースに分割し、各ピースの分割面同士の間に絶縁層構成材14を介設し、平板状としたものを示している。   In the present embodiment, the cylindrical workpiece 2 to be measured has a substantially circular cross section. Therefore, each of the flat plate portions 12 and 13 has a central angle of 360 ° / n (n is an integer equal to or greater than 2) with the flat plate portions of the disk shape as the center point. It is preferable to divide into a plurality of fan-shaped pieces 12A,... 13A, and to have a substantially circular cross section through the insulating layer constituting material 14 between the divided surfaces of the pieces 12A, 13A. In FIG. 1, each flat plate portion is divided into four fan-shaped pieces so that the central angle is 90 ° (n = 4) with the plane center of the flat plate portion as a center point, and the divided surfaces of each piece are separated from each other. Insulating layer constituting material 14 is interposed between them to form a flat plate.

このように、略同一の扇状のピース12A又は13Aを絶縁層構成材14を介して断面略円形の平板部を構成することで、一つの平板から平板部を構成する場合と比較して、各ピース12A又は13Aにおいて生じる渦電流を平均的に小さくすることができる。よって、コア10全体に発生する渦電流を効果的に抑制することができる。   In this way, by configuring the flat plate portion having a substantially circular cross section through the insulating layer constituting material 14 with the substantially identical fan-shaped pieces 12A or 13A, compared with the case of forming the flat plate portion from one flat plate, The eddy current generated in the piece 12A or 13A can be reduced on average. Therefore, the eddy current generated in the entire core 10 can be effectively suppressed.

また、上述の第一及び第二の平板部12、13は、筒状ワーク2内部に配置した状態で、各平板部12、13の外縁12E、13Eが、当該筒状ワーク2の内壁面21と所定の距離Lで離間して配置可能な寸法に形成することが好ましい。ここで、各平板部12、13の外縁12E及び13Eと、筒状ワーク2の内壁面21との離間距離Lは、励磁コイル4により筒状ワーク2を十分に磁化可能な程度の距離であって、一定の距離を保つことが可能であればよい。   The first and second flat plate portions 12 and 13 are arranged inside the cylindrical workpiece 2, and the outer edges 12 </ b> E and 13 </ b> E of the flat plate portions 12 and 13 are the inner wall surfaces 21 of the cylindrical workpiece 2. And a dimension that can be arranged with a predetermined distance L apart. Here, the separation distance L between the outer edges 12E and 13E of the flat plate portions 12 and 13 and the inner wall surface 21 of the cylindrical workpiece 2 is a distance that can sufficiently magnetize the cylindrical workpiece 2 by the excitation coil 4. It is sufficient if a certain distance can be maintained.

本実施の形態では、測定対象となる筒状ワーク2の内壁面21は、一端側の内径S1が他端側の内径S2よりも大きくなるように、所定比率でテーパー形状が施されている。そのため、図2に示すように、本実施の形態の第一及び第二の平板部12、13は、上述の柱状芯部11の中心軸11Cと各平板部12、13の平面中心12C、13Cを含む断面において、第一の平板部12の外縁12Eと、第二の平板部13の外縁13Eとを結ぶ仮想線Xが、コア10を筒状ワーク2内部に配置した状態で、筒状ワーク2の内壁面21のテーパー形状に対して所定の距離Lで離間して略平行となるように形成されている。   In the present embodiment, the inner wall surface 21 of the cylindrical workpiece 2 to be measured is tapered at a predetermined ratio so that the inner diameter S1 on one end side is larger than the inner diameter S2 on the other end side. Therefore, as shown in FIG. 2, the first and second flat plate portions 12 and 13 of the present embodiment include the center axis 11 </ b> C of the columnar core portion 11 and the plane centers 12 </ b> C and 13 </ b> C of the flat plate portions 12 and 13. In a state in which the virtual line X connecting the outer edge 12E of the first flat plate portion 12 and the outer edge 13E of the second flat plate portion 13 is disposed inside the cylindrical workpiece 2, The two inner wall surfaces 21 are formed so as to be substantially parallel with a predetermined distance L apart from the tapered shape.

よって、本実施の形態にかかる焼入深さ測定用プローブ1は、測定対象となる筒状ワーク2の内壁面21が、所定の比率でテーパーが形成されていても、第一の平板部12の外縁12E及び第二の平板部13の外縁13Eと、筒状ワーク2の内壁面21との間に一定の距離Lを維持することが可能となる。従って、複雑形状であるテーパーが形成されたワークであっても、測定精度の向上を図ることができる。   Therefore, in the quenching depth measurement probe 1 according to the present embodiment, even if the inner wall surface 21 of the cylindrical workpiece 2 to be measured is tapered at a predetermined ratio, the first flat plate portion 12 is used. It is possible to maintain a certain distance L between the outer edge 12E of the second flat plate portion 13 and the outer edge 13E of the second flat plate portion 13 and the inner wall surface 21 of the cylindrical workpiece 2. Therefore, it is possible to improve the measurement accuracy even for a workpiece in which a taper having a complicated shape is formed.

なお、上述した実施の形態では、コア10は、各平板部12、13のみを2以上の複数のピース12A・・、13A・・に分割し、各ピース12A、13Aの分割面同士の間に絶縁層構成材14を介設した構成について説明しているが、これに限定されない。すなわち、上述した実施の形態では、コア10を構成する柱状芯部11は、単一の部材で構成されているが、当該柱状芯部11も筒状ワーク2の径方向の断面(柱状芯部11の中心軸11Cと直交する断面)における中心を中心点とした中心角が360°/n(nは2以上の整数)のn個のピース11A・・に分割し、当該各ピース11A・・の分割面同士の間に絶縁層構成材14を介して一体に構成しても良い。当該柱状芯部11は、上述の第一及び第二の平板部12、13の各ピース12A、13Aの分割面と対応する位置において、各ピース11Aに分割されたものであることが好ましい。柱状芯部11の各ピース11Aの分割面が、柱状芯部11の中心軸11Cの軸方向において、第一及び第二の平板部12、13の各ピース12A、13Aの分割面と対応する箇所に配置されることにより、励磁コイル4による筒状ワーク2の磁化効率の低下を回避しつつ、コア10に発生する渦電流を抑制することが可能となる。   In the above-described embodiment, the core 10 divides only the flat plate portions 12 and 13 into two or more pieces 12A, 13A, and between the divided surfaces of the pieces 12A and 13A. Although the structure which interposed the insulating layer structural material 14 is demonstrated, it is not limited to this. That is, in the above-described embodiment, the columnar core portion 11 constituting the core 10 is configured by a single member, but the columnar core portion 11 is also a cross section in the radial direction of the cylindrical workpiece 2 (columnar core portion). 11 is divided into n pieces 11A... Having a center angle of 360 ° / n (n is an integer of 2 or more). You may comprise integrally between the divided surfaces via the insulating-layer constituent material 14. The columnar core 11 is preferably divided into the pieces 11A at positions corresponding to the dividing surfaces of the pieces 12A and 13A of the first and second flat plate portions 12 and 13 described above. The division surface of each piece 11A of the columnar core portion 11 corresponds to the division surface of each piece 12A, 13A of the first and second flat plate portions 12, 13 in the axial direction of the central axis 11C of the columnar core portion 11. Accordingly, it is possible to suppress the eddy current generated in the core 10 while avoiding a decrease in the magnetization efficiency of the cylindrical workpiece 2 due to the exciting coil 4.

