JP6160741B2 - Boiler anticorrosion method and anticorrosive - Google Patents

Boiler anticorrosion method and anticorrosive Download PDF

Info

Publication number
JP6160741B2
JP6160741B2 JP2016095971A JP2016095971A JP6160741B2 JP 6160741 B2 JP6160741 B2 JP 6160741B2 JP 2016095971 A JP2016095971 A JP 2016095971A JP 2016095971 A JP2016095971 A JP 2016095971A JP 6160741 B2 JP6160741 B2 JP 6160741B2
Authority
JP
Japan
Prior art keywords
boiler
water
diethanolamine
anticorrosive
anticorrosion method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016095971A
Other languages
Japanese (ja)
Other versions
JP2016191152A (en
Inventor
信太郎 森
信太郎 森
幸祐 志村
幸祐 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Publication of JP2016191152A publication Critical patent/JP2016191152A/en
Application granted granted Critical
Publication of JP6160741B2 publication Critical patent/JP6160741B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/141Amines; Quaternary ammonium compounds
    • C23F11/142Hydroxy amines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/025Devices and methods for diminishing corrosion, e.g. by preventing cooling beneath the dew point

Description

本発明はボイラ水処理用の薬剤に関し、さらに詳しくは主として過熱器や蒸気タービンを有するボイラや、過熱器、蒸気タービンを有するボイラと処理水とが混合するボイラ等で用いられるボイラプラントに適した防食剤に関する。   The present invention relates to a chemical for boiler water treatment, and more particularly suitable for a boiler plant mainly used in a boiler having a superheater or a steam turbine, a boiler having a superheater or a steam turbine, and a boiler in which treated water is mixed. It relates to anticorrosives.

ボイラはボイラ水を高温にして蒸気を発生させる構造となっており、ボイラを構成する金属の腐食を防止するために防食剤が使用されている。特に、発電用ボイラやごみ焼却用ボイラなどの過熱器や蒸気タービンを有するボイラでは、補給水としてイオン交換水や脱塩水が主に使用されている。このため、これらボイラの水質管理項目の濃縮倍数は30〜200倍程度で運転されているケースが多い。このようなボイラでは、苛性アルカリを用いずにリン酸塩を添加して、ボイラ水のpHを調整して腐食を抑制すると共に、中和性アミンやアンモニアを添加して給復水系のpHを上昇させて、鉄の溶出を抑制し、ボイラ缶内に持込まれる鉄を低減している。   The boiler has a structure in which the boiler water is heated to generate steam, and an anticorrosive agent is used to prevent corrosion of the metal constituting the boiler. In particular, in a boiler having a superheater and a steam turbine such as a power generation boiler and a garbage incineration boiler, ion exchange water and demineralized water are mainly used as makeup water. For this reason, there are many cases where these boilers are operated with a concentration factor of water quality management items of about 30 to 200 times. In such a boiler, phosphate is added without using caustic, and the pH of the boiler water is adjusted to suppress corrosion, and neutralizing amine and ammonia are added to adjust the pH of the feed and condensate system. It is raised, iron elution is suppressed, and iron brought into the boiler can is reduced.

しかし、近年では、原水の多様化や水質悪化による有機物のボイラ缶内への持込量の増加、省エネ・節水を意図したブロー量の低減、非ヒドラジン化のための有機系脱酸素剤の適用により、ボイラ缶水のpHが低下するトラブルが多く発生している。これらの対策として、ボイラ水中のリン酸塩濃度を高くすることや、Na/PO4のモル比が3よりも高いリン酸塩系清缶剤が使用される場合があるが、この場合には、リン酸塩のハイドアウト現象やアルカリ腐食の発生が懸念されている。
このような系で使用されている代表的な給復水系の防食剤としては、2−アミノエタノ−ル(MEA)が挙げられるが、ボイラ水のpHを上昇させる効果は十分ではない。また、これに替わるものとして、特許文献1にはメチルジエタノールアミン(MDEA)が提示されている。
この特許文献1に記載のMDEAを防食剤として用いると、少ない薬剤量で高温腐食環境におけるpH上昇が容易であり、揮発性が低くて蒸気への移行が少なく、このため反応系への影響が少ないうえ、脱酸素剤を併用する場合に脱酸素能力を高くすることができ、少ない添加量で高い防食効果が得られるとされている。
However, in recent years, the amount of organic substances brought into boiler cans due to diversification of raw water and deterioration of water quality, reduction of blow amount intended to save energy and water, and application of organic oxygen absorber for non-hydrazine conversion Therefore, many troubles that the pH of boiler can water falls are generated. As these measures, there is a case where a phosphate concentration in the boiler water is increased or a phosphate-type tin can having a Na / PO 4 molar ratio higher than 3 is used. There are concerns about the occurrence of phosphate hideout and alkaline corrosion.
As a typical feed and condensate anticorrosive agent used in such a system, 2-aminoethanol (MEA) can be mentioned, but the effect of increasing the pH of boiler water is not sufficient. As an alternative, Patent Document 1 proposes methyldiethanolamine (MDEA).
When MDEA described in Patent Document 1 is used as an anticorrosive agent, it is easy to increase the pH in a high temperature corrosive environment with a small amount of chemicals, and has low volatility and little shift to steam, which has an influence on the reaction system. In addition, it is said that when a deoxidant is used in combination, the deoxygenation ability can be increased, and a high anticorrosive effect can be obtained with a small addition amount.