次に、本件発明に係る焼入深さ測定用プローブを用いた焼入深さ測定方法について説明する。本件発明に係る焼入深さ測定方法は、焼入硬化層を備えた筒状ワークの製造ラインにおいて行う方法である。まずはじめに、製造ラインにおいて内壁面に対して高周波誘導加熱法を用いて加熱し、焼入が行われた筒状ワークの内部に、本実施の形態に係る焼入深さ測定用プローブ1を進入させて配置する。具体的には、焼入が施され、所望の位置に配置された筒状ワーク2は、製造ラインに設けられる搬送手段により、焼入深さ測定工程に搬送され、当該筒状ワーク2の内部に、図示しない保持手段により保持された焼入深さ測定用プローブ1を進入させる。   Next, a quenching depth measurement method using the quenching depth measurement probe according to the present invention will be described. The quenching depth measurement method according to the present invention is a method performed in a production line for a cylindrical workpiece having a quench hardened layer. First, the quenching depth measurement probe 1 according to the present embodiment enters the cylindrical workpiece that has been heated and hardened on the inner wall surface in the production line using a high frequency induction heating method. Let them be placed. Specifically, the cylindrical workpiece 2 that has been quenched and disposed at a desired position is conveyed to a quenching depth measurement step by a conveying means provided in the production line, and the inside of the cylindrical workpiece 2 is Then, the quenching depth measuring probe 1 held by holding means (not shown) is inserted.

本実施の形態では、上述したように測定対象となる筒状ワーク2は、一端側の内径S1が他端側の内径S2よりも大きくなるように、内壁面21に所定比率でテーパー形状が施されたテーパーハブベアリングを採用しているため、第一の平板部12よりも外形寸法が小さい(小径な)第二の平板部13側から焼入深さ測定用プローブ1を筒状ワーク2内に挿入し、測定対象となる位置に設置する。この際、コア10の柱状芯部11に巻回された検出コイル3及び励磁コイル4の配線は、第二の平板部13よりも外形寸法が大きい(大径な)第一の平板部12の端部に形成された配線引出用の切欠(開口)12Fから外部に引き出すものとする。   In the present embodiment, as described above, the cylindrical workpiece 2 to be measured is tapered on the inner wall surface 21 at a predetermined ratio so that the inner diameter S1 on one end side is larger than the inner diameter S2 on the other end side. Since the tapered hub bearing is used, the quenching depth measurement probe 1 is inserted into the cylindrical workpiece 2 from the second flat plate portion 13 side whose outer dimension is smaller (smaller diameter) than the first flat plate portion 12. And place it at the position to be measured. At this time, the wiring of the detection coil 3 and the excitation coil 4 wound around the columnar core portion 11 of the core 10 has a larger outer dimension than the second flat plate portion 13 (large diameter) of the first flat plate portion 12. It is assumed that the wiring lead-out notch (opening) 12F formed at the end portion is drawn to the outside.

焼入深さ測定用プローブ1が、筒状ワーク2内部に設置された状態で、第一及び第二の平板部12、13の外縁12E及び13Eは、筒状ワーク2の内壁面21と所定の距離L離間して配置される。この状態で、励磁コイル4に所定の交流電流を印加して磁界を発生させ、筒状ワーク2の内壁面21を磁化する。これにより、筒状ワーク2の内壁面21(表面)に渦電流が発生する。この筒状ワーク2の内壁面21に発生した渦電流により誘導起電力が生じ、当該誘導起電力が検出コイル3に作用する。   The outer edges 12E and 13E of the first and second flat plate portions 12 and 13 are in contact with the inner wall surface 21 of the cylindrical workpiece 2 in a state where the quenching depth measurement probe 1 is installed inside the cylindrical workpiece 2. Are spaced apart by a distance L. In this state, a predetermined alternating current is applied to the exciting coil 4 to generate a magnetic field, and the inner wall surface 21 of the cylindrical workpiece 2 is magnetized. Thereby, an eddy current is generated on the inner wall surface 21 (surface) of the cylindrical workpiece 2. An induced electromotive force is generated by the eddy current generated on the inner wall surface 21 of the cylindrical workpiece 2, and the induced electromotive force acts on the detection coil 3.

検出コイル3は、励磁コイル4により磁化された筒状ワーク2の内壁面21に発生した誘導磁場を検出し、当該検出コイル3の出力電圧として測定する。検出コイル3には、図示しない電圧計が接続されており、当該検出コイル3の出力電圧を測定する。   The detection coil 3 detects an induced magnetic field generated on the inner wall surface 21 of the cylindrical workpiece 2 magnetized by the excitation coil 4 and measures it as an output voltage of the detection coil 3. A voltmeter (not shown) is connected to the detection coil 3, and the output voltage of the detection coil 3 is measured.

本実施の形態において、当該焼入深さ測定用プローブ1は、検出コイル3の出力電圧の測定結果に基づいて筒状ワーク2の内壁面21の焼入硬化層の深さを特定する焼入深さ特定手段を備えている。当該焼入深さ特定手段は、汎用のマイクロコンピュータにより構成されており、検出された検出コイル3の出力電圧と、既知のワークの材料情報(電磁気特性情報)に含まれる推定出力電圧値とに基づいて、焼入硬化層の深さを特定する。   In this embodiment, the quenching depth measurement probe 1 specifies the depth of the hardened hardened layer on the inner wall surface 21 of the cylindrical workpiece 2 based on the measurement result of the output voltage of the detection coil 3. A depth specifying means is provided. The quenching depth specifying means is constituted by a general-purpose microcomputer, and includes a detected output voltage of the detection coil 3 and an estimated output voltage value included in known workpiece material information (electromagnetic characteristic information). Based on this, the depth of the hardened hardening layer is specified.

その後、図示しない保持手段により保持された焼入深さ測定用プローブ1を当該筒状ワークの内部から退避させる。これにより、焼入硬化層を備えた筒状ワークの製造ラインにおいて、迅速且つ容易に、当該筒状ワーク2の焼入硬化層の深さの全量検査を行うことが可能となる。   Thereafter, the quenching depth measurement probe 1 held by a holding means (not shown) is retracted from the inside of the cylindrical workpiece. Thereby, in the production line of the cylindrical work provided with the hardened hardening layer, it becomes possible to inspect the entire amount of the depth of the hardened hardened layer of the tubular work 2 quickly and easily.

以下に、既知のワークの材料情報(電磁気特性情報)を用いた推定出力電圧値の取得方法について説明する。本実施の形態では、測定対象であるワークを構成する材料と同等材料について、焼入加工を施さない非焼入材及び焼入加工を施した完全焼入材の既知の電磁気特性値から、ワークの当該材料における焼入深さと電磁気特性値との相関を解析し、電磁気特性情報とする。ここでいう「既知の電磁気特性値」とは、筒状ワーク2と同等の材料に固有の物性値として、例えば、日本金属学会編「金属便覧」等の文献に開示された値を用いることができる。すなわち、既知の電磁気特性値とは、測定対象物である筒状ワーク2を構成する材料と同等の材料における非焼入材(生材)及び完全焼入材の標準物性値(導電率σ、透磁率μ、初期磁化曲線等)に基づいて後述する解析法により焼入深さに応じて、検出コイル3で検出されると予想される出力電圧の推定値である。   Hereinafter, a method for obtaining an estimated output voltage value using known workpiece material information (electromagnetic characteristic information) will be described. In the present embodiment, for the same material as the material constituting the workpiece to be measured, the workpiece is obtained from the known electromagnetic property values of the non-quenched material that is not subjected to quenching and the fully quenched material that is subjected to quenching. The correlation between the quenching depth and the electromagnetic characteristic value of the material is analyzed and used as electromagnetic characteristic information. As the “known electromagnetic characteristic value” here, for example, a value disclosed in a document such as “Metal Handbook” edited by the Japan Institute of Metals is used as a physical property value specific to the material equivalent to the cylindrical workpiece 2. it can. That is, the known electromagnetic property value is a standard physical property value (conductivity σ, conductivity) of a non-hardened material (raw material) and a completely hardened material in a material equivalent to the material constituting the cylindrical workpiece 2 that is a measurement object. This is an estimated value of the output voltage that is expected to be detected by the detection coil 3 according to the quenching depth by an analysis method described later based on the permeability μ, the initial magnetization curve, and the like.

焼入硬化層の深さの導出には、以下に示す式(1)〜(3)を用いる。まず、磁束密度B(T)は以下の式(1)で表すことができる。焼入剤材と非焼入材(生材)とでは、透磁率μ及び導電率σの値が異なる。そのため、ワークと同じ印加磁界Hを加えた場合、完全焼入材及び非焼入材(生材)の違いにより、式(1)に示す磁束密度Bの大きさが異なる。
B=μH ・・・(1)
式(1)において、μは透磁率、Hは印加磁界(A/m)である。
The following formulas (1) to (3) are used to derive the depth of the quench hardened layer. First, the magnetic flux density B (T) can be expressed by the following equation (1). The values of permeability μ and conductivity σ are different between the quenching material and the non-quenching material (raw material). Therefore, when the same applied magnetic field H as that of the workpiece is applied, the magnitude of the magnetic flux density B shown in Expression (1) differs depending on the difference between the completely quenched material and the non-quenched material (raw material).
B = μH (1)
In Equation (1), μ is the magnetic permeability, and H is the applied magnetic field (A / m).

また、渦電流Je(A/m)は、以下の式(2)で表すことができる。交流磁界では渦電流が発生するが、完全焼入材と非焼入材(生材)とで導電率σが異なるので、式(2)に示す渦電流Jeの値が両者において異なる。そして、渦電流Jeの値が異なると磁束密度Bも変化する。
Je=−jσωφ ・・・(2)
式(2)において、jは電流密度(A/m)、σは導電率(S/m)、ωは角周波数(ω=2πf)、φは磁束(Wb)である。
Further, the eddy current Je (A / m 2 ) can be expressed by the following formula (2). Although an eddy current is generated in an alternating magnetic field, the conductivity σ differs between a completely quenched material and a non-quenched material (raw material), and therefore, the value of the eddy current Je shown in Equation (2) is different between the two. And if the value of eddy current Je differs, magnetic flux density B will also change.
Je = −jσωφ (2)
In equation (2), j is the current density (A / m 2 ), σ is the conductivity (S / m), ω is the angular frequency (ω = 2πf), and φ is the magnetic flux (Wb).

次に、出力電圧V(V)は以下の式(3)で表すことができる。
V=−N・dφ/dt ・・・(3)
式(3)において、Nはコイル巻数、tは時間(s)である。筒状ワーク2の磁束密度Bは、式(1)と式(2)とから求めることができる。式(1)及び式(2)から求めた磁束密度B、式(3)を用いて、出力電圧Vが求められる。
Next, the output voltage V (V) can be expressed by the following equation (3).
V = −N · dφ / dt (3)
In Equation (3), N is the number of coil turns, and t is time (s). The magnetic flux density B of the cylindrical workpiece 2 can be obtained from the equations (1) and (2). The output voltage V is obtained by using the magnetic flux density B obtained from the equations (1) and (2) and the equation (3).

鋼材に高周波誘導加熱法を用いて加熱し、焼入加工を施すと、透磁率μが低下する。また、筒状ワーク2に対する焼入深さが深くなると、筒状ワーク2の内壁面21全体の透磁率μが低下する。焼入深さの変化量に対する透磁率μの変化量が線形であれば等価磁化回路で計算することができるが、非線形的である。そこで、完全焼入材及び非焼入材(生材)の透磁率μ、導電率σ及び初期磁化曲線を用い、これを基に有限要素法(FEM):Finite Element Method)による数値解析を行い、筒状ワーク2の内壁面21の焼入深さ毎に算出された出力電圧Vを求め、これを検出コイル3で検出されると予想される推定電力値とした。   When a steel material is heated using a high frequency induction heating method and subjected to a quenching process, the magnetic permeability μ decreases. Moreover, when the quenching depth with respect to the cylindrical workpiece 2 is increased, the magnetic permeability μ of the entire inner wall surface 21 of the cylindrical workpiece 2 is decreased. If the change amount of the magnetic permeability μ with respect to the change amount of the quenching depth is linear, it can be calculated by an equivalent magnetization circuit, but is nonlinear. Therefore, numerical analysis using the Finite Element Method (FEM) is performed based on the permeability μ, conductivity σ, and initial magnetization curve of completely hardened material and non-hardened material (raw material). The output voltage V calculated for each quenching depth of the inner wall surface 21 of the cylindrical workpiece 2 was obtained, and this was used as the estimated power value expected to be detected by the detection coil 3.

上述の如く得られた既知の電磁気特性情報に含まれる筒状ワーク2の内壁面21の焼入深さと、実際に検出コイル3で測定される筒状ワーク2の内壁面21の出力電圧とを対比することにより、筒状ワーク2の焼入深さを特定することができる。   The quenching depth of the inner wall surface 21 of the cylindrical workpiece 2 included in the known electromagnetic characteristic information obtained as described above, and the output voltage of the inner wall surface 21 of the cylindrical workpiece 2 actually measured by the detection coil 3 are obtained. By comparison, the quenching depth of the cylindrical workpiece 2 can be specified.

なお、有限要素法(FEM)による数値解析を行うことで得られる検出コイル3で検出されると予想される推定電力値の信頼性は、以下に示す検証結果から確認できる。当該検証は、試験材料を用いて、焼入深さに応じた電磁気特性値を測定し、上述の数値解析により得られる解析値と対比することにより行う。   Note that the reliability of the estimated power value expected to be detected by the detection coil 3 obtained by performing numerical analysis by the finite element method (FEM) can be confirmed from the verification results shown below. The verification is performed by measuring the electromagnetic characteristic value according to the quenching depth using the test material and comparing it with the analysis value obtained by the numerical analysis described above.

まず、試験材料の電磁気特性値の測定方法を説明する。同等の材質の非焼入材(生材)及び完全焼入材について電磁気特性を予め調査し、非焼入材(生材)及び完全焼入材の磁化曲線を得て、電磁気特性値の差を評価する。既知の電磁気特性情報の取得方法の具体例を挙げる。まず、測定対象である筒状ワークと同等素材ならなる円筒状の試験材を2つ用意し、一方は焼入加工を行わない非焼入材(生材)とし、他方は内壁面に焼入処理して完全焼入材とする。そして、これらの試験材の電磁気特性を測定する。   First, a method for measuring the electromagnetic property value of the test material will be described. Investigate the electromagnetic characteristics of non-quenched material (raw material) and fully-quenched material of the same material in advance, obtain the magnetization curves of non-quenched material (raw material) and fully-quenched material, and find the difference in electromagnetic property value To evaluate. A specific example of a method for acquiring known electromagnetic characteristic information will be given. First, prepare two cylindrical test materials that are the same material as the cylindrical workpiece to be measured. One is a non-quenched material (raw material) that is not hardened, and the other is hardened on the inner wall surface. Process to a fully quenched material. Then, the electromagnetic characteristics of these test materials are measured.