特開2003−231980号公報JP 2003-231980 A

しかしながら、特許文献1に記載のMDEAによる防食剤においては、給水への好ましい添加量は50〜200mg/Lであるため(段落〔0012〕)、さらに少量の添加で効果のある防食剤が求められていた。
本発明は、以上のような従来の課題を解決するために、鋭意研究の結果なされたものであり、前述したようなボイラにおいて、リン酸塩をより多く添加したり、Na/PO4のモル比を3.0よりも高くしたりすることなく、ボイラ水のpHをより効率的に維持することや、ボイラ缶内だけでなく、給復水も含めたボイラ全系を防食できる薬剤及び防食方法を提供することを目的とする。
However, in the anticorrosive agent by MDEA described in Patent Document 1, since the preferable addition amount to the water supply is 50 to 200 mg / L (paragraph [0012]), an anticorrosive agent that is effective even when added in a small amount is required. It was.
The present invention has been made as a result of earnest research in order to solve the conventional problems as described above. In the boiler as described above, more phosphate is added, or the molar amount of Na / PO 4 is increased. It is possible to maintain the pH of boiler water more efficiently without making the ratio higher than 3.0, and to prevent corrosion of the entire boiler system including not only the boiler can but also the feed water It aims to provide a method.

すなわち、本発明は、
(1)ジエタノールアミン及び中和性アミン(ジエタノールアミンを除く)を含むボイラ用防食剤を用いたボイラの防食方法であって、前記ジエタノールアミン及び前記中和性アミンの質量比が0.1:10〜10:0.1であり、前記ジエタノールアミンの給水への添加量を0.1〜10mg/Lとする、ボイラの防食方法、
(2)前記ボイラ用防食剤が、さらに脱酸素剤を含む、前記(1)に記載のボイラの防食方法、
(3)前記脱酸素剤が、ヒドラジン、カルボヒドラジド、1−アミノピロリジン、1−アミノ−4−メチルピぺラジン、N,N−ジエチルヒドロキシルアミン、エリソルビン酸(塩)、及びアスコルビン酸(塩)から選ばれる1種以上の化合物である、前記(2)に記載のボイラの防食方法、及び
(4)前記(1)〜(3)のいずれか1項に記載のボイラの防食方法に用いられる防食剤、
を提供する。
That is, the present invention
(1) A boiler anticorrosion method using a boiler anticorrosive containing diethanolamine and neutralizing amine (excluding diethanolamine), wherein a mass ratio of the diethanolamine and the neutralizing amine is 0.1: 10 to 10 : 0.1, and the amount of diethanolamine added to the feed water is 0.1 to 10 mg / L.
(2) The boiler anticorrosion method according to (1), wherein the boiler anticorrosive further contains an oxygen scavenger,
(3) The oxygen scavenger is hydrazine, carbohydrazide, 1-aminopyrrolidine, 1-amino-4-methylpiperazine, N, N-diethylhydroxylamine, erythorbic acid (salt), and ascorbic acid (salt). Corrosion protection used in the boiler anticorrosion method according to (2) and (4) the boiler anticorrosion method according to any one of (1) to (3), which is one or more selected compounds. Agent,
I will provide a.

本発明のボイラ用防食剤によれば、リン酸塩をより多く添加したり、Na/PO4のモル比を3.0よりも高くしたりすることなく、ボイラ水のpHをより効率的に維持することや、ボイラ缶内だけでなく、給復水も含めたボイラ全系を効果的に防食できる。 According to the boiler anticorrosive agent of the present invention, the pH of boiler water can be more efficiently increased without adding more phosphate or making the Na / PO 4 molar ratio higher than 3.0. It is possible to effectively prevent corrosion not only in the boiler can but also in the boiler can, as well as the entire boiler system including feed and condensate.