例えば、導電率σは、各試験材をそれぞれケルビンブリッジ回路と接続し、磁化した試験材の導電率σを測定した。透磁率μは、長尺な試験材の両端部に電磁石を配置し、この電磁石により磁化された試験材の磁束密度Bと印加磁界Hを測定した。磁束密度Bの測定は、試験材の中間部に巻回したコイルによって測定した。また、印加磁界Hは、磁束密度測定用のコイルの近傍に印加磁界測定用のホール素子を配置して測定した。透磁率μの測定結果から完全焼入材及び非焼入材(生材)の初期磁化曲線を得た。また、焼入深さの異なる鋼材を複数用意し、上述と同様の方法により電磁気特性値としての出力電圧の減衰率η及び初期磁化曲線を得た。   For example, the conductivity σ was measured by connecting each test material to a Kelvin bridge circuit and measuring the magnetized test material. For the magnetic permeability μ, electromagnets were arranged at both ends of a long test material, and the magnetic flux density B and the applied magnetic field H of the test material magnetized by the electromagnet were measured. The magnetic flux density B was measured with a coil wound around the middle part of the test material. The applied magnetic field H was measured by placing a Hall element for measuring the applied magnetic field in the vicinity of the coil for measuring the magnetic flux density. From the measurement result of the magnetic permeability μ, initial magnetization curves of a completely quenched material and a non-quenched material (raw material) were obtained. A plurality of steel materials having different quenching depths were prepared, and the output voltage attenuation rate η and initial magnetization curve were obtained as electromagnetic characteristic values by the same method as described above.

上述の方法により得られた試験材料の出力電圧の減衰率ηと焼入平均深さとの関係を図3のグラフに示す。出力電圧の減衰率ηは、非焼入材(生材) で得られた出力電圧を基準としてどのくらい減衰するかを%で示したものである。また、図3には、上述の有限要素法により得られた解析上の出力電圧の減衰率ηと焼入深さとの関係を併せて示す。図3のグラフに示すように、試験材料を実測して得られた実験値と、上述の解析法を用いて得られた解析値とは略近似した結果となった。従って、上述の焼入深さ測定方法で用いる解析手法は、信頼性の高い結果が得られるといえる。   The relationship between the attenuation rate η of the output voltage and the quenching average depth of the test material obtained by the above method is shown in the graph of FIG. The attenuation rate η of the output voltage is expressed as a percentage of how much the output voltage is attenuated based on the output voltage obtained with the non-quenched material (raw material). FIG. 3 also shows the relationship between the analytical output voltage attenuation factor η obtained by the finite element method and the quenching depth. As shown in the graph of FIG. 3, the experimental value obtained by actually measuring the test material and the analytical value obtained by using the above-described analytical method were approximately approximated. Therefore, it can be said that the analysis method used in the above-described quenching depth measurement method can obtain highly reliable results.

なお、上述の製造ラインにおいて、本件発明に係る焼入深さ測定用プローブ1を用いて筒状ワーク2の内壁面の焼入硬化層の深さを測定する際に、筒所ワーク2の所望の位置に配置し、保持手段により、焼入深さ測定用プローブ1を筒状ワーク内部に進入させる構成を採用しているが、これに限らず、筒状ワークを保持手段により保持し、当該保持手段により、筒状ワーク2を所定の位置に設けられた焼入深さ測定用プローブ1に近接させていき、筒状ワーク2の内壁面の焼入深さの測定を行うものとしても良い。   In the above-described production line, when the depth of the hardened hardened layer on the inner wall surface of the cylindrical workpiece 2 is measured using the quenching depth measurement probe 1 according to the present invention, the desired shape of the cylindrical workpiece 2 is determined. However, the present invention is not limited to this, and the cylindrical work is held by the holding means. The cylindrical workpiece 2 may be brought close to the quenching depth measurement probe 1 provided at a predetermined position by the holding means, and the quenching depth of the inner wall surface of the cylindrical workpiece 2 may be measured. .

また、焼入深さ測定用プローブ1又は筒状ワーク2を、当該筒状ワークの軸方向に走査させて、焼入深さを複数箇所において測定してもよい。この場合、筒状ワーク2の内壁面を複数箇所において焼入深さを測定することで、グラフ化することができ、焼入硬化層のパターンを把握することが可能となる。   The quenching depth measurement probe 1 or the cylindrical workpiece 2 may be scanned in the axial direction of the cylindrical workpiece, and the quenching depth may be measured at a plurality of locations. In this case, the inner wall surface of the cylindrical workpiece 2 can be graphed by measuring the quenching depth at a plurality of locations, and the pattern of the quench hardened layer can be grasped.

本件発明に係る焼入深さ測定用プローブは、図1に示す構成に限定されるものではなく、柱状芯部の両端に第一及び第二の平板部を配し、柱状芯部に検出コイルと励磁コイルとを備え、少なくとも第一及び第二の平板部が複数のピースと各ピースの間に絶縁層構成材を介した構成とされるものであればよい。   The quenching depth measurement probe according to the present invention is not limited to the configuration shown in FIG. 1, and the first and second flat plate portions are arranged at both ends of the columnar core portion, and the detection coil is provided at the columnar core portion. And the exciting coil, and at least the first and second flat plate portions may be configured such that a plurality of pieces and an insulating layer constituting material are interposed between the pieces.

次に、本件発明に係る焼入深さ測定用プローブを用いた実施例及び比較例について述べる。   Next, examples and comparative examples using the quenching depth measurement probe according to the present invention will be described.

実施例の焼入深さ測定用プローブは、内壁面に高周波誘導加熱法を用いて加熱し、焼入処理が施されたテーパーハブベアリングの内壁面の焼入硬化層の深さを測定するものである。測定対象となるテーパーハブベアリングは、内壁面の断面が略円形で、一端側の内径S1が他端側の内径S2よりも大きく形成されている。そのため、本実施例の焼入深さ測定用プローブは、第一及び第二の平板部は、円板状で、第一の平板部の外径が第二の平板部の外径よりも大きく形成されている。また、各平板部は、柱状芯部の中心軸と各平板部の平面中心を含む断面において、各平板部の外縁を結ぶ仮想線が、焼入深さ測定用プローブをテーパーハブベアリング内部に配置した状態で、テーパーハブベアリングの内壁面のテーパー形状に対して1.0mmで離間して略平行となるように形成されている。   The probe for quenching depth measurement of the embodiment measures the depth of the hardened hardened layer on the inner wall surface of the tapered hub bearing that is heated on the inner wall surface using a high frequency induction heating method. It is. The tapered hub bearing to be measured has an inner wall having a substantially circular cross section, and has an inner diameter S1 on one end side larger than an inner diameter S2 on the other end side. Therefore, in the quenching depth measurement probe of this example, the first and second flat plate portions are disk-shaped, and the outer diameter of the first flat plate portion is larger than the outer diameter of the second flat plate portion. Is formed. Each flat plate section has a virtual line connecting the outer edge of each flat plate section in the cross section including the center axis of the columnar core section and the plane center of each flat plate section. In this state, the taper hub bearing is formed so as to be substantially parallel to the tapered shape of the inner wall surface at a distance of 1.0 mm.