本発明のボイラ用防食剤は、ジエタノールアミン(以下、「DEA」という場合がある。)を含むことを特徴とする。
ジエタノールアミンは、HOCHCHNHCHCHOHで表される化合物であり、熱安定性が高く、解離度が高い、低揮発性アミンであるため、蒸気側へ移行する量が少なく、ボイラ缶水中に留まるので、ボイラ缶水のpHを維持する能力が高い。
そのため、ジエタノールアミンはそれ単独で防食剤とすることもできるが、ジエタノールアミンと他の揮発性アミン、例えば高揮発度のアミンと併用することにより、蒸気中に移行するアミン量を調整でき、給復水のpHを含めて、ボイラの全系統を防食することができ、さらに、他の防食剤、皮膜性防食剤、安定剤その他の補助剤と併用してもよい。
The anticorrosive for boilers of the present invention is characterized by containing diethanolamine (hereinafter sometimes referred to as “DEA”).
Diethanolamine is a compound represented by HOCH 2 CH 2 NHCH 2 CH 2 OH, and has a high thermal stability, a high degree of dissociation, and a low volatility amine. Since it stays in water, the ability to maintain the pH of boiler can water is high.
Therefore, diethanolamine can be used as an anticorrosive by itself, but diethanolamine and other volatile amines, such as high volatility amines, can be used to adjust the amount of amine transferred into the steam, The entire system of the boiler, including the pH of the above, can be anticorrosive, and may be used in combination with other anticorrosives, film anticorrosives, stabilizers and other auxiliary agents.

本発明においては、ジエタノールアミンと脱酸素剤とを併用する防食剤が好ましい。脱酸素剤としては、公知のものが使用できるが、ヒドラジン、カルボヒドラジド、1−アミノピロリジン、1−アミノ−4−メチルピペラジン、N,N−ジエチルヒドロキシルアミン、エリソルビン酸(塩)、及びアスコルビン酸(塩)から選ばれる1種以上の化合物が好ましく、1−アミノ−4−メチルピペラジン(以下、「1A4MP」という場合がある。)がより好ましい。
さらに、非ヒドラジン系の有機脱酸素剤と併用する場合には、ボイラのpHの低下を生じることなく十分量添加することができる。
上記のとおり、本発明においては、有機物の流入に強く、ボイラの濃縮アップを実施することができる。
In the present invention, an anticorrosive agent using a combination of diethanolamine and an oxygen scavenger is preferred. Known oxygen scavengers can be used, including hydrazine, carbohydrazide, 1-aminopyrrolidine, 1-amino-4-methylpiperazine, N, N-diethylhydroxylamine, erythorbic acid (salt), and ascorbic acid. One or more compounds selected from (salts) are preferable, and 1-amino-4-methylpiperazine (hereinafter sometimes referred to as “1A4MP”) is more preferable.
Furthermore, when used in combination with a non-hydrazine organic oxygen scavenger, a sufficient amount can be added without causing a decrease in the pH of the boiler.
As described above, in the present invention, it is strong against the inflow of organic matter, and the boiler can be concentrated up.

ジエタノールアミン、またはジエタノールアミンと脱酸素剤との複合剤を含む防食剤は、これらのみからなるものでもよく、また水その他の溶媒、その他の成分を含むものであってもよい。複合剤の場合、それぞれの成分を別々にボイラに注入して複合させてもよく、また予め配合剤としてボイラに添加するようにしてもよい。   The anticorrosive agent containing diethanolamine or a complexing agent of diethanolamine and an oxygen scavenger may be composed only of these, or may contain water and other solvents and other components. In the case of a composite agent, the respective components may be separately injected into the boiler to be combined, or may be added in advance to the boiler as a compounding agent.

本発明においてジエタノールアミン(DEA)の給水への添加量は、一般に0.01mg/L〜100mg/Lであり、好ましくは0.05mg/L〜50mg/L、より好ましくは0.1mg/L〜10mg/Lである。
また、本発明のボイラ用防食剤においては、復水系の防食を目的としてアンモニアや中和性アミンを併用することができる。
中和性アミンとしては、モノエタノールアミン(MEA)、シクロへキシルアミン(CHA)、モルホリン(MOR)、ジエチルエタノールアミン(DEEA)、モノイソプロパノールアミン(MIPA)、メトキシプロピルアミン(MOPA)、2−アミノ−2−メチル−1−プロパノール(AMP)等を用いることができる。
これらの〔中和性アミン及び/又はアンモニア〕とジエタノールアミン(DEA)との比率[DEA:〔中和性アミン及び/又はアンモニア〕](質量比)は、好ましくは0.01:100〜100:0.01、より好ましくは0.01:10〜10:0.01、さらに好ましくは0.1:10〜10:0.1である。
In the present invention, the amount of diethanolamine (DEA) added to the feed water is generally 0.01 mg / L to 100 mg / L, preferably 0.05 mg / L to 50 mg / L, more preferably 0.1 mg / L to 10 mg. / L.
Moreover, in the anticorrosive agent for boilers of this invention, ammonia and neutralizing amine can be used together for the purpose of condensate anticorrosion.
Examples of neutralizing amines include monoethanolamine (MEA), cyclohexylamine (CHA), morpholine (MOR), diethylethanolamine (DEEA), monoisopropanolamine (MIPA), methoxypropylamine (MOPA), 2-amino -2-methyl-1-propanol (AMP) or the like can be used.
The ratio [DEA: [neutralizing amine and / or ammonia]] (mass ratio) of these [neutralizing amine and / or ammonia] and diethanolamine (DEA) is preferably 0.01: 100 to 100: It is 0.01, More preferably, it is 0.01: 10-10: 0.01, More preferably, it is 0.1: 10-10: 0.1.

また、本発明のボイラ用防食剤は、ジエタノールアミン及び脱酸素剤を含むことが好ましいが、脱酸素剤の添加量は、給水中の溶存酸素量に応じて必要量を添加する。脱気装置がある場合はその性能に応じて添加する。
なお、ジエタノールアミンと脱酸素剤とを含む防食剤とする場合、両者の配合割合はジエタノールアミンがボイラ水所定のpH、一般的にはpH8.8〜10.8に調整するのに必要な割合、また脱酸素剤がそのpHの給水中の溶存酸素を除去するのに十分な割合とする。具体的には、一般的にジエタノールアミンは0.1〜99.9質量%、好ましくは0.5〜95質量%、より好ましくは1〜90質量%とすることができ、脱酸素剤は99.9〜0.1質量%、好ましくは99.5〜5質量%、より好ましくは99〜10質量%とすることができる。
他の防食剤その他の薬剤の添加量は、その目的の範囲で任意に決めることができる。水その他の溶媒の配合割合は任意に決めることができるが、全く含まなくてもよく、薬剤自体の吸湿性により吸湿される範囲で含んでいてもよい。
Moreover, although it is preferable that the anticorrosive agent for boilers of this invention contains a diethanolamine and a deoxygenating agent, the addition amount of a deoxidizing agent adds a required amount according to the amount of dissolved oxygen in feed water. If there is a deaerator, add it according to its performance.
In addition, when it is set as the anticorrosive containing diethanolamine and an oxygen scavenger, the mixing ratio of both is a ratio required for diethanolamine to adjust boiler water to a predetermined pH, generally pH 8.8 to 10.8, A rate sufficient for the oxygen scavenger to remove dissolved oxygen in the feed water at that pH. Specifically, diethanolamine is generally 0.1 to 99.9% by mass, preferably 0.5 to 95% by mass, more preferably 1 to 90% by mass, and the oxygen scavenger is 99.99% by mass. 9 to 0.1% by mass, preferably 99.5 to 5% by mass, more preferably 99 to 10% by mass.
The addition amount of other anticorrosives and other chemicals can be arbitrarily determined within the range of the purpose. The blending ratio of water and other solvents can be arbitrarily determined, but may not be included at all, and may be included within a range where moisture is absorbed by the hygroscopicity of the drug itself.

本発明の防食剤を適用しうるボイラに特に制限はないが、(i)過熱器や蒸気タービンを有するボイラ用や、(ii)過熱器、蒸気タービンを有するボイラと給復水とが混合するボイラ用等の防食剤として特に適している。   Although there is no restriction | limiting in particular in the boiler which can apply the anticorrosive of this invention, (i) For boilers which have a superheater and a steam turbine, (ii) The boiler which has a superheater and a steam turbine, and supply and condensate water mix It is particularly suitable as an anticorrosive for boilers.

本発明の防食剤は上記ボイラのボイラ水に添加した状態で防食効果を発揮する。ボイラ水に添加する方法としては給水系に添加することにより、防食剤が給水とともにボイラに至り、そこでボイラ水と混合する方法が好ましいが、ボイラ水に直接添加してもよい。ボイラ内ではジエタノールアミン(DEA)は一部揮発して蒸気とともに持ち出され、また脱酸素剤は脱酸素作用により消費されるので、給水に所定量添加することにより、ボイラ水における防食剤濃度を一定に保持することができる。   The anticorrosive of this invention exhibits the anticorrosion effect in the state added to the boiler water of the said boiler. As a method for adding to the boiler water, a method in which the anticorrosive agent reaches the boiler together with the water supply by adding to the water supply system, and a method of mixing with the boiler water there is preferable, but it may be added directly to the boiler water. In the boiler, diethanolamine (DEA) is partially volatilized and taken out with the steam, and the oxygen scavenger is consumed by the oxygen scavenging action, so by adding a predetermined amount to the feed water, the concentration of the anticorrosive agent in the boiler water is kept constant. Can be held.