そして、本実施例の焼入深さ測定用プローブは、柱状芯部と、第一及び第二の平板部とからなるコアが、パーマロイにより一体に形成されている。当該コアは、第一の平板部と、柱状芯部と第二の平板部とは、一体に形成されたまま、4つのピースに分割し、各ピースは、それぞれの分割面同士の間に絶縁層構成材を介設して熱溶着によって再度一つに組み立てた。各ピースは、各平板部の平面中心を中心点として中心角が90°となるように、柱状芯部の中心軸に沿って分割した。   In the quenching depth measurement probe of this embodiment, the core composed of the columnar core portion and the first and second flat plate portions are integrally formed of permalloy. The core is divided into four pieces while the first flat plate portion, the columnar core portion and the second flat plate portion are integrally formed, and each piece is insulated between the respective divided surfaces. They were assembled again by thermal welding with a layer constituent material interposed. Each piece was divided along the central axis of the columnar core portion so that the center angle was 90 ° with the plane center of each flat plate portion as the center point.

各ピースの分割面同士の間に介設される絶縁層構成材は、骨格材としてのガラスを含有したエポキシ樹脂を採用し、コアの完成状態で絶縁層構成材が厚さ1.5mmとなるように介設した。当該絶縁層構成材は、エポキシ系接着剤にて接着した。以上のようにして、実施例としての焼入深さ測定用プローブを得た。   The insulating layer constituent material interposed between the split surfaces of each piece employs an epoxy resin containing glass as a skeleton material, and the insulating layer constituent material has a thickness of 1.5 mm when the core is completed. So intervened. The insulating layer constituent material was bonded with an epoxy adhesive. As described above, a quenching depth measurement probe as an example was obtained.

比較例Comparative example

比較例としての焼入深さ測定用プローブは、上述の実施例としての焼入深さ測定用プローブと比べて、コアを各ピースに分割していない点のみが異なる。その他の構成は同様であるため、説明を省略する。   The quenching depth measurement probe as a comparative example differs from the quenching depth measurement probe as the above-described example only in that the core is not divided into pieces. Since other configurations are the same, description thereof is omitted.

ここで、図4に実施例の焼入深さ測定用プローブを用いて測定対象となるテーパーハブベアリングの内壁面を磁化したときのシミュレーションによる比透磁率分布を示す。また、図5に実施例の焼入深さ測定用プローブを用いて測定対象となるテーパーハブベアリングの内壁面を磁化したときのシミュレーションによる磁束密度分布を示す。図4及び図5は、いずれも、右側が焼入硬化層を形成したテーパーハブベアリングの内壁面を示し、左側に焼入処理を行っていない状態のテーパーハブベアリング(未処理)の内壁面を示す。これらのシミュレーションは、励磁コイルに2A80Hzの交流電流を印加した状態を示している。図4及び図5のシミュレーション結果より、比透磁率の高い焼入処理が行われていない内壁表面に、磁束密度が高く分布することが分かる。   Here, FIG. 4 shows a relative permeability distribution by simulation when the inner wall surface of the tapered hub bearing to be measured is magnetized using the quenching depth measurement probe of the embodiment. FIG. 5 shows a magnetic flux density distribution by simulation when the inner wall surface of the tapered hub bearing to be measured is magnetized using the quenching depth measurement probe of the embodiment. 4 and 5, the right side shows the inner wall surface of the tapered hub bearing on which the hardened hardened layer is formed, and the left side shows the inner wall surface of the tapered hub bearing (untreated) in a state where the quenching treatment is not performed. Show. These simulations show a state in which an alternating current of 2 A 80 Hz is applied to the exciting coil. From the simulation results of FIGS. 4 and 5, it can be seen that the magnetic flux density is highly distributed on the inner wall surface that is not subjected to the quenching process with a high relative permeability.

次に、図6及び図7に実施例及び比較例の焼入深さ測定用プローブの発熱シミュレーション結果を示す。ここでは、実施例及び比較例の焼入深さ測定用プローブの励磁コイルに通電を行った場合にコアに発生する電流密度とジュール損失について検討する。   Next, FIG.6 and FIG.7 shows the heat_generation | fever simulation result of the probe for quenching depth measurement of an Example and a comparative example. Here, the current density and Joule loss generated in the core when energizing the excitation coil of the quenching depth measurement probe of the example and the comparative example will be examined.

図6は、励磁コイルに通電を行った際のコア表面の電流密度分布のシミュレーションを示す。当該シミュレーションは、励磁コイルに2A80Hzの交流電流を印加した状態を示している。コアが複数のピースに分割されていない、すなわち、単一の部材で構成された比較例では、励磁コイルが巻回された柱状芯部の外周面や、平板部の当該柱状芯部との接合部分では電流密度が6.0×10A/m以上であった。そして、平板部同士が対向する側の平板部内面は、柱状芯部から外縁部にいくに従い徐々に電流密度が低下していき、外縁部の電流密度は2.5×10A/m程度であった。これに対し、コアが4つにピースに分割され、各ピースの間に絶縁層構成材が介設された実施例では、励磁コイルが巻回された柱状芯部の外周面や、平板部の当該柱状芯部との接合部分であっても、電流密度は4.5×10A/m程度であった。そして、平板部同士が対向する側の平板部内面は、柱状芯部から外縁部にいくに従い電流密度が低下していき、外縁部の電流密度は1.0×10A/m程度にまで低下していた。 FIG. 6 shows a simulation of the current density distribution on the core surface when the exciting coil is energized. The simulation shows a state in which an alternating current of 2 A 80 Hz is applied to the exciting coil. In the comparative example in which the core is not divided into a plurality of pieces, that is, composed of a single member, the outer peripheral surface of the columnar core portion around which the excitation coil is wound or the flat plate portion is joined to the columnar core portion. In the portion, the current density was 6.0 × 10 5 A / m 2 or more. Then, the current density of the inner surface of the flat plate portion on the side where the flat plate portions face each other gradually decreases from the columnar core portion to the outer edge portion, and the current density of the outer edge portion is 2.5 × 10 5 A / m 2. It was about. On the other hand, in the embodiment in which the core is divided into four pieces, and the insulating layer constituting material is interposed between the pieces, the outer peripheral surface of the columnar core portion around which the excitation coil is wound, and the flat plate portion Even at the junction with the columnar core, the current density was about 4.5 × 10 5 A / m 2 . And, the current density of the inner surface of the flat plate portion on the side where the flat plate portions face each other decreases from the columnar core portion to the outer edge portion, and the current density of the outer edge portion is about 1.0 × 10 5 A / m 2 . It had dropped to.

図7は、励磁コイルに通電を行った際のコア表面周辺のジュール損失密度分布のシミュレーションを示す。当該シミュレーションは、励磁コイルに2A80Hzの交流電流を印加した場合について行った。また、図7の上図に示すように、コアを構成する柱状芯部の表面から中心軸に向かう方向にかけてジュール損失密度をシミュレーションを行った。   FIG. 7 shows a simulation of Joule loss density distribution around the core surface when the exciting coil is energized. The simulation was performed when a 2 A 80 Hz alternating current was applied to the exciting coil. Further, as shown in the upper diagram of FIG. 7, the Joule loss density was simulated in the direction from the surface of the columnar core portion constituting the core toward the central axis.