以下に実施例により本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1
(1)圧力4MPa、ブロー率1%、復水回収率20%、純水(イオン変換水)給水、加熱脱気器〔出口脱気能力(DO値) 0.03mg/L〕の条件で試験用テストボイラを用いて防食試験を実施した。なお、本実施例では、給水に対して、Na/PO4モル比2.7でリン酸ナトリウムをリン酸イオンとして0.1mg/L、2−アミノエタノール(MEA) 1mg/Lを添加したところ、給復水のpHは9.1、ボイラ水のpHは10.0となった。ここに、補給水由来の有機物がボイラ水中で熱分解して生じる有機酸を想定して、給水に0.06mg/Lの蟻酸を添加した。このとき、ボイラ水のpH(25℃)は9.0にまで低下し、この圧力クラスのJIS基準値の下限値である9.4を下回った。
同じ薬注量のまま、MEAの替わりにメチルジエタノールアミン(MDEA) 1mg/L添加に切替えても、ボイラ水のpH(25℃)は同様に9.0であった。
(2)ここで、MDEAからジエタノールアミン(DEA)に切替えると、ボイラ水のpH(25℃)はJIS基準値以上である9.4にまで上昇した。
以上より、同量の添加量でも、ジエタノールアミン(DEA)はボイラ水のpHをより上昇させ易いことが判った。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
Example 1
(1) Test under conditions of pressure 4 MPa, blow rate 1%, condensate recovery rate 20%, pure water (ion conversion water) water supply, heating deaerator [outlet deaeration capacity (DO value) 0.03 mg / L] An anticorrosion test was carried out using a test boiler. In this example, 0.1 mg / L of sodium phosphate as phosphate ions and 1 mg / L of 2-aminoethanol (MEA) were added to the water supply at a Na / PO 4 molar ratio of 2.7. The pH of the feed water was 9.1, and the pH of the boiler water was 10.0. Here, 0.06 mg / L formic acid was added to the feed water, assuming an organic acid produced by thermally decomposing organic matter derived from makeup water in boiler water. At this time, the pH (25 ° C.) of the boiler water dropped to 9.0, which was lower than 9.4, which is the lower limit value of the JIS standard value for this pressure class.
Even if it switched to addition of 1 mg / L of methyldiethanolamine (MDEA) instead of MEA with the same dosage amount, the pH of boiler water (25 ° C.) was 9.0 similarly.
(2) Here, when switching from MDEA to diethanolamine (DEA), the pH of boiler water (25 ° C.) rose to 9.4, which is not less than the JIS standard value.
From the above, it was found that diethanolamine (DEA) can easily increase the pH of boiler water even with the same amount of addition.

実施例2
(1)圧力4MPa、ブロー率1%、復水回収率20%、純水(イオン交換水)給水、加熱脱気器〔出口脱気能力(DO値) 0.03mg/L〕の条件で試験用テストボイラを用いて防食試験を実施した。本実施例では、給水に対して、Na/POモル比2.7でリン酸ナトリウムをリン酸イオンとして0.1mg/L、補給水由来の有機物がボイラ水中で熱分解して生じる有機酸として0.1mg/Lの蟻酸、2−アミノエタノール(MEA) 4mg/Lを添加したところ、ボイラ水のpH(25℃)は9.4、給復水のpH(25℃)は9.6となり、給復水のpHが必要以上に上昇した。ここで、MEAの替わりにメチルジエタノールアミン(MDEA)を使用し、ボイラ水のpH(25℃)9.4を維持するには、MDEAの添加量は4.3mg/Lまで増加した。また、MDEAの替わりにMIPAとし、同様にボイラ水のpH(25℃)9.4を維持するには、MIPAの添加量は7.1mg/Lまで増加した。
(2)ここで、モノイソプロパノールアミン(MIPA)からジエタノールアミン(DEA)へと切替え、同様にpH(25℃)9.4を維持するには、DEAの添加量は、2.5mg/Lまで低減できた。しかし、このときの給復水のpH(25℃)が9.1まで低下したため、ここにMEAを0.8mg/L追加添加すると、薬品のトータル添加量は3.3mgと低減できた上に、ボイラ水のpH(25℃)が9.5、給復水のpH(25℃)が9.3とJIS基準を満足する処理が施せるようになった。
同様に、ジエタノールアミン(DEA)2.5mg/LにMIPA 1.4mg/Lを追加添加すると、薬品のトータル添加量は3.9mg/LとMIPA単独時やMEA単独時と比べて低減できた上に、ボイラ水のpH(25℃)が9.4、給復水のpH(25℃)が9.3とJIS基準を満足する処理が施せるようになった。
Example 2
(1) Tested under conditions of pressure 4 MPa, blow rate 1%, condensate recovery rate 20%, pure water (ion exchange water) water supply, heating deaerator [outlet deaeration capacity (DO value) 0.03 mg / L] An anticorrosion test was carried out using a test boiler. In the present embodiment, the feed water contains 0.1 mg / L of sodium phosphate as phosphate ions at a Na / PO 4 molar ratio of 2.7, and the organic acid generated by pyrolyzing the organic matter derived from the makeup water in the boiler water. When 0.1 mg / L formic acid and 2-aminoethanol (MEA) 4 mg / L were added, the pH of the boiler water (25 ° C.) was 9.4 and the pH of the feed water (25 ° C.) was 9.6. Thus, the pH of the feed and condensate increased more than necessary. Here, in order to use methyldiethanolamine (MDEA) instead of MEA and maintain the pH (25 ° C.) 9.4 of the boiler water, the amount of MDEA added increased to 4.3 mg / L. In addition, MIPA was used instead of MDEA, and the amount of MIPA added was increased to 7.1 mg / L in order to maintain the boiler water pH (25 ° C.) of 9.4.
(2) Here, in order to switch from monoisopropanolamine (MIPA) to diethanolamine (DEA) and maintain pH (25 ° C.) of 9.4, the amount of DEA added is reduced to 2.5 mg / L. did it. However, since the pH (25 ° C.) of the feed / recovery water at this time decreased to 9.1, adding 0.8 mg / L of MEA here reduced the total amount of chemicals to 3.3 mg. The boiler water has a pH (25 ° C.) of 9.5, and the pH of the feed water and recovery water (25 ° C.) is 9.3.
Similarly, when MIPA 1.4 mg / L was added to 2.5 mg / L of diethanolamine (DEA), the total amount of chemicals added was reduced to 3.9 mg / L compared to MIPA alone or MEA alone. Furthermore, the boiler water has a pH (25 ° C.) of 9.4, and the pH of the feed water and recovery water (25 ° C.) is 9.3.