コアが複数のピースに分割されていない、すなわち、単一の部材で構成された比較例の場合、柱状芯部の表面におけるジュール損失密度は160kW/m以上であり、柱状芯部の表面から約0.1mmの深さで110kW/m程度、柱状芯部の表面から約0.5mmの深さで40kW/m程度、柱状芯部の表面から約0.7mmの深さで10kW/m程度、柱状芯部の表面から1.1mmの深さで略0であった。これに対し、コアが4つにピースに分割され、各ピースの間に絶縁層構成材が介設された実施例では、柱状芯部の表面におけるジュール損失密度は70kW/m程度であり、表面のみを比較しても、比較例よりも大幅にジュール損失密度が小さい。さらに、実施例では、柱状芯部の表面から約0.1mmの深さでジュール損失密度はさらに、35kW/m程度にまで低下し、柱状芯部の表面から約0.3mmの深さでは、10kW/m程度であった。柱状芯部の表面から約0.7mmの深さではジュール損失密度は略0であった。 In the case of the comparative example in which the core is not divided into a plurality of pieces, that is, composed of a single member, the Joule loss density on the surface of the columnar core is 160 kW / m 3 or more, and from the surface of the columnar core About 110 kW / m 3 at a depth of about 0.1 mm, about 40 kW / m 3 at a depth of about 0.5 mm from the surface of the columnar core, and about 10 kW / m at a depth of about 0.7 mm from the surface of the columnar core. m 3 approximately, was substantially zero at a depth of 1.1mm from the surface of the columnar core portions. On the other hand, in an example in which the core is divided into four pieces and the insulating layer constituent material is interposed between the pieces, the Joule loss density on the surface of the columnar core is about 70 kW / m 3 , Even when only the surfaces are compared, the Joule loss density is significantly smaller than that of the comparative example. Further, in the example, at a depth of about 0.1 mm from the surface of the columnar core, the Joule loss density is further reduced to about 35 kW / m 3, and at a depth of about 0.3 mm from the surface of the columnar core. It was about 10 kW / m 3 . At a depth of about 0.7 mm from the surface of the columnar core, the Joule loss density was substantially zero.

図6及び図7のシミュレーション結果から、コアを複数のピースに分割して、各ピース間に絶縁層構成材を介設することによって、柱状芯部の表面の電流密度を大幅に小さくすることができ、柱状芯部の表面近傍におけるジュール熱の損失を大幅に減少させることができることが分かる。   From the simulation results of FIG. 6 and FIG. 7, the current density on the surface of the columnar core can be greatly reduced by dividing the core into a plurality of pieces and interposing an insulating layer constituent material between the pieces. It can be seen that Joule heat loss near the surface of the columnar core can be greatly reduced.

すなわち、上述のシミュレーション結果から分かるように、実施例のように、2以上のピースに分割し、各ピースの分割面同士の間に絶縁層構成材を介してコアを構成することにより、コア自体の発熱を著しく緩和することが可能となる。故に、上述のように焼入深さ測定用プローブを閉塞環境に近い筒状ワークの内部には位置して測定を行っても、コアから発生した熱が筒状ワーク内部にこもって、コアが異常に発熱することを防止することができる。よって、本件発明の焼入深さ測定用プローブは、当該コアの柱状芯部に巻回される励磁コイルや検出コイルの過熱を効果的に回避することができ、これらコイルの絶縁樹脂皮膜が溶出し、ショート等の不具合の発生を防止することができる。   That is, as can be seen from the simulation results described above, the core itself is divided into two or more pieces as in the embodiment, and the core is formed through the insulating layer constituent material between the divided surfaces of each piece. It becomes possible to remarkably relieve the heat generation. Therefore, even if the quenching depth measurement probe is positioned inside the cylindrical workpiece close to the closed environment as described above, the heat generated from the core is trapped inside the cylindrical workpiece, and the core Abnormal heat generation can be prevented. Therefore, the quenching depth measurement probe of the present invention can effectively avoid overheating of the excitation coil and the detection coil wound around the columnar core portion of the core, and the insulating resin film of these coils is eluted. In addition, the occurrence of defects such as a short circuit can be prevented.

これは、コアを構成する少なくとも第一及び第二の平板部を2以上の複数のピースに分割し、それぞれのピースを絶縁層構成材により絶縁することによって、各ピースに発生する渦電流を小さくすることができ、コア全体に発生する渦電流を著しく抑制することができたことによるものと考えられる。   This is because the eddy current generated in each piece is reduced by dividing at least the first and second flat plate portions constituting the core into two or more pieces and insulating each piece with an insulating layer constituting material. This is considered to be because the eddy current generated in the entire core could be remarkably suppressed.

一般に、励磁コイルに交流電流を印加すると、渦電流により、励磁コイルによる磁界方向とは逆方向に反抗磁界が発生する。当該反抗磁界が大きくなると、検出コイルにより検出される電圧波形の乱れが大きくなる。上述したように、本件発明によれば、コアに発生する渦電流を著しく抑制することが可能となるため、当該反抗磁界を小さくすることができ、検出コイルにより検出される電圧波形の乱れを抑制できる。これにより、検出コイルにより検出される出力電圧の精度を高めることができ、焼入硬化層の深さ測定を精度良く行うことが可能となる。   Generally, when an alternating current is applied to an exciting coil, a counter magnetic field is generated in a direction opposite to the magnetic field direction due to the eddy current due to the eddy current. When the counter magnetic field increases, the disturbance of the voltage waveform detected by the detection coil increases. As described above, according to the present invention, the eddy current generated in the core can be remarkably suppressed, so that the repulsive magnetic field can be reduced, and the disturbance of the voltage waveform detected by the detection coil is suppressed. it can. As a result, the accuracy of the output voltage detected by the detection coil can be increased, and the depth of the hardened and hardened layer can be accurately measured.

また、上述のように本件発明は、コア自体の発熱を緩和することができることから、当該測定用プローブを筒状ワークの内部に配置して測定を行っても、当該コア、検出コイル、ワークの温度上昇を効果的に抑制でき、電気的、磁気的な特性変動を最小限とすることができるため、高い精度で検出コイルの出力電圧に基づいた焼入硬化層の深さ測定を行うことが可能となる。   Further, as described above, the present invention can alleviate the heat generation of the core itself. Therefore, even if the measurement probe is placed inside the cylindrical workpiece and the measurement is performed, the core, the detection coil, and the workpiece The temperature rise can be effectively suppressed and fluctuations in electrical and magnetic characteristics can be minimized, so that the depth of the hardened layer can be measured with high accuracy based on the output voltage of the detection coil. It becomes possible.

なお、上述した焼入硬化層を備えた筒状ワークの製造ラインにおいて行う焼入深さ測定方法は、上述の方法に限定されるものではなく、筒状ワークの内部に焼入深さ測定用プローブを進入させて配置し、当該筒状ワークを磁化して検出コイルで検出された出力電圧に基づいて筒状ワークの焼入硬化層の深さを特定した後、焼入深さ測定用プローブを当該筒状ワークの内部から退避させることが可能な方法であれば、いずれの方法であっても良い。   In addition, the quenching depth measurement method performed in the manufacturing line of the cylindrical workpiece | work provided with the quenching hardened layer mentioned above is not limited to the above-mentioned method, For quenching depth measurement inside a cylindrical workpiece. After the probe is placed and magnetized, the cylindrical workpiece is magnetized, the depth of the hardened hardened layer of the cylindrical workpiece is specified based on the output voltage detected by the detection coil, and then the quenching depth measurement probe Any method may be used as long as it is a method capable of retracting from the inside of the cylindrical workpiece.