実施例3
圧力4MPa、ブロー率1%、復水回収率20%、純水(イオン交換水)給水、加熱脱気器〔出口脱気能力(DO値) 0.03mg/L〕の条件で試験用テストボイラを用いて、ジエタノールアミン(DEA)と脱酸素剤1−アミノ−4−メチルピペラジン(1A4MP)を含む系、及びメチルジエタノールアミン(MDEA)で防食試験を実施した。試験条件と結果を表1に示す。
Example 3
Test boiler for testing under the conditions of pressure 4 MPa, blow rate 1%, condensate recovery rate 20%, pure water (ion exchange water) water supply, heating deaerator [outlet deaeration capacity (DO value) 0.03 mg / L] The anticorrosion test was carried out with a system containing diethanolamine (DEA) and oxygen scavenger 1-amino-4-methylpiperazine (1A4MP) and methyldiethanolamine (MDEA). Table 1 shows the test conditions and results.

Figure 0006160741
Figure 0006160741

表1から、メチルジエタノールアミン(MDEA)のみを用いた試験No.5では、ボイラ水のpH(25℃)が8.8と低く、鉄低減に対する効果が不十分であることが分かる。
これに対して、MDEAからジエタノールアミン(DEA)に切替えた試験No.1では、同量であっても、鉄低減に対する効果が向上することが分かる。
また、DEAと脱酸素剤1A4MPを併用した試験No.2では、鉄低減に対する効果がより向上することが分かる。
さらに、試験No.1及びNo.2とNo.3及びNo.4を対比すると、DEAの添加量が少量であっても、DEAとその他のアミン〔試験No.3では、2−アミノエタノール(MEA)、試験No.4では、モノイソプロパノールアミン(MIPA)〕を併用することにより、鉄低減に対する効果がより向上することが分かる。
From Table 1, it can be seen that in test No. 5 using only methyldiethanolamine (MDEA), the pH (25 ° C.) of boiler water is as low as 8.8, and the effect on iron reduction is insufficient.
On the other hand, in test No. 1 which switched from MDEA to diethanolamine (DEA), even if it is the same amount, it turns out that the effect with respect to iron reduction improves.
Moreover, it turns out that the effect with respect to iron reduction improves more in test No. 2 which used DEA and oxygen absorber 1A4MP together.
Furthermore, when test No. 1 and No. 2, and No. 3 and No. 4 are compared, even if the addition amount of DEA is small, DEA and other amines [in test No. 3, 2-aminoethanol ( In MEA) and Test No. 4, it can be seen that the combined use of monoisopropanolamine (MIPA)] further improves the effect on iron reduction.

本発明の防食剤は、主として過熱器や蒸気タービンを有するボイラや、過熱器、蒸気タービンを有するボイラと処理水とが混合するボイラ等で好ましく使用することができる。   The anticorrosive agent of the present invention can be preferably used mainly in a boiler mainly having a superheater or a steam turbine, or a boiler in which a boiler having a superheater or a steam turbine and treated water are mixed.

Claims (3)

ジエタノールアミン及び中和性アミン(ジエタノールアミンを除く)を含むボイラ用防食剤を用いたボイラの防食方法であって、
前記ジエタノールアミン及び前記中和性アミンの質量比が0.1:10〜10:0.1であり、
前記中和性アミンが、モノエタノールアミン、シクロへキシルアミン、モルホリン、ジエチルエタノールアミン、モノイソプロパノールアミン、メトキシプロピルアミン、及び2−アミノ−2−メチル−1−プロパノールから選ばれる1種以上の化合物であり、
前記ジエタノールアミンの給水への添加量を0.1〜10mg/Lとする、ボイラの防食方法。
A boiler anticorrosion method using a boiler anticorrosive containing diethanolamine and neutralizing amine (excluding diethanolamine),
The mass ratio of the diethanolamine and the neutralizing amine is 0.1: 10 to 10: 0.1,
The neutralizing amine is one or more compounds selected from monoethanolamine, cyclohexylamine, morpholine, diethylethanolamine, monoisopropanolamine, methoxypropylamine, and 2-amino-2-methyl-1-propanol. Yes,
A boiler anticorrosion method, wherein the amount of diethanolamine added to the feed water is 0.1 to 10 mg / L.
前記ボイラ用防食剤が、さらに脱酸素剤を含む、請求項1に記載のボイラの防食方法。   The boiler anticorrosion method according to claim 1, wherein the boiler anticorrosive further contains an oxygen scavenger. 前記脱酸素剤が、ヒドラジン、カルボヒドラジド、1−アミノピロリジン、1−アミノ−4−メチルピぺラジン、N,N−ジエチルヒドロキシルアミン、エリソルビン酸(塩)、及びアスコルビン酸(塩)から選ばれる1種以上の化合物である、請求項2に記載のボイラの防食方法。   1 wherein the oxygen scavenger is selected from hydrazine, carbohydrazide, 1-aminopyrrolidine, 1-amino-4-methylpiperazine, N, N-diethylhydroxylamine, erythorbic acid (salt), and ascorbic acid (salt) The boiler anticorrosion method according to claim 2, wherein the anticorrosion method is a compound of at least one species.
JP2016095971A 2010-01-28 2016-05-12 Boiler anticorrosion method and anticorrosive Expired - Fee Related JP6160741B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010017200 2010-01-28
JP2010017200 2010-01-28
JP2011013405A JP2011174173A (en) 2010-01-28 2011-01-25 Corrosion inhibitor for boiler

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011013405A Division JP2011174173A (en) 2010-01-28 2011-01-25 Corrosion inhibitor for boiler

Publications (2)

Publication Number Publication Date
JP2016191152A JP2016191152A (en) 2016-11-10
JP6160741B2 true JP6160741B2 (en) 2017-07-12

Family

ID=46582426

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011013405A Pending JP2011174173A (en) 2010-01-28 2011-01-25 Corrosion inhibitor for boiler
JP2016095971A Expired - Fee Related JP6160741B2 (en) 2010-01-28 2016-05-12 Boiler anticorrosion method and anticorrosive

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2011013405A Pending JP2011174173A (en) 2010-01-28 2011-01-25 Corrosion inhibitor for boiler

Country Status (6)

Country Link
JP (2) JP2011174173A (en)
CN (1) CN103403226A (en)
MY (1) MY171453A (en)
SG (1) SG192140A1 (en)
TW (1) TWI516639B (en)
WO (1) WO2012101844A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6213215B2 (en) * 2013-12-19 2017-10-18 三浦工業株式会社 Boiler system
RU2652677C2 (en) * 2016-07-29 2018-04-28 Публичное Акционерное Общество "Нижнекамскнефтехим" Inhibiting composition for reduction of the corrosion of the steam generation system of the ethylene installation and of pyrolysis oven coilers
CN107228575B (en) * 2017-06-28 2019-02-19 内蒙古京宁热电有限责任公司 A kind of indirect air cooling unit circulation process for corrosion control
CN107324476A (en) * 2017-07-21 2017-11-07 沈阳追梦蓝环保科技有限公司 A kind of compound demineralized water pH adjusting agent and preparation method thereof
JP6506865B1 (en) * 2018-03-14 2019-04-24 栗田工業株式会社 Vapor condensation method
JP6457135B1 (en) * 2018-06-07 2019-01-23 内外化学製品株式会社 Carbohydrazide-containing composition and method for stabilizing carbohydrazide
RU2768812C1 (en) * 2021-11-23 2022-03-24 Акционерное общество "Альметьевские тепловые сети" (АО "АПТС") Corrosion inhibitor to protect internal heating surfaces from dissolved corrosive gases