本件発明に係る焼入深さ測定用プローブは、筒状ワークの内壁面の焼入硬化層の深さを測定する場合であっても、ヨークやコイル、ワークなどの温度上昇を抑制し、非破壊による方法で、安全、且つ、高い精度で焼入硬化層の深さを測定することができる。また、本件発明に係る焼入深さ測定用プローブは、製造工程において、焼入硬化層の深さについて、全量検査を行うのに好適である。   The quenching depth measurement probe according to the present invention suppresses the temperature rise of the yoke, coil, workpiece, etc., even when measuring the depth of the hardened hardened layer on the inner wall surface of the cylindrical workpiece. The depth of the hardened and hardened layer can be measured safely and with high accuracy by the method using destruction. Moreover, the quenching depth measurement probe according to the present invention is suitable for performing a full inspection on the depth of the hardened hardened layer in the manufacturing process.

1 焼入深さ測定用プローブ
2 ワーク
3 検出コイル
4 励磁コイル
10 コア
11 柱状芯部
11A、11B 端部
11C 中心軸
12、13 第一、第二の平板部
12A、13A ピース
12C、13C 平面中心
12E、13E 外縁
14 絶縁層構成材
21 内壁面
S1、S2 筒状ワークの開口寸法(内径)
L 筒状ワークの内壁面と平板部端部との距離
X 仮想線
DESCRIPTION OF SYMBOLS 1 Hardening depth measurement probe 2 Workpiece 3 Detection coil 4 Excitation coil 10 Core 11 Columnar core part 11A, 11B End part 11C Center axis 12, 13 1st, 2nd flat plate part 12A, 13A Piece 12C, 13C Plane center 12E, 13E Outer edge 14 Insulating layer constituent material 21 Inner wall surface S1, S2 Opening dimension (inner diameter) of cylindrical workpiece
L Distance between the inner wall surface of the cylindrical workpiece and the end of the flat plate part X Virtual line

Claims (9)

筒状ワークの内部に配置して当該筒状ワークの内壁面の焼入深さを測定するための焼入深さ測定用プローブであって、
2以上に分割された各ピースの分割面同士の間に絶縁層構成材を介設してなる第一の平板部を柱状芯部の一端に配し、2以上に分割された各ピースの分割面同士の間に絶縁層構成材を介設してなる第二の平板部を当該柱状芯部の他端に当該第一の平板部と平行に配したコアと、
当該コアの柱状芯部の外周に巻回され、当該筒状ワークを磁化する励磁コイルと、
当該コアの柱状芯部の外周に巻回され、当該磁化により発生した誘導磁場を検出する検出コイルと、
当該検出コイルの誘導磁場の検出により測定された出力電圧と、当該筒状ワークと同等材料に関する既知の電磁気特性情報とから筒状ワークの焼入深さを特定する焼入深さ特定手段とを備え、
当該焼入深さ特定手段は、焼入加工を施さない非焼入材と焼入加工を施した完全焼入材に固有の標準物性値である初期磁化曲線及び導電率を用いて得られる検出コイルの推定電圧値を含む既知の電磁気特性情報と、検出コイルの出力電圧とから当該筒状ワークの焼入深さを特定することを特徴とする焼入深さ測定用プローブ。
A quenching depth measurement probe for measuring the quenching depth of the inner wall surface of the cylindrical workpiece disposed inside the cylindrical workpiece,
Dividing each piece divided into two or more pieces by arranging a first flat plate portion with an insulating layer constituting material interposed between the divided surfaces of each piece divided into two or more pieces at one end of the columnar core portion A core in which a second flat plate portion formed by interposing an insulating layer constituent material between the surfaces is arranged in parallel to the first flat plate portion at the other end of the columnar core portion;
Is wound on the outer periphery of the columnar core portion of the core, an excitation coil magnetizing the cylindrical workpiece,
A detection coil that is wound around the outer periphery of the columnar core of the core and detects an induced magnetic field generated by the magnetization;
A quenching depth specifying means for specifying the quenching depth of the cylindrical workpiece from the output voltage measured by detecting the induction magnetic field of the detection coil and known electromagnetic property information on the equivalent material to the cylindrical workpiece; Prepared,
The quenching depth specifying means is a detection obtained by using an initial magnetization curve and conductivity, which are standard physical property values unique to a non-quenched material that is not quenched and a completely quenched material that is quenched. A quenching depth measurement probe characterized by identifying a quenching depth of the cylindrical workpiece from known electromagnetic characteristic information including an estimated voltage value of a coil and an output voltage of a detection coil .
前記第一及び第二の平板部の各ピースは、各平板部の平面中心を中心点とした中心角が360°/n(nは2以上の整数)で分割したものである請求項1に記載の焼入深さ測定用プローブ。   Each piece of said 1st and 2nd flat plate part is what divided | segmented the center angle | corner centering on the plane center of each flat plate part by 360 degrees / n (n is an integer greater than or equal to 2). The probe for quenching depth measurement as described. 前記各平板部は、当該各平板部の平面中心を前記柱状芯部の中心軸の延長線上に配したものである請求項1又は請求項2に記載の焼入深さ測定用プローブ。   The quenching depth measurement probe according to claim 1 or 2, wherein each flat plate portion has a plane center of each flat plate portion arranged on an extension line of a central axis of the columnar core portion. 前記柱状芯部は、前記第一及び第二の平板部の分割面と対応する位置において、当該筒状ワークの径方向の断面における中心を中心点とした中心角が360°/n(nは2以上の整数)のn個のピースに分割し、当該各ピースの分割面同士の間に絶縁層構成材を介して構成した請求項2又は請求項3に記載の焼入深さ測定用プローブ。   The columnar core portion has a central angle of 360 ° / n (n is a center point) at the center in the radial cross section of the cylindrical workpiece at a position corresponding to the dividing surface of the first and second flat plate portions. The probe for quenching depth measurement according to claim 2 or 3, wherein the probe is divided into n pieces (an integer of 2 or more) and an insulating layer constituting material is provided between the divided surfaces of the pieces. . 前記検出コイルは、前記励磁コイルの内側に位置して、前記柱状芯部の外周面に巻回される請求項1〜請求項4のいずれかに記載の焼入深さ測定用プローブ。   The probe for quenching depth measurement according to any one of claims 1 to 4, wherein the detection coil is positioned inside the excitation coil and wound around an outer peripheral surface of the columnar core portion. 前記絶縁層構成材は、厚さが3.0mm以下である請求項1〜請求項5のいずれかに記載の焼入深さ測定用プローブ。   The probe for quenching depth measurement according to any one of claims 1 to 5, wherein the insulating layer constituting material has a thickness of 3.0 mm or less. 前記絶縁層構成材は、エポキシ樹脂、ポリイミド樹脂、アラミド樹脂、ベンゾトリアゾール樹脂、ポリフェニレンオキサイド樹脂、又は、これらの樹脂に骨格材を含ませた骨格剤含有樹脂のいずれかにより構成される請求項1〜請求項6のいずれかに記載の焼入深さ測定用プローブ。   The insulating layer constituting material is constituted by any one of an epoxy resin, a polyimide resin, an aramid resin, a benzotriazole resin, a polyphenylene oxide resin, or a skeleton agent-containing resin obtained by adding a skeleton material to these resins. The probe for quenching depth measurement according to claim 6. 内壁面にテーパー形状を有する前記筒状ワークの焼入深さを測定する焼入深さ測定用プローブであって、
前記コアを構成する柱状芯部の中心軸と各平板部の中心を含む断面において、前記第一の平板部の外縁と、前記第二の平板部の外縁とを結ぶ仮想線が、前記コアを前記筒状ワーク内部に配置した状態で、前記筒状ワークの内壁面のテーパー形状に対して略平行となるように形成される請求項1〜請求項7のいずれかに記載の焼入深さ測定用プローブ。
A quenching depth measurement probe for measuring a quenching depth of the cylindrical workpiece having a tapered shape on an inner wall surface,
In a cross section including the central axis of the columnar core portion constituting the core and the center of each flat plate portion, an imaginary line connecting the outer edge of the first flat plate portion and the outer edge of the second flat plate portion is the core. The quenching depth according to any one of claims 1 to 7, wherein the quenching depth is formed so as to be substantially parallel to a tapered shape of an inner wall surface of the cylindrical workpiece in a state of being disposed inside the cylindrical workpiece. Probe for measurement.
焼入硬化層を備えた筒状ワークの製造ラインにおいて行う焼入深さ測定方法であって、
内壁面に対して高周波誘導加熱法を用いて加熱し、焼入を行った筒状ワークの内部に請求項1〜請求項8のいずれかに記載の焼入深さ測定用プローブを進入させて配置し、
当該焼入深さ測定用プローブの励磁コイルによって当該筒状ワークを磁化し、
磁化により発生させた誘導磁場を検出コイルで検出し、当該検出コイルで検出された出力電圧に基づいて筒状ワークの焼入硬化層の深さを特定した後、
当該焼入深さ測定用プローブを当該筒状ワークの内部から退避させることを特徴とする
焼入硬化層を備えた筒状ワークの製造ラインにおいて行う焼入深さ測定方法。
A quenching depth measurement method performed in a production line of a cylindrical workpiece having a quench hardened layer,
The quenching depth measurement probe according to any one of claims 1 to 8 is caused to enter the inside of a cylindrical workpiece that has been heated and hardened with respect to the inner wall surface using a high-frequency induction heating method. Place and
The cylindrical workpiece is magnetized by the excitation coil of the quenching depth measurement probe,
After detecting the induction magnetic field generated by magnetization with a detection coil and specifying the depth of the hardened and hardened layer of the cylindrical workpiece based on the output voltage detected with the detection coil,
A quenching depth measurement method performed in a production line for a cylindrical workpiece having a quench hardened layer, wherein the quenching depth measurement probe is retracted from the inside of the cylindrical workpiece.
JP2013052692A 2013-03-15 2013-03-15 Quenching depth measuring probe and quenching depth measuring method using the quenching depth measuring probe Active JP6160948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013052692A JP6160948B2 (en) 2013-03-15 2013-03-15 Quenching depth measuring probe and quenching depth measuring method using the quenching depth measuring probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013052692A JP6160948B2 (en) 2013-03-15 2013-03-15 Quenching depth measuring probe and quenching depth measuring method using the quenching depth measuring probe

Publications (2)

Publication Number Publication Date
JP2014178225A JP2014178225A (en) 2014-09-25
JP6160948B2 true JP6160948B2 (en) 2017-07-12

Family

ID=51698325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013052692A Active JP6160948B2 (en) 2013-03-15 2013-03-15 Quenching depth measuring probe and quenching depth measuring method using the quenching depth measuring probe

Country Status (1)

Country Link
JP (1) JP6160948B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS483190U (en) * 1971-05-31 1973-01-16
JPS5260679A (en) * 1975-11-14 1977-05-19 Nippon Steel Corp Method and device for judging degree of heat treatment of steel pipe
JPS52144728U (en) * 1976-04-27 1977-11-02
JPS54105588U (en) * 1978-01-10 1979-07-25
JPS60168046A (en) * 1984-02-10 1985-08-31 Sumitomo Metal Ind Ltd Electromagnetic induction testing device
JPH03267701A (en) * 1990-03-16 1991-11-28 Daido Steel Co Ltd Measuring instrument for quenching depth
JPH09281081A (en) * 1996-04-17 1997-10-31 Nippon Steel Corp Magnetic head apparatus
JP3522993B2 (en) * 1996-12-04 2004-04-26 高周波熱錬株式会社 Induction heating coil and induction heating method
CN103238064B (en) * 2010-10-26 2016-05-04 高周波热錬株式会社 Depth of quenching assay method and depth of quenching determinator

Also Published As

Publication number Publication date
JP2014178225A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
Wu et al. A novel TMR-based MFL sensor for steel wire rope inspection using the orthogonal test method
JP5892341B2 (en) Hardening depth measuring method and quenching depth measuring device
Kasai et al. Quantitative investigation of a standard test shim for magnetic particle testing
Jin et al. Electromagnetic stimulation of the acoustic emission for fatigue crack detection of the sheet metal
Chen et al. Time-domain analytical solutions to pulsed eddy current field excited by a probe coil outside a conducting ferromagnetic pipe
Tsukada et al. Magnetic nondestructive test for resistance spot welds using magnetic flux penetration and eddy current methods
Wu et al. Weld crack detection based on region electromagnetic sensing thermography
Gotoh et al. Proposal of electromagnetic inspection method of outer side defect on steel tube with steel support plate using optimal differential search coils
Hughes High-sensitivity eddy-current testing technology for defect detection in aerospace superalloys
US8316726B2 (en) Biaxial stress management
JP2007139717A (en) Instrument and method for measuring magnetic characteristic of annular sample
JP6160948B2 (en) Quenching depth measuring probe and quenching depth measuring method using the quenching depth measuring probe
Gotoh et al. Electromagnetic inspection method of outer side defect on small and thick steel tube using both AC and DC magnetic fields
Todorov Measurement of electromagnetic properties of heat exchanger tubes
Gotoh et al. Evaluation of electromagnetic inspection of outer side defect on small diameter and thick steel tube with steel support using 3-d nonlinear fem
Jin et al. Enhanced acoustic emission detection induced by electromagnetic stimulation with external magnetic field
Gao et al. Ferrite-yoke based pulsed induction thermography for cracks quantitative evaluation
Tomáš et al. Optimization of fatigue damage indication in ferromagnetic low carbon steel
Zhang et al. Research on eddy current pulsed thermography for rolling contact fatigue crack detection and quantification in wheel tread
Zhang et al. Applications of multi-frequency inversion algorithm to quantitative NDE of cracks in welding joints of a metallic lattice sandwich plate
Brojboiu et al. On the experimental setup based on Eddy current meant to metallic parts identification
Janousek Effect of exciting system configuration on eddy currents distribution in non-destructive evaluation of materials
Janousek et al. Decreasing uncertainty in size estimation of stress corrosion cracking from eddy-current signals
Yuan et al. Frequency optimisation of circumferential current field testing system for highly-sensitive detection of longitudinal cracks on a pipe string
Kreischer et al. Comparison of different methods to determine defects in the stator core

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170602

R150 Certificate of patent or registration of utility model

Ref document number: 6160948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250