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1114595A (en) * 1979-04-02 1981-12-22 Joseph J. Schuck Corrosion inhibitor treatment for boiler water
US5141716A (en) * 1989-10-25 1992-08-25 Betz Laboratories, Inc. Method for mitigation of caustic corrosion in coordinated phosphate/ph treatment programs for boilers
US5019342A (en) * 1989-10-25 1991-05-28 Betz Laboratories, Inc. Method for mitigation of caustic corrosion in coordinated phosphate/ph treatment programs for boilers
CA2077312C (en) * 1992-09-01 2000-02-08 Ronald L. Oleka Condensate polisher regenerant system
US5527468A (en) * 1994-12-20 1996-06-18 Betz Laboratories, Inc. Nonionic polymers for the treatment of boiler water
JP3659765B2 (en) * 1997-05-20 2005-06-15 株式会社キレスト技研 Metal anticorrosive composition
JP4104724B2 (en) * 1998-03-16 2008-06-18 株式会社日本触媒 Metal corrosion inhibitor
JPH11279780A (en) * 1998-03-19 1999-10-12 China Petro Chem Corp Aminoalcohol derivative corrosion inhibitor for carbon steel
JP4654392B2 (en) * 2000-08-07 2011-03-16 株式会社片山化学工業研究所 Boiler water treatment system and blow water management method using the same
US6540923B2 (en) * 2000-12-05 2003-04-01 Kurita Water Industries Ltd. Oxygen scavenger
JP2003231980A (en) * 2002-02-12 2003-08-19 Kurita Water Ind Ltd Corrosion inhibitor for boiler
JP3855961B2 (en) * 2003-04-28 2006-12-13 栗田工業株式会社 Oxygen absorber and deoxygenation method
KR100422066B1 (en) * 2003-07-16 2004-03-10 김영남 Feed Water Composition for Boiler
JP2008156700A (en) * 2006-12-22 2008-07-10 Miura Co Ltd Condensed water treatment agent
JP5013076B2 (en) * 2007-03-30 2012-08-29 三浦工業株式会社 Method for inhibiting corrosion of condensate path in steam boiler equipment
JP2009285530A (en) * 2008-05-27 2009-12-10 Kurita Water Ind Ltd Water treatment agent for boiler device, and water treatment method for boiler device

Also Published As

Publication number Publication date
MY171453A (en) 2019-10-15
CN103403226A (en) 2013-11-20
SG192140A1 (en) 2013-08-30
TW201231726A (en) 2012-08-01
JP2011174173A (en) 2011-09-08
WO2012101844A1 (en) 2012-08-02
JP2016191152A (en) 2016-11-10
TWI516639B (en) 2016-01-11

Similar Documents

Publication Publication Date Title
JP6160741B2 (en) Boiler anticorrosion method and anticorrosive
TWI515340B (en) Anticorrosive method for boiler
US20050156143A1 (en) Oxygen scavenger and the method for oxygen reduction treatment
JP4711902B2 (en) Boiler corrosion control method
JP2017154049A (en) Boiler-water water treatment method
KR101938142B1 (en) Water treatment composition containing carbohydrazide for power plant boiler system
KR101654700B1 (en) Water treatment composition containing diethyl hydroxylamine for power plant boiler system
JP2009285530A (en) Water treatment agent for boiler device, and water treatment method for boiler device
Suslov et al. Complex amine-based reagents
JP6642023B2 (en) Deoxidizer and deoxidizing method
JP2003231980A (en) Corrosion inhibitor for boiler
JP5849409B2 (en) Boiler water treatment agent and boiler water treatment method
JP6144399B1 (en) Steam condensate corrosion inhibitor and corrosion inhibition method
JP5862193B2 (en) Method for preventing iron scale in water side can of steam generator
KR20190067015A (en) Carbohydrazide containing water treatment coloring composition for power plant boiler system
JP2006274337A (en) Treatment agent and treatment method for boiler water
KR20190067037A (en) Diethylhydroxylamine containing water treatment coloring composition for power plant boiler system
CZ302467B6 (en) Composition for alkalization and anti-corrosive protection of power generating equipment
JP2003230890A (en) Method for removing dissolved oxygen of aqueous plant
JP4598353B2 (en) Operation method of steam boiler equipment
JPH1119510A (en) Disoxidant for boiler
JP2014194048A (en) Anticorrosive agent for boiler and method for controlling corrosion in boiler
JP2010159966A (en) Method for operating steam boiler

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170529

R150 Certificate of patent or registration of utility model

Ref document number: 6160741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